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Abstract

In this paper, we study optimal control problems for multiclass GI /M /n 4+ M queues
in an alternating renewal (up—down) random environment in the Halfin—Whitt regime.
Assuming that the downtimes are asymptotically negligible and only the service pro-
cesses are affected, we show that the limits of the diffusion-scaled state processes
under non-anticipative, preemptive, work-conserving scheduling policies, are con-
trolled jump diffusions driven by a compound Poisson jump process. We establish
the asymptotic optimality of the infinite-horizon discounted and long-run average
(ergodic) problems for the queueing dynamics. Since the process counting the number
of customers in each class is not Markov, the usual martingale arguments for conver-
gence of mean empirical measures cannot be applied. We surmount this obstacle by
demonstrating the convergence of the generators of an augmented Markovian model
which incorporates the age processes of the renewal interarrival times and downtimes.
We also establish long-run average moment bounds of the diffusion-scaled queueing
processes under some (modified) priority scheduling policies. This is accomplished
via Foster—Lyapunov equations for the augmented Markovian model.
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1 Introduction

There has been a lot of research activity on scheduling control problems for queueing
networks in the Halfin—Whitt regime. The discounted problem for multiclass many-
server queues was first studied in [1]. See also the work in [2,3]. For the ergodic control
problem in the case of Markovian queueing networks see [4—6]. Scheduling control
problems for queueing networks in random environments have also attracted much
attention recently [7—10]. It is worth noting that in the study of asymptotic optimality
in Markov-modulated environments, the scaling parameter depends on the rate of the
underlying Markov process; see, for example, [7,10,11].

In this paper we consider queueing networks operating in alternating renewal
(up—down) random environments, modeling service interruptions, and with renewal
arrivals. It is well known that for large-scale service systems, service interruptions
can have a dramatic impact on system performance [12]. For single class queues and
networks in an alternating renewal environment, limit theorems have been studied in
[12-16]. To the best of our knowledge, there are no studies on optimal scheduling con-
trol for multiclass many-server queues in alternating renewal environments, or even
ergodic control in the Halfin—Whitt regime with arrivals that are renewal processes.

Specifically, we consider multiclass (d classes) GI /M /n+ M queues with service
interruptions in the Halfin—Whitt regime, where the arrival rate in each class and the
number of servers in the pool are large, with a scaling parameter n, and the service
interruptions are asymptotically negligible of order n~"/?. The service interruption
is modeled as an alternating renewal process constructed by regenerative ‘up’ and
‘down’ cycles. In the ‘down’ state, all servers stop functioning, and new customers
arrive, which may abandon the queue. In the ‘up’ state, the queueing system functions
normally. We assume that at least one class of customers has a strictly positive aban-
donment rate. The scheduling policy determines the allocation of servers to different
classes of customers. We approximate the scheduling problem via the corresponding
control problem of the limiting jump diffusion in the heavy-traffic regime, for which
a sharp characterization of optimal Markov controls is available [17], and use this to
exhibit matching upper and lower bounds on the optimal scheduling performance for
the queueing dynamics.

In Proposition 3.1, we establish a functional central limit theorem (FCLT) for
the d-dimensional diffusion-scaled state processes under work-conserving schedul-
ing policies. The limiting controlled processes are jump diffusions with piecewise
linear drift and compound Poisson jumps. The proof of weak convergence relies on
the construction of a modified diffusion-scaled state process, where we add the cumu-
lative downtime to a diffusion-scaled state process without interruptions. We show
that the modified and original diffusion-scaled state processes have the same weak
limits, which are governed by the jump diffusions described above.

The discounted and ergodic control problems for a large class of jump diffusions
arising from queueing networks in the Halfin—Whitt regime have been studied in [17],
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and these results are essential for establishing asymptotic optimality in the present
paper. In Theorem 3.1, we show that the optimal value functions of the discounted
problem for the diffusion-scaled processes converge to the corresponding function for
the limiting jump diffusion. The proof of asymptotic optimality for the discounted
problem follows the approach in [1], which deals with the discounted problem for
multiclass GI/M /n + M queues. An essential part of this proof involves moment
bounds for the diffusion-scaled state process, and the cumulative downtime process.

Asymptotic optimality for the ergodic control problem is more challenging. The
result is stated in Theorem 3.2. Here, long-run average moment bounds for the
diffusion-scaled state processes play a crucial role (see Proposition 4.2). Typically,
such bounds are obtained in the literature via Foster—Lyapunov inequalities [4—
6,10,18]. However, since the process counting the number of customers in each class,
referred to as the queueing process, or state process, is not Markov, we first construct
a sequence of auxiliary diffusion-scaled processes by adding the scaled residual time
process of the alternating renewal process in the ‘down’ state to the original process,
taking advantage of the fact that the long-run average moments of the scaled residual
time process are negligible as the scaling parameter n tends to infinity (see equa-
tion (4.25)). We then consider the joint Markov process comprised of the auxiliary
diffusion-scaled state process and the age processes of renewal arrival and alternating
renewal processes, and construct Foster—Lyapunov functions, which bear a resem-
blance to the Lyapunov functions in [19]. In this part, we assume that the mean residual
life functions are bounded, and use the criterion in [20, Theorem 4.2] to show that
the joint Markov processes are positive Harris recurrent for all large enough n under
some (modified) priority scheduling policy. We apply a two-step scheduling: first, the
servers are allocated to the classes of customers with zero abandonment rate in such a
manner that the servers used for each class do not exceed a certain proportion dictated
by the traffic intensity; second, a static priority rule is applied to allocate the remaining
servers. We show that the long-run average moments of the auxiliary diffusion-scaled
state processes are bounded under this scheduling policy. We then establish a moment
estimate for the difference between the auxiliary and original diffusion-scaled pro-
cesses, and proceed to show that the analogous moment bounds hold for the original
diffusion-scaled processes.

To prove asymptotic optimality for the ergodic control problem, we establish lower
and upper bounds for the limits of the value functions (see Egs. (5.10) and (5.28)). For
the proof of the lower bound, we show that the sequence of mean empirical measures
of the diffusion-scaled state processes is tight (see Lemma 5.2), and any limit of mean
empirical measures is an ergodic occupation measure for the limiting jump diffusion.
This is analogous to the technique used in [4-6,10]. However, characterizing the limits
of mean empirical measures (see Theorem 5.2) is quite challenging here. Since we
consider the diffusion-scaled processes with renewal arrivals in an alternating renewal
environment, the martingale arguments in the above papers cannot be applied here.
Instead, we develop a new approach. Following the technique of the proof of ergodicity
under the specific scheduling policy described in the preceding paragraph, we consider
the generator of the joint Markov process of the auxiliary diffusion-scaled state process,
which incorporates the residual time process, and the associated age processes of the
renewal arrivals and the alternating renewal environment. We construct suitable test
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functions (see (5.12)) which involve the coefficients of variation of interarrival times,
and proceed to show the convergence of generators.

For the proof of the upper bound, we adopt the spatial truncation technique devel-
oped in [4], which is also used in [5,6,10], and is extended to jump diffusions in [17].
This involves a concatenated scheduling policy. We first construct a continuous pre-
cise e-optimal control for the ergodic control problem for the limiting jump diffusion
(see Proposition 5.1). Then, inside a compact set, we map this control to a scheduling
policy for the diffusion-scaled process. On the complement of this set, we apply the
(modified) priority scheduling policy. We show that the long run average moments
of the diffusion-scaled state process are bounded under this concatenated scheduling
policy (see Proposition 4.3), and the limit of mean empirical measures is the ergodic
occupation measure of the limiting jump diffusion governed by the e-optimal con-
trol (see Lemma 5.3). Here, the techniques used in establishing the long-run average
moment bounds under the (modified) priority scheduling policy, and the convergence
of mean empirical measures, play an important role.

1.1 Organization of the Paper

The notation used in the paper is summarized in the next subsection. In Sect. 2, we
describe the model of multiclass many-server queues with service interruptions. In
Sect. 3, we define the diffusion-scaled processes and associated control problems,
and state the main results on weak convergence and asymptotic optimality. In Sect. 4,
we summarize the ergodic properties of the limiting controlled jump diffusion, and
state the results concerning long-run average moment bounds for the diffusion-scaled
processes. The proofs of Theorems 3.1 and 3.2 are given in Sect. 5. Appendix A is
devoted to the proofs of Lemma 3.1 and Proposition 3.1. Appendix B contains the
proofs of Lemmas 4.1 and 5.2.

1.2 Notation

Welet |- | and (-, -) denote the standard Euclidean norm and the inner product in R,
respectively. For x € RY, we let ||x|| := > ;lxil, and x’ denote the transpose of x.
The symbols R4, Z,, IN, denote the set of nonnegative real numbers, nonnegative
integers, and the set of natural numbers, respectively. The indicator function of a set
A € R? is denoted by 14. Given a, b € R, the minimum (maximum) is denoted by
a A b (aV b), respectively, |a] denotes the integer part of @, and a* := (4a) v 0. The
complement and closure of a set A C R are denoted by A and A, respectively. We
use the notation e; to denote the vector with ith entry equal to 1 and all other entries
equal to 0. We also lete := (1, ..., 1)T. We let B, denote the open ball of radius 7 in
RY, centered at the ori gin. For a process {X;};>0, T(A) denotes the first exit time from
the set A ¢ RY, defined by T(A) :=inf {t > 0 : X; ¢ A}, and we let T, := T(B,).
For a domain D C RY, the space CF(D) (C>*(D)), k > 0, stands for the class of all
real-valued functions on D whose partial derivatives up to order k (of any order) exist
and are continuous. C*" (D) stands for the set of functions that are k-times continuously
differentiable and whose kth derivatives are locally Holder continuous with exponent
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r. We let C’C‘ (D) denote the space of functions in C¥(D) with compact support, and Cllj
the set of functions in C*(D) whose partial derivatives up to order k are bounded. For
a nonnegative function g € C(RY), O(g) denotes the space of functions f € C(R?)
satisfying sup, cra 1'_{_?(;') < o0. By a slight abuse of notation, O(g) also denotes a
generic member of these spaces.

For k € IN, we let D¥ := DR, IRk) denote the space of R*-valued cadlag
functions on R.. When k = 1, we write D for D¥. Given a Polish space E, by
‘P(E) we denote the space of probability measures on E, endowed with the Prokhorov
metric.

2 Multiclass GI/M/N + M Queues with Service Interruptions
2.1 The Model and Assumptions

We consider asequence of GI /M /n+M queueing models with d classes of customers.
Let J := {1, ...,d}. For the nth system, let {A? (t)}s>0 denote the arrival process
of class-i customers. We assume that the arrivals are mutually independent renewal
processes defined as follows. Let {G; ;: j € IN},i € J, be ani.i.d. sequence of strictly
positive random variables with mean [E[G;] = 1 and finite (squared) coefficient of
variation cii := Var(Gi)/(E[G,1)?, where G; = G, 1. Then, we define

m
A”(t) := max {m >0: ) Gi §A?t}, 1>0,ied, @2.1)
j=1

where A? > 0 denotes the arrival rate. For each n € IN, the service and patience
times of the class-i customers are exponentially distributed with parameters ;' and
v/, respectively.

