
FA-LAMP: FPGA-Accelerated Learned Approximate
Matrix Profile for Time Series Similarity Prediction

Amin Kalantar
Department of Computer
Science and Engineering

University of California Riverside
Email: akala006@ucr.edu

Zachary Zimmerman
Department of Computer
Science and Engineering

University of California Riverside
Email: zzimm001@ucr.edu

Philip Brisk
Department of Computer
Science and Engineering

University of California Riverside
Email: philip.brisk@ucr.edu

Abstract—With the proliferation of low-cost sensors and the
Internet-of-Things (IoT), the rate of producing data far exceeds
the compute and storage capabilities of today’s infrastructure.
Much of this data takes the form of time series, and in response,
there has been increasing interest in the creation of time series
archives in the last decade, along with the development and
deployment of novel analysis methods to process the data. The
general strategy has been to apply a plurality of similarity search
mechanisms to various subsets and subsequences of time series
data in order to identify repeated patterns and anomalies; however,
the computational demands of these approaches renders them
incompatible with today’s power-constrained embedded CPUs.

To address this challenge, we present FA-LAMP, an FPGA-
accelerated implementation of the Learned Approximate Matrix
Profile (LAMP) algorithm, which predicts the correlation between
streaming data sampled in real-time and a representative time
series dataset used for training. FA-LAMP lends itself as a
real-time solution for time series analysis problems such as
classification and anomaly detection, among others. FA-LAMP
provides a mechanism to integrate accelerated computation as
close as possible to IoT sensors, thereby eliminating the need to
transmit and store data in the cloud for posterior analysis.

At its core, LAMP and FA-LAMP employ Convolution Neural
Networks (CNNs) to perform prediction. This work investigates
the challenges and limitations of deploying CNNs on FPGAs when
using state-of-the-art commercially-supported frameworks built
for this purpose, namely, the Xilinx Deep Learning Processor
Unit (DPU) overlay and the Vitis AI development environment.
This work exposes several technical limitations of the DPU, while
providing a mechanism to overcome these limits by attaching our
own hand-optimized IP block accelerators to the DPU overlay.
We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA,
demonstrating performance and energy improvements of more
than an order of magnitude compared to a prototypical LAMP
deployment running on a Raspberry Pi 3. Our implementation is
publicly available at https://github.com/fccm2021sub/fccm-lamp.

I. INTRODUCTION

The proliferation of IoT sensors and the volume of data that
they generate creates unique challenges in edge computing [1].
One motivating application, among many, is real-time seismic
event prediction, which can inform hazard response strategies
and enhance early warning systems presently deployed [2–4]. In
this case, the relevant question is whether or not the most recent
seismic measurements strongly correlate to the relatively short
window of time leading up to a previously observed seismic
event. Such a system could benefit by increasing the throughput

of the near-sensor raw data processing, and acceleration using
an FPGA represents one potential avenue to do so.

This paper describes an FPGA-based accelerator for a
streaming time series prediction scheme called the Learned
Approximate Matrix Profile (LAMP) [5]. Given the most recent
window of data points, LAMP uses a Convolutional Neural
Network (CNN) to predict whether or not a similarly correlated
pattern occurred in the time series used to train the model.

While, in theory, these correlations could be computed ex-
actly, the exact methods are impractical due to the requirement
that the streaming time series be archived, and the fact that
computing them entails execution of an 𝑂(𝑛2) algorithm on
a time series of ever-increasing length [6]. It is certainly
more practical to perform inference on a moderately sized
CNN; nonetheless, the overhead of CNN inference remains a
computational bottleneck that limits the achievable sampling
rate. Embedded CPU-based solutions are state-of-the-art, but
higher performance and lower energy consumption could be
achieved through FPGA acceleration. We call our approach
FPGA-Accelerated LAMP, or FA-LAMP, for short.

