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Abstract
In this paper, we study optimal control problems for multiclass GI/M/n+M queues
in an alternating renewal (up–down) random environment in the Halfin–Whitt regime.
Assuming that the downtimes are asymptotically negligible and only the service pro-
cesses are affected, we show that the limits of the diffusion-scaled state processes
under non-anticipative, preemptive, work-conserving scheduling policies, are con-
trolled jump diffusions driven by a compound Poisson jump process. We establish
the asymptotic optimality of the infinite-horizon discounted and long-run average
(ergodic) problems for the queueing dynamics. Since the process counting the number
of customers in each class is not Markov, the usual martingale arguments for conver-
gence of mean empirical measures cannot be applied. We surmount this obstacle by
demonstrating the convergence of the generators of an augmented Markovian model
which incorporates the age processes of the renewal interarrival times and downtimes.
We also establish long-run average moment bounds of the diffusion-scaled queueing
processes under some (modified) priority scheduling policies. This is accomplished
via Foster–Lyapunov equations for the augmented Markovian model.
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1 Introduction

There has been a lot of research activity on scheduling control problems for queueing
networks in the Halfin–Whitt regime. The discounted problem for multiclass many-
server queues was first studied in [1]. See also the work in [2,3]. For the ergodic control
problem in the case of Markovian queueing networks see [4–6]. Scheduling control
problems for queueing networks in random environments have also attracted much
attention recently [7–10]. It is worth noting that in the study of asymptotic optimality
in Markov-modulated environments, the scaling parameter depends on the rate of the
underlying Markov process; see, for example, [7,10,11].

In this paper we consider queueing networks operating in alternating renewal
(up–down) random environments, modeling service interruptions, and with renewal
arrivals. It is well known that for large-scale service systems, service interruptions
can have a dramatic impact on system performance [12]. For single class queues and
networks in an alternating renewal environment, limit theorems have been studied in
[12–16]. To the best of our knowledge, there are no studies on optimal scheduling con-
trol for multiclass many-server queues in alternating renewal environments, or even
ergodic control in the Halfin–Whitt regime with arrivals that are renewal processes.

Specifically, we consider multiclass (d classes) GI/M/n+M queues with service
interruptions in the Halfin–Whitt regime, where the arrival rate in each class and the
number of servers in the pool are large, with a scaling parameter n, and the service
interruptions are asymptotically negligible of order n−1/2. The service interruption
is modeled as an alternating renewal process constructed by regenerative ‘up’ and
‘down’ cycles. In the ‘down’ state, all servers stop functioning, and new customers
arrive, which may abandon the queue. In the ‘up’ state, the queueing system functions
normally. We assume that at least one class of customers has a strictly positive aban-
donment rate. The scheduling policy determines the allocation of servers to different
classes of customers. We approximate the scheduling problem via the corresponding
control problem of the limiting jump diffusion in the heavy-traffic regime, for which
a sharp characterization of optimal Markov controls is available [17], and use this to
exhibit matching upper and lower bounds on the optimal scheduling performance for
the queueing dynamics.

In Proposition 3.1, we establish a functional central limit theorem (FCLT) for
the d-dimensional diffusion-scaled state processes under work-conserving schedul-
ing policies. The limiting controlled processes are jump diffusions with piecewise
linear drift and compound Poisson jumps. The proof of weak convergence relies on
the construction of a modified diffusion-scaled state process, where we add the cumu-
lative downtime to a diffusion-scaled state process without interruptions. We show
that the modified and original diffusion-scaled state processes have the same weak
limits, which are governed by the jump diffusions described above.

The discounted and ergodic control problems for a large class of jump diffusions
arising from queueing networks in the Halfin–Whitt regime have been studied in [17],
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and these results are essential for establishing asymptotic optimality in the present
paper. In Theorem 3.1, we show that the optimal value functions of the discounted
problem for the diffusion-scaled processes converge to the corresponding function for
the limiting jump diffusion. The proof of asymptotic optimality for the discounted
problem follows the approach in [1], which deals with the discounted problem for
multiclass GI/M/n + M queues. An essential part of this proof involves moment
bounds for the diffusion-scaled state process, and the cumulative downtime process.

Asymptotic optimality for the ergodic control problem is more challenging. The
result is stated in Theorem 3.2. Here, long-run average moment bounds for the
diffusion-scaled state processes play a crucial role (see Proposition 4.2). Typically,
such bounds are obtained in the literature via Foster–Lyapunov inequalities [4–
6,10,18]. However, since the process counting the number of customers in each class,
referred to as the queueing process, or state process, is not Markov, we first construct
a sequence of auxiliary diffusion-scaled processes by adding the scaled residual time
process of the alternating renewal process in the ‘down’ state to the original process,
taking advantage of the fact that the long-run average moments of the scaled residual
time process are negligible as the scaling parameter n tends to infinity (see equa-
tion (4.25)). We then consider the joint Markov process comprised of the auxiliary
diffusion-scaled state process and the age processes of renewal arrival and alternating
renewal processes, and construct Foster–Lyapunov functions, which bear a resem-
blance to the Lyapunov functions in [19]. In this part, we assume that themean residual
life functions are bounded, and use the criterion in [20, Theorem 4.2] to show that
the joint Markov processes are positive Harris recurrent for all large enough n under
some (modified) priority scheduling policy. We apply a two-step scheduling: first, the
servers are allocated to the classes of customers with zero abandonment rate in such a
manner that the servers used for each class do not exceed a certain proportion dictated
by the traffic intensity; second, a static priority rule is applied to allocate the remaining
servers. We show that the long-run average moments of the auxiliary diffusion-scaled
state processes are bounded under this scheduling policy. We then establish a moment
estimate for the difference between the auxiliary and original diffusion-scaled pro-
cesses, and proceed to show that the analogous moment bounds hold for the original
diffusion-scaled processes.

To prove asymptotic optimality for the ergodic control problem, we establish lower
and upper bounds for the limits of the value functions (see Eqs. (5.10) and (5.28)). For
the proof of the lower bound, we show that the sequence of mean empirical measures
of the diffusion-scaled state processes is tight (see Lemma 5.2), and any limit of mean
empirical measures is an ergodic occupation measure for the limiting jump diffusion.
This is analogous to the technique used in [4–6,10]. However, characterizing the limits
of mean empirical measures (see Theorem 5.2) is quite challenging here. Since we
consider the diffusion-scaled processes with renewal arrivals in an alternating renewal
environment, the martingale arguments in the above papers cannot be applied here.
Instead, we develop a new approach. Following the technique of the proof of ergodicity
under the specific scheduling policy described in the preceding paragraph, we consider
the generator of the jointMarkovprocess of the auxiliary diffusion-scaled state process,
which incorporates the residual time process, and the associated age processes of the
renewal arrivals and the alternating renewal environment. We construct suitable test
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functions (see (5.12)) which involve the coefficients of variation of interarrival times,
and proceed to show the convergence of generators.

For the proof of the upper bound, we adopt the spatial truncation technique devel-
oped in [4], which is also used in [5,6,10], and is extended to jump diffusions in [17].
This involves a concatenated scheduling policy. We first construct a continuous pre-
cise ε-optimal control for the ergodic control problem for the limiting jump diffusion
(see Proposition 5.1). Then, inside a compact set, we map this control to a scheduling
policy for the diffusion-scaled process. On the complement of this set, we apply the
(modified) priority scheduling policy. We show that the long run average moments
of the diffusion-scaled state process are bounded under this concatenated scheduling
policy (see Proposition 4.3), and the limit of mean empirical measures is the ergodic
occupation measure of the limiting jump diffusion governed by the ε-optimal con-
trol (see Lemma 5.3). Here, the techniques used in establishing the long-run average
moment bounds under the (modified) priority scheduling policy, and the convergence
of mean empirical measures, play an important role.

1.1 Organization of the Paper

The notation used in the paper is summarized in the next subsection. In Sect. 2, we
describe the model of multiclass many-server queues with service interruptions. In
Sect. 3, we define the diffusion-scaled processes and associated control problems,
and state the main results on weak convergence and asymptotic optimality. In Sect. 4,
we summarize the ergodic properties of the limiting controlled jump diffusion, and
state the results concerning long-run average moment bounds for the diffusion-scaled
processes. The proofs of Theorems 3.1 and 3.2 are given in Sect. 5. Appendix A is
devoted to the proofs of Lemma 3.1 and Proposition 3.1. Appendix B contains the
proofs of Lemmas 4.1 and 5.2.

1.2 Notation

We let | · | and 〈 ·, · 〉 denote the standard Euclidean norm and the inner product inRd ,
respectively. For x ∈ Rd , we let ‖x‖ := ∑

i |xi |, and x ′ denote the transpose of x .
The symbols R+, Z+, N, denote the set of nonnegative real numbers, nonnegative
integers, and the set of natural numbers, respectively. The indicator function of a set
A ∈ Rd is denoted by 1A. Given a, b ∈ R, the minimum (maximum) is denoted by
a∧b (a∨b), respectively, 	a
 denotes the integer part of a, and a± := (±a)∨0. The
complement and closure of a set A ⊂ Rd are denoted by Ac and Ā, respectively. We
use the notation ei to denote the vector with i th entry equal to 1 and all other entries
equal to 0. We also let e := (1, . . . , 1)T. We let Br denote the open ball of radius r in
Rd , centered at the origin. For a process {Xt }t≥0, τ(A) denotes the first exit time from
the set A ⊂ Rd , defined by τ(A) := inf {t > 0 : Xt /∈ A}, and we let τr := τ(Br ).

For a domain D ⊂ Rd , the space Ck(D) (C∞(D)), k ≥ 0, stands for the class of all
real-valued functions on D whose partial derivatives up to order k (of any order) exist
and are continuous.Ck,r (D) stands for the set of functions that are k-times continuously
differentiable and whose kth derivatives are locally Hölder continuous with exponent
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r . We let Ckc(D) denote the space of functions in Ck(D) with compact support, and Ckb
the set of functions in Ck(D) whose partial derivatives up to order k are bounded. For
a nonnegative function g ∈ C(Rd), O(g) denotes the space of functions f ∈ C(Rd)

satisfying supx∈Rd
| f (x)|
1+g(x) < ∞. By a slight abuse of notation, O(g) also denotes a

generic member of these spaces.
For k ∈ N, we let Dk := D(R+,Rk) denote the space of Rk-valued cádlág

functions on R+. When k = 1, we write D for Dk . Given a Polish space E , by
P(E)we denote the space of probability measures on E , endowed with the Prokhorov
metric.

2 MulticlassGI/M/N +M Queues with Service Interruptions

2.1 TheModel and Assumptions

Weconsider a sequence ofGI/M/n+M queueingmodelswithd classes of customers.
Let I := {1, . . . , d}. For the nth system, let {An

i (t)}t≥0 denote the arrival process
of class-i customers. We assume that the arrivals are mutually independent renewal
processes defined as follows. Let {Gi, j : j ∈ N}, i ∈ I, be an i.i.d. sequence of strictly
positive random variables with mean E[Gi ] = 1 and finite (squared) coefficient of
variation c2a,i := Var(Gi )/(E[Gi ])2, where Gi ≡ Gi,1. Then, we define

An
i (t) := max

{

m ≥ 0 :
m∑

j=1
Gi, j ≤ λni t

}

, t ≥ 0, i ∈ I, (2.1)

where λni > 0 denotes the arrival rate. For each n ∈ N, the service and patience
times of the class-i customers are exponentially distributed with parameters μn

i and
γ n
i , respectively.
We adopt the following standard assumption on the parameters (see [1,4,13]).

Assumption 2.1 (TheHalfin–Whitt regime) The parameters satisfy the following limits
for each i ∈ I as n →∞:

n−1λni → λi > 0, μn
i → μi > 0, γ n

i → γi ≥ 0,

n−1/2(λni − nλi ) → λ̂i , n1/2(μn
i − μi ) → μ̂i ,

λni

nμn
i
→ ρi := λi

μi
< 1,

d∑

i=1
ρi = 1.

We assume that infn∈N γ n
d > 0. Assumption 2.1, which is also known as the

Quality-and-Efficiency-Driven regime, implies that the system is critically loaded and

ρn → ρ̂ :=
d∑

i=1

ρi μ̂i − λ̂i

μi
∈ R, where ρn := √

n

(

1−
d∑

i=1

λni

nμn
i

)

.
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All queues are in the same up–down alternating renewal random environment.
Waiting customers may abandon at any time. In the ‘up’ state, the system functions
normally, and in the ‘down’ state all servers stop, while customers keep joining the
queues and any jobs that have started service will wait for the system to resume. For
this reason, we also refer to this model as multiclass queues with service interruptions.
Let

{
(unk , d

n
k ) : k ∈ N

}
be a sequence of i.i.d. positive random vectors denoting the

up–down cycles, and define the counting process of downtimes by

Nn(t) := max
{
k ≥ 0 : T n

k ≤ t
}
, with T n

k :=
k∑

i=1
(uni + dni ), k ∈ N, (2.2)

and T n
0 ≡ 0. At time 0, the system is in the ‘up’ state.

Assumption 2.2 For each n and k inN, unk and d
n
k are independent, unk is exponentially

distributed with parameter βn
u , which converges to β > 0 as n →∞. We assume that

dn1 = 1
ϑn d1, with d1 some nonnegative random variable satisfying E[d1] = 1, and

ϑn√
n
→ ϑ > 0 as n →∞.

For k ∈ N, we let (Dk,M1) and (Dk, J1) denote the space Dk endowed with the
Skorokhod M1 and J1 topologies, respectively (see, for example, [21,22]). Assump-
tion 2.2 implies that the service interruptions are asymptotically negligible, and

Nn ⇒ N in (D, J1) as n →∞,

where the limiting process N is a Poisson process with rate β. Define the server
availability process �n := {�n(t) : t ≥ 0} by

�n(t) =
{
1, T n

k ≤ t < T n
k + unk+1,

0, T n
k + unk+1 ≤ t < T n

k+1,
(2.3)

for k ∈ N. We also define the cumulative up-time process Cn
u = {Cn

u(t)}t≥0 by
Cn
u(t) :=

∫ t
0 �n(s) ds, and the cumulative down-time process by Cn

d(t) := t −Cn
u(t).