We adopt the following standard assumption on the parameters (see [1,4,13]).

Assumption 2.1 (The Halfin—Whitt regime) The parameters satisfy the following limits
foreachi € Jasn — oo:

I s >0, W = o >0, Yy = oy >0,
nTPOS —nr) = A, Vz(u, — 1) =
A

> pi —<1 Zp,—l

n;

We assume that inf, <y yd” > 0. Assumption 2.1, which is also known as the
Quality-and-Efficiency-Driven regime, implies that the system is critically loaded and

Z e,werep._n—zn.

nu'
i=1 i=1 M
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All queues are in the same up—down alternating renewal random environment.
Waiting customers may abandon at any time. In the ‘up’ state, the system functions
normally, and in the ‘down’ state all servers stop, while customers keep joining the
queues and any jobs that have started service will wait for the system to resume. For
this reason, we also refer to this model as multiclass queues with service interruptions.
Let {(u},d}): k € IN} be a sequence of i.i.d. positive random vectors denoting the
up—down cycles, and define the counting process of downtimes by

k
N"(t) == max {k > 0: T <t} with 7' := Y @} +d), keN, (22)

i=1
and T = 0. At time 0, the system is in the ‘up’ state.

Assumption 2.2 For eachn and k in IN, u}, and d}! are independent, u}, is exponentially
distributed with parameter f];, which converges to f > 0 as n — oo. We assume that
di = l,l—ndl, with d; some nonnegative random variable satisfying E[d;] = 1, and
?/—% — ¥ >0asn — oo.

For k € IN, we let (D*, M) and (]Dk, J1) denote the space DF endowed with the
Skorokhod M; and J; topologies, respectively (see, for example, [21,22]). Assump-
tion 2.2 implies that the service interruptions are asymptotically negligible, and

N'" = N in (D,J;) asn — oo,

where the limiting process N is a Poisson process with rate 8. Define the server
availability process W" .= {W"(t): t > 0} by

n n n
I, T <t<T, + Uy,

V() =
() 0, T +upyy =t <Tiy,

(2.3)

for k € IN. We also define the cumulative up-time process C} = {C[}(¢)};>0 by
cil@) = fé W"(s) ds, and the cumulative down-time process by Cj(t) :=t — C{(t).
Let F91 denote the distribution function of d;. By [13, Lemma 2.2], we have

ﬁC’é = L in (D, M) asn — oo, 2.4)

where {L;};>0 is a compound Poisson process with intensity 17 (dx)dt = B F d
(¥dx)dt, where B is given in Assumption 2.2.

For the nth system, we denote the processes counting the total number of customers,
those in queue, and those in service, by X" = (X}, ..., X)), 0" = (Q',..., 0}),
and Z" = (ZY,..., Z}}), respectively. These processes satisfy the following con-
straints:

X!'(t) = Qi)+ Z ), Q7)) =0, Z'() =0,
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and (e, Z" (1)) < n 2.5)

foreacht > 0andi € J. We let

t
St r) = s:,,(uy f z;’(s»v"(s)dsw?r),
0 (2.6)

t
RI(t,r) = R:i<yi”/0 Q?(s)ds+y,»”r>,

fori €J,t > 0,and r > 0, where {S};, R} .: i € J,n € IN} are Poisson processes

with rate one. We assume that for each n € IN, {X;1 0), A;’, S, R! ;i1 € TJ} are

*,07
mutually independent. These processes are governed by the equation

XMt) = XI'(0) + AP () — SI'(r) — R (1) 2.7)

foreacht > 0,n € IN, and i € J, where S} (¢) := S} (¢, 0) and R} (¢) := R} (¢, 0).

2.2 Scheduling Policies

A scheduling policy is identified with a Zf{_—valued stochastic process Z" with cadlag
sample paths, which satisfies (2.5). Let

#(t) = inf{r > t: A’(r) — AZ(r—) > 0},
and 7"(t) = inf{r > t: V" (r) = 1}, (2.8)

for i € J. Recall the definitions of Cy in (2.4), and §" and R" in (2.6). Define the
o-fields

Fp o= o {X"(0), Al (1), S!(s), RI'(s),
X!(s), ZI(s), W"(s), N"(s): i € 1,0 <s <t} VN,
G = o{AlGE (1) +r) — ANE (1), SIE" (1), r) = SHE" (1)),
x RIE" (), r) — R} (F"(1)), C{E" (1) +r) — C4(t" (1) : i € T, r =0} VI,

(2.9)

for 1 > 0, where N is the collection of all P-null sets. We say that a scheduling policy
Z™" is non-anticipative if

(i) Z"(¢) is adapted to F},
(ii) F} and G} are independent at each time ¢t > 0,
(iii) foreachi € J,and ¢ > 0, the process S7' (7" (t), -) — S (7" (¢)) agrees in law with
S:J. (u}-), and the process R} (" (t), -) — R!' (" (¢)) agrees in law with R:,i ).

The information at time 7 is contained in ;' , while G represents the information about
future increments. The renewal arrivals A;?, i € J, and the alternative renewal process
W’ are regenerative processes. Soin G, we use 7' () and " (¢), respectively, instead of
t. Note that parts (ii) and (iii) in the definition of non-anticipative scheduling policy are
required so that the any limit of scheduling policies corresponds to a non-anticipative
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control for the limiting controlled jump diffusion. See part (iii) of Proposition 3.1 for
details.

Let 7", denote the kth jump time of A} — S — R}, foreachn € Nandi € J.
Equatlon (2. 7) implies that X' (1) = X”(O) for 0 <t < T/ 5T X!(t) = X} (0) + €] for
T/ G =tr= T/ ', and so forth, where € denotes the jump size which takes values in a
bounded set. Note that the integrals in (2.6) are finite by the definition of W" in (2.3)
and (2.5). Thus, given any non-anticipative scheduling policy Z", and initial condition
X"(0), there exists a unique solution to (2.7).

For x € Zi, we define the action set Z"(x) by

Z'(x) = {z € Zi 1z2=<x, (e,z) = (e, x) /\"}~

A scheduling policy Z" is called admissible if Z" (1) takes values in Z" (X" (1)) at
each ¢, and is non-anticipative. The set of admissible scheduling policies is denoted
by 3". Note that an admissible policy allows preemption, that is, a server can interrupt
service of a customer at any time to serve some other class of customers. In summary,
given an admissible scheduling policy Z", the process X" in (2.7) is well defined, and
we say that X" is governed by Z".

Next, we describe a well-known equivalent parameterization of the set of admissible
policies. Let

={uweR' :(e,u)=1)}.

We also define

S'(x) = Iver_:v: eS,ny,yeZi}, if (e, x) > n,

(e, x) —n

and §"(x) = {eg}, if (e, x) < n. Let 4" denote the class of processes {U"(f)};>0
which are non-anticipative, in the sense of the definition given above, and U" (¢) takes
values in 8" (X" (¢)). Then, each U" € 4" determines a policy Z" € 3" via

7't = X"(1) — Q"(1), with 0"(1) = ([e, X" (1)) — n) U (1).

This map is invertible, and its inverse is given by

X"(H)—2" 1)
U (1) = XTI for (e, X" (t)) > n
eq for (e, X" (1)) <n

Therefore, as far as control problems are concerned, we can use policies in U”* or 3"
interchangeably. Note that U/" can be considered as the proportion of class-i customers
in the queue when there are waiting customers in the system.

Next, we augment the state space, and define the class of stationary Markov schedul-
ing policies. Recall the definitions of A", N”, and W" in (2.1)—(2.3), respectively.
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Definition 2.1 Let Hi" (#) denote the age process for the class-i customers, that is,
| EHO)
H'(t) =1 — o Z Gij, t>0, i€, (2.10)
i j=I
and define the age process K" for the alternating renewal process in the ‘down’ state

by
o)

+
K"(t) = (t— Z(u2+d,’:)—u'fvn(l)+l> . t>0. @2.11)
k=1

Then, (A}, H'),i € J, and (W", K") are strong Markov processes (see, e.g., [23]).
We say that a scheduling policy Z" € 3" is (stationary) Markov if

Z"1) = (X (1), H" (1), V" (1), K" (1))
for some z": Zﬁ X ]RflF x {0,1} x Ry — Zi, and we let 37 denote the class of
these policies. Under a policy Z" € 37, the process (X", H", ¥", K") is Markov
with state space
[ oy k) € 29 x RE x {0, 1) x Ry : k= 0if ¢ = 1}.
Abusing the notation, when z" depends only on its first argument, we simply write
ZM(1) = 2"(X"(1)).
3 Diffusion-Scaled Processes and Control Problems
Let X", 0", and Z" denote the diffusion-scaled processes defined by
X[ = nm PP = pim). Q1) = nTPQI@), ZP(@) = nTA(ZN (@) — pin),

respectively, for# > O and i € J. It follows by (2.7) that the process X i takes the form

X'ty = X(0) + €81 + A1) — 81 (1) — RI'(¢)

r r, . 3.1
- /Lf[ ZMN(s)W"(s)ds — yi"/ Q! (s)ds+ L} (), t=>0,
0 0
where £ := n="2 (A — npl! pr),
t
AT@) = n" (AN — AMt),  SM@) = n'/2<S{’(t) - M?/O Z?(s)\lf”(s)ds),

t
RI(t) := n1/2<R;’(t) —yi”/ Q,’-’(s)ds>, and L (1) = /nul piCh(0).
0
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Let W" and I?", n € IN, be d-dimensional processes defined by

A

"= A —-S'—R! foriel, (3.2)

and
A t A t ~
Y1) = 't — ,uf/ ZMs)W"(s)ds — yi”/ Qi(s)ds foriel, t>0,
0 0
respectively. Then, X iin (3.1) has the representation
X!'(t) =X!'0)+ Y/ (1) + W)+ L (1).

The initial condition X "(0), n € IN, is assumed to be deterministic throughout the
paper.

3.1 The Limiting Controlled Diffusion with Compound Poisson Jumps
In Lemma 3.1 and Proposition 3.1 which follow, products or powers of the spaces
(D4, Jp) and (D9, M;) are viewed as metric spaces endowed with the maximum

metric. The proofs of these results are given in Appendix A.

Lemma 3.1 Suppose that Assumptions 2.1 and 2.2 hold, and that {)A(” (0): n € N} is
bounded. Then, under any sequence of U" € 3", we have

n'Q", n7'Z") = (eo.¢p) in (DY, My)?,

where ¢o(t) = (0,...,0) forallt > 0, and ¢, (t) = (p1, ..., pa).

Proposition 3.1 Grant the assumptions in Lemma 3.1. Then, the following hold.