We implemented and evaluated FA-LAMP on a Xilinx
Zynq UltraScale+ MPSoC, compiling it to run on a Xilinx
Deep Processing Unit (DPU) overlay using the Vitis AI
development environment. Several layers of the CNN were
not compatible with the DPU; to complete the system, we
implemented these layers in software to run on an integrated
ARM CPU, and also used high-level synthesis (HLS) tools
to generate custom IP block accelerators, which achieved
significantly higher throughput. One challenge involved the
output layer, which computes a sigmoid activation function; we
considered two approximations and evaluated them in terms of
accuracy, performance (throughput), resource utilization, and
energy consumption on three time series datasets from the
domains of seismology, entomology, and poultry farming. Our
highest-performing FA-LAMP system configuration achieved
throughput of 453.5 G operations per second with an inference
rate 10.7× faster and an 15.8× improvement in energy
consumption compared to running LAMP on a Raspberry Pi;
our most accurate configuration achieved throughput of 428.3 G
operations per second with an inference rate 10.1× faster and
an 11.6× improvement in energy consumption. Using a dataset
obtained from the entomology domain, we show how LAMP

https://github.com/fccm2021sub/fccm-lamp

can be combined with a post-processing classifier to better
understand insect feeding behavior.

The rest of the paper is organized as follows. Section II
introduces the LAMP concept and present the FA-LAMP
acceleration system, including the opportunities provided and
constraints imposed by Xilinx DPU technology. Section III
describes the experimental setup and evaluation methodology
in detail. Section IV reports the result of our experimental eval-
uation. Section V summarizes related work that encompasses
deep neural network acceleration using FPGAs. Section VI
concludes the paper and outlines directions for future work.

II. FA-LAMP SYSTEM OVERVIEW

A. Background: The Matrix Profile

A Time series 𝑇 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑛⟩ is an ordered sequence
of 𝑛 scalar data points called a subsequence. A subsequence
of length 𝑚 and starting at position 𝑖 is denoted 𝑡𝑖,𝑚, or 𝑡𝑖 if
𝑚 is known from context. The Pearson correlation between
subsequences 𝑡𝑖,𝑚 and 𝑡𝑗,𝑚, which measures their similarity is
denoted 𝑐𝑖,𝑗 ; (𝑐𝑖,𝑗 values closer to 1 indicate strong similarity;
values closer to 0 indicate dissimilarity).

All of the 𝑐𝑖,𝑗 values could be computed by pairwise
enumeration among subsequences and the results could be
stored in a matrix; however, the cost of storing the matrix
would be prohibitive, especially for large time series. For
many time series analysis applications, it suffices to retain
the maximum correlation value for each subsequence, rather
than all of them. Subsequence 𝑡𝑗 is defined to be the nearest
neighbor of subsequene 𝑡𝑖 if 𝑐𝑖,𝑗 ≥ 𝑐𝑖,𝑘,∀𝑘 ̸= 𝑗.

The Matrix Profile (MP) [6] (see Fig. 1) is a vector that
contains the correlations of the nearest neighbors of each
subsequence in 𝑇 : 𝑃 (𝑇) = ⟨𝑐𝑚𝑎𝑥

𝑖 | 1 ≤ 𝑖 ≤ 𝑛 − 𝑚 + 1⟩,
where 𝑐𝑚𝑎𝑥

𝑖 is the maximum correlation between 𝑡𝑖 and any
other subsequence 𝑡𝑗 ∈ 𝑇 , excluding subsequences near 𝑡𝑖.

B. Background: LAMP

The MP is itself a time series and has many uses in time
series analysis; while the MP can be computed efficiently with
GPUs [6], doing so requires the entire time series and is not
amenable to streaming data. An alternative is LAMP [5], which
predicts the correlation of the most recent length-𝑚 window
of streaming data points to a representative time series used to
train the model. The objective of this work is to accelerate the
LAMP inference procedure on a low-cost FPGA.

Fig. 2 illustrates the LAMP inference process. Each input
consists of J z-normalized subsequences of length M, extracted
with stride S. This scheme defines an extraction window in the
data, W, where ||W|| = J · S+M− 1. We slide W across
the time series and extract a new input for the model for each
position of W. This procedure generates vectors of length
M with J channels as inputs to LAMP’s neural network (a
CNN), shown in Fig. 3. For each input, the model predicts
J · S LAMP values, one for each subsequence in W.

LAMP’s CNN is a simplified version of ResNet [7] for time
series classification [5, 8]. Every convolutional layer in the
model is preceded by a batch normalization layer (omitted

1t

c1
maxMatrix

Profile c2
max

m2t 3t 4t

c 2,
1

c 2,
2

c
2,4c

2,3

Figure 1. Pearson correlation is computed between the second and the rest
of subsequences. The process is applied to all the subsequences in the time
series. Matrix Profile is a vector containing the maximum correlation found
for each subsequence.