Let Fd1 denote the distribution function of d1. By [13, Lemma 2.2], we have

√
nCn

d ⇒ L in (D,M1) as n →∞, (2.4)

where {Lt }t≥0 is a compound Poisson process with intensity 	L(dx)dt = β Fd1

(ϑdx)dt , where β is given in Assumption 2.2.
For the nth system,we denote the processes counting the total number of customers,

those in queue, and those in service, by Xn = (Xn
1 , . . . , X

n
d )
′, Qn = (Qn

1, . . . , Q
n
d)
′,

and Zn = (Zn
1 , . . . , Z

n
d )
′, respectively. These processes satisfy the following con-

straints:

Xn
i (t) = Qn

i (t)+ Zn
i (t), Qn

i (t) ≥ 0, Zn
i (t) ≥ 0,
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and 〈e, Zn(t)〉 ≤ n (2.5)

for each t ≥ 0 and i ∈ I. We let

Sni (t, r) := Sn∗,i
(

μn
i

∫ t

0
Zn
i (s)�

n(s) ds + μn
i r

)

,

Rn
i (t, r) := Rn

∗,i
(

γ n
i

∫ t

0
Qn

i (s) ds + γ n
i r

)

,

(2.6)

for i ∈ I, t ≥ 0, and r ≥ 0, where {Sn∗,i , Rn
∗,i : i ∈ I, n ∈ N} are Poisson processes

with rate one. We assume that for each n ∈ N,
{
Xn
i (0), A

n
i , S

n
∗,i , R

n
∗,i : i ∈ I

}
are

mutually independent. These processes are governed by the equation

Xn
i (t) = Xn

i (0)+ An
i (t)− Sni (t)− Rn

i (t) (2.7)

for each t ≥ 0, n ∈ N, and i ∈ I, where Sni (t) := Sni (t, 0) and Rn
i (t) := Rn

i (t, 0).

2.2 Scheduling Policies

A scheduling policy is identified with a Zd+-valued stochastic process Zn with cádlág
sample paths, which satisfies (2.5). Let

τ̃ ni (t) := inf{r ≥ t : An
i (r)− An

i (r−) > 0},
and τ̆ n(t) := inf{r ≥ t : �n(r) = 1}, (2.8)

for i ∈ I. Recall the definitions of Cn
d in (2.4), and Sn and Rn in (2.6). Define the

σ -fields

Fn
t := σ

{
Xn(0), An

i (t), S
n
i (s), R

n
i (s),

Xn
i (s), Z

n
i (s),�

n(s), Nn(s) : i ∈ I, 0 ≤ s ≤ t
} ∨N,

Gnt := σ
{
An
i (τ̃

n
i (t)+ r)− An

i

(
τ̃ ni (t)

)
, Sni (τ̆

n(t), r)− Sni
(
τ̆ n(t)

)
,

× Rn
i (τ̆

n(t), r)− Rn
i

(
τ̆ n(t)

)
,Cn

d(τ̆
n(t)+ r)− Cn

d

(
τ̆ n(t)

) : i ∈ I, r ≥ 0
} ∨N,

(2.9)

for t ≥ 0, whereN is the collection of all P-null sets. We say that a scheduling policy
Zn is non-anticipative if

(i) Zn(t) is adapted to Fn
t ,

(ii) Fn
t and Gnt are independent at each time t ≥ 0,

(iii) for each i ∈ I, and t ≥ 0, the process Sni (τ̆
n(t), ·)− Sni (τ̆

n(t)) agrees in law with
Sn∗,i (μ

n
i ·), and the process Rn

i (τ̆
n(t), ·)−Rn

i (τ̆
n(t)) agrees in lawwith Rn

∗,i (γ
n
i ·).

The information at time t is contained inFn
t , whileGnt represents the information about

future increments. The renewal arrivals An
i , i ∈ I, and the alternative renewal process

�n are regenerative processes. So inGn
t , we use τ̃

n
i (t) and τ̆

n(t), respectively, instead of
t . Note that parts (ii) and (iii) in the definition of non-anticipative scheduling policy are
required so that the any limit of scheduling policies corresponds to a non-anticipative
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control for the limiting controlled jump diffusion. See part (iii) of Proposition 3.1 for
details.

Let τ ni,k denote the kth jump time of An
i − Sni − Rn

i , for each n ∈ N and i ∈ I.
Equation (2.7) implies that Xn

i (t) = Xn
i (0) for 0 ≤ t ≤ τ ni,1, X

n
i (t) = Xn

i (0)+ ε1 for
τ ni,1 ≤ t ≤ τ ni,2 and so forth, where εk denotes the jump size which takes values in a
bounded set. Note that the integrals in (2.6) are finite by the definition of �n in (2.3)
and (2.5). Thus, given any non-anticipative scheduling policy Zn , and initial condition
Xn(0), there exists a unique solution to (2.7).

For x ∈ Zd+, we define the action set Zn(x) by

Zn(x) := {
z ∈ Zd+ : z ≤ x, 〈e, z〉 = 〈e, x〉 ∧ n

}
.

A scheduling policy Zn is called admissible if Zn(t) takes values in Zn(Xn(t)
)
at

each t , and is non-anticipative. The set of admissible scheduling policies is denoted
by Zn . Note that an admissible policy allows preemption, that is, a server can interrupt
service of a customer at any time to serve some other class of customers. In summary,
given an admissible scheduling policy Zn , the process Xn in (2.7) is well defined, and
we say that Xn is governed by Zn .

Next, we describe awell-known equivalent parameterization of the set of admissible
policies. Let

S := {u ∈ Rd+ : 〈e, u〉 = 1}.
We also define

Sn(x) :=
{
v ∈ Zd+ : v =

y

〈e, x〉 − n
∈ S, y ≤ x, y ∈ Zd+

}
, if 〈e, x〉 > n,

and Sn(x) = {ed}, if 〈e, x〉 ≤ n. Let Un denote the class of processes {Un(t)}t≥0
which are non-anticipative, in the sense of the definition given above, andUn(t) takes
values in Sn(Xn(t)

)
. Then, each Un ∈ Un determines a policy Zn ∈ Zn via

Zn(t) = Xn(t)− Qn(t), with Qn(t) = (〈
e, Xn(t)

〉− n
)+

Un(t).

This map is invertible, and its inverse is given by

Un(t) :=
{

Xn(t)−Zn(t)
〈e,Xn(t)〉−n for 〈e, Xn(t)〉 > n,

ed for 〈e, Xn(t)〉 ≤ n.

Therefore, as far as control problems are concerned, we can use policies in Un or Zn

interchangeably. Note thatUn
i can be considered as the proportion of class-i customers

in the queue when there are waiting customers in the system.
Next, we augment the state space, and define the class of stationaryMarkov schedul-

ing policies. Recall the definitions of An , Nn , and �n in (2.1)–(2.3), respectively.

123



Applied Mathematics & Optimization

Definition 2.1 Let Hn
i (t) denote the age process for the class-i customers, that is,

Hn
i (t) := t − 1

λni

An
i (t)∑

j=1
Gi, j , t ≥ 0, i ∈ I, (2.10)

and define the age process Kn for the alternating renewal process in the ‘down’ state
by

Kn(t) :=
(

t −
Nn(t)∑

k=1
(unk + dnk )− unNn(t)+1

)+
, t ≥ 0. (2.11)

Then, (An
i , H

n
i ), i ∈ I, and (�n, Kn) are strong Markov processes (see, e.g., [23]).

We say that a scheduling policy Zn ∈ Zn is (stationary) Markov if

Zn(t) = zn
(
Xn(t), Hn(t),�n(t), Kn(t)

)

for some zn : Zd+ × Rd+ × {0, 1} × R+ → Zd+, and we let Zn
sm denote the class of

these policies. Under a policy Zn ∈ Zn
sm, the process (Xn, Hn, �n, Kn) is Markov

with state space

{
(x, h, ψ, k) ∈ Zd+ ×Rd+ × {0, 1} ×R+ : k ≡ 0 if ψ = 1

}
.

Abusing the notation, when zn depends only on its first argument, we simply write
Zn(t) = zn

(
Xn(t)

)
.

3 Diffusion-Scaled Processes and Control Problems

Let X̂n , Q̂n , and Ẑ n denote the diffusion-scaled processes defined by

X̂n
i (t) := n−1/2(Xn

i (t)− ρi n), Q̂n
i (t) := n−1/2Qn

i (t), Ẑ n
i (t) := n−1/2(Zn

i (t)− ρi n),

respectively, for t ≥ 0 and i ∈ I. It follows by (2.7) that the process X̂n
i takes the form

X̂n
i (t) = X̂n

i (0)+ 
ni t + Ân
i (t)− Ŝni (t)− R̂n

i (t)

− μn
i

∫ t

0
Ẑ n
i (s)�

n(s) ds − γ n
i

∫ t

0
Q̂n

i (s) ds + L̂n
i (t), t ≥ 0,

(3.1)

where 
ni := n−1/2(λni − nμn
i ρi ),

Ân
i (t) := n−1/2

(
An
i (t)− λni t

)
, Ŝni (t) := n−1/2

(

Sni (t)− μn
i

∫ t

0
Zn
i (s)�

n(s) ds

)

,

R̂n
i (t) := n−1/2

(

Rn
i (t)− γ n

i

∫ t

0
Qn

i (s) ds

)

, and L̂n
i (t) :=

√
nμn

i ρiC
n
d(t).
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Let Ŵ n and Ŷ n , n ∈ N, be d-dimensional processes defined by

Ŵ n
i := Ân

i − Ŝni − R̂n
i for i ∈ I, (3.2)

and

Ŷ n
i (t) := 
ni t − μn

i

∫ t

0
Ẑ n
i (s)�

n(s) ds − γ n
i

∫ t

0
Q̂n

i (s) ds for i ∈ I, t ≥ 0,

respectively. Then, X̂n
i in (3.1) has the representation

X̂n
i (t) = X̂n

i (0)+ Ŷ n
i (t)+ Ŵ n

i (t)+ L̂n
i (t).

The initial condition X̂n(0), n ∈ N, is assumed to be deterministic throughout the
paper.

3.1 The Limiting Controlled Diffusion with Compound Poisson Jumps

In Lemma 3.1 and Proposition 3.1 which follow, products or powers of the spaces
(Dd , J1) and (Dd ,M1) are viewed as metric spaces endowed with the maximum
metric. The proofs of these results are given in Appendix A.

Lemma 3.1 Suppose that Assumptions 2.1 and 2.2 hold, and that {X̂n(0) : n ∈ N} is
bounded. Then, under any sequence of Un ∈ Un, we have

(n−1Qn, n−1Zn) ⇒ (e0, eρ) in (Dd ,M1)
2,

where e0(t) ≡ (0, . . . , 0)′ for all t ≥ 0, and eρ(t) ≡ (ρ1, . . . , ρd)
′.

Proposition 3.1 Grant the assumptions in Lemma 3.1. Then, the following hold.

(i) As n →∞,

(Ŵ n, L̂n) ⇒ (�W , λL) in (Dd , J1)× (Dd ,M1),

where the matrix� is given by� := diag
(√

λ1(1+ c2a,1), . . . ,
√
λd(1+ c2a,d)

)
,

W is a d-dimensional standard Wiener process, λ := (λ1, . . . , λd)
′, and {Lt }t≥0

is the one-dimensional Lévy process in (2.4), and is independent of W .
(ii) The sequence (X̂n, Ŷ n, Ŵ n, L̂n) is tight in (Dd ,M1)× (Dd , J1)2 × (Dd ,M1).
(iii) Provided Un is tight in (Dd , J1), any limit X of X̂n is a strong solution to the

stochastic differential equation

dXt = b(Xt ,Ut ) dt +� dWt + λ dLt , (3.3)
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with initial condition X0 = x ∈ Rd , whereU is a limit of Un, and b(x, u) : Rd×
S→ Rd takes the form

b(x, u) = 
− M(x − 〈e, x〉+u)− 〈e, x〉+Γ u, (3.4)

with 
 := (
1, . . . , 
d)
′, M := diag(μ1, . . . , μd), and Γ := diag(γ1, . . . , γd).

Moreover, any such limit U is non-anticipative, that is, for s < t , (Wt−Ws, Lt−
Ls) is independent of

Fs := the completion of σ {X0,Ur ,Wr , Lr : r ≤ s}.

Throughout the paper, the time variable appears as a subscript in the processes
governing the limiting controlled jump diffusion in order to distinguish them from the
processes associated with the nth system.

3.2 The Control Problems

Define R̃ : Rd+ → R+ by
R̃(x) := c|x |m (3.5)

for some c > 0 and m ≥ 1. The running cost function R : Rd × S → R+ is defined
by

R(x, u) := R̃
(〈e, x〉+u).

Remark 3.1 We only choose a running cost function as in (3.5) to simplify the exposi-
tion. One may replace (3.5) with a function R̃, which is locally Lipschitz continuous,
and satisfies

c1|x |m ≤ R̃(x) ≤ c2|x |m ∀ x ∈ Rd , (3.6)

for some positive constants c1, c2, and m ≥ 1. All the results still hold with (3.6).
Moreover, the lower bound in (3.6) is not needed for the discounted problem (see, e.g.,
[1]).

The α-discounted control problem for the nth system is given by

V̂ n
α

(
X̂n(0)

) := inf
Un∈Un

Ĵα(X̂
n(0),Un) α > 0, n ∈ N,

where the cost criterion is defined by

Ĵα(X̂
n(0),Un) := E

[∫ ∞

0
e−αt R

(
X̂n(s),Un(s)

)
ds

]

∀α > 0.

For the controlled (jump) diffusion X in (3.3),we say that a controlU is admissible if
it takes values in S, and non-anticipative (see [17]). We denote the set of all admissible
controls by U. The corresponding α-discounted cost criterion for the diffusion takes
the form

Jα(x,U ) := E
U
x

[∫ ∞

0
e−αt R(Xs,Us) ds

]

∀α > 0,
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and the optimal α-discounted value function is given by

Vα(x) := inf
U∈U Jα(x,U ) ∀α > 0, (3.7)

where E
U
x denotes the expectation operator corresponding to the process under the

control U , with initial condition x ∈ Rd . We introduce the following assumption for
the discounted problem.