(i) Asn — 09,

(W', L™ = (ZW,AL) in (D% J;) x (D4, M),

where the matrix ¥ is given by ¥ = diag(\/kl(l + 03,1)7 R \/Ad(l + cg’d)),
W is a d-dimensional standard Wiener process, ). :== (A1, ..., ,q), and {L;};>0
is the one-dimensional Lévy process in (2.4), and is mdependent of W.
(ii) The sequence (X" yn, wn, L”) is tight in (D4, M) x D9, D2 x (D9, M)).
(iii) Provided U" is tight in (]Dd J1), any limit X of X" isa strong solution to the
stochastic differential equation

dX; =b(X;, Up)dt + ZdW; + A dL;, (3.3)
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with initial condition Xo = x € R4, where U is a limit of U", and b(x, u): R x
S — R? takes the form

bx,u) =0 — M(x — (e, x) u) — (e, x)TT"u, (3.4)

with £ .= (€1, ...,4q3), M = diag(uy, ..., ug), and I' := diag(yy, ..., y4).
Moreover, any such limit U is non-anticipative, that is, fors < t, (W —Wg, L; —
Ly) is independent of

Fs = the completion of o {X¢, Uy, W;-, Ly v < s}.

Throughout the paper, the time variable appears as a subscript in the processes
governing the limiting controlled jump diffusion in order to distinguish them from the
processes associated with the nth system.

3.2 The Control Problems

Define R: Ri — R4 by N
R(x) := c|x|™ (3.5)
for some ¢ > 0 and m > 1. The running cost function R: RY x S — R is defined
by
R(x,u) = R((e,x)Jru).

Remark 3.1 We only choose a running cost function as in (3.5) to simplify the exposi-
tion. One may replace (3.5) with a function R, which is locally Lipschitz continuous,
and satisfies ~

clx|™ < R(x) < elx|™ Yx eRY, (3.6)

for some positive constants c1, ¢, and m > 1. All the results still hold with (3.6).
Moreover, the lower bound in (3.6) is not needed for the discounted problem (see, e.g.,

(1D.

The a-discounted control problem for the nth system is given by
VI(X™"(0)) := inf J,(X"(0),U") « >0, nel,
Uney”
where the cost criterion is defined by
~ A 0 A
Jo (XM(0),U") = E[/ e ™ fR(X” (s), U"(s)) ds:| Ya > 0.
0
For the controlled (jump) diffusion X in (3.3), we say that a control U is admissible if
it takes values in S, and non-anticipative (see [17]). We denote the set of all admissible

controls by . The corresponding «-discounted cost criterion for the diffusion takes
the form

o0
Jo(x,U) = EY U e % R(X;, Us)ds} Ya >0,
0
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and the optimal «-discounted value function is given by

Va(x) = inf Ju(x.U) Ve >0, (3.7)

where Eij denotes the expectation operator corresponding to the process under the
control U, with initial condition x € R¢. We introduce the following assumption for
the discounted problem.

Assumption 3.1 There exists a constant m4 > m Vv 2 with m as in (3.5) such that
E[(G;)™4] < oo, forall i € J, and E[(d})"™4V"+D] < 0.

We state the main result for the discounted problem in the next theorem, whose proof
is given in Sect. 5.2.

'[heorem 3.1 Grant the hypotheses in Assumptions 2.1, 2.2, and 3.1, and suppose that
X"(0) - x € R asn — o0o. Then

lim V(X"(0)) = Va(x). (3.8)
n— o0
Remark 3.2 Note that in Theorem 3.1, we do not need to impose any restrictions on
the limiting abandonment rates {y; : i € J}.

We define the ergodic control problem for the diffusion-scaled process by

o"(X"(0) = inf J(X"(0), Z"),
Znedi,
where the cost criterion J is given by

T
J(X"(0), Z") := lim sup %EZ" U R(0™(5)) ds].
0

T—o00
Here, the infimum is over all Markov scheduling policies, since for the ergodic control

problem, we work with Markov processes. For the controlled jump diffusion in (3.3),
the ergodic cost criterion, and the optimal ergodic value are defined by

1 T
J(x,U) := limsup ?Eg [/ R(X;, Us)ds:|,
0

T—o00

and
Uel

respectively. By [17, Theorem 4.1], it follows that g, is independent of x, and opti-
mality is attained by a stationary Markov control.

We introduce the following assumption on G; and d; for the ergodic control prob-
lem.
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Assumption 3.2 The following hold.

(1) The right derivative of F;(t) is finite, and F;(t) < 1,forallr > O andi € J. The
distribution function F¥' of d; satisfies the same property.

(i1) The mean residual life functions of G; and d; are bounded, that is, there exists
some positive constant C such that

001 pd X — F
(1= Fh(y))dy - aal (1-Fi(y)dy

<C Vied, (3.10
1= Fai(p) I—F@ - ied (10

and for all ¢+ > 0.

Assumption 3.2 implies that all absolute moments of G;, i € J, and d; are finite.
The main result of the ergodic control problem is stated in the next theorem, whose
proof is given in Sect. 5.3.

Theorem 3.2 Grant Assumptions 2.1, 2.2, and 3.2. In addition, suppose that m in (3.5)

is larger than 1, and that Xn (0) > x € R? as n — oo. Then, we have

lim 0" (X"(0)) = o
n—oo

4 Ergodic Properties

In this section, we present some ergodicity results for the limiting jump diffusion
and the diffusion-scaled processes. These results are used to prove Theorem 3.2 in
Sect. 5.3.

4.1 The Limiting Controlled Diffusion with Compound Poisson Jumps

The controlled generator of the controlled limiting jump diffusion in (3.3) is given by

Ap(x,u) =Y bi(x, w)digp(x) + % > x4l Ddiip(x)

i€l ied

+ o+ = o)) .0

for ¢ € C*(RY), where the drift b satisfies (3.4), and vy, (A) == . ({z € Ry: Az €
A}) for any Borel measurable set A, with I1; as in (2.4). We refer the reader to [20,
Sect. 6] for the definition of exponential ergodicity. The following proposition is a
direct consequence of [24, Theorem 3.5].

Proposition 4.1 Under any constant control v such that I'v # 0, the controlled lim-
iting jump diffusion in (3.3) is exponentially ergodic.

Remark 4.1 It is shown in [25Theorem 5*] that the limiting controlled jump diffusion
is exponentially ergodic uniformly over all stationary Markov controls resulting in a
locally Lipschitz continuous drift, if " > 0.
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Proposition 4.1 implies that the optimal control problems for the limiting jump
diffusion are well-posed.

4.2 Preliminaries

We denote the scaled hazard rate function of G; by r}'. This is defined by

A E (M)
"h;)) = +—+t—"— Vh;eRy, Viel,
ri (h;) 1—Fi()»:~lhi) i + l

where F; denotes the right derivative of F;. Recall H" in (2.10). The extended generator
of (A", H™) associated with the renewal arrival processes, denoted by H", is given by

df(x, h
H' f(x.h) = f;x )+Z P(hi)(f(x + e h — hie)) — f(x, b)) (4.2)

ied i€l

for f € Cp(R? x Rﬁ).

Remark 4.2 We sketch the derivation of (4.2); see also [26Theorem 5.5*]. It is enough
to consider one component (Al’.’, Hl.”), i € J. We obtain

Exn[f (A} (t +5), H' (¢ + )] — f(x, h)
=Eo [ f(AF(+5), H'(t +9)] — Exn[ f(A] (¢ +5). h)]
+ En[f (A}t +5),h)] = f(x, h)
= o (fG h+s) = fO )+ ((FG+ 1 h) — f(x,h))
Y W Ea[f(x 4 HE 4 9) = fa+ ). h) | AN+ ) = x + ]
jelN

+ Y W (fa k) = f(e b)) YfeCRxR), V(x.h) R xRy,
jelN,j>2

where

(h) == P(A"(t +5) = x + j| A'(t) = x, H'(t) = h) = P(Al(s +h) = j | G; = A'h)

l/S

by the regenerative property of renewal process. Since F;(r) is finite for all ¢ > 0, it
follows that

)\?Fi ()»l'-lhi)

1
nh) = lim ~ () = )
=0 5™ = T Gy

1
and hm —r,”(h)zo for j > 2.
s

It is evident that limg\o 7}’ s = = 1 and lims\ o 7]’
(4.2).

= 0 for j € IN. Thus, we obtain

i,j.s
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We define (compare this with [19])

S (1= Fi(3) dy
1= FQJhy)

n'(hi) =1 , hieRy, ield. (4.3)

Note that n" is bounded by (3.10). The following identity is frequently used throughout
the paper.

ny (hi) —nf (hi)ri (hi) = A} —ri'(hi), Yhi € Ry, Viel 4.4)
Recall that cg, ; denotes the squared coefficient of variation of G;. Let

/)»?Ohi SO = F@))dedr 241 /g’hi(l — F;(x)) dx

t(hy) =
K (hi) 1= F(\hy) 2 1 — F;(\7hy)

(4.5)

for h; € R4 and i € J. Note that the first term on the right-hand side of (4.5) is
the second order residual life function. It follows by (3.10) that k] is bounded. Using
(4.5), we obtain «/'(0) = 0, and

2
Coi -1

&i'(hi) — i (h)k (hy) = (n?(hi) + )W hieRy,iel  (4.6)

The scaled hazard rate function of d; is defined by

91 FA (97k)

ﬂd (k) = Tl(l?"k)’

kG]R+.

Recall K" in (2.11). The extended generator of (W", K™) associated with the alter-
nating renewal process, denoted by X", is given by

K fW. k) = ¢ Bi(f(0,0) = f(1,0))
+1 - 1//)(/3§(k)(f(1, 0) — f(0,k) +

AU k)) @7

dak

for f € Cp({0, 1} x Ry), with B} as in Assumption 2.2. In analogy to (4.4), we define

Jom (1= Fo(x)) dx

n . _
«(k) =1 [ Fa o VkeRy. (4.8)
The following identities hold: " (0) = 0, and
&" (k) — By(k)" (k) = 9" — By(k) VkeR,. 4.9)
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Let &* (Y, k) = (w + o (k))(l‘}")’l. It follows by (4.9) that

n

K& (y, k) = —ﬁ—lrjll// + (1 — ). (4.10)
Note that &" is bounded by (3.10).

4.3 Diffusion-Scaled Processes

To prove Theorem 3.2, we need to establish long-run average moment bounds for the
diffusion-scaled processes under a class of scheduling policies, which agree with a
proposed policy outside a compact set. We make this formal in Proposition 4.3. The
proposed policy is given in the next definition.

LetJog :={i € J: y; = 0}. If Jg # &, then, without loss of generality, we assume
thatJg = {1, ..., |Jo|}, where |Jo| denotes the cardinality of the set Jy. In Definition 4.1
below, we introduce a modified priority scheduling policy which can be described as
follows: First, |70i/¥; ., 0 pi ] A x; servers are allocated to each class i € Jy. Then, the
remaining servers are allocated following the static priority rule.

Definition 4.1 The Markov policy z" is defined by

“n np; npj
1 (1) = | e 4 (n— A=
“i ) \;Zieﬂo Pi <n Z (xj " \;Ziejo Pi J)

Jj€Jdo

i—1 np; \
2 : J .
- Xi— | =— — A Xi, Vi e j(),
( ! \;Ziéjo IOIJ) ) J l

j=1

and
-1+
Z(x) = xi A (n —ij) , VieI\J.

j=1

We let g' (x) :=x; — 2] (x),i €J.