M

S

J

W

A single input to LAMP model

W: Extraction Window
M: Subsequence Length
S: Extraction Stride
J: Subsequence to extract

Figure 2. Overview of LAMP inference.

from Fig. 3 for simplicity). The output layer uses a sigmoid
activation function to enable regression. The model inputs and
outputs are modified to support multiple predictions at once.

C. Objective

Our plan was to accelerate LAMP neural network inference
on a Xilinx Ultra96-V2 FPGA board, leveraging the Xilinx
DPU overlay to achieve a balance between performance
and programmability. The on-board Xilinx UltraScale FPGA
features an integrated dual-core ARM CPU, and has sufficient
capacity to realize at most one DPU, with sufficient logic
remaining to implement custom IP block accelerators.

We ran into several technical challenges, which we outline
below; the following subsections describe our solutions. First,
the DPU does not support the Global Average Pooling (GAP)
and sigmoid layers, shown on the right-hand-side of Fig. 3;
these layers must be implemented in software running on
one of the ARM CPU cores or as custom hardware IP
block accelerators. Second, implementing the fully connected
layer, which sits between the GAP and sigmoid layers, would
entail significant data transfer overhead between the DPU and
the ARM CPU / IP block. Third, the DPU uses different
configurations to perform the convolutional layer (including
accumulation and ReLUs); with space for just one DPU,
dynamic reconfiguration during inference is needed to support
the fully connected layer; the alternative, which we adopted,
is to implement the fully connected layer externally as well.

Conv. Layers
8×1×96
5×1×96
ReLU

Conv. Layer
3×1×96

Conv. Layer
1×1×96

Add
Layer

ReLU

Conv. Layers
8×1×96

5×1×192
ReLU

Conv. Layer
3×1×192

Conv. Layer
1×1×192

Global
Average

Pool

Fully
Connected

w
w
w
w
w
w
w

w
w
w
w
w
w
w

w
w
w
w
w
w
w

w
w
w
w
w
w
w

SigmoidAdd
Layer

ReLU

Conv. Layers
8×1×192
5×1×192

ReLU

Conv. Layer
3×1×192

Conv. Layer
1×1×192

Add
Layer

ReLU

Figure 3. Proposed neural network for LAMP. Every convolutional layer is preceded by a batch normalization layer.

D. DPU Overlay

The Xilinx DPU is a programmable overlay that acceler-
ates many common CNN operations, such as convolution,
deconvolution, max pooling, and fully connected layers [9];
Fig. 4 depicts its architecture, which we do not describe
in detail due to space limitations. The DPU features user-
configurable parameters to optimize resource utilization and
to select which features are needed for a given deployment
scenario. For example, our implementation does not use
softmax, channel augmentation, and depthwise convolution.
Seven architectural variants of the DPU exist, with IDs ranging
from B512 (smallest) to B4096 (largest); the largest variant
that we consider in this study is the B2304.

The DPU compiler translates a neural network model into
a sequence of DPU instructions. After start-up, the DPU
fetches these instructions from off-chip memory to control
the compute engine’s operations. The compute engine employs
deep pipelining and comprises one or more processing elements
(PE), each consisting of multipliers, adders, and accumulators.
DSP blocks can be clocked at twice the frequency as general
logic.

The DPU buffers input, output, and intermediate values
in BRAM to reduce external memory bandwidth. The DPU
directly connects to the Processing System (PS) through the
Advanced eXtensible Interface 4 (AXI4) to transfer data.
The host program uses the Xilinx Deep Neural Network
Development Kit (DNNDK) to control the DPU, service
interrupts, and coordinate data transfers. In our design, data
transfers were necessary as the final three layers of the CNN
(GAP, fully-connected, and sigmoid) were performed outside
of the DPU.

E. HLS Kernel

This subsection summarizes the steps taken to design an
IP accelerator that performs the GAP, fully connected, and
sigmoid layers using High-Level Synthesis (HLS). Except when
explicitly stated otherwise, the discussion that follows assumes
the use of a 32-bit floating-point data format.