Assumption 3.1 There exists a constant mA ≥ m ∨ 2 with m as in (3.5) such that
E[(Gi )

mA ] <∞, for all i ∈ I, and E[(d1)mA∨(m+1)] <∞.

We state the main result for the discounted problem in the next theorem, whose proof
is given in Sect. 5.2.

Theorem 3.1 Grant the hypotheses in Assumptions 2.1, 2.2, and 3.1, and suppose that
X̂n(0)→ x ∈ Rd as n →∞. Then

lim
n→∞ V̂ n

α

(
X̂n(0)

) = Vα(x). (3.8)

Remark 3.2 Note that in Theorem 3.1, we do not need to impose any restrictions on
the limiting abandonment rates {γi : i ∈ I}.

We define the ergodic control problem for the diffusion-scaled process by

�n
(
X̂n(0)

) := inf
Zn∈Znsm

Ĵ (X̂n(0), Zn),

where the cost criterion Ĵ is given by

Ĵ (X̂n(0), Zn) := lim sup
T→∞

1

T
E
Zn
[∫ T

0
R̃
(
Q̂n(s)

)
ds

]

.

Here, the infimum is over all Markov scheduling policies, since for the ergodic control
problem, we work with Markov processes. For the controlled jump diffusion in (3.3),
the ergodic cost criterion, and the optimal ergodic value are defined by

J (x,U ) := lim sup
T→∞

1

T
E
U
x

[∫ T

0
R(Xs,Us) ds

]

,

and
�∗(x) := inf

U∈U J (x,U ), (3.9)

respectively. By [17, Theorem 4.1], it follows that �∗ is independent of x , and opti-
mality is attained by a stationary Markov control.

We introduce the following assumption on Gi and d1 for the ergodic control prob-
lem.
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Assumption 3.2 The following hold.

(i) The right derivative of Fi (t) is finite, and Fi (t) < 1, for all t ≥ 0 and i ∈ I. The
distribution function Fd1 of d1 satisfies the same property.

(ii) The mean residual life functions of Gi and d1 are bounded, that is, there exists
some positive constant Ĉ such that

∫∞
t

(
1− Fd1(y)

)
dy

1− Fd1(t)
≤ Ĉ, and

∫∞
t

(
1− Fi (y)

)
dy

1− Fi (t)
≤ Ĉ ∀ i ∈ I, (3.10)

and for all t ≥ 0.

Assumption 3.2 implies that all absolute moments of Gi , i ∈ I, and d1 are finite.
The main result of the ergodic control problem is stated in the next theorem, whose
proof is given in Sect. 5.3.

Theorem 3.2 Grant Assumptions 2.1, 2.2, and 3.2. In addition, suppose that m in (3.5)
is larger than 1, and that X̂n(0)→ x ∈ Rd as n →∞. Then, we have

lim
n→∞ �n

(
X̂n(0)

) = �∗.

4 Ergodic Properties

In this section, we present some ergodicity results for the limiting jump diffusion
and the diffusion-scaled processes. These results are used to prove Theorem 3.2 in
Sect. 5.3.

4.1 The Limiting Controlled Diffusion with Compound Poisson Jumps

The controlled generator of the controlled limiting jump diffusion in (3.3) is given by

Aϕ(x, u) =
∑

i∈I
bi (x, u)∂iϕ(x)+ 1

2

∑

i∈I
λi (1+ c2a,i )∂i iϕ(x)

+
∫

Rd

(
ϕ(x + y)− ϕ(x)

)
νL (dy) (4.1)

for ϕ ∈ C2(Rd), where the drift b satisfies (3.4), and νL(A) := 	L
({
z ∈ R∗ : λz ∈

A
})

for any Borel measurable set A, with 	L as in (2.4). We refer the reader to [20,
Sect. 6] for the definition of exponential ergodicity. The following proposition is a
direct consequence of [24, Theorem 3.5].

Proposition 4.1 Under any constant control v such that Γ v �= 0, the controlled lim-
iting jump diffusion in (3.3) is exponentially ergodic.

Remark 4.1 It is shown in [25Theorem 5*] that the limiting controlled jump diffusion
is exponentially ergodic uniformly over all stationary Markov controls resulting in a
locally Lipschitz continuous drift, if Γ > 0.
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Proposition 4.1 implies that the optimal control problems for the limiting jump
diffusion are well-posed.

4.2 Preliminaries

We denote the scaled hazard rate function of Gi by rni . This is defined by

rni (hi ) :=
λni Ḟi (λ

n
i hi )

1− Fi (λni hi )
, ∀ hi ∈ R+, ∀ i ∈ I,

where Ḟi denotes the right derivative of Fi . Recall Hn in (2.10). The extendedgenerator
of (An, Hn) associated with the renewal arrival processes, denoted byHn , is given by

Hn f (x, h) =
∑

i∈I

∂ f (x, h)

∂hi
+
∑

i∈I
rni (hi )

(
f (x + ei , h − hi ei )− f (x, h)

)
(4.2)

for f ∈ Cb(Rd ×Rd+).

Remark 4.2 We sketch the derivation of (4.2); see also [26Theorem 5.5*]. It is enough
to consider one component (An

i , H
n
i ), i ∈ I. We obtain

Ex,h
[
f
(
An
i (t + s), Hn

i (t + s)
)]− f (x, h)

= Ex,h
[
f
(
An
i (t + s), Hn

i (t + s)
)]− Ex,h

[
f
(
An
i (t + s), h

)]

+ Ex,h
[
f
(
An
i (t + s), h

)]− f (x, h)

= rni,0,s(h)
(
f (x, h + s)− f (x, h)

)+ rni,1,s(h)
(
f (x + 1, h)− f (x, h)

)

+
∑

j∈N
rni, j,s(h)Ex,h

[
f
(
x + j, Hn

i (t + s)
)− f (x + j, h)

∣
∣ An

i (t + s) = x + j
]

+
∑

j∈N, j≥2
rni, j,s(h)

(
f (x + j, h)− f (x, h)

) ∀ f ∈ Cb(R×R), ∀ (x, h) ∈ R×R+,

where

rni, j,s(h) := P
(
An
i (t + s) = x + j | An

i (t) = x, Hn
i (t) = h

) = P
(
An
i (s + h) = j |Gi ≥ λni h

)

by the regenerative property of renewal process. Since Ḟi (t) is finite for all t ≥ 0, it
follows that

rni (h) ≡ lim
s↘0

1

s
rni,1,s(h) =

λni Ḟi (λ
n
i hi )

1− Fi (λni hi )
, and lim

s↘0

1

s
rni, j,s(h) = 0 for j ≥ 2.

It is evident that lims↘0 rni,0,s = 1 and lims↘0 rni, j,s = 0 for j ∈ N. Thus, we obtain
(4.2).
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We define (compare this with [19])

ηni (hi ) := 1−
∫∞
λni hi

(
1− Fi (y)

)
dy

1− Fi (λni hi )
, hi ∈ R+, i ∈ I. (4.3)

Note that ηni is bounded by (3.10). The following identity is frequently used throughout
the paper.

η̇ni (hi )− ηni (hi )r
n
i (hi ) = λni − rni (hi ), ∀ hi ∈ R+, ∀ i ∈ I. (4.4)

Recall that c2a,i denotes the squared coefficient of variation of Gi . Let

κni (hi ) :=
∫∞
λni hi

∫∞
t

(
1− Fi (x)

)
dx dt

1− Fi (λni hi )
− c2a,i + 1

2

∫∞
λni hi

(
1− Fi (x)

)
dx

1− Fi (λni hi )
(4.5)

for hi ∈ R+ and i ∈ I. Note that the first term on the right-hand side of (4.5) is
the second order residual life function. It follows by (3.10) that κni is bounded. Using
(4.5), we obtain κni (0) = 0, and

κ̇ni (hi )− rni (hi )κ
n
i (hi ) =

(

ηni (hi )+
c2a,i − 1

2

)

λni , hi ∈ R+, i ∈ I. (4.6)

The scaled hazard rate function of d1 is defined by

βn
d(k) :=

ϑn Ḟd1(ϑnk)

1− Fd1(ϑnk)
, k ∈ R+.

Recall Kn in (2.11). The extended generator of (�n, Kn) associated with the alter-
nating renewal process, denoted by Kn , is given by

Kn f (ψ, k) = ψ βn
u
(
f (0, 0)− f (1, 0)

)

+(1− ψ)

(

βn
d (k)

(
f (1, 0)− f (0, k)

)+ ∂ f (0, k)

∂k

)

(4.7)

for f ∈ Cb({0, 1}×R+), with βn
u as in Assumption 2.2. In analogy to (4.4), we define

αn(k) := 1−
∫∞
ϑnk

(
1− Fd1(x)

)
dx

1− Fd1(ϑnk)
∀ k ∈ R+. (4.8)

The following identities hold: αn(0) = 0, and

α̇n(k)− βn
d(k)α

n(k) = ϑn − βn
d(k) ∀ k ∈ R+. (4.9)
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Let α̃n(ψ, k) := (
ψ + αn(k)

)
(ϑn)−1. It follows by (4.9) that

Knα̃n(ψ, k) = −βn
u

ϑn
ψ + (1− ψ). (4.10)

Note that α̃n is bounded by (3.10).

4.3 Diffusion-Scaled Processes

To prove Theorem 3.2, we need to establish long-run average moment bounds for the
diffusion-scaled processes under a class of scheduling policies, which agree with a
proposed policy outside a compact set. We make this formal in Proposition 4.3. The
proposed policy is given in the next definition.

Let I0 := {i ∈ I : γi = 0}. If I0 �= ∅, then, without loss of generality, we assume
that I0 = {1, . . . , |I0|}, where |I0| denotes the cardinality of the set I0. InDefinition 4.1
below, we introduce a modified priority scheduling policy which can be described as
follows: First, 	nρi/∑i∈I0 ρi
 ∧ xi servers are allocated to each class i ∈ I0. Then, the
remaining servers are allocated following the static priority rule.

Definition 4.1 The Markov policy žn is defined by

žni (x) =
⌊

nρi
∑

i∈I0 ρi
+
(

n −
∑

j∈I0

(

x j ∧
⌊

nρ j
∑

i∈I0 ρi

⌋)

−
i−1∑

j=1

(

x j −
⌊

nρ j
∑

i∈I0 ρi

⌋)+)+⌋
∧ xi , ∀ i ∈ I0,

and

žni (x) := xi ∧
(

n −
i−1∑

j=1
x j

)+
, ∀ i ∈ I \ I0.

We let q̌ni (x) := xi − žni (x), i ∈ I.

In obtaining long-run average moment bounds, since the queueing system is in an
alternative renewal environment, we do not work with the diffusion-scaled processes
directly. To utilize the fact that (�n, Kn) is a Markov process, we introduce the
following auxiliary process. We define the ‘unscaled’ process X̆n by

X̆n
i (t) := Xn

i (0)+ An
i (t)− Sni (t)

− Rn
∗,i
(

γ n
i

∫ t

0

(
X̆n
i (s)− nμn

i ρiRn(s)− Zn
i (s)

)
ds

)

+ nμn
i ρiRn(t)

= Xn
i (t)+ nμn

i ρiRn(t) a.s. (4.11)
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for i ∈ I and t ≥ 0, where Rn(t) is the residual time process for the system in the
‘down’ state given by

Rn(t) =
Nn
u (t)∑

k=1
dnk −

∫ t

0

(
1−�n(s)

)
ds,

and Nn
u (t) is the process counting the number of completed ‘up’ periods by time t .

Here, the second equality in (4.11) follows by the fact that given Xn(0), �n and Zn ,
the evolution equation in (2.7) admits a unique solution. Also, if �n(t) = 1, then
Rn(t) = 0 and thus X̆n(t) = Xn(t) a.s. Note that under a Markov policy zn ∈ Zn

sm,
the process (X̆n, Hn, �n, Kn) is Markov with state space

D := {
(x̆, h, ψ, k) ∈ Rd+ ×Rd+ × {0, 1} ×R+ : k ≡ 0 if ψ = 1

}
,

and
Zn(t) = zn

(
X̆n(t)− nμn

i ρiRn(t), Hn(t),�n(t), Kn(t)
)
.

Under zn ∈ Zn
sm, the generator of (X̆

n, Hn, �n, Kn) denoted by L̆zn

n is given by

L̆zn

n f (x̆, h, ψ, k) = Lzn

n,ψ f (x̆, h, ψ, k)+ In,ψ f (x̆, h, ψ, k)

+Qn,ψ f (x̆, h, ψ, k) (4.12)

for (x̆, h, ψ, k) ∈ D and f ∈ Cb(Rd × Rd+ × {0, 1} × R+). The operators on the
right-hand side of (4.12) are defined by

Lzn

n,ψ f (x̆, h, ψ, k)

:=
∑

i∈I

∂ f (x̆, h, ψ, k)

∂hi
+
∑

i∈I
rni (hi )

(
f (x̆ + ei , h − hi ei , ψ, k)

− f (x̆, h, ψ, k)
)

+ ψ
∑

i∈I

(
μn
i z

n
i (x̆, h, 1, 0)+ γ n

i q
n
i (x̆, z

n)
)(

f (x̆ − ei , h, 1, 0)− f (x̆, h, 1, 0)
)

+ (1− ψ)
∑

i∈I
γ n
i

(
f (x̆ − ei , h, 0, k)− f (x̆, h, 0, k)

)

×
∫

R∗
qni
(
x̆ − nμn(y − k), zn

)
F̃
dn1
x̆,k(dy)

− (1− ψ)
∑

i∈I
nρiμ

n
i
∂ f (x̆, h, 0, k)

∂ x̆i
(4.13)

with qn(x̆, zn) = x̆ − zn ,

In,ψ f (x̆, h, ψ, k)
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:= ψ βn
u

∫

R∗

(

f
(
x̆ + n

ϑn
μn y, h, 0, 0

)
− f (x̆, h, 1, 0)

)

Fd1(dy), (4.14)

and

Qn,ψ f (x̆, h, ψ, k)

:= (1− ψ)

(

βn
d(k)

(
f (x̆, h, 1, 0)− f (x̆, h, 0, k)

)+ ∂ f (x̆, h, 0, k)

∂k

)

. (4.15)

In (4.13), μn := (μn
1ρ1, . . . , μ

n
dρd)

′, F̃dn1
x̆,k denotes the conditional distribution of dn1

given {dn1 > k}, and {nμn
i ρi (d

n
1 − k) ≤ x̆i : i ∈ I}.