In obtaining long-run average moment bounds, since the queueing system is in an
alternative renewal environment, we do not work with the diffusion-scaled processes
directly. To utilize the fact that (U", K™) is a Markov process, we introduce the
following auxiliary process. We define the ‘unscaled’ process X" by

XI(6) = X[0) + Al() — S'(1)
t
— R, (V,»" /0 (X7 (s) —nul piR"(s) — Z!(s)) dS> +nuipiR" (1)

= X?(t) —I—n/JL;',o,-R"(t) a.s. 4.11)
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fori € Jand ¢t > 0, where R"(¢) is the residual time process for the system in the
‘down’ state given by

Ni@)

R'(t) = de /I—W"(s))ds

and N[} () is the process counting the number of completed ‘up’ periods by time ¢.
Here, the second equality in (4.11) follows by the fact that given X" (0), W" and Z",
the evolution equation in (2.7) admits a unique solution. Also, if W"(t) = 1, then
R"™(t) = 0 and thus X" (1) = X"(¢) a.s. Note that under a Markov policy 7" € 3%,
the process ()?”, H", W" K™)is Markov with state space

= (@ h ¢ ) eRE x RE x {0, 1} x Ryt k= 0if yr = 1},

and 5
Z"t) = Z"(X" (@) —nul iR (1), H" (1), ¥" (1), K" (1)).

Under z" € 3%, the generator of (X", H", W" K") denoted by Efl is given by

Ly FG A k) = Loy f QA K) + Ty [0 K)
+Quy R B, K) (4.12)

for (X, h, Y, k) € D and f € Cp(RY x Ri x {0, 1} x R4). The operators on the
right-hand side of (4.12) are defined by

Lo fG k)

- Z%h,wk)+2r (h)(f 5+ eih = hiei, . k)

ied ied
—f()?,h, W, k))
+ Y Y (W @R L) + v gl () (F@E — e 1,0) — f(F, 7, 1,0)

ied

+ A =9)Y ¥y (fGF—ei h,0.k) — f(&, h,0.k)

ied

9 =d!
x /R g (¥ = nuw'(y = k), 2") Fi} (dy)

L OfGE R0, k)
= (=) Y i == (4.13)

iel i
with ¢ (X, 7") = x — 7",

In,Tﬁf(xvv h5 wv k)
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— wﬁ(j/ (f(x + Ly om0, 0) — FGh, 1,0)> F(dy), (4.14)
R. v

and

Qn,l/ff()zv hv w7 k)

dF(E, h, 0,k
= (1 —1/f)<ﬂg’(k)(f(i,h, 1,0) — f(x, h,0, k))+L>. (4.15)

ok

In (4.13), W' == (ufp1,.... 1uypa)s F;‘k denotes the conditional distribution of d}
given {d] > k}, and {nu! p;(d} — k) < X;:i €J}.

The first two terms on the right-hand side of (4.13) correspond to the extended
generator associated with the renewal arrival processes. Compare this with (4.2). Con-
ditioning on the alternative renewal process W” in the ‘up’ state, the third term on the
right-hand side of (4.13) corresponds to the service and abandonment processes, and
T,y corresponds to the residual time process R" together with W”. Similarly, condi-
tioning on the alternative renewal process in the ‘down’ state, the last two terms on the
right-hand side of (4.13) correspond to the abandonment process and R”, respectively,
and 9, y corresponds to (W", K™). The generators in (4.14) and (4.15) are analogous
to the extended generator associated with the alternating renewal process in (4.7).

Remark 4.3 We sketch the derivation of Z, . The rest of the terms in (4.12) follow
by the calculation below and Remark 4.2. To simplify the calculation, we assume that
the arrival processes are Poisson, and only consider the ith component (X LWt K,
i € J. Note that K"(¢t) = 0 when W"(¢) = 1. Since there are no simultaneous jumps
w.p.1., here we only consider the jumps caused by W”, that is, we consider

> (B ol f R +5), W0 450, K"+ 8) | N +9) = N0 = j]
jelN

— fELO) i),

for s,¢ > 0, where N (t) denotes the number of jumps of W” up to time ¢, and
p;?(t, s) = IP’(N"(I + ) — N”(t) = j), j € IN. By the memoryless property of
‘up’ times, and using the same calculation as in Remark 4.2 for ‘down’ times, it is
straightforward to check that

1 1
lim — p*(t,s) = B", and lim — p"(t,s) = 0 forj > 2,
sl\l‘%sp]( s) = B, an xl{l(l)spj( s) orj >

and for any ¢ > 0. By the continuity of K", we have
11\1% P(N"(t +5) = N"(t) = 1, K"(t +5) =0 | K"(t) = 0) = .
N
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Thus,

lim s 1.0[f (X7 (¢ +5), W0 +9), K"t +9) | V(0 45) = N"(1) = 1]
s
. 1
=E;z 10 |:f<x +nuj p; Wdl’ 0, 0)i|

This proves (4.14).
Definition 4.2 We define x!'(X) := X; — pjn, i € J,
=30 = (3@, 1W), F =8 =P, feRY
and
A = {x e R?: |x — pn| < RVn)
for a positive constant R.

Let Zfl" denote the generator of the scaled joint process En .= (X", H", ¥", K")
with X" := n~/>(X" — np). The state space of &” is given by

D" = [E"®), h, Y, k) e R x RE x {0, 1) x Ry: ¥ e RE, k=0if y = 1}.

n

Then, under any z" € 37, we have

L fG by k) = L) fGE ), by, k), (4.16)

for f € Co(R? x RL x {0, 1} x Ry).

The next lemma concerns the ergodicity of the process Z" under the modified
priority policy in Definition 4.1. Let Vi ¢ (x) 1= D ;. & |x;|* forx € R4, where k >
0, and £ is a positive vector. Define the function IN/J; £l R4 x ]Ri x{0,1} xRy - R
by

Vi@ h y k) o= Ve () + Y i (h) (Vg (x 17 7ei) = Vie e (x)
i€l

v+ o (k) "
A @17)

i€l

x (Vs ) ) (Ve y i+ = V) )

where 1} and «" are as in (4.3) and (4.8), respectively, and %J(x,-) = —|x;|* for
xi € Ry andi € J\ Jp, and

Jnp; Zjej\jo pj

i —lil*, forx < LRSI
Vi) = | <0 e g,
K.t NI DM K—1 VP Y jena, P
- |xi| 5 for Xi Z 9
ZjEUO Pj Zjejo Pj
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The function Vn is constructed in such a manner as to allow us to take advantage of
the identities in (4 4) and (4.10). We define the set

Vnp; Z.jej\jo Pj }

Kq,(x) = {i eJo:x; >
Zjejo'oj

Note that Zfln denotes the generator of E” under the modified priority scheduling
policy in Definition 4.1. We have the following lemma.

Lemma4.1 Grant Assumptions 2.1, 2.2, and 3.2. For any even integer k > 2, there
exist positive constants Coand Cy, a positive vector € € R %, and n € N such that:

LoVe: Gy k) = Co—Ci Y Vee@®—Cr Y Viore(® (418)
i€I\IC, (%) i€k, (%)

~
mn

foralln > n, and (x,h, y, k) € D". Asa consequence, for all large enough n, B" is
positive Harris recurrent under the modified priority scheduling policy 7".

The proof of Lemma 4.1 is given in Appendix B. We continue with the following
prop, which plays a crucial role in proving Proposition 4.3. In its proof, especially,
equation (4.26), we show the relationship between the processes X" and X".

Proposition 4.2 Grant Assumptions 2.1, 2.2, and 3.2. Under the scheduling policy 7"
in Definition 4.1, and for any k > 0, there exists n € IN such that

| O AN
sup lim sup T E* |:/0 |X"(s)|'<ds:| < oo. (4.19)

n>n T—o00

Proof Let k > 2 be an arbitrary even integer. By (4.18), we have

B [V o (B(1)] - B [V (B )]

T YN o~ ~
= E U L, Ve (B"(9) ds:|
0

T
CoT — C, E¥' [ / V1.6 (X" () ds]. (4.20)
0

IA

Since (9")~! is of order n~"*> by Assumption 2.2, it follows by Young’s inequal-
ity together with (3.10) that there exist some positive constants c¢p and ¢ such that
co(Vke — 1) < Vgg < c1(1 + Vi ¢) for all large n. Note that xn 0) = %"(O). Thus,
by (4.20), we obtain

vn T ~ ~ A
E* [/ V-1 (X" () ds} < (Co+co)T + (1 + Ve (X"(0))  (4.21)
0
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for some positive constants C3 and C4. By dividing both sides of (4.21) by T, and
taking T — oo, we have

sup lim sup — L gz U 1X" (s)| %~ lds:| < 0. (4.22)

n>n T—00

Let E = EY" for some admissible scheduling policy U”. We have

1 |:/T v vn k—1 ]
—E [X(s) — X' (s)] ds
T 0

1 r -
= (u?p,»)K*‘7 ]E[/ (VnR"(5))" : ds} Vield. (4.23)
0
We use the identity

E[(VAR" ()] = E[(VaR" ()" IR (s) > 0] P(R"(s) > 0)  (4.24)
for any s > 0. Here R"(s) is the residual time of the system in the ‘down’ state,
and thus E[(y/nR"(s))*"HR"(s) > 0] < E[(y/nd})*~'] < ¢, for some positive
constant ¢p, by Assumption 2.2 and (3.10). Also, P(R"(s) > 0) = P(W"(s) = 0),
and it follows by [27, Theorem 3.4.4] that

@m~!

i, POV') =0) = Gt T

which is of order n~"/? by Assumption 2.2. Therefore, applying (4.24), we obtain

T
lm E[ / («/Y—an(S))K_lds} = 0. (4.25)
n,T)—occ T 0

It follows by (4.23) and (4.25) that

lim — E[/ 1X"(s) — X" (s) <! dsi| = 0. (4.26)
n,T)—»oo T
Thus (4.19) follows by (4.22) and (4.26). This completes the proof. O

The next prop is used to prove the upper bound for the ergodic control problem in
Sect. 5.3.2, where we adopt the spatial truncation technique developed in [4]. We first
introduce a class of concatenated scheduling policies.

Definition 4.3 We define the quantization function w : IRi — Zi by

d
@ (x) = (Lxu,..., Lxa—1], Lxal + ) (xi — inJ)> :

i=1
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For a sequence v : RY — S, n € IN, of continuous functions satisfying v” ()E"(x)) =
eq if x ¢ A%, R > 1, with A% as in Definition 4.2, we define the map

@ (((e. x) —n)+v”(£”(x))) for sup;cq|¥"(x)| < ﬁ\/ﬁ(mini 0i)

q"["1x) = 4, - .
q" (x) for sup;cq|%"(x)| > ﬁ\/ﬁ(mln,‘ ,oi),

and the scheduling policy z"*[v"](x) := x — ¢"[v"](x)

Proposition 4.3 Under the scheduling policy 7" [v"] in Definition 4.3, the conclusions
in Lemma 4.1 and Proposition 4.2 hold.