(1) Global Average Pool (GAP): The output of the final
convolutional layer in Fig. 3 is an array of feature maps 𝐷 ∈
R𝑀×𝑁 corresponding to each of the 𝑁 channels. The GAP
generate an 𝑁 -dimensional vector 𝑞 ∈ R𝑁 consisting of the

CPU Memory Controller

Bus

Processing System (PS)

Off-Chip Memory

Fetcher

Decoder

Dispatcher

In
st

ru
ct

io
n

S
ch

ed
u

le
r

Data Mover

On-Chip BRAM

BRAM Reader/Writer

O
n-C

hip
 B

uffer
C

ontroller

PE PE PE

M
is

c
E

ng
in

e

C
on

v
E

ng
in

e

C
om

pu
tin

g
E

ng
in

e

Programmable Logic (PL)

Figure 4. DPU hardware architecture consisting of computing arrays,
instruction fetch unit, and a global memory pool module.

average value of each feature map. In other words,

𝑞𝑗 ←−
1

𝑀

𝑀∑︁
𝑖=1

𝐷𝑖,𝑗 , 1 ≤ 𝑗 ≤ 𝑁. (1)

The vector 𝑞 is then passed to the fully connected layer.
(2) Fully Connected Layer: The input to the fully connected

layer is a feature vector 𝑞 ∈ R𝑁 . The fully connected layer
left-multiplies a weight matrix 𝑊 ∈ R𝑁×𝑀 by 𝑞 and adds
a bias vector 𝑏 ∈ R𝑀 , to the result, yielding a new feature
vector 𝑧 ∈ R𝑀 .

𝑧 ←− 𝑞𝑊 + 𝑏. (2)

We use row-wise vector-matrix multiplication and a tiling
strategy [10] to boost throughput. Initially, we set 𝑧 ←− 𝑏 in
BRAM. We then process each feature 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑁 and
multiply it by the element in the 𝑖𝑡ℎ row of the weight matrix,
𝑊1,𝑗=1...𝑀 , adding each scalar product term to 𝑧𝑗 , i.e., 𝑧𝑗 ←−
𝑞𝑖𝑊𝑖,𝑗 , once again, storing the accumulated sum in BRAM.
This scheme allows the execution of the fully connected layer
to start as soon as the first element 𝑞1 produced by the GAP

×

Vector Weights Matrix

nc

n c

nr

Figure 5. Column-wise vector-matrix multiplication tiling scheme.

×
+

×

×

×

×

×

×

×

+

+

+

+

Weights

Weights

Weights

Weights

nr

Weights

Weights

Weights

Weights

nc

+

+

×

Adder

Multiplier

Buffer

Figure 6. Vector-matrix multiplication unit schematic.

layer arrives; likewise, each feature 𝑞𝑖 can be discarded as soon
as all of its intermediate products are computed.

To optimize performance, we tile the weight matrix 𝑊 into
small 𝑛𝑐 × 𝑛𝑟 blocks as shown in Fig. 5; each vector element
is multiplied by 𝑛𝑟 matrix elements, allowing the accelerator
to perform 𝑛𝑐 × 𝑛𝑟 scalar multiplication operations per cycle.
Parameter 𝑛𝑐 must be chosen to make sure that the latency
of GAP layer is greater than the number of cycles required
to process 𝑛𝑐 vector elements; 𝑛𝑟 is chosen to be as large as
possible to increase system parallelism, subject to resource
constraints. Fig. 6 illustrates the tiling scheme for 𝑛𝑐 = 4 and
𝑛𝑟 = 2; we set 𝑛𝑐 = 8 and 𝑛𝑟 = 4 in our experiments.

(3) Sigmoid Activation: The LAMP neural network applies
the sigmoid activation function to each scalar element of the
feature vector 𝑧 produced by the fully connected layer. To
simplify notation, we present the sigmoid function of a scalar
input 𝑥 which can represent any of the scalars 𝑧𝑖 ∈ 𝑧:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
(3)

Computing the sigmoid function directly on an FPGA is imprac-
tical due to the cost of division and exponentiation. Informed
by extensive studies regarding sigmoid approximations [11],
we chose two variants to evaluate: ultra_fast_sigmoid, a piece-
wise approximation used in the machine learning framework
library Theano [12]; and sigm_fastexp_512, which expands
the exponential function for an infinite limit [13].

There are inherent tradeoffs among these approximations
in terms of accuracy, throughput/latency, area, and energy
consumption; additionally, their implementation differs radi-
cally, depending on the chosen precision and whether they
are implemented using fixed- or floating-point arithmetic1. A
thorough survey of the tradeoffs involved is beyond the scope of
this paper. The final design, which we evaluate in the following
section, uses 8-bit fixed-point arithmetic.