The first two terms on the right-hand side of (4.13) correspond to the extended
generator associated with the renewal arrival processes. Compare this with (4.2). Con-
ditioning on the alternative renewal process �n in the ‘up’ state, the third term on the
right-hand side of (4.13) corresponds to the service and abandonment processes, and
In,ψ corresponds to the residual time processRn together with �n . Similarly, condi-
tioning on the alternative renewal process in the ‘down’ state, the last two terms on the
right-hand side of (4.13) correspond to the abandonment process andRn , respectively,
andQn,ψ corresponds to (�n, Kn). The generators in (4.14) and (4.15) are analogous
to the extended generator associated with the alternating renewal process in (4.7).

Remark 4.3 We sketch the derivation of In,ψ . The rest of the terms in (4.12) follow
by the calculation below and Remark 4.2. To simplify the calculation, we assume that
the arrival processes are Poisson, and only consider the i th component (X̆n

i , �
n, Kn),

i ∈ I. Note that Kn(t) = 0 when �n(t) = 1. Since there are no simultaneous jumps
w.p.1., here we only consider the jumps caused by �n , that is, we consider

∑

j∈N

(
Ex̆,1,0

[
f (X̆n

i (t + s),�n(t + s), Kn(t + s))
∣
∣ N̆ n(t + s)− N̆ n(t) = j

]

− f (x̆, 1, 0)
)
pnj (t, s),

for s, t ≥ 0, where N̆ n(t) denotes the number of jumps of �n up to time t , and
pnj (t, s) = P

(
N̆ n(t + s) − N̆ n(t) = j

)
, j ∈ N. By the memoryless property of

‘up’ times, and using the same calculation as in Remark 4.2 for ‘down’ times, it is
straightforward to check that

lim
s↘0

1

s
pn1 (t, s) = βn

u , and lim
s↘0

1

s
pnj (t, s) = 0 for j ≥ 2,

and for any t ≥ 0. By the continuity of Kn , we have

lim
s↘0

P
(
N̆ n(t + s)− N̆ n(t) = 1, Kn(t + s) = 0

∣
∣ Kn(t) = 0

) = 1.
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Thus,

lim
s↘0

Ex̆,1,0
[
f (X̆n

i (t + s),�n(t + s), Kn(t + s))
∣
∣ N̆ n(t + s)− N̆ n(t) = 1

]

= Ex̆,1,0

[

f
(
x̆ + nμn

i ρi
1

ϑn
d1, 0, 0

)]

.

This proves (4.14).

Definition 4.2 We define x̄ni (x̆) := x̆i − ρi n, i ∈ I,

x̄ = x̄n(x̆) := (
x̄n1 (x̆), . . . , x̄

n
d (x̆)

)′
, x̃ = x̃n(x̆) := n−1/2 x̄n(x̆), x̆ ∈ Rd ,

and
An

R := {
x ∈ Rd : |x − ρn| ≤ R

√
n
}

for a positive constant R.

Let L̃zn
n denote the generator of the scaled joint process �̃n := (X̃n, Hn, �n, Kn)

with X̃n := n−1/2(X̆n − nρ). The state space of �̃n is given by

D̃
n := {

(x̃n(x̆), h, ψ, k) ∈ Rd ×Rd+ × {0, 1} ×R+ : x̆ ∈ Rd+, k ≡ 0 if ψ = 1
}
.

Then, under any zn ∈ Zn
sm, we have

L̃zn
n f (x̃, h, ψ, k) = L̆zn

n f (x̃n(x̆), h, ψ, k), (4.16)

for f ∈ Cb(Rd ×Rd+ × {0, 1} ×R+).
The next lemma concerns the ergodicity of the process �̃n under the modified

priority policy in Definition 4.1. Let Vκ,ξ (x) :=∑i∈I ξi |xi |κ for x ∈ Rd , where κ >

0, and ξ is a positive vector. Define the function Ṽn
κ,ξ : Rd ×Rd+ × {0, 1}×R+ → R

by

Ṽn
κ,ξ (x, h, ψ, k) := Vκ,ξ (x)+

∑

i∈I
ηni (hi )

(Vκ,ξ (x + n−1/2ei )− Vκ,ξ (x)
)

+ ψ + αn(k)

ϑn

∑

i∈I
μn
i ξi

×
(
Ṽn

κ,i (xi )+ ηni (hi )
(Ṽn

κ,i (xi + n−1/2)− Ṽn
κ,i (xi )

))
,

(4.17)

where ηni and αn are as in (4.3) and (4.8), respectively, and Ṽn
κ,i (xi ) := −|xi |κ for

xi ∈ R+ and i ∈ I \ I0, and

Ṽn
κ,i (xi ) :=

⎧
⎪⎨

⎪⎩

−|xi |κ, for xi <

√
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

,

−
√
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

|xi |κ−1, for xi ≥
√
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

,
∀ i ∈ I0.
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The function Ṽn
κ,ξ is constructed in such a manner as to allow us to take advantage of

the identities in (4.4) and (4.10). We define the set

Kn(x) :=
{

i ∈ I0 : xi ≥
√
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

}

.

Note that L̃žn

n denotes the generator of �̃n under the modified priority scheduling
policy in Definition 4.1. We have the following lemma.

Lemma 4.1 Grant Assumptions 2.1, 2.2, and 3.2. For any even integer κ ≥ 2, there
exist positive constants C̃0 and C̃1, a positive vector ξ ∈ Rd+, and ñ ∈ N such that:

L̃žn

n Ṽn
κ,ξ (x̃, h, ψ, k) ≤ C̃0 − C̃1

∑

i∈I\Kn(x̃)

Vκ,ξ (x̃)− C̃1

∑

i∈Kn(x̃)

Vκ−1,ξ (x̃) (4.18)

for all n > ñ, and (x̃, h, y, k) ∈ D̃
n
. As a consequence, for all large enough n, �̃n is

positive Harris recurrent under the modified priority scheduling policy žn.

The proof of Lemma 4.1 is given in Appendix B. We continue with the following
prop, which plays a crucial role in proving Proposition 4.3. In its proof, especially,
equation (4.26), we show the relationship between the processes X̂n and X̃n .

Proposition 4.2 Grant Assumptions 2.1, 2.2, and 3.2. Under the scheduling policy žn

in Definition 4.1, and for any κ > 0, there exists ň ∈ N such that

sup
n>ň

lim sup
T→∞

1

T
E
žn
[∫ T

0
|X̂n(s)|κ ds

]

< ∞. (4.19)

Proof Let κ ≥ 2 be an arbitrary even integer. By (4.18), we have

E
žn [Ṽn

κ,ξ

(
�̃n(T )

)]− E
žn [Ṽn

κ,ξ (�̃
n(0))

]

= E
žn
[∫ T

0
L̃žn

n Ṽn
κ,ξ

(
�̃n(s)

)
ds

]

≤ C̃0T − C̃1 E
žn
[∫ T

0
Vκ−1,ξ

(
X̃n(s)

)
ds

]

. (4.20)

Since (ϑn)−1 is of order n−1/2 by Assumption 2.2, it follows by Young’s inequal-
ity together with (3.10) that there exist some positive constants c0 and c1 such that
c0(Vκ,ξ − 1) ≤ Ṽn

κ,ξ ≤ c1(1+ Vκ,ξ ) for all large n. Note that X̂n(0) = X̃n(0). Thus,
by (4.20), we obtain

C̃1 E
žn
[∫ T

0
Vκ−1,ξ

(
X̃n(s)

)
ds

]

≤ (C̃0 + c0)T + c1
(
1+ Vκ,ξ

(
X̂n(0)

))
(4.21)
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for some positive constants C3 and C4. By dividing both sides of (4.21) by T , and
taking T →∞, we have

sup
n>ň

lim sup
T→∞

1

T
E
žn
[∫ T

0
|X̃n(s)|κ−1 ds

]

< ∞. (4.22)

Let E ≡ E
Un

for some admissible scheduling policy Un . We have

1

T
E

[∫ T

0
|X̂n

i (s)− X̃n
i (s)|κ−1 ds

]

= (μn
i ρi )

κ−1 1
T

E

[∫ T

0

(√
nRn(s)

)κ−1 ds
]

∀ i ∈ I. (4.23)

We use the identity

E
[(√

nRn(s)
)κ−1] = E

[(√
nRn(s)

)κ−1 |Rn(s) > 0
]
P(Rn(s) > 0) (4.24)

for any s ≥ 0. Here Rn(s) is the residual time of the system in the ‘down’ state,
and thus E[(√nRn(s))κ−1|Rn(s) > 0] ≤ E[(√ndn1 )

κ−1] ≤ c2 for some positive
constant c2, by Assumption 2.2 and (3.10). Also, P(Rn(s) > 0) = P(�n(s) = 0),
and it follows by [27, Theorem 3.4.4] that

lim
s→∞ P(�n(s) = 0) = (ϑn)−1

(βn
u )
−1 + (ϑn)−1

,

which is of order n−1/2 by Assumption 2.2. Therefore, applying (4.24), we obtain

lim
(n,T )→∞

1

T
E

[∫ T

0

(√
nRn(s)

)κ−1 ds
]

= 0. (4.25)

It follows by (4.23) and (4.25) that

lim
(n,T )→∞

1

T
E

[∫ T

0
‖X̂n(s)− X̃n(s)‖κ−1 ds

]

= 0. (4.26)

Thus (4.19) follows by (4.22) and (4.26). This completes the proof. ��
The next prop is used to prove the upper bound for the ergodic control problem in

Sect. 5.3.2, where we adopt the spatial truncation technique developed in [4]. We first
introduce a class of concatenated scheduling policies.

Definition 4.3 We define the quantization function � : Rd+ → Zd+ by

�(x) :=
(

	x1
, . . . , 	xd−1
, 	xd
 +
d∑

i=1
(xi − 	xi
)

)

.
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For a sequence vn : Rd → S, n ∈ N, of continuous functions satisfying vn
(
x̃n(x)

) =
ed if x /∈ An

R , R > 1, with An
R as in Definition 4.2, we define the map

qn[vn](x) :=
{
�
((〈e, x〉 − n

)+
vn
(
x̃n(x)

))
for supi∈I|x̃n(x)| ≤ 1

2d

√
n
(
mini ρi

)
,

q̌n(x) for supi∈I|x̃n(x)| > 1
2d

√
n
(
mini ρi

)
,

and the scheduling policy zn[vn](x) := x − qn[vn](x)
Proposition 4.3 Under the scheduling policy zn[vn] in Definition 4.3, the conclusions
in Lemma 4.1 and Proposition 4.2 hold.

Proof For all sufficiently large n, we have qni [vn](x̆) ≤ 2dR
√
n for x̆ ∈ An

R (see also
the proof of [4, Lemma 5.1]). If supi∈I|x̃ni (x̆)| ≤ 1

d

√
n
(
mini ρi

)
, it is evident that

∑d−1
i=1 x̆i ≤ n, and thus zn[ed ] is equivalent to the modified priority policy on this set.

Therefore, the result follows by the argument in Lemma 4.1 and Proposition 4.2. ��

5 Asymptotic Optimality

5.1 Results Concerning the Limiting Jump Diffusion

In this subsection, we present some optimality results for the limiting jump diffusion.
These results are used in proving asymptotic optimality.

Recall that a stationary Markov control v is called stable if the process under v is
positive recurrent, and the set of such controls is denoted by Ussm. Let G denote the
set of ergodic occupation measures, that is,

G :=
{

π ∈ P(Rd×U) :
∫

Rd×U
A f (x, u)π(dx, du) = 0 ∀ f ∈ C∞c (Rd)

}

. (5.1)

See [28, Sect. 2.1] for more details.
We summarize the characterization of optimal controls for the limiting jump diffu-

sion in the following theorem. Recall the definition of d1 in Assumption 2.2.

Theorem 5.1 Assume that E[(d1)m+1] <∞ with m as in (3.5). The following hold:

(i) For α > 0, Vα in (3.7) is the minimal nonnegative solution in C2,r (Rd), r ∈ (0, 1),
to the HJB equation

min
u∈U
[AVα(x, u)+ R(x, u)

] = αVα(x) a.e. in Rd . (5.2)

In addition, Vα has at most polynomial growth with degree m. Moreover, a sta-
tionary Markov control v is optimal for the α-discounted problem if and only if it
is an a.e. measurable selector from the minimizer in (5.2).

(ii) There exists a solution V ∈ C2,r (Rd), r ∈ (0, 1), to the HJB equation

min
u∈U
[AV (x, u)+ R(x, u)

] = �∗ a.e. in Rd . (5.3)
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Moreover, a stationaryMarkov control v is optimal for the ergodic control problem
if and only if it is an a.e. measurable selector from the minimizer (5.3).

Proof Wefirst consider (i). It follows by [24, Remark 5.1] and Proposition 4.1 that [17,
Assumptions 2.1 and 2.2] hold with V◦ and V having at most polynomial growth of
degreem. SinceE[(d1)m+1] <∞, then (4.1) satisfies [17,Assumption 5.1]. Therefore,
the results in part (i) follow by [17, Theorems 5.1 and 5.3]. Note that by [17, (5.4)], Vα

has at most polynomial growth of degree m. Similarly, the claim in part (ii) follows
by [17, Theorems 5.2 and 5.3]. ��
Remark 5.1 If there is no jump part in (4.1), then it corresponds to the controlled
limiting diffusion forGI/M/n+M queues. If we define the optimal control problems
for the limiting diffusion in the same way as in (3.7) and (3.9), then the results in
Theorem 5.1 still hold when A in (4.1) does not contain the jump component. As a
consequence, part (i) of Theorem 5.1 corresponds to [1, Theorem 3].