Proof For all sufficiently large n, we have g/'[v"](X) < 2dR/n for ¥ € A}, (see also
the proof of [4, Lemma 5.1]). If sup;4|%(¥)| < 1/n(min; p;), it is evident that

Zfz_ll X; < n, and thus z"[e;] is equivalent to the modified priority policy on this set.
Therefore, the result follows by the argument in Lemma 4.1 and Proposition 4.2. O

5 Asymptotic Optimality
5.1 Results Concerning the Limiting Jump Diffusion

In this subsection, we present some optimality results for the limiting jump diffusion.
These results are used in proving asymptotic optimality.

Recall that a stationary Markov control v is called stable if the process under v is
positive recurrent, and the set of such controls is denoted by {Usm. Let G denote the
set of ergodic occupation measures, that is,

G = {neP(Rde): / Af(x,u) n(dx, du) = 0 erc;?O(]Rd)}. (5.1
RYxU

See [28, Sect. 2.1] for more details.
We summarize the characterization of optimal controls for the limiting jump diffu-
sion in the following theorem. Recall the definition of d; in Assumption 2.2.

Theorem 5.1 Assume that E[(dl)’"H] < oo with m as in (3.5). The following hold:

(1) Fora > 0, V, in(3.7) is the minimal nonnegative solution in Cz”(IRd), re(,1),
to the HIB equation

mibl[AVa(x, u) + R(x, u)] = aVy(x) ae inRY. 5.2)
ue

In addition, Vy has at most polynomial growth with degree m. Moreover, a sta-
tionary Markov control v is optimal for the a-discounted problem if and only if it
is an a.e. measurable selector from the minimizer in (5.2).

(ii) There exists a solution V € C>" (R?), r € (0, 1), to the HIB equation

mi]ll}[AV(x, u) + R(x, u)] = s ae.in R, (5.3)
ue
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Moreover, a stationary Markov control v is optimal for the ergodic control problem
if and only if it is an a.e. measurable selector from the minimizer (5.3).

Proof We first consider (i). It follows by [24, Remark 5.1] and Proposition 4.1 that [17,
Assumptions 2.1 and 2.2] hold with V, and V having at most polynomial growth of
degree m. Since E[(d1)" '] < oo, then (4.1) satisfies [17, Assumption 5.1]. Therefore,
the results in part (i) follow by [17, Theorems 5.1 and 5.3]. Note that by [17, (5.4)], Vy
has at most polynomial growth of degree m. Similarly, the claim in part (ii) follows
by [17, Theorems 5.2 and 5.3]. O

Remark 5.1 If there is no jump part in (4.1), then it corresponds to the controlled
limiting diffusion for GI /M /n+ M queues. If we define the optimal control problems
for the limiting diffusion in the same way as in (3.7) and (3.9), then the results in
Theorem 5.1 still hold when A in (4.1) does not contain the jump component. As a
consequence, part (i) of Theorem 5.1 corresponds to [1, Theorem 3].

If we consider (3.9) over all stable Markov controls, then the ergodic control prob-
lem is equivalent to min,cg f]RdeU R(x, u) (dx, du), see, for example, [17, Sect.
4]. We summarize a result on e-optimal controls for the ergodic problem in the next
prop, which follows directly by Corollary 7.1 in [17]. Note that the constant control
v = eq4 also satisfies Proposition 4.1. Recall that a stationary Markov control v is
called precise if it is a measurable map from R to U.

Proposition 5.1 Assume that E[(d1)™] < oo, with m as in (3.5). For any € > 0, there
exist a continuous precise control ve € Ussm, and R = R(€) € N such that ve = ey
on B, and v is e-optimal, that is,

/ R(x, u) my, (dx, du) < o4 +e.
R4 xU

5.2 Proof of Theorem 3.1
To prove Theorem 3.1, we use the approach developed in [1]. We first establish a key

moment estimate for the diffusion-scaled process X", whose proof is similar to that
of [1, Lemma 3].

Lemma 5.1 Grant the hypotheses in Theorem 3.1. Then
E[IX" O] < er(1+ ™) (A + x|™) Vi =0, (5.4

where c1 and m1 are some positive constants independent of n, x and t.

Proof Recall L" and X" in (3.1), and W™ in (3.2). Let ®" be a d-dimensional process
defined by @7 (-) := u!! [y ZI'(s)(1 — W"(s)) ds, for i € J. Then,

! t
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Thus, we obtain
A A A A A t A t A
R = RIO) 20+ WD) + D (1) + L (1) — fo 28(s) ds — /0 07 (s) ds
forall + > 0 and i € J. Following the same method as in [1, Lemma 3], we have
IX" 0l < c[l + 2+ X" O + W™ (@) + L") + " ()|
t
+/ [W"(s) + L"(s) + ®"(s)l ds (5.5)
0
t Ky N " n
+ / / IW" (@) + L"(r) + ®"(r)| dr ds]
o Jo

for some positive constant C. Let

k
N™(t) := max{k >0: Zuf §t}

i=1

with u” asin (2.2). By Assumption 2.2, N" (¢) is a Poisson process with rate g}. Then,
we obtain

R \/ﬁ ma N (1)+1 ma
E[HL"(t)n"’A]scl E[(vVrCin)™] < C‘(W) E[( > d,»> ]
i=1
< Co(1+1"2) (5.6)

for some positive constants C; = sup{u’p;: n € IN,i € J}, C3, and m;. The third
inequality in (5.6) follows by the independence of N" and d;, and Assumption 3.1.
On the other hand, for some positive constant C3, we have

n"PZE @] < G(14nT ALB) as. Vs 2 0. oD

Thus,

IA

“ m t Uy A ma
B[ |7 )™ ,uj’E[(/o |n—/zzf(s)||ﬁ(1—w”(s))|ds) }

< ,uf’(C3)'”A(1 +supE[n—1A7(s)])m”‘E[(ﬁcg(r))mA] (58

s<t

A

IA

Ca(1+1"3)

for some positive constant C4, where the second inequality follows by (5.7) and the
independence of A" and W", and the third inequality follows by [29, Theorem 4] and
(5.6). Therefore, following the argument in the proof of [1, Lemma 3], and using (5.5),
(5.6), and (5.8), we establish (5.4). This completes the proof. O
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Proof of Theorem 3.1 We first prove the lower bound:

liminf V(X"(0)) > Vy(x).

n— o0
By Theorem 5.1, the partial derivatives of V(x) up to order two are locally Holder
continuous. Let Voll = x;0Vy = x1(Vy), where x; € CZ(IR) satisfies y;(x) = x for

x <land y;(x) =1+ 1forx > [+ 2. Let L: C2(RY) — C*(R? x S) be the local
operator defined by

1
Lor,u) = (b(x, 1), Vo) + 5 D o hi(l+c ) dipx), ¢ e CHRY).

ied

Compare this with (4.1). We define H(x, p) := min,cy[{(b(x, u), p) + R(x, u)], for
(x, p) € RY x R?. By It6’s formula, for any [ > supg, Ve, it follows that

e UNTOVEL(X, )

INTR
= Vix) - / ae ™ Vo (Xy) ds
0
INTR
+ / e LV, (Xy, Us)ds
0

INTR INTR
+/ (e7 VVa(Xy), X dWs) +/ / e (VE(Xs— + 1Y)
0 0 *
— Vo (X)) NL(ds, dy),

where N7, is the Poisson random measure of {L;: t > 0} with the intensity I1; . Thus,
applying (5.2), we obtain

INTR
e N V(X ) = VE(X) + /0 e ™ (b(Xy, Uy), VVa(Xy)) ds

INTR INTR

+/ (€7 VVa(Xy), T dWy) —/ e H(Xy, VVe(Xy))ds
0 0
INTR ~

+/ / e ™ (VL(Xy— + Ay) — Vo (X52))Np(ds, dy)
0 *

INTR
+ f / e (VAKX 4 Ay) — Va(Xo— + Ap) L (ds. dy),
0 *

where X/L (t, A) = Np(t, A) —t TI. (A) for any Borel set A C R. Repeating the same
calculation as for the claim (71) in [1], we obtain

INTR
e INTIVLX) > Vix) + / (e VVL(Xy), = dWy)
0

INTR
- / e R(X,, Uy) ds (5.9)
0
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AT -
+f Rf e (VL(Xy— + Ay) — Vo (X52))NL(ds, dy)
0 .

INTR
+ / / e (VL(Xy— + 1y) = Vo(Xs— + 2y)) 1L (ds, dy).
0 *

Note that N7 is a martingale measure and V,, is nonnegative. Taking expectations on
both sides of (5.9), the second and fourth terms on the right-hand side of (5.9) vanish.
Thus, first taking limits as / — oo, and then as R — o0, it follows by the monotone
convergence theorem that

t
E[/ e % R(XS,US)ds] > Vo(x) —E[e™ Vo (X))].
0

Applying Theorem 5.1 it follows that solutions of (5.2) have at most polynomial
growth of degree m, which corresponds to [1, Proposition 5 (i)]. Note that Lemma 5.1
corresponds to Lemma 3 in [1]. The rest of the proof of the lower bound follows
exactly the proof of [1, Theorem 4 (i)].

To prove (3.8), we construct a sequence of asymptotically optimal scheduling poli-
cies U". Let v, be an optimal control to (5.2). Recall the quantization function in
Definition 4.3. We define a sequence of scheduling policies

@ ((e, £)Tvg(})), if£ e X,

e l(x) = M (Jnk +np) ifx ¢ X',

where z" is the modified priority policy in Definition 4.1, and

an

X = {n"Px—np):x e RY, (e,x) <x; Vi e}

Here the policy on (%n)c may be chosen arbitrarily. Let U"[v,] be the equivalent
parameterization of z"*[v, ]. Following the proof of [1, Theorem 2 (i)], we obtain

/ e Y (s)ds = 0,
0

where

Y7 (s) i= (b(X"(s), U"[0a](5)). V Ve (X" () + R(X"(5). U"[va](s))
—H(X"(s), VVa (X" (5))).
Thus, by using the method in [1, Theorem 4 (ii)], and repeating the above calculation,
we obtain

limsup V2 (X"(0)) < Va(x).
n—oo

This completes the proof. O
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5.3 Proof of Theorem 3.2

In this section, we prove Theorem 3.2 by establishing lower and upper bounds.

5.3.1 The Lower Bound

We show that .
liminf ¢"(X"(0)) > o4. (5.10)
n—0o0

The proof is given at the end of this subsection.
We need the following lemma whose proof is similar to that of Proposition 4.2, and
is given in Appendix B.