The ultra_fast_sigmoid approximation is defined in terms
of 2𝑥 rather than 𝑥 to simplify the presentation:

𝑓(2𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5(1.5𝑥
1+𝑥

+ 1) 0 ≤ 𝑥 < 1.7

0.5(1 + 0.935+
0.045(𝑥− 1.7)) 1.7 ≤ 𝑥 < 3

0.5(1 + 0.995) 𝑥 ≥ 3

0.5(−−1.5𝑥
1−𝑥

+ 1) −1.7 ≤ 𝑥 ≤ 0

0.5(1− (0.935+
0.045(−𝑥− 1.7))) −3 < 𝑥 ≤ −1.7

0.5(1− 0.995) 𝑥 ≤ −3

(4)

Due to the relative simplicity of the operations compared to
directly computing the sigmoid function, ultra_fast_sigmoid
can be implemented as a low-latency kernel.

The sigm_fastexp_512 approximation expands the exponen-
tial function in terms of an infinite limit (𝑛 −→ ∞), using a
value of 𝑛 = 512 to render the approximation computable [13]:

𝑒𝑥𝑝(𝑥) =

𝑙𝑔(𝑛)∏︁
𝑘=1

(1 +
𝑥

𝑘
)𝑘, 𝑛 = 512 (5)

𝑠𝑖𝑔𝑚(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
(6)

We implemented our sigmoid layer in HLS using a loop
that takes 𝑥 as an input from the fully connected layer and
approximates the sigmoid using either Eq. (4) or Eq. (6). In
both scenarios, we pipelined the loop with an Initiation Interval
(II) of 1; the latency of the loop for sigm_fastexp_512 is higher
due to the complexity of the operations.

Fig. 7 shows the sigm_fastexp_512 and ultra_fast_sigmoid
approximations, along with their associated errors, which
we computed as the squared difference between them and
an exactly-computed sigmoid function. Neither is uniformly
more accurate than the other for all reported values of 𝑥,
but ultra_fast_sigmoid has noticeably higher error closer to
zero. This error is shown to be tolerable in classification
problems [14], where results is normally determined through
comparison, not exact values. The error has a greater impact
for regression systems that subsequently process the neural
network’s calculated output.

(4) HLS Optimizations: We optimized our design using
directives provided by Vivado HLS and through manual
redesign of the fully connected layer. As shown in Fig. 8,

1Alternative implementations, such as logarithmic number systems or Posits,
are also possible, but are neither discussed nor evaluated here.

(a) (b)

Figure 7. (a) Approximation functions for sigmoid and (b) their error. Both
charts were computed using 32-bit floating-point data.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0

1

2

3

4

5

6

7

8

Baseline Unroll Pipeline Fixed-Point Loop Tiling

A
ve

ra
ge

 R
es

ou
rc

e

C
yc

le
s

10

Optimazation Stage

Cycles Resources

5
x

Figure 8. Incremental improvements in the custom kernel latency and resource
utilization due to HLS optimizations.

we achieved a 20× speedup over our baseline implementation,
while increasing resource usage by 1.5×:

∙ Baseline : our starting point.
∙ Unroll : unrolls the inner loops of the GAP and fully

connected layers.
∙ Pipeline : pipelines the outer computation loops and I/O

interface loops to infer burst reads/writes; the three layers
execute as a pipeline to maximally overlap computation.

∙ Fixed−Point : is the design implemented in an 8-bit
fixed-point UINT data format which reduces the resource
utilization by 3× [15].

∙ Loop−Tiling tiling the fully connected layer (see Fig. 5),
while retaining the 8-bit UINT data format.

Most of the speedup arises from pipelining and unrolling
loops. The increased resource utilization in Unroll and Pipeline
designs is due additional registers and DSP slices.

Fig. 9 shows the overall design. The HLS kernel implements
the GAP, fully connected, and sigmoid layers while the rest
of the neural network runs on the DPU. The DPU and HLS
kernel connect to the processing system via AXI4 ports to
allow access to the DDR memory space. The Zynq UltraScale+
processing system in our platform has four High-Performance
(HP) ports and two High-Performance Cache coherent (HPC)
ports. The DPU I/O interfaces and HLS kernel connect to the
HP ports, which provide lower latency than the HPC ports; the
DPU instruction fetch port connects to an HPC port.

m
axi

data_in m
_a

xi
_

da
ta

_o
ut

F
ul

ly
C

on
ne

ct
ed

GAP

Sigmoid

W
ei

gh
ts

B
ia

se
s

Z
Y

N
Q

U
ltr

aS
C

A
LE

+

s_axi_HPC0

s_axi_HP0

s_axi_HP1

s_axi_HP2

m_axi_data_0

m_axi_data_1

m_axi_instr Conv
BatchNorm

ReLU
Add

s_axi_HP3

Xilinx DPU

HLS Kernel

AXI Interface

Figure 9. The FA-LAMP implementation comprises a Zynq UltraScale+
processing system, DPU IP, and custom HLS kernel.