If we consider (3.9) over all stable Markov controls, then the ergodic control prob-
lem is equivalent to minπ∈G

∫
Rd×UR(x, u)π(dx, du), see, for example, [17, Sect.

4]. We summarize a result on ε-optimal controls for the ergodic problem in the next
prop, which follows directly by Corollary 7.1 in [17]. Note that the constant control
v ≡ ed also satisfies Proposition 4.1. Recall that a stationary Markov control v is
called precise if it is a measurable map from Rd to U.

Proposition 5.1 Assume that E[(d1)m] <∞, with m as in (3.5). For any ε > 0, there
exist a continuous precise control vε ∈ Ussm, and R ≡ R(ε) ∈ N such that vε ≡ ed
on B̄c

R, and vε is ε-optimal, that is,

∫

Rd×U
R(x, u)πvε (dx, du) ≤ �∗ + ε.

5.2 Proof of Theorem 3.1

To prove Theorem 3.1, we use the approach developed in [1]. We first establish a key
moment estimate for the diffusion-scaled process X̂n , whose proof is similar to that
of [1, Lemma 3].

Lemma 5.1 Grant the hypotheses in Theorem 3.1. Then

E
[‖X̂n(t)‖mA

] ≤ c1(1+ tm1)(1+ ‖x‖m1) ∀ t ≥ 0, (5.4)

where c1 and m1 are some positive constants independent of n, x and t.

Proof Recall L̂n and X̂n in (3.1), and Ŵ n in (3.2). Let �̂n be a d-dimensional process
defined by �̂n

i (·) := μn
i

∫ ·
0 Ẑ

n
i (s)

(
1−�n(s)

)
ds, for i ∈ I. Then,

μn
i

∫ t

0
Ẑ n
i (s)�

n(s) ds = −�̂n
i (t)+ μn

i

∫ t

0
Ẑ n
i (s) ds ∀ t ≥ 0.
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Thus, we obtain

X̂n
i (t) = X̂n

i (0)+
ni t+ Ŵ n
i (t)+�̂n

i (t)+ L̂n
i (t)−μn

i

∫ t

0
Ẑ n
i (s) ds−γ n

i

∫ t

0
Q̂n

i (s) ds

for all t ≥ 0 and i ∈ I. Following the same method as in [1, Lemma 3], we have

‖X̂n(t)‖ ≤ C

[

1+ t2 + ‖X̂n(0)‖ + ‖Ŵ n(t)+ L̂n(t)+ �̂n(t)‖

+
∫ t

0
‖Ŵ n(s)+ L̂n(s)+ �̂n(s)‖ ds

+
∫ t

0

∫ s

0
‖Ŵ n(r)+ L̂n(r)+ �̂n(r)‖ dr ds

]

(5.5)

for some positive constant C . Let

N̂ n(t) := max

{

k ≥ 0 :
k∑

i=1
uni ≤ t

}

with un as in (2.2). By Assumption 2.2, N̂ n(t) is a Poisson process with rate βn
u . Then,

we obtain

E

[
‖L̂n(t)‖mA

]
≤ C1 E

[(√
nCn

d(t)
)mA
] ≤ C1

(√
n

ϑn

)mA

E

[(N̂ n(t)+1∑

i=1
di

)mA]

≤ C2(1+ tm2) (5.6)

for some positive constants C1 = sup{μn
i ρi : n ∈ N, i ∈ I}, C2, and m2. The third

inequality in (5.6) follows by the independence of N̂ n and di , and Assumption 3.1.
On the other hand, for some positive constant C3, we have

|n−1/2 Ẑ n
i (s)| ≤ C3

(
1+ n−1An

i (s)
)

a.s. ∀ s ≥ 0. (5.7)

Thus,

E

[∣
∣�̂n

i (t)
∣
∣mA
]
≤ μn

i E

[(∫ t

0

∣
∣n−1/2 Ẑ n

i (s)
∣
∣
∣
∣
√
n
(
1−�n(s)

)∣
∣ ds

)mA
]

≤ μn
i (C3)

mA
(
1+ sup

s≤t
E
[
n−1An

i (s)
])mA

E

[(√
nCn

d(t)
)mA
]

≤ C4(1+ tm3)

(5.8)

for some positive constant C4, where the second inequality follows by (5.7) and the
independence of An and �n , and the third inequality follows by [29, Theorem 4] and
(5.6). Therefore, following the argument in the proof of [1, Lemma 3], and using (5.5),
(5.6), and (5.8), we establish (5.4). This completes the proof. ��

123



Applied Mathematics & Optimization

Proof of Theorem 3.1 We first prove the lower bound:

lim inf
n→∞ V̂ n

α

(
X̂n(0)

) ≥ Vα(x).

By Theorem 5.1, the partial derivatives of Vα(x) up to order two are locally Hölder
continuous. Let V l

α := χl◦Vα = χl(Vα), where χl ∈ C2(R) satisfies χl(x) = x for
x ≤ l and χl(x) = l + 1 for x ≥ l + 2. Let L : C2(Rd) → C2(Rd × S) be the local
operator defined by

Lϕ(x, u) := 〈b(x, u),∇ϕ(x)〉 + 1

2

∑

i∈I
λi (1+ c2a,i ) ∂i iϕ(x), ϕ ∈ C2(Rd).

Compare this with (4.1). We define H(x, p) := minu∈U[〈b(x, u), p〉 + R(x, u)], for
(x, p) ∈ Rd ×Rd . By Itô’s formula, for any l > supBR

Vα , it follows that

e−α(t∧τR)V l
α(Xt∧τR )

= V l
α(x)−

∫ t∧τR

0
αe−αs Vα(Xs) ds

+
∫ t∧τR

0
e−αs LVα(Xs,Us) ds

+
∫ t∧τR

0
〈e−αs ∇Vα(Xs),� dWs〉 +

∫ t∧τR

0

∫

R∗
e−αs (V l

α(Xs− + λy)

− Vα(Xs−)
)NL(ds, dy),

whereNL is the Poisson random measure of {Lt : t ≥ 0}with the intensity	L . Thus,
applying (5.2), we obtain

e−α(t∧τR)V l
α(Xt∧τR ) = V l

α(x)+
∫ t∧τR

0
e−αs 〈b(Xs,Us),∇Vα(Xs)〉 ds

+
∫ t∧τR

0
〈e−αs ∇Vα(Xs),� dWs〉 −

∫ t∧τR

0
e−αs H

(
Xs,∇Vα(Xs)

)
ds

+
∫ t∧τR

0

∫

R∗
e−αs (V l

α(Xs− + λy)− Vα(Xs−)
)ÑL(ds, dy)

+
∫ t∧τR

0

∫

R∗
e−αs (V l

α(Xs− + λy)− Vα(Xs− + λy)
)
	L(ds, dy),

where ÑL(t, A) = NL(t, A)− t 	L(A) for any Borel set A ⊂ R. Repeating the same
calculation as for the claim (71) in [1], we obtain

e−α(t∧τR)V l
α(Xt ) ≥ V l

α(x)+
∫ t∧τR

0
〈e−αs ∇V l

α(Xs),� dWs〉

−
∫ t∧τR

0
e−αs R(Xs,Us) ds (5.9)
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+
∫ t∧τR

0

∫

R∗
e−αs (V l

α(Xs− + λy)− Vα(Xs−)
)ÑL(ds, dy)

+
∫ t∧τR

0

∫

R∗
e−αs (V l

α(Xs− + λy)− Vα(Xs− + λy)
)
	L(ds, dy).

Note that ÑL is a martingale measure and Vα is nonnegative. Taking expectations on
both sides of (5.9), the second and fourth terms on the right-hand side of (5.9) vanish.
Thus, first taking limits as l →∞, and then as R →∞, it follows by the monotone
convergence theorem that

E

[∫ t

0
e−αs R(Xs,Us) ds

]

≥ Vα(x)− E
[
e−αt Vα(Xt )

]
.

Applying Theorem 5.1 it follows that solutions of (5.2) have at most polynomial
growth of degree m, which corresponds to [1, Proposition 5 (i)]. Note that Lemma 5.1
corresponds to Lemma 3 in [1]. The rest of the proof of the lower bound follows
exactly the proof of [1, Theorem 4(i)].

To prove (3.8), we construct a sequence of asymptotically optimal scheduling poli-
cies Un . Let vα be an optimal control to (5.2). Recall the quantization function in
Definition 4.3. We define a sequence of scheduling policies

z̄n[vα](x̂) :=
{
�
(〈e, x̂〉+vα(x̂)

)
, if x̂ ∈ X̂

n
,

žn(
√
nx̂ + nρ) if x̂ /∈ X̂

n
,

where žn is the modified priority policy in Definition 4.1, and

X̂
n := {

n−1/2(x − nρ) : x ∈ Rd , 〈e, x〉 ≤ xi ∀ i ∈ I
}
.

Here the policy on (X̂
n
)c may be chosen arbitrarily. Let Un[vα] be the equivalent

parameterization of z̄n[vα]. Following the proof of [1, Theorem 2(i)], we obtain

∫ ·

0
e−αs ϒn(s) ds ⇒ 0,

where

ϒn(s) := 〈b(X̂n(s),Un[vα](s)
)
,∇Vα

(
X̂n(s)

)〉+ R
(
X̂n(s),Un[vα](s)

)

−H(X̂n(s),∇Vα

(
X̂n(s)

))
.

Thus, by using the method in [1, Theorem 4(ii)], and repeating the above calculation,
we obtain

lim sup
n→∞

V̂ n
α

(
X̂n(0)

) ≤ Vα(x).

This completes the proof. ��
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5.3 Proof of Theorem 3.2

In this section, we prove Theorem 3.2 by establishing lower and upper bounds.

5.3.1 The Lower Bound

We show that
lim inf
n→∞ �n

(
X̂n(0)

) ≥ �∗. (5.10)

The proof is given at the end of this subsection.
We need the following lemma whose proof is similar to that of Proposition 4.2, and

is given in Appendix B.

Lemma 5.2 Grant the hypotheses in Assumptions 2.1, 2.2, and 3.2. For any m > 1,
and any sequence {zn ∈ Zn

sm : n ∈ N} with supn Ĵ (X̂n(0), zn) < ∞, there exists
n◦ > 0 such that

sup
n>n◦

lim sup
T→∞

1

T
E
zn
[∫ T

0
|X̂n(s)|m ds

]

< ∞. (5.11)

Themain challenge in the proof lies in approximating the generator of the diffusion-
scaled process with the generator of the limiting jump diffusion. Recall the extended
generator Hn of (An, Hn) in (4.2). We define the function φn[ f ] by

φn[ f ](x, h) := f (x)+
∑

j∈I
φ̂n
1, j [ f ](x, h)+

∑

j∈I

c2a, j − 1

2
√
n

∂ j f (x)

+
∑

j∈I
φ̂n
2, j [ f ](x, h)+

∑

j∈I

κnj (h j )

n
∂ j j f (x)

+
d−1∑

j=1
φ̂n
3, j [ f ](x, h)

(5.12)

for any f ∈ C∞c (Rd), and n ∈ N, where

φ̂n
1, j [ f ](x, h) :=

1

j !
∑

i j∈I

∑

i j−1 �=i j
· · ·

∑

i1 /∈{il : l>1}

j∏

r=1
ηnir (hir )

[
f
]1,n
i1···i j (x),

with [
f
]1,n
i1···i j (x) :=

[
f
]1,n
i1···i j−1(x + n−1/2ei j )−

[
f
]1,n
i1···i j−1(x),

[
f
]1,n
i1

(x) := f (x + n−1/2ei1)− f (x).
(5.13)
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The function φ̂n
2, j [ f ] is defined analogously to (5.13)with

[
f
]1,n
i1···i j and

[
f
]1,n
i1

replaced

by
[
f
]2,n
i1···i j and

[
f
]2,n
i1

(x) :=
∑

j∈I

c2a, j − 1

2
√
n

(
∂ j f (x + n−1/2ei1)− ∂ j f (x)

)
,

respectively. Also,

φ̂n
3, j [ f ](x, h) :=

1

j !
∑

i j∈I

∑

i j−1 �=i j
· · ·

∑

i1 /∈{il : l>1}

j+1∏

r=2
ηnir (hir )

κni1(hi1)

n

[
f
]3,n
i1···i j+1(x)

with
[
f
]3,n
i1···i j+1(x) defined analogously to (5.13), and

[ f ]3,ni1i2
(x) := ∂i1i1 f (x + n−1/2ei2)− ∂i1i1 f (x) for i1, i2, . . . , i j , j ∈ I.

Note that φn[ f ] is bounded by Assumption 3.2 (i).
The extended generator H̃n

of the scaled process ( Ân, Hn) is given by H̃n
f (x̃, h) =

Hn f (x̃n(x), h), for f ∈ Cb(Rd ×Rd+). We have the following lemma.

Lemma 5.3 Grant Assumptions 2.1 and 3.2 (i). Then,

H̃n
φn[ f ](x̃, h) =

∑

i∈I

λni√
n
∂i f (x̃)+

∑

i∈I

λni c
2
a,i

2n
∂i i f (x̃)

+
∑

i∈I

λni

n

∑

j∈I

(

ηnj (h j )+
c2a, j − 1

2

)

∂i j f (x̃)+ O
( 1√

n

)
(5.14)

for all f ∈ C∞c (Rd) and (x̃, h) ∈ Rd ×Rd+.

Proof Note that

φ̂n
1,1[ f ] =

∑

i∈I
ηni (hi )

(
f (x̃ + n−1/2ei )− f (x̃)

)
,

φ̂n
2,1[ f ] =

∑

i∈I
ηni (hi )

∑

j∈I

c2a, j − 1

2
√
n

(
∂ j f (x̃ + n−1/2ei1)− ∂ j f (x̃)

)
.