Lemma 5.2 Grant the hypotheses in Assumptions 2.1, 2.2, and 3.2. For any m > 1,
and any sequence {z" € 3%, :n € IN} with sup, J(X"(0),z") < oo, there exists
no > 0 such that

sup lim sup —IEZ |:/ | X" (5)™ ds:| < oo. (5.11)

n>n, T—oo

The main challenge in the proof lies in approximating the generator of the diffusion-
scaled process with the generator of the limiting jump diffusion. Recall the extended
generator H" of (A", H") in (4.2). We define the function ¢"[ f] by

=1
P"LF1x h) = FG)+ Y B LI, h)+Z f 9; f(x)
jed jed
o K;' hj)
SDTERORDY 3j f (x) (5.12)
jed jes M
d—1 A
+ )1 h)
j=1

forany f € CSO(]Rd ), and n € IN, where

¢} f1x. h) = —Z Yoo Y, ]"[n,,(hl» AINNC

ij€Jij_17i; i1¢lip: I>1}r=1

with

A1 @ = [0, G+ n ey = [F]"

in 1 e (5.13)
(1" @) = fx+n"Pe) - f(0).

@ Springer



Applied Mathematics & Optimization

The function (]3’2’ j [ f1is defined analogously to (5.13) with [ f ]lllnl ~and [ f ]l.ll’" replaced
s J

by [f]i2|‘~r~l~ij and

c2 -1
1) = Y (8 f ™ Peiy) — 0, f (1)),
l Jjed 2\/_ l
respectively. Also,
. Jj+1 K" (h ”)
¢4 f1x. h) = —Z Yo Y e Fi )
‘z,ejz, 1 irg{iy: 1>1) r=2

with [ f ]131"1 ., (x) defined analogously to (5.13), and
J

IR0 = diyiy f(x +n7Pei) = 0y f(x) fori,ia, ... ij, j €.

Note that ¢"[ f] is bounded by Assumption 3.2 (i).
The extended generator H" of the scaled process (A", H")is given by H" f&, h) =
H" f(Z*(x), h), for f € Cp(R? x Ri) We have the following lemma.

Lemma 5.3 Grant Assumptions 2.1 and 3.2 (i). Then,

H'¢"[f1(E. h) = Zfla f<x>+Z 4 “’a,,f<x>

el (5.14)
1
Py Z(n,(h )+ )al,f(x)w(ﬁ)
ied jed
forall f € C°(RY) and (%, h) € R? x R4.
Proof Note that
LAl =Y nf i) (fE+nPe) — f(B)),
iel
P51 = nlhi )Z (0, f G +n"Peiy) — 0, f (D).
ied jed
Using (4.4) and (4.6), and the Taylor expansion, we have
H'(r -+ [f]+2 8f+¢21[f]+2 i "y, )G
Jj€d jed
1 l al a ~ 1
= %jfa f(x>+Z a,,f(x>+§ ; i a,jf<x>+o<ﬁ)
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+ Y Y (L1 @ + L1 @)
i€l J#i

o i1 B . Ky
+Z;<ni<hi>+ 5 )3nf(X)+Zri () Y =T @®. (5.5

ied i€l J#i

It is straightforward to verify that

H (P1LLf1+ 5oL f 1+ @5 L), )
= DG o) = o i) Yy (LA ) + LI ()
i€l J#i
1
+3 20t Y D o (LA ® + T @)

ied i ki j

k"(h;)
+ Z((ﬁ," (hi) = ! (h)rf (hy)) Z /T] + (k' = rl (hi)k] (h)) Z

i€l j#i i

n'}(hj)

n

)[f]?;" )

n h
SDANDIACHY Kl ")[f]?j}j(x) (5.16)

il i P
for any (%, h) € R? x IR‘i. Applying (4.4) and (4.6), and combining the first term
on the right-hand side of (5.16) with the third, fifth and sixth terms on the right-hand

side of (5.15), we obtain the third term on the right-hand side of (5.14). We repeat this
procedure until all the terms 7" are canceled. This proves (5.14). O

Definition 5.1 We define the operator A C2(RY) — C2(RY x S) by

~ 1
A feuy = 32 (AL )0, (0 + 345, ()35 f () ).

ied

where A’l”i, \Ag’i "RYxS— R,ied,are given by

Al i) = 00— pf (i = (e, x)Tuy) — yl' (e x) T,

n

Al W, — (e, x)Tup) + ye, x)Tu;
Ag!i(x’u) = 715-‘2“, +piﬂ? + Hi i i i i

T :

respectively. Define the operator 7 by

pe = [ (FG) = 1) v ),

where
nA) = n L (noon N
Udl( ) = Hd] {yEIPL* (Wﬂlply,...,wﬂdpdy) GA} ,

with HZI dy) := B} F%(dy), and B as in Assumption 2.2.

@ Springer



Applied Mathematics & Optimization

Recall the generator Zfln of &" given in (4.16). The next lemma establishes the
relation between the generator of the diffusion-scaled process and the operator in
Definition 5.1.

Lemma 5.4 Grant Assumptions 2.1, 2.2, and 3.2. Then,
EE M1 by k) = A" (3,0 G, 9, 0) + 2 £ ()
1 -
+ o(ﬁ)(nxn (5.17)
+1g" 1) + 0@ =) (IF] + 11g" 1l + 1),

forany f € C°(RY) and 7" € 3L, where §" = n~"?q", and

sm’

X=2"(/ni+np.h,y k) . .
v"(i,h,w,k)z{ {e.X) ARG

eq, if (e, x) <0,

]

(5.18)

for (X, h, ¥, k) € D", with 3" = n~ 2" — np).

Proof Note that Lemma 5.3 concerns the renewal arrival process in the diffusion-
scale. Recall that z! = /n(X; — q') +np; fori € J, and ¥ = /nX 4+ np. We let
q" = q"(J/nx +np,7") and " = 7" (/nX +np, h, ¥, k). Applying Lemma 5.3 and
the Taylor expansion, it follows by the definition of Zfl that

~ B A —npiplt - . - -
L LA k) = Z[(w S yi”q;’)aifm

ied \/ﬁ
1 /A, T 4wt —ymgt 3
+ 5( lna’l +pinf + = i/ﬁ Rt >3iif(x)
A —npipt 2. -1 ~

jed
+ (0 =)y (" F1GF —n Pei, h) — @"[f1(E, h))
f g (ViE +np — (v = ), 2") Fe (dy)

s«

+ W = D+ v g (@ LF1E —n Ve h) — ¢"[f1E, b))

9" IE W | o
- =i Dy P16

0 ! X q" 5.19
+0(—= ) U1 +18"1) (5.19)

for any f € C?O(Rd), where
jﬂ¢n[f](fsh) = /]Rd(fﬁn[f](f*‘y,h) —¢"[f1(x, h)) vy, (dy)
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by a slight abuse of notation. It is clear that

A —nplpi = O(/n) (5.20)
by Assumption 2.1, and thus the third term in the sum on the right-hand side of (5.19)

is of order n~"/2. We next consider the fifth and sixth terms in the sum on the right-hand
side of (5.19). Using the fact that

. . L 0¢"[f1(X, h) 1
n _ 57 V2. —H" _ L
"If1x —n Tei,h) — " [f1(X, h) = NG 9% +O<n),

and zI!' = \/nX; +np; — /nq", we obtain
W — Dz} +y'g (" f1GE —n Ve, h) — "L F1(F, h))
ok ,h
— (=) py D)

9" [ f1(x, h 1
= — D(ufxi + u] — yin)q;l)<_% + O(ﬁ))

Recall the definition of Fy', in (4.13). Note that

" n
[ mois =0 Fli@y) = SutoBla-0"k1dy > 974] € 0. 521)

*

where the second equality follows by Assumption 2.2 and (3.10). Note that g;' <

(e, x)T fori e Jand (X, h, ¥, k) € D" Thus, the fourth term in the sum on the right-
hand side of (5.19) is bounded by C(1 — ¥)(1 + (e, X)™) for some positive constant
C.Itis evident that ¢"[ f] — f € O(n~"?), and

v fIG ) =T fE+ W = DT fFE +v T @"Lf1— F)E, h).

Therefore, (5.17) follows by the boundedness of ¢"[ f] and (5.19). This completes the
proof. O

Definition 5.2 The mean empirical measure E;ﬂ € P(RY x S) associated with X" and
a stationary Markov policy z" € 3% is defined by

an 1 T N .
{5 (Ax B) = ?E[/O ]leg(X"(s), v"(X”(s), H"(s), " (s), K”(s))) ds]

for any Borel sets A C R< and B C S, and with v" as in (5.18).

The following theorem characterizes the limit points of mean empirical measures.
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Theorem 5.2 Grant the hypotheses in Theorem 3.2. Let {z" € 37 :n € IN} be a
sequence of policies satisfying (5.11). Then any limit point T € P(R¢ x S) of Efﬂ as
(n, T) — oo liesin G.

Proof 1t follows directly by Assumptions 2.1 and 2.2 that, for any f € C° (RY), we
have

AR )+ T fR) — Af(E,u) asn — 00 (5.22)

uniformly over compact sets of R? x S. Thus, in view of (5.22) and (5.1), in order to
prove the theorem, it is enough to show that

lim (A" fGw+2 f®) EE (R, du) = 0 VY f € CP(RY). (5.23)
n,T)y—»oo JRIxS

Applying (5.11 and (4.26), we obtain
sup hmsup — E¥ |:/ 1X" (5)|™ ds] < oo. (5.24)
n>n, T—o00

It follows by the same calculation as in (5.6) that, for some positive constant C1, we
have

T
B [/ S — \If”(s))ds] < Ci(1+T) VT >0. (5.25)
0

Using the facts that g!' < (e, x)T and W"(s) € {0, 1}, and Young’s inequality, we
obtain

1 n T m—
S [/o n (1= W) 5 (1X7 )]+ 13" (VAR 5) + np, < )”)ds]

1 n T 1 C2 n r 1-m ~
< —E* n4(1—lIl"(s))ds + —[E* n 3 | X"(s)"ds
r 0 T 0
1 —mC n T ~
S+ T) ' 2R [/ |X"<s>|’"ds} — 0
7 0

Tn#
as (n,T) — oo, (5.26)

where Cj is a positive constant. In (5.26), the second inequality follows by (5.25), and
the convergence follows by (5.24) and the fact that m > 1. Applying 1t6’s formula to
¢"[ f1, and using Lemma 5.4 and (5.24) and (5.26), it follows by the boundedness of

¢"[ f] that
| A - [
lim — E? U A" £ (X (), v (B"())) + 7 f(x”(s))ds} =0.
n,T)—oco T 0

Therefore, using (4.26) again, we obtain (5.23). This completes the proof. O
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Proof of (5.10) Without loss of generality, suppose {n ;} C INis an increasing sequence

such that '/ € 34, and sup; JA()A(”/' (0), ") < oo.Recall g:;n in Definition 5.2. There
exists a subsequence of {}, denoted as {n;}, such that 7; — oo as [ — oo, and

A A 1 An
liminf J(X"(0), ") + - > / R(X, u) §7Z~ ! (dx, du). (5.27)
j—oo [ RY xU !