Using (4.4) and (4.6), and the Taylor expansion, we have

Ĥn
(
f + φ̂n

1,1[ f ] +
∑

j∈I

c2a, j − 1

2
√
n

∂ j f + φ̂n
2,1[ f ] +

∑

j∈I

κnj (h j )

n
∂ j j f

)
(x̃, h)

=
∑

i∈I

λni√
n
∂i f (x̃)+

∑

i∈I

λni c
2
a,i

2n
∂i i f (x̃)+

∑

i∈I

λni

n

∑

j �=i

c2a, j − 1

2
∂i j f (x̃)+ O

(
1√
n

)
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+
∑

i∈I
rni (hi )

∑

j �=i
ηnj (h j )

(
[ f ]1,ni j (x̃)+ [ f ]2,ni j (x̃)

)

+
∑

i∈I

λni

n

(

ηni (hi )+
c2a,i − 1

2

)

∂i i f (x̃)+
∑

i∈I
rni (hi )

∑

j �=i

κnj (h j )

n
[ f ]3,ni j (x̃). (5.15)

It is straightforward to verify that

Ĥn(
φ̂n
1,2[ f ] + φ̂n

2,2[ f ] + φ̂n
3,1[ f ]

)
(x̃, h)

=
∑

i∈I

(
η̇ni (hi )− ηni (hi )r

n
i (hi )

)∑

j �=i
ηnj (h j )

(
[ f ]1,ni j (x̃)+ [ f ]2,ni j (x̃)

)

+1

2

∑

i∈I
rni (hi )

∑

j �=i

∑

k �=i, j
ηnj (h j )η

n
k (hk)

(
[ f ]1,ni jk (x̃)+ [ f ]2,ni jk (x̃)

)

+
∑

i∈I

(
(
η̇ni (hi )− ηni (hi )r

n
i (hi )

)∑

j �=i

κnj (h j )

n
+ (κ̇ni − rni (hi )κ

n
i (hi )

)∑

j �=i

ηnj (h j )

n

)

[ f ]3,ni j (x̃)

+
∑

i∈I
rni (hi )

∑

j �=i
ηnj (h j )

∑

k �=i, j

κnk (hk)

n
[ f ]3,ni jk (x̃) (5.16)

for any (x̃, h) ∈ Rd × Rd+. Applying (4.4) and (4.6), and combining the first term
on the right-hand side of (5.16) with the third, fifth and sixth terms on the right-hand
side of (5.15), we obtain the third term on the right-hand side of (5.14). We repeat this
procedure until all the terms rni are canceled. This proves (5.14). ��

Definition 5.1 We define the operator Ân : C2(Rd)→ C2(Rd × S) by

Ân f (x, u) :=
∑

i∈I

(
An

1,i (x, u)∂i f (x)+
1

2
An

2,i (x, u)∂i i f (x)
)
,

where An
1,i ,A

n
2,i : Rd × S→ R, i ∈ I, are given by

An
1,i (x, u) := 
ni − μn

i (xi − 〈e, x〉+ui )− γ n
i 〈e, x〉+ui ,

An
2,i (x, u) :=

λni

n
c2a,i + ρiμ

n
i +

μn
i (xi − 〈e, x〉+ui )+ γ n

i 〈e, x〉+ui√
n

,

respectively. Define the operator În by

În f (x) :=
∫

Rd

(
f (x + y)− f (x)

)
νnd1(dy),

where
νnd1(A) := 	n

d1

({
y ∈ R∗ :

(√n
ϑn μ

n
1ρ1y, . . . ,

√
n

ϑn μ
n
dρd y

) ∈ A
})

,

with 	n
d1
(dy) := βn

u F
d1(dy), and βn

u as in Assumption 2.2.
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Recall the generator L̃zn

n of �̃n given in (4.16). The next lemma establishes the
relation between the generator of the diffusion-scaled process and the operator in
Definition 5.1.

Lemma 5.4 Grant Assumptions 2.1, 2.2, and 3.2. Then,

L̃zn

n φn[ f ](x̃, h, ψ, k) = Ân f
(
x̃, vn(x̃, h, ψ, k)

)+ În f (x̃)
+ O

( 1√
n

)(‖x̃‖
+ ‖q̃n‖)+ O(1)(1− ψ)

(‖x̃‖ + ‖q̃n‖ + 1
)
,

(5.17)

for any f ∈ C∞c (Rd) and zn ∈ Zn
sm, where q̃

n = n−1/2qn, and

vn(x̃, h, ψ, k) =
{

x̃−z̃n(
√
nx̃+nρ,h,ψ,k)
〈e,x̃〉 , if 〈e, x̃〉 > 0,

ed , if 〈e, x̃〉 ≤ 0,
(5.18)

for (x̃, h, ψ, k) ∈ D̃
n
, with z̃n := n−1/2(zn − nρ).

Proof Note that Lemma 5.3 concerns the renewal arrival process in the diffusion-
scale. Recall that zni =

√
n(x̃i − q̃ni ) + nρi for i ∈ I, and x̆ = √

nx̃ + nρ. We let
qn ≡ qn(

√
nx̃ + nρ, zn) and zn ≡ zn(

√
nx̃ + nρ, h, ψ, k). Applying Lemma 5.3 and

the Taylor expansion, it follows by the definition of L̃zn

n that

L̃zn

n φn[ f ](x̃, h, ψ, k) =
∑

i∈I

[(
(λni − nρiμn

i )√
n

− μn
i (x̃i − q̃ni )− γ n

i q̃
n
i

)

∂i f (x̃)

+ 1

2

(
λni c

2
a,i

n
+ ρiμ

n
i +

x̃i + (μn
i − γ n

i )q̃
n
i√

n

)

∂i i f (x̃)

+ λni − nρiμn
i

n

∑

j∈I

(

ηnj (h j )+
c2a, j − 1

2

)

∂i j f (x̃)

+ (1− ψ)γ n
i

(
φn[ f ](x̃ − n−1/2ei , h)− φn[ f ](x̃, h))

∫

R∗
qni
(√

nx̃ + nρ − nμn(y − k), zn
)
F̃
dn1
x̆,k(dy)

+ (ψ − 1)(μn
i z

n
i + γ n

i q
n
i )
(
φn[ f ](x̃ − n−1/2ei , h)− φn[ f ](x̃, h))

− (1− ψ)
√
nμn

i ρi
∂φn[ f ](x̃, h)

∂ x̃i

]

+ ψ Înφn[ f ](x̃, h)

+ O
( 1√

n

)
(‖x̃‖ + ‖q̃n‖) (5.19)

for any f ∈ C∞c (Rd), where

Înφn[ f ](x̃, h) =
∫

Rd

(
φn[ f ](x̃ + y, h)− φn[ f ](x̃, h)) νnd1(dy)
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by a slight abuse of notation. It is clear that

λni − nμn
i ρi = O(

√
n) (5.20)

by Assumption 2.1, and thus the third term in the sum on the right-hand side of (5.19)
is of order n−1/2.We next consider the fifth and sixth terms in the sum on the right-hand
side of (5.19). Using the fact that

φn[ f ](x̃ − n−1/2ei , h)− φn[ f ](x̃, h) = − 1√
n

∂φn[ f ](x̃, h)
∂ x̃i

+ O

(
1

n

)

,

and zni =
√
nx̃i + nρi −√nq̃ni , we obtain

(ψ − 1)(μn
i z

n
i + γ n

i q
n
i )
(
φn[ f ](x̃ − n−1/2ei , h)− φn[ f ](x̃, h))

− (1− ψ)
√
nμn

i ρi
∂φn[ f ](x, h)

∂ x̃i

= (ψ − 1)
(
μn
i x̃i + (μn

i − γ n
i )q̃

n
i

)
(

−∂φn[ f ](x̃, h)
∂xi

+ O
( 1√

n

))

.

Recall the definition of F̃
dn1
x̆,k in (4.13). Note that

∫

R∗
nμn

i ρi (y−k) F̃
dn1
x̆,k(dy) ≤

n

ϑn
μn
i ρi E

[
d1−ϑnk | d1 > ϑnk

] ∈ O(
√
n), (5.21)

where the second equality follows by Assumption 2.2 and (3.10). Note that q̃ni ≤
〈e, x̃〉+ for i ∈ I and (x̃, h, ψ, k) ∈ D̃

n
. Thus, the fourth term in the sum on the right-

hand side of (5.19) is bounded by C(1− ψ)(1+ 〈e, x̃〉+) for some positive constant
C . It is evident that φn[ f ] − f ∈ O(n−1/2), and

ψ Înφn[ f ](x̃, h) = În f (x̃)+ (ψ − 1) În f (x̃)+ ψ În(φn[ f ] − f )(x̃, h).

Therefore, (5.17) follows by the boundedness of φn[ f ] and (5.19). This completes the
proof. ��
Definition 5.2 The mean empirical measure ζ̂ z

n

T ∈ P(Rd×S) associated with X̂n and
a stationary Markov policy zn ∈ Zn

sm is defined by

ζ̂ z
n

T (A × B) := 1

T
E

[∫ T

0
1A×B

(
X̂n(s), vn

(
X̂n(s), Hn(s),�n(s), Kn(s)

))
ds

]

for any Borel sets A ⊂ Rd and B ⊂ S, and with vn as in (5.18).

The following theorem characterizes the limit points of mean empirical measures.
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Theorem 5.2 Grant the hypotheses in Theorem 3.2. Let {zn ∈ Zn
sm : n ∈ N} be a

sequence of policies satisfying (5.11). Then any limit point π ∈ P(Rd × S) of ζ̂ znT as
(n, T )→∞ lies in G.

Proof It follows directly by Assumptions 2.1 and 2.2 that, for any f ∈ C∞c (Rd), we
have

Ân f (x̂, u)+ În f (x̂) → A f (x̂, u) as n →∞ (5.22)

uniformly over compact sets of Rd × S. Thus, in view of (5.22) and (5.1), in order to
prove the theorem, it is enough to show that

lim
(n,T )→∞

∫

Rd×S
(
Ân f (x̂, u)+În f (x̂)) ζ̂ znT (dx̂, du) = 0 ∀ f ∈ C∞c (Rd). (5.23)

Applying (5.11 and (4.26), we obtain

sup
n>n◦

lim sup
T→∞

1

T
E
zn
[∫ T

0
|X̃n(s)|m ds

]

< ∞. (5.24)

It follows by the same calculation as in (5.6) that, for some positive constant C1, we
have

E
zn
[∫ T

0

√
n(1−�n(s)) ds

]

≤ C1(1+ T ) ∀ T ≥ 0. (5.25)

Using the facts that q̃ni ≤ 〈e, x〉+ and �n(s) ∈ {0, 1}, and Young’s inequality, we
obtain

1

T
E
zn
[∫ T

0
n

m−1
4m
(
1−�n(s)

)
n

1−m
4m

(
‖X̃n(s)‖ + ‖q̃n(√n X̃n(s)+ nρ, zn

)‖
)
ds

]

≤ 1

T
E
zn
[∫ T

0
n

1
4
(
1−�n(s)

)
ds

]

+ C2

T
E
zn
[∫ T

0
n

1−m
4 |X̃n(s)|m ds

]

≤ 1

Tn
1
4

C1(1+ T )+ n
1−m
4

C2

T
E
zn
[∫ T

0
|X̃n(s)|m ds

]

−→ 0

as (n, T )→∞, (5.26)

where C2 is a positive constant. In (5.26), the second inequality follows by (5.25), and
the convergence follows by (5.24) and the fact that m > 1. Applying Itô’s formula to
φn[ f ], and using Lemma 5.4 and (5.24) and (5.26), it follows by the boundedness of
φn[ f ] that

lim
(n,T )→∞

1

T
E
zn
[∫ T

0
Ân f

(
X̃n(s), vn

(
�̃n(s)

))+ În f (X̃n(s)
)
ds

]

= 0.

Therefore, using (4.26) again, we obtain (5.23). This completes the proof. ��
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Proof of (5.10) Without loss of generality, suppose {n j } ⊂ N is an increasing sequence
such that zn j ∈ Zsm and sup j Ĵ (X̂

n j (0), zn j ) <∞. Recall ζ̂ z
n

T in Definition 5.2. There
exists a subsequence of {n j }, denoted as {nl}, such that Tl →∞ as l →∞, and

lim inf
j→∞ Ĵ (X̂n j (0), zn j )+ 1

l
≥
∫

Rd×U
R(x̂, u) ζ̂ z

nl

Tl
(dx̂, du). (5.27)

Applying Lemma 5.2 and Theorem 5.2, any limit of ζ̂ z
nl

Tl
along some subsequence is

in G. Choose any further subsequence of (Tl , nl), also denoted by (Tl , nl), such that
(Tl , nl)→∞ as l →∞, and ζ̂ z

nl

Tl
→ π ∈ G. By letting l →∞ and using (5.27), we

obtain

lim inf
j→∞ Ĵ (X̂n j (0), zn j ) ≥

∫

Rd×U
R(x̂, u)π(dx̂, du) ≥ �∗.

This completes the proof. ��
5.3.2 The Upper Bound

In this subsection, we show that

lim sup
n→∞

�n
(
X̂n(0)

) ≤ �∗. (5.28)

The following lemma concerns the convergence of mean empirical measures for
the diffusion-scaled state processes under the scheduling policies in Definition 4.3.
Recall An

R in Definition 4.2 and ζ̂ z
n

T in Definition 5.2.

Lemma 5.5 Grant the hypotheses in Theorem 3.2. For ε > 0, let vε be a continu-
ous ε-optimal precise control, whose existence is asserted in Proposition 5.1, and
{zn[vn] : n ∈ N} be as in Definition 4.3, and such that R ≡ R(ε) and vn agrees with
vε on An

R. Then, the ergodic occupation measure πvε of the controlled jump diffusion

in (3.3) under the control vε is the unique limit point in P(Rd × S) of ζ̂ z
n [vn]

T as
(n, T )→∞.