Applying Lemma 5.2 and Theorem 5.2, any limit of g:;'lnl along some subsequence is
in §. Choose any further subsequence of (77, n;), also denoted by (77, n;), such that
(T;, n;) - oo asl — oo, and 2;1"1 — m € §G. By letting [ — oo and using (5.27), we
obtain
liminf J (X" (0), /) > / RE, u) m(dx, du) = o4
J—> 00 R4xU
This completes the proof. O

5.3.2 The Upper Bound
In this subsection, we show that

lim sup 0" (X"(0)) < 04 (5.28)

n— o0
The following lemma concerns the convergence of mean empirical measures for

the diffusion-scaled state processes under the scheduling policies in Definition 4.3.
Recall 2 in Definition 4.2 and ¢;. in Definition 5.2.

Lemma 5.5 Grant the hypotheses in Theorem 3.2. For € > 0, let v be a continu-
ous e-optimal precise control, whose existence is asserted in Proposition 5.1, and
{z"[v"]: n € IN} be as in Definition 4.3, and such that R = R(€) and v" agrees with
ve on Ay. Then, the ergodic occupation measure T, of the controlled jump diffusion
in (3.3) under the control v¢ is the unique limit point in P(R¢ x S) of Z';n[vnj as
(n, T) > o0.

Proof Using Proposition 4.3 and Theorem 5.2, the proof of this lemma is the same as
that of Lemma 7.2 in [5]. O

Proofof (5.28) Let k = 2|m] with m as in (3.5), and z"[v"] be the scheduling policy
ig Lemma 5.5. By Proposition 4.3, there exist 72, € IN, and positive constants Cq and
C1 such that

EVWL Gohop k) < Co—CiVeere(®) V(R by k) e D,
and for all n > 7n,. (5.29)

Recall the definition of R in (3.5), and let 2*[v"] = n~"*(Z"[v"] — np). Applying
(4.26) and (5.29), we may select an increasing sequence 7T, such that

sup sup / Vie—1.6(X) fﬁll[vn](di,du) < o0.
R4 xU

anlo TZTn
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This implies that 3~2(£ — 2"[v](y/n% + np)) is uniformly integrable. By Lemma 5.5,

f;n[vn] converges in P(R¢ x S) to 7, as (n, T) — oo. Applying Proposition 5.1,

we deduce that v, is an e-optimal control for the running cost function. Since € is
arbitrary, (5.28) follows. O

Acknowledgements This research was supported in part by the Army Research Office through Grant
WOILINF-17-1-001, in part by the National Science Foundation through Grants DMS-1715210, CMMI-
1635410 and DMS-1715875, and in part by the Office of Naval Research through Grant NO0014-16-1-2956
and was approved for public release under DCN #43-5442-19.

Appendix A. Proofs of Lemma 3.1 and Proposition 3.1
Proof of Lemma 3.1 By [13,Lemma 5.1], $"(r) and R”(¢) in (3.1) are martingales with

respect to the filtration F} in (2.9), having predictable quadratic variation processes
given by

t 1
(Sh) = u?f 1 ZMNs)W"(s)ds and (R')(r) = yf/ nQNs)ds, 120,
0 0
respectively. By (2.7), we have the crude inequality
0 <n'X't) < n 'X"O0)+n"'AM(@), t>0.

Using the balance equation in (2.5), we see that the same inequalities hold for n~! zZ!
andn~! Q7. Since " (s) € {0, 1}, it follows by Lemma 5.8 in [30] that {Wi”: n € IN}
is stochastically bounded in (]Dd, J1). Also, {if : n € IN} is stochastically bounded in
(D4, My) by (2.4). On the other hand, it is evident that

t
Yr(n) < C/ A+ ' X" (s)[Dds, >0,
0
where C is some positive constant. Thus, we obtain
A A ~ ~ t A
X"l < IIX"(O)I|+||W"(f)||+||L"(t)||+C/O (I+X"()Dds Y& =>0. (A1)

Since X"(0) is uniformly bounded, applying Lemma 5.3 in [30] and Gronwall’s
inequality, we deduce that {X" : n € IN} is stochastically bounded in (D¢, M). Using
Lemma 5.9 in [30], we see that

nTPX" = n7IX " —p = e in (DY, M) asn — oo,
which implies that n=! X" = ¢, in (D¢, M;). By (2.5), and the fact (e,n~' Q") =

(le,n 'X") — DT = ¢, we have n=1Q" = ¢, and thus n='2" = ¢,. This
completes the proof. O

@ Springer



Applied Mathematics & Optimization

_To prove Proposition 3.1, we first consider a modified process. Let X" =
(X", ..., X)) be the d-dimensional process defined by

XI(t) == X"(0) + €'t + W) + LI (1)
1
- /0 Wi (X7 () = (e, X" ()T UL (5)) ds A2)

t
—fo yit(e, X"(s)) U (s)ds, fori €.

LemmaA.1 Asn — oo, X" and X" are asymptotically equivalent, that is, if either of
them converges in distribution as n — 0o, then so does the other, and both of them
have the same limit.

Proof Let K = K (e1) > 0 be the constant satisfying ]P’(||X”||T >K)<eforT >0
and any €; > 0, where | X"||7 = sup0<,<T||X”(t)|| Since U"(s) € Sfors > 0, on
the event {||X" l7 < K}, we obtain

A

t t
X0 - X"l < € /0 1R )1 — W (5)) ds + C /0 1X"(s) — X" (s)]] ds

IA

t
cchg(r)+c2/ IX"(s) — X"(s)|lds Ve [0,T],
0

where C1 and C, are some positive constants. Then, by Gronwall’s inequality, on the
event {|| X"||r < K}, we have

1X"@) = X" < CIKC{ne™" Viel0.T].

Thus, applying [13, Lemma 2.2], we deduce that for any €5 > 0, there exist €3 > 0
and n, = n.(€1, €2, €3, T) such that

IX" - X"I7 < &
on the event {|| X" |7 < K} N {IC§ll7 < €3}, forall n > n,, which implies that
P(IX" = X"llr > &) < €1, Vn=ne.

As a consequence, X" — X"||7 = 0, as n — oo, and this completes the proof. O

Proof of Proposition 3.1 We first prove (i). Define the processes

! v [
T} (1) = n’ Z"(s)\ll”(s)ds (1) = 7’/(; Q" (s)ds,

Sn(t) := n~"2(S"(nt) — nt), and R*(¢) := n~"2(R"(nt) — nt), for i € J. Then, since
W (s) € {0, 1} for s > 0, applying Lemma 3.1 and Lemma 2.2 in [13], we have
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0 = /O.(H_IZ,’-’(S) — pi)W"(s)ds + u!! /OIpi‘IJ"(S)ds = Aie().

in (D, M), as n — oo, and that 75 ; weakly converges to the zero process.
Since {A;’,S{',R?,\II": i € J,n e IN} are independent processes, and 7y,
and 77, converge to deterministic functions, we have joint weak convergence of
(A”, 3’", ﬁ”, i”, T, T5), where T = (1] ,,...,T] d)’, and 1) is defined analo-
gously. On the other hand, since the second moment of A” is finite, it follows that
A" converges weakly to a d-dimensional Wiener process with mean 0 and covariance

matrix diag(\/)qc2 e \/)»dcg,d) (see, e.g., [31]). Therefore, by the FCLT for the

a,l’

Poisson processes 8" and R", and using the random time change lemma in [21, Page
151], we obtain (1).

Using (A.1) and Proposition 3.1 (i), the proof of (ii) is same as the proof of [,
Lemma 4 (iii)].

To prove (iii), we first show any limit of X" in (A.2) satisfies (3.3). Following an
argument similar to the proof of Lemma 5.2 in [13], one can easily show that the
d-dimensional integral mapping x = A(y, u): D¢ x D¢ — D9 defined by

13
x() = y() +/ h(x(s), u(s)) ds
0

is continuous in (D¢, M), provided that the function /: R? x R — R is Lipschitz
continuous in each coordinate. Since

X" = AX"O0) + W" + L", UM,

then, by the tightness of U" and the continuous mapping theorem, any limit of X"
satisfies (A.2), and the same result holds for X" by Lemma A.1.
Recall the definition of 7" in (2.8). It is evident that

Lt +r)— L) = LIE" () +r) — LI(E" (1)

A R R . (A.3)

+ LIt +r)—LIE" @) +r)+ L} (" (1) — LI ().
forall r,r > 0 and i € J. By Assumption 2.2, we have t"(t) = t asn — o0, for
t > 0. Then, by the random time change lemma in [21, Page 151], we deduce that the
last four terms on the right-hand side of (A.3) converge to 0 in distribution. It follows
by Proposition 3.1 (i) and (A.3) that

L"(# (@) +r) = L"(#"(1)) = ALiyr — AL, inRY

Repeating the same argument we establish convergence of $" and R". Proving that
U is non-anticipative follows exactly as in [1]*Lemma 6. This completes the proof of
(iii). O
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B Proofs of Lemmas 4.1 and 5.2

In this section, we construct two functions, which are used to show the ergodicity of
E". We provide two lemmas concerning the properties of these functions, respectively.
The proofs of Lemmas 4.1 and 5.2 are given at the end of this section.

Definition B.1 For 7" € 3"
by

define the operator Efl" 1 Cp(RY x RY) — Cp(RY x RY)

sm?

n 8 V,h ) -
£ g = Y S (£ e h i) — £, )

i€l ! ieJ

+ Y W (fE—ei h) — f(E b)) (B.1)
i€l

+Y vl (FG& e h) — F(E.h))
i€l

for f € Co(R? x RY) and any (¥, h) € RY x RY, with ¢" := ¥ — 2"

Note thatif df' = 0 for all n, the queueing system has no interruptions. In this situation,
under a Markov scheduling policy, the (infinitesimal) generator of (X", H™) takes the
form of (B.1). Recall the scheduling policies z” in Definition 4.1, and X = X — np in
Definition 4.2. We define the sets

K, (%) = {iejozi,- > ”—p"} = {i €do: K >

np; Zjej\Jo Pj }
Zjejo Pj

> jedo Pj
We have the following lemma.

LemmaB.1 Grant Assumptions 2.1, 2.2, and 3.2. For any even integer K = 2, there
exist a positive vector & € R, i € IN, and positive constants Co and C1, such that
the functions f,, n € IN, defined by

faE o h) =) &%)

i€l
+ ) nf & (1% + 115 = [%]%) V@& h) e R xR, (B.2)
iel
with 0! as defined in (4.3), satisfy
£ fu (k) < Con™”

—él Z Ei|fi|K—él Z (M?(E?—n,Oi)+y,"V”)|x,|'<*‘
i€I\K, (%) ieky () (B.3)
+ > (OGmO(I% 17" + 0mO(1%:1<72))

i€l

foralln > 7 and (%,h) € RY x R4
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Proof Using the estimate
(a£1)"—a" = k"' +0w@*? VaeR, (B.4)
an easy calculation shows that
LY fu @) = Y i (& (1% + 1S = [51%) + D r i (0)& ((F +2)% — (i + D)

ieJ ieJ

= > it (& (1% + 11 = 151%)
ied

+ Z )G+ v G037 + Zr?(hi)éi(lii +11° =151
ieJ ied

+ Z(u?é? + v qhE (% — 1* = 1%]°), (B.5)
ieJ

where for the fourth term on the right-hand side we also used the fact that
(151 = 1% = 1) = (15 + 1% = |%]%) = 0(%[*?).