Proof Using Proposition 4.3 and Theorem 5.2, the proof of this lemma is the same as
that of Lemma 7.2 in [5]. ��
Proof of (5.28) Let κ = 2	m
 with m as in (3.5), and zn[vn] be the scheduling policy
in Lemma 5.5. By Proposition 4.3, there exist ñ◦ ∈ N, and positive constants C̃0 and
C̃1 such that

L̃zn [vn ]
n Ṽn

κ,ξ (x̃, h, ψ, k) ≤ C̃0 − C̃1Vκ−1,ξ (x̃) ∀ (x̃, h, ψ, k) ∈ D̃
n
,

and for all n > ñ◦. (5.29)

Recall the definition of R̃ in (3.5), and let ẑn[vn] = n−1/2(zn[vn] − nρ). Applying
(4.26) and (5.29), we may select an increasing sequence Tn such that

sup
n≥ñ◦

sup
T≥Tn

∫

Rd×U
Vκ−1,ξ (x̂) ζ̂ z

n [vn ]
T (dx̂, du) < ∞.
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This implies that R̃
(
x̂ − ẑn[v](√nx̂ + nρ)

)
is uniformly integrable. By Lemma 5.5,

ζ̂
zn [vn ]
T converges in P(Rd × S) to πvε as (n, T ) → ∞. Applying Proposition 5.1,
we deduce that vε is an ε-optimal control for the running cost function. Since ε is
arbitrary, (5.28) follows. ��
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Appendix A. Proofs of Lemma 3.1 and Proposition 3.1

Proof of Lemma 3.1 By [13, Lemma 5.1], Ŝni (t) and R̂n
i (t) in (3.1) aremartingales with

respect to the filtration Fn
t in (2.9), having predictable quadratic variation processes

given by

〈Ŝni 〉(t) = μn
i

∫ t

0
n−1Zn

i (s)�
n(s) ds and 〈R̂n

i 〉(t) = γ n
i

∫ t

0
n−1Qn

i (s) ds, t ≥ 0,

respectively. By (2.7), we have the crude inequality

0 ≤ n−1Xn
i (t) ≤ n−1Xn

i (0)+ n−1An
i (t), t ≥ 0.

Using the balance equation in (2.5), we see that the same inequalities hold for n−1Zn
i

and n−1Qn
i . Since�

n(s) ∈ {0, 1}, it follows by Lemma 5.8 in [30] that {Ŵ n
i : n ∈ N}

is stochastically bounded in (Dd , J1). Also, {L̂n
i : n ∈ N} is stochastically bounded in

(Dd ,M1) by (2.4). On the other hand, it is evident that

Ŷ n
i (t) ≤ C

∫ t

0
(1+ ‖n−1Xn(s)‖) ds, t ≥ 0,

where C is some positive constant. Thus, we obtain

‖X̂n(t)‖ ≤ ‖X̂n(0)‖+‖Ŵ n(t)‖+‖L̂n(t)‖+C
∫ t

0
(1+‖X̂n(s)‖) ds ∀ t ≥ 0. (A.1)

Since X̂n(0) is uniformly bounded, applying Lemma 5.3 in [30] and Gronwall’s
inequality, we deduce that {X̂n : n ∈ N} is stochastically bounded in (Dd ,M1). Using
Lemma 5.9 in [30], we see that

n−1/2 X̂n = n−1Xn − ρ ⇒ e0 in (Dd ,M1) as n →∞,

which implies that n−1Xn ⇒ eρ in (Dd ,M1). By (2.5), and the fact 〈e, n−1Qn〉 =
(〈e, n−1Xn〉 − 1)+ ⇒ e0, we have n−1Qn ⇒ e0, and thus n−1Zn ⇒ eρ . This
completes the proof. ��
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To prove Proposition 3.1, we first consider a modified process. Let X̌n =
(X̌n

1 , . . . , X̌
n
d )
′ be the d-dimensional process defined by

X̌n
i (t) := X̂n(0)+ 
ni t + Ŵ n

i (t)+ L̂n
i (t)

−
∫ t

0
μn
i

(
X̌n
i (s)− 〈e, X̌n(s)〉+Un

i (s)
)
ds

−
∫ t

0
γ n
i 〈e, X̌n(s)〉+Un

i (s) ds, for i ∈ I.

(A.2)

Lemma A.1 As n →∞, X̌ n and X̂n are asymptotically equivalent, that is, if either of
them converges in distribution as n → ∞, then so does the other, and both of them
have the same limit.

Proof Let K = K (ε1) > 0 be the constant satisfying P(‖X̂n‖T > K ) < ε1 for T > 0
and any ε1 > 0, where ‖X̂n‖T := sup0≤t≤T ‖X̂n(t)‖. Since Û n(s) ∈ S for s ≥ 0, on

the event {‖X̂n‖T ≤ K }, we obtain

‖X̌n(t)− X̂n(t)‖ ≤ C1

∫ t

0
‖X̂n(s)‖(1−�n(s)

)
ds + C2

∫ t

0
‖X̌n(s)− X̂n(s)‖ ds

≤ C1KCn
d(t)+ C2

∫ t

0
‖X̌n(s)− X̂n(s)‖ ds ∀ t ∈ [0, T ],

where C1 and C2 are some positive constants. Then, by Gronwall’s inequality, on the
event {‖X̂n‖T ≤ K }, we have

‖X̌n(t)− X̂n(t)‖ ≤ C1KCn
d(t)e

C2T ∀ t ∈ [0, T ].

Thus, applying [13, Lemma 2.2], we deduce that for any ε2 > 0, there exist ε3 > 0
and n◦ = n◦(ε1, ε2, ε3, T ) such that

‖X̌n − X̂n‖T ≤ ε2

on the event {‖X̂n‖T ≤ K } ∩ {‖Cn
d‖T ≤ ε3}, for all n ≥ n◦, which implies that

P(‖X̌n − X̂n‖T > ε2) < ε1, ∀ n ≥ n◦.

As a consequence, ‖X̌n − X̂n‖T ⇒ 0, as n →∞, and this completes the proof. ��
Proof of Proposition 3.1 We first prove (i). Define the processes

τn1,i (t) :=
μn
i

n

∫ t

0
Zn(s)�n(s) ds, τn2,i (t) :=

γ n
i

n

∫ t

0
Qn(s) ds,

S̃ni (t) := n−1/2(Sn(nt)− nt), and R̃n
i (t) := n−1/2(Rn(nt)− nt), for i ∈ I. Then, since

�n(s) ∈ {0, 1} for s ≥ 0, applying Lemma 3.1 and Lemma 2.2 in [13], we have
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τn1,i (·) = μn
i

∫ ·

0
(n−1Zn

i (s)− ρi )�
n(s) ds + μn

i

∫ ·

0
ρi�

n(s) ds ⇒ λi e(·).

in (D,M1), as n → ∞, and that τn2,i weakly converges to the zero process.
Since {An

i , S
n
i , R

n
i , �

n : i ∈ I, n ∈ N} are independent processes, and τ n1,i
and τ n2,i converge to deterministic functions, we have joint weak convergence of

( Ân, Ŝn, R̂n, L̂n, τn1, τ
n
2), where τn1 := (τn1,1, . . . , τ

n
1,d)

′, and τn2 is defined analo-
gously. On the other hand, since the second moment of An is finite, it follows that
Ân converges weakly to a d-dimensional Wiener process with mean 0 and covariance

matrix diag
(√

λ1c2a,1, . . . ,
√
λdc2a,d

)
(see, e.g., [31]). Therefore, by the FCLT for the

Poisson processes S̃n and R̃n , and using the random time change lemma in [21, Page
151], we obtain (i).

Using (A.1) and Proposition 3.1 (i), the proof of (ii) is same as the proof of [1,
Lemma 4 (iii)].

To prove (iii), we first show any limit of X̌n in (A.2) satisfies (3.3). Following an
argument similar to the proof of Lemma 5.2 in [13], one can easily show that the
d-dimensional integral mapping x = �(y, u) : Dd ×Dd → Dd defined by

x(t) = y(t)+
∫ t

0
h
(
x(s), u(s)

)
ds

is continuous in (Dd ,M1), provided that the function h : Rd ×Rd → Rd is Lipschitz
continuous in each coordinate. Since

X̌n = �(X̂n(0)+ Ŵ n + L̂n,Un),

then, by the tightness of Un and the continuous mapping theorem, any limit of X̌n

satisfies (A.2), and the same result holds for X̂n by Lemma A.1.
Recall the definition of τ̆ n in (2.8). It is evident that

L̂n
i (t + r)− L̂n

i (t) = L̂n
i (τ̆

n(t)+ r)− L̂n
i

(
τ̆ n(t)

)

+ L̂n
i (t + r)− L̂n

i (τ̆
n(t)+ r)+ L̂n

i

(
τ̆ n(t)

)− L̂n
i (t).

(A.3)

for all t, r ≥ 0 and i ∈ I. By Assumption 2.2, we have τ̆ n(t) ⇒ t as n → ∞, for
t ≥ 0. Then, by the random time change lemma in [21, Page 151], we deduce that the
last four terms on the right-hand side of (A.3) converge to 0 in distribution. It follows
by Proposition 3.1 (i) and (A.3) that

L̂n(τ̆ n(t)+ r)− L̂n(τ̆ n(t)
) ⇒ λLt+r − λLt in Rd .

Repeating the same argument we establish convergence of Ŝn and R̂n . Proving that
U is non-anticipative follows exactly as in [1]*Lemma 6. This completes the proof of
(iii). ��
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B Proofs of Lemmas 4.1 and 5.2

In this section, we construct two functions, which are used to show the ergodicity of
�̃n .We provide two lemmas concerning the properties of these functions, respectively.
The proofs of Lemmas 4.1 and 5.2 are given at the end of this section.

Definition B.1 For zn ∈ Zn
sm, define the operator Lzn

n : Cb(Rd ×Rd)→ Cb(Rd ×Rd)

by

Lzn
n f (x̆, h) :=

∑

i∈I

∂ f (x̆, h)

∂hi
+
∑

i∈I
rni (hi )

(
f (x̆ + ei , h − hi ei )− f (x̆, h)

)

+
∑

i∈I
μn
i z

n
i

(
f (x̆ − ei , h)− f (x̆, h)

)

+
∑

i∈I
γ n
i q

n
i

(
f (x̆ − ei , h)− f (x̆, h)

)

(B.1)

for f ∈ Cb(Rd ×Rd) and any (x̆, h) ∈ Rd+ ×Rd+, with qn := x̆ − zn .

Note that if dn1 ≡ 0 for all n, the queueing system has no interruptions. In this situation,
under a Markov scheduling policy, the (infinitesimal) generator of (Xn, Hn) takes the
form of (B.1). Recall the scheduling policies žn in Definition 4.1, and x̄ = x̆ − nρ in
Definition 4.2. We define the sets

K̃n(x̆) :=
{

i ∈ I0 : x̆i ≥ nρi
∑

j∈I0 ρ j

}

=
{

i ∈ I0 : x̄i ≥
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

}

.

We have the following lemma.

Lemma B.1 Grant Assumptions 2.1, 2.2, and 3.2. For any even integer κ ≥ 2, there
exist a positive vector ξ ∈ Rd+, n̆ ∈ N, and positive constants C̆0 and C̆1, such that
the functions fn, n ∈ N, defined by

fn(x̆, h) :=
∑

i∈I
ξi |x̄i |κ

+
∑

i∈I
ηni (hi )ξi

(|x̄i + 1|κ − |x̄i |κ
) ∀ (x̆, h) ∈ Rd+ ×Rd+, (B.2)

with ηni as defined in (4.3), satisfy

Lžn
n fn(x̆, h) ≤ C̆0n

κ/2

− C̆1

∑

i∈I\K̃n(x̆)

ξi |x̄i |κ − C̆1

∑

i∈K̃n(x̆)

(
μn
i (ž

n
i − nρi )+ γ n

i q̌
n
i

)|x̄i |κ−1

+
∑

i∈I

(
O(
√
n)O

(|x̄i |κ−1
)+ O(n)O

(|x̄i |κ−2)
)

(B.3)

for all n ≥ n̆ and (x̆, h) ∈ Rd+ ×Rd+.
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Proof Using the estimate

(a ± 1)m − aκ = ±κaκ−1 + O(aκ−2) ∀ a ∈ R, (B.4)

an easy calculation shows that

Lžn
n fn(x̆, h) =

∑

i∈I
η̇ni (hi )ξi

(|x̄i + 1|κ − |x̄i |κ
)+

∑

i∈I
rni (hi )η

n
i (0)ξi

(
(x̄i + 2)κ − (x̄i + 1)κ

)

−
∑

i∈I
rni (hi )η

n
i (hi )ξi

(|x̄i + 1|κ − |x̄i |κ
)

+
∑

i∈I
ηni (hi )(μ

n
i ž

n
i + γ n

i q̌
n
i )O(|x̄i |κ−2)+

∑

i∈I
rni (hi )ξi (|x̄i + 1|κ − |x̄i |κ)

+
∑

i∈I
(μn

i ž
n
i + γ n

i q̌
n
i )ξi (|x̄i − 1|κ − |x̄i |κ), (B.5)

where for the fourth term on the right-hand side we also used the fact that

(|x̄i |κ − |x̄i − 1|κ)− (|x̄i + 1|κ − |x̄i |κ
) = O(|x̄i |κ−2).

It is clear that ηni (0) = 0, since Fi (0) = 0 and E[Gi ] = 1. On the other hand, ηni (t) is
bounded for all n ∈ N and t ≥ 0 by Assumption 3.2. Thus, applying (B.4), (B.5) and
(4.4), it follows that

Lžn
n fn(x̆, h) =

∑

i∈I

[
ξi (λ

n
i − μn

i ž
n
i − γ n

i q̌
n
i )
(
κ(x̄i )

κ−1 + O(|x̄i |κ−2)
)

+ηni (hi )(μ
n
i ž

n
i + γ n

i q̌
n
i )O(|x̄i |κ−2)

]
.

(B.6)

Since ηni (hi ) is uniformly bounded, and žni , q̌
n
i ≤ x̄i + nρi , it follows that the last

term in (B.6) is equal to O(n)O(|x̄i |κ−2)+ O(|x̄i |κ−1). Note that for i ∈ I \ I0, žni is
equivalent to the static priority scheduling policy. Note also, that

x̄i ≥ žni − nρi ≥
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

> 0 ∀ i ∈ K̃n(x̆), (B.7)

and for i ∈ I0 \ K̃n(x̆), we have žni − nρi = x̄i and q̌ni = 0. By using (B.6), and the
identity in (5.20), we obtain

Lžn
n fn(x̆, h) ≤

∑

i∈I\I0
ξi
(−μn

i x̄i + (μn
i − γ n

i )q̌
n
i

)
m(x̄i )

κ−1

−
∑

i∈K̃n(x̆)

ξi
(
μn
i (ž

n
i − nρi )+ γ n

i q̌
n
i

)|x̄i |κ−1

−
∑

i∈I0\K̃n(x̆)

ξiμ
n
i |x̄i |κ +

∑

i∈I

(
O(
√
n)O(|x̄i |κ−1)

+ O(n)O(|x̄i |κ−2)
)
.