It is clear that n! (0) = 0, since F;(0) = 0 and E[G;] = 1. On the other hand, n} (¢) is
bounded for all n € IN and ¢ > 0 by Assumption 3.2. Thus, applying (B.4), (B.5) and
(4.4), it follows that

L2 fu@hy = Y (608 — w2 =yl g (k@< + 0(5(72)
i€l (B.6)

0 (h) (P2 + v g O(% < 7).
Since 17 (h;) is uniformly bounded, and 7, g/ < X; + np;, it follows that the last

term in (B.6) is equal to O(n)O(|x;|<~%) + O(|x;|<~1). Note that fori € I\ Jo, s
equivalent to the static priority scheduling policy. Note also, that

np; Zjef]\flo Pj

>0 Viek,®), (B.7)
Zjejo Pj

_ “n
Xi = Z; —np; =

and fori € Jy \ K, (X), we have ! —np; = X; and g = 0. By using (B.6), and the
identity in (5.20), we obtain

LY fuEh) < Y & (—pfE + ) — v mE)< !

[ISAWN
— Y &G —ne) + v )<

i€k, (¥) (B.8)
— D ENIEIN 4+ ) (0GmO(E<Th

i€30\K (¥) i€l

+0mO(%]<72)).
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Let ¢ := sup; ,{y/", 1!}, and ¢ be some constant such that inf{x, y}’: iel je
J\Jg,n € N} > ¢, > 0. We select a pos1t1ve vector & € ]R such that & := 1,

m

& = dK minj<;—1 &, 1 > 2, with k1 := Cz . Compared with [4, Lemma 5.1], the
important difference here is that, fori € J\ Jo, we have

i—1 +\ +
@=(i-(- X5 T u- X n) )
jek, (@) JE€IONK, (X) J=190l+1

Repeating the argument in the proof of [4, Lemma 5.1], it follows by (B.8) that

L fu@E ) < csn™—eq Y &EIS—cs Y &(WIE —np)

lEZ]\ICn(x) te)Cn(x)
ARSI T Y Gl ) (B.9)
te/Cn(x)
+ ) (0G/mO(EI*™" + 0mO(I%1<?))

i€l

for some positive constants c¢3, ¢4 and c5. Therefore, (B.3) follows by (B.7) and (B.9),

and this completes the proof. O
Let
g}’l ('%1 hv W1 k)
¥ + o’ (k) - . .
= DM (gn,l-(xo + 0 (i) (8ni (i + 1) — gn,l-<x,»>)) (B.10)
iel
for (X, h, ¥, k) € ©, where g,.; (X;) := —|x;|* fori € I\ Jp, and
—|x;|* ifx; < —npigjej\jo Pi
~ v L ’ jedo Pi ’ .
gﬂ,l(.Xl) = np; Zjeﬂ\jo pj o 1 goo np; Zjéﬂ\?() pj Vi e j().
B ST |x; | lxt_—,jp,. .
JE€J0 Jj€Ig Pl

Recall Z,Z:w in (4.13). We also define
— o o ~d"
g, 2 = /R gi' (¥ —nu"(y — k), 2") F; [ (dy).

Lemma B.2 Grant Assumptions 2.1, 2.2 and 3.2, and let & € ]R‘_f_ be as in (B.2). Then,
for any even integer x > 2 and any ¢ > 0, there exist a positive constant C, and
n € N, such that
Loyl by k) = T e 30 151+ Y 0(1ul")
i€I\Ky (¥) ieky(¥)
1 n—n, - ke
+ = D W = npi) + ¥l + (=g )0 (51< )
i€k, (¥)

forany 2" € 3, and all (X, h, ¥, k) € © and n > .

(B.11)
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Proof 1t is straightforward to verify that

lgni (i £1) — gni ()| = O(% <7D,

. . y . _ ke (B.12)
1(8n.i (K1) — gn.i (i — 1)) — (gn.i (Ki + 1) — gn.i (5))| = O(|xi|<72),

fori € J. Repeating the calculation in (B.5) and (B.6), and applying (B.4) and (B.12),
we have

. + o (k
Ly y@n(ioh k) < %
[ > M?Ef[(l)»”—nu, pil + Yl |zl — noil + ¥yla! + (1 —)ygrh) o<l

ik ()
) (Wil + g+ (= T 005 1) ]

D DT [ EE ROy

ieN\K, (¥)

() Wl 4 v+ 0 =000 )] | (B.13)

Note that ﬁf’k < ¢(1+ (e, x)™T) for some positive constant ¢, by (5.21). Since 2/, g' <
X; +npj, (19”)’1 is of order n= "2 by Assumption 2.2, and nf’ and " are bounded, it
follows by (5.20) and (B.13) that

Ly g 8n (¥ h. . k)

< Y f(om)ouxlw DHOUE)+ D OWmO(E<)

ieN\K, (%) i€, (%)
—n.k o k—
+ Z =(0Wm) + Vil —npil + ¥y'al + (1= v)y/a; ") 0%
lEICn(x)

Thus, applying Young’s inequality, we obtain (B.11), and this completes the proof. O

Proofof Lemma 4.1 We define the function f, € C(R¢ x Ri x {0, 1} x R4) by

FaGE k) = fu(F 1) 4 8n(F, b, ¥, K),

with f, and g, in (B.2) and (B.10), respectively. Recall Vn k£ in (4.17). With & € ]Rd
as in (B.2), we have

n PV G ), b k) = fuE b k) Y (F R YL k) €D.
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Hence, to prove (4.18), it suffices to show that

Ei”fn(iahaw,k) < EonK/z
~Ci Y &EIF-Cin Y &EINT Vasi, (B.14)

i€I\K, (x) i€k, (%)

and all (X, h, ¥, k) € ©, where the generator Zz is given in (4.12). It is clear that
Qu.y [ (¥, h) = 0. Since (¥")~! is of order n~"/2, it follows by (4.10) and (4.15) that

Quodn (¥, h,0.k) < Y —plElx|~
ieN\K, (%)
nP;i Y jendo Pi — w
MDD B e I
ik () j€do P

te Y O0UEI+ Y 0WmOodE<Th, (B.1S)

i€\, (%) ieKy(¥)

where C is some positive constant and €,, — 0 asn — oo. Since all the moments of d;
are finite by (3.10) and (@ +2)* —a* = 9(2) 0@ H+0EHO@ ) +---+0(z")
for any a, z € IR, it is easy to verify that

T fuE R, 1,0) = YN0 0147, (B.16)

iel j=1
using also the fact that
n J d n i . . .
A fR (Wﬂ?ﬂiz> F(d2) = B} (F) (f o) E[@d)’] = 0a’?) ¥j >0,
which follows by by Assumptions 2.1, 2.2, and (3.10). Then, for ¢ = 1, it follows by
(B.16) and Young’s inequality that

L fu@ 11,00 < L2 fu (5 h) + Lo 1 8n(E, B, 1,0)

+Cn P e Y 0059
i€0\K, () (B.17)

+ Y 0WmOEI*T.

i€k (¥)

Note that the last two terms in (B.3) and the last term in (B.11) are of smaller order
than the second and third terms on the right-hand side of (B.3), respectively. Thus,
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applying Lemmas B.1 and B.2, and using (B.17), we obtain

nPL, fu® 01,00 < Co—Cr Y |EI"
i€I\Kn (%)
—C1 > nT P (urE —np) + vl )R (B.18)
iekn(¥)
for all large enough n, where X is defined in Definition 4.2. Since ¢ > Oand /' —np; >

Ofori € I~C,1 (X), then by using (B.7) and (B.18), we see that (B.14) holds when y=1
For ¥ = 0, using (B.15), Young’s inequality, and the fact that for i € IC,(x),
x; > 0, we obtain

£ R, 0, k)
<Y OWmO(E | + ) 0mO(x|< %) + Cn*?

ied ied
+ (e +€,) Z £l <
i€I\K, (X)
> <_“l G5+ 6 (- K(ii)K—1+0(|x,-|K‘2))>
lej\Kn(X)

np; NI P = |K— 7 s x
+ Z ZL\,OOM?&IMIK 1+£2,08n(x’h’0’k)
IEKII(X) st

for some positive constant C and sufficiently small € > 0. We proceed by invoking
the argument in the proof of [4, Lemma 5.1]. The important difference here is that

i (¥ —nw"(z = b)) = & (X —nu"(z = 0) (% —npipi(z = k)

i—1
+& (X —np'"(z — k) Z(ij —nujpi(z—k)),
=1

where the functions &, & : RY — [0, 1], for i € J. Since &; and & are bounded, we
have some additional terms which are bounded by C fR* nu;pi(y — k) F;]k (dy) for

some positive constant C. Therefore, these are of order o/n by (5.21). Thus, repeating
the argument in the proof of Lemma B.1, and applying Lemma B.2, we deduce that
(B.14) holds with ¥ = 0. This completes the proof. O

Proof of Lemma 5.2 The proof mimics that of Proposition 4.2. We sketch the proof
when Jy is empty. Using the estimate

OgHOE ™" < € (0gh)" + e(O(% ") (B.19)
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for any € > 0, which follows by Young’s inequality, we deduce that, for some positive
constants {c;: k = 1, 2, 3}, we have

L5 fu@ ) < e +ea((e, ") —e3 ) &lEI" V(¥ h) e RExRE, (B.20)
ieJ
and all large enough n. Note that Lemma B.2 holds for all z* € 3{,,. Then, we may
repeat the steps in the proof of Lemma 4.1, except that here we use

(! / G (F —np'(y — k), 2") P2 (dy)
R. ) (B.21)
< elm|" + el_’”(]E[c}i”()E —npd! — k), ") |d) > k]) ,

where §" = n~"2¢", with € > 0 chosen sufficiently small. Since 4/ (¥, z") < (e, %)™,
it follows by (5.21) that

E[g] (X —nu"(d} —k),2") | d} > k] < ca(l + (e, )D). (B.22)

Thus, by the same calculation in Proposition 4.2, and using (B.19)—(B.22), we obtain
n T ~ A
E° [/ IX”(S)I'”} < Ci(T +1X"(0)[")
0
n T ~
+ C, E? U (L4 (e, X" (s)T)" ds] (B.23)
0

for all large enough n, and {z" € 37 : n € IN}. Since sup, J(X™(0), z%) < oo, it
follows by (4.26) that

T
sup lim sup %E[/O ((e, X (s)) )" ds] < o0.

n T—o00

Therefore, dividing both sides of (B.23) by T, taking T — oo and using (4.26) again,
we obtain (5.11). We may show that the result also holds when Jg is nonempty by
repeating the above argument and applying Lemma B.2. This completes the proof. O
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