(B.8)
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Let c̆1 := supi,n{γ n
i , μ

n
i }, and c̆2 be some constant such that inf{μn

i , γ
n
j : i ∈ I, j ∈

I \ I0, n ∈ N} ≥ c̆2 > 0. We select a positive vector ξ ∈ Rd+ such that ξ1 := 1,

ξi := κm1
dκ mini ′≤i−1 ξi ′ , i ≥ 2, with κ1 := c̆1

8c̆2
. Compared with [4, Lemma 5.1], the

important difference here is that, for i ∈ I \ I0, we have

q̌ni =
(

x̆i −
(

n −
∑

j∈K̃n(x̆)

žnj −
∑

j∈I0\K̃n(x̆)

x j −
i−1∑

j=|I0|+1
x j

)+)+
.

Repeating the argument in the proof of [4, Lemma 5.1], it follows by (B.8) that

Lžn
n fn(x̆, h) ≤ c3n

κ/2 − c4
∑

i∈I\K̃n(x̆)

ξi |x̄i |κ − c5
∑

i∈K̃n(x̆)

ξi
(
μn
i (ž

n
i − nρi )

+ γ n
i q̌

n
i

)|x̄i |κ−1 + c5
2

∑

i∈K̃n(x̆)

ξiμ
n
i

(
žni − nρi

)κ

+
∑

i∈I

(
O(
√
n)O(|x̄i |κ−1)+ O(n)O(|x̄i |κ−2)

)

(B.9)

for some positive constants c3, c4 and c5. Therefore, (B.3) follows by (B.7) and (B.9),
and this completes the proof. ��

Let

g̃n(x̆, h, ψ, k)

:= ψ + αn(k)

ϑn

∑

i∈I
μn
i ξi

(
g̃n,i (x̆i )+ ηni (hi )

(
g̃n,i (x̆i + 1)− g̃n,i (x̆i )

))
(B.10)

for (x̆, h, ψ, k) ∈ D, where g̃n,i (x̆i ) := −|x̄i |κ for i ∈ I \ I0, and

g̃n,i (x̆i ) :=

⎧
⎪⎨

⎪⎩

−|x̄i |κ, if x̄i <
nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

,

− nρi
∑

j∈I\I0 ρ j
∑

j∈I0 ρ j
|x̄i |κ−1, if x̄i ≥ nρi

∑
j∈I\I0 ρ j

∑
j∈I0 ρ j

.
∀ i ∈ I0.

Recall Lzn

n,ψ in (4.13). We also define

qn,ki (x̆, zn) =
∫

R∗
qni
(
x̆ − nμn(y − k), zn

)
F̃
dn1
x̆,k(dy).

Lemma B.2 Grant Assumptions 2.1, 2.2 and 3.2, and let ξ ∈ Rd+ be as in (B.2). Then,
for any even integer κ ≥ 2 and any ε > 0, there exist a positive constant C, and
n̄ ∈ N, such that

Lzn

n,ψ g̃n(x̆, h, ψ, k) ≤ Cnκ/2 + ε
∑

i∈I\K̃n (x̆)

|x̄i |κ +
∑

i∈K̃n (x̆)

O
(|x̄i |κ−1

)

+ 1√
n

∑

i∈K̃n (x̆)

(
ψμn

i (|zni − nρi |)+ ψγ n
i q

n
i + (1− ψ)γ n

i q
n,k
i

)
O
(|x̄i |κ−1

) (B.11)

for any zn ∈ Zn
sm, and all (x̆, h, ψ, k) ∈ D and n > n̄.
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Proof It is straightforward to verify that

|gn,i (x̆i ± 1)− gn,i (x̆i )| = O(|x̄i |κ−1),
|(gn,i (x̆i )− gn,i (x̆i − 1)

)− (gn,i (x̆i + 1)− gn,i (x̆i )
)| = O(|x̄i |κ−2),

(B.12)

for i ∈ I. Repeating the calculation in (B.5) and (B.6), and applying (B.4) and (B.12),
we have

Lzn

n,ψ g̃n(x̆, h, ψ, k) ≤ ψ + αn(k)

ϑn
[ ∑

i∈K̃n(x̆)

μn
i ξi

[(|λni − nμn
i ρi | + ψμn

i |zni − nρi | + ψγ n
i q

n
i + (1− ψ)γ n

i q
n,k
i

)
O(|x̄i |κ−1)

+ ηni (hi )
(
ψμn

i z
n
i + ψγ n

i q
n
i + (1− ψ)γ n

i q
n,k
i

)
O(|x̄i |κ−2)

]

+
∑

i∈I\K̃n(x̆)

μn
i ξi

[(
λni + (1− ψ)nμn

i ρi

+ (1+ ηni (hi )
)
(ψμn

i z
n
i + ψγ n

i q
n
i + (1− ψ)γ n

i q
n,k
i

)
O
(|x̄i |κ−1

)]
]

. (B.13)

Note that qn,ki ≤ c(1+〈e, x̄〉+) for some positive constant c, by (5.21). Since zni , q
n
i ≤

x̄i + nρi , (ϑn)−1 is of order n−1/2 by Assumption 2.2, and ηni and αn are bounded, it
follows by (5.20) and (B.13) that

Lzn

n,ψ g̃n(x̆, h, ψ, k)

≤
∑

i∈I\K̃n(x̆)

1√
n

(
O(n)O(|x̄i |κ−1)+ O(|x̄i |κ)

)+
∑

i∈K̃n(x̆)

O(
√
n)O(|x̄i |κ−2)

+
∑

i∈K̃n(x̆)

1√
n

(
O(
√
n)+ ψμn

i |zni − nρi | + ψγ n
i q

n
i + (1− ψ)γ n

i q
n,k
i

)
O(|x̄i |κ−1).

Thus, applying Young’s inequality, we obtain (B.11), and this completes the proof. ��

Proof of Lemma 4.1 We define the function f̃n ∈ C(Rd ×Rd+ × {0, 1} ×R+) by

f̃n(x̆, h, ψ, k) := fn(x̆, h)+ g̃n(x̆, h, ψ, k),

with fn and g̃n in (B.2) and (B.10), respectively. Recall Ṽn
κ,ξ in (4.17). With ξ ∈ Rd+

as in (B.2), we have

nκ/2Ṽn
κ,ξ (x̃

n(x̆), h, ψ, k) = f̃n(x̆, h, ψ, k) ∀ (x̆, h, ψ, k) ∈ D.
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Hence, to prove (4.18), it suffices to show that

L̆žn

n f̃n(x̆, h, ψ, k) ≤ C̃0n
κ/2

−C̃1

∑

i∈I\K̃n(x)

ξi |x̄i |κ − C̃1
√
n
∑

i∈K̃n(x̆)

ξi |x̄i |κ−1 ∀ n > n̆, (B.14)

and all (x̆, h, ψ, k) ∈ D, where the generator L̆žn

n is given in (4.12). It is clear that
Qn,ψ fn(x̆, h) = 0. Since (ϑn)−1 is of order n−1/2, it follows by (4.10) and (4.15) that

Qn,0 g̃n(x̆, h, 0, k) ≤
∑

i∈I\K̃n(x̆)

−μn
i ξi |x̄i |κ

+
∑

i∈K̃n(x̆)

−μn
i ξi

nρi
∑

j∈I\I0 ρ j
∑

j∈I0 ρ j
|x̄i |κ−1

+ εn
∑

i∈I\K̃n(x̆)

O(|x̄i |κ)+
∑

i∈K̃n(x̆)

O(
√
n)O(|x̄i |κ−1), (B.15)

whereC is some positive constant and εn → 0 as n →∞. Since all the moments of d1
are finite by (3.10) and (a+ z)κ−aκ = O(z)O(aκ−1)+O(z2)O(aκ−2)+· · ·+O(zκ)
for any a, z ∈ R, it is easy to verify that

In,1 f̂n(x̆, h, 1, 0) =
∑

i∈I

κ∑

j=1
O(n j/2)O(|x̄i |κ− j ), (B.16)

using also the fact that

βn
u

∫

R∗

(
n

ϑn
μn
i ρi z

) j

Fd1(dz) = βn
u

(
n

ϑn

) j

(μn
i ρi )

j
E
[
(d1)

j ] = O(n j/2) ∀ j > 0,

which follows by by Assumptions 2.1, 2.2, and (3.10). Then, for ψ = 1, it follows by
(B.16) and Young’s inequality that

L̆žn

n f̃n(x̆, h, 1, 0) ≤ Lžn
n fn(x̆, h)+ Lžn

n,1g̃n(x̆, h, 1, 0)

+ Cnκ/2 + εn
∑

i∈I\K̃n(x̆)

O(|x̄i |κ)

+
∑

i∈K̃n(x̆)

O(
√
n)O(|x̄i |κ−1).

(B.17)

Note that the last two terms in (B.3) and the last term in (B.11) are of smaller order
than the second and third terms on the right-hand side of (B.3), respectively. Thus,
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applying Lemmas B.1 and B.2, and using (B.17), we obtain

n−κ/2L̆žn

n f̃n(x̆, h, 1, 0) ≤ C̃0 − C̃1

∑

i∈I\K̃n(x̃)

|x̄i |κ

−C̃1

∑

i∈K̃n(x̆)

n−1/2
(
μn
i (ž

n
i − nρi )+ γ n

i q̌
n
i

)|x̃i |κ−1 (B.18)

for all large enough n, where x̃ is defined inDefinition 4.2. Since q̌ni ≥ 0 and žni −nρi >

0 for i ∈ K̃n(x̆), then by using (B.7) and (B.18), we see that (B.14) holds when y = 1.
For ψ = 0, using (B.15), Young’s inequality, and the fact that for i ∈ K̃n(x̆),

x̄i > 0, we obtain

L̆žn

n f̃n(x̆, h, 0, k)

≤
∑

i∈I
O(
√
n)O(|x̄i |κ−1)+

∑

i∈I
O(n)O(|x̄i |κ−2)+ Cnκ/2

+ (ε + εn)
∑

i∈I\K̃n(x̆)

ξi |x̄i |κ

+
∑

i∈I\K̃n(x̆)

(

−μn
i ξi |x̄i |κ + γ n

i ξi q
n,k
i

(−κ(x̄i )
κ−1 + O(|x̄i |κ−2)

)
)

+
∑

i∈K̃n(x̆)

−nρi
∑

j∈I\I0 ρ j
∑

j∈I0 ρ j
μn
i ξi |x̄i |κ−1 + Lžn

n,0 g̃n(x̆, h, 0, k)

for some positive constant C and sufficiently small ε > 0. We proceed by invoking
the argument in the proof of [4, Lemma 5.1]. The important difference here is that

q̌ni
(
x̆ − nμn(z − k)

) = ε̃i
(
x̆ − nμn(z − k)

)(
x̄i − nμiρi (z − k)

)

+ε̄i
(
x̆ − nμn(z − k)

) i−1∑

j=1

(
x̄ j − nμ jρ j (z − k)

)
,

where the functions ε̃i , ε̄i : Rd → [0, 1], for i ∈ I. Since ε̃i and ε̄i are bounded, we

have some additional terms which are bounded by C
∫
R∗ nμiρi (y − k) F̃

dn1
x̆,k(dy) for

some positive constant C . Therefore, these are of order
√
n by (5.21). Thus, repeating

the argument in the proof of Lemma B.1, and applying Lemma B.2, we deduce that
(B.14) holds with ψ = 0. This completes the proof. ��
Proof of Lemma 5.2 The proof mimics that of Proposition 4.2. We sketch the proof
when I0 is empty. Using the estimate

O(qni )O(|x̄i |m−1) ≤ ε1−m
(
O(qni )

)m + ε
(
O(|x̄i |m−1)

)m/m−1 (B.19)
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for any ε > 0, which follows by Young’s inequality, we deduce that, for some positive
constants {ck : k = 1, 2, 3}, we have

Lzn
n fn(x̆, h) ≤ c1n

m/2+c2(〈e, qn〉)m−c3
∑

i∈I
ξi |x̄i |m ∀ (x̆, h) ∈ Rd+×Rd+, (B.20)

and all large enough n. Note that Lemma B.2 holds for all zn ∈ Zn
sm. Then, we may

repeat the steps in the proof of Lemma 4.1, except that here we use

(x̃i )
m−1

∫

R∗
q̂ni
(
x̆ − nμn(y − k), zn

)
F̃
dn1
x̆,k(dy)

≤ ε|x̄i |m + ε1−m
(
E
[
q̂ni
(
x̆ − nμn(dn1 − k), zn

) | dn1 > k
])m

,

(B.21)

where q̂n = n−1/2qn , with ε > 0 chosen sufficiently small. Since q̂ni (x̆, z
n) ≤ 〈e, x̃〉+,

it follows by (5.21) that

E
[
q̂ni
(
x̆ − nμn(dn1 − k), zn

) ∣
∣ dn1 > k

] ≤ c4(1+ 〈e, x̃〉+). (B.22)

Thus, by the same calculation in Proposition 4.2, and using (B.19)–(B.22), we obtain

E
zn
[∫ T

0
|X̃n(s)|m

]

≤ C1(T + |X̂n(0)|m)

+ C2 E
zn
[∫ T

0

(
1+ 〈e, X̃n(s)〉+)m ds

]

(B.23)

for all large enough n, and {zn ∈ Zn
sm : n ∈ N}. Since supn Ĵ (X̂n(0), zn) < ∞, it

follows by (4.26) that

sup
n

lim sup
T→∞

1

T
E

[∫ T

0

(〈e, X̃n(s)〉+)m ds

]

< ∞.

Therefore, dividing both sides of (B.23) by T , taking T →∞ and using (4.26) again,
we obtain (5.11). We may show that the result also holds when I0 is nonempty by
repeating the above argument and applying Lemma B.2. This completes the proof. ��
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