III. EXPERIMENTAL SETUP

A. Model Training

FA-LAMP deployment on an FPGA begins by training the
model. We set the number of subsequences J to 32, the length of
window M to 100, and the stride S to 8. We used the Adam [16]
optimizer to train the model using stochastic gradient descent
with a learning rate of 1e-3 and a batch size of 128. The
training objective is to minimize the mean squared error loss
between the predicted and exact MP values for the training
data set. As a performance optimization, we rearranged the
layers in the original LAMP CNN design [5] so that each
convolutional layer is followed by a batch normalization layer
followed by a ReLU layer; this enables batch normalization to
merge with the convolution layer in the DPU.

We train a LAMP model for each dataset offline using an
Nvidia Tesla P100 GPU. The trained network is partitioned
into two parts: (i) the layers to be executed on a custom kernel
(i.e., last three layers: fully connected, GAP, and sigmoid), and
(ii) the rest of the model, which maps onto the DPU. We store
the weights and activations of the fully connected layer in a
header file. The code for the custom kernel later includes this
header file for high-level synthesis, noting that the sigmoid and
GAP layers do not have any parameters. The second sub-graph
of the model is stored in the h5 format file for compilation
and deployment on the DPU.

B. Model Inference

We use Vitis AI to quantize and compile the trained LAMP
model. AI Quantizer converts all of the model weights and
activations into a fixed-point INT8 format. The AI Compiler
then maps the model to the DPU instruction set and data flow.
We specified the custom kernel (fully connected, GAP, and
sigmoid layers) in C++ using the same 8-bit fixed-point data
type. As mentioned in Section II, we compared two sigmoid im-
plementations: ultra_fast_sigmoid and sigmoid_fastexp_512.

We synthesized the custom kernel using Vivado HLS 2019.2
and integrated the resulting IP block with the DPU using the
Vitis 2019.2 flow for synthesis, placement, and routing.

We evaluated the LAMP CNNs on a Xilinx Ultra96-V2
FPGA board, which integrates two dual-core CPUs (an ARM
Cortex A-53 operating at 1.5 GHz and an Cortex-R5 operating
at up to 600 MHz) with a Xilinx Zynq UltraScale+ MPSoC
featuring 70,560 LUTs, 360 DSP slices and 7.5 MB of BRAM.
We used a 16 GB SD card to store an embedded Linux image
created with PetaLinux 2019.2 along with the input time series
datasets for the design that we will use for inference. We
wrote a host program in C++ that uses the DNNDK API to
communicate with the DPU IP core.

In the standard DPU flow, unsupported layers are offloaded
to the host processor rather than custom IP blocks. We
implemented the custom kernel layers on the Cortex-A53 core,
because it supports a higher clock frequency than the Cortex-
R5 core, and measure its performance against our proposed
accelerator. The source code running on the ARM processor
also uses the 8-bit fixed-point UINT data type.

We also ported the entire LAMP inference engine to a
Raspberry Pi 3 board (32-bit floating-point implementation),
which we used for 100% software baseline. We choose
Raspberry Pi 3 for our baseline, since Keras [17] does not
provide support for the Ultra96-V2 board; thus, it is not
presently possible to compile the full LAMP model to either
of the two available ARM cores on the board.

C. Measurements

We report the throughput and the energy consumption of
FA-LAMP neural network inference by direct execution of
the model on the aforementioned mentioned platforms using
three time series datasets, which are summarized in the next
subsection. The throughput is reported as the number of
multiply-accumulation operations in the model (7.71 GOP)
executed per second.

We also report the inference rate of each platform, which we
define to be the number of Matrix Profile values predicted per
second. We measure the Ultra96-V2 and Raspberry Pi power
consumption using a commercially available Kuman power
meter, which provides power measurements for the entire board.
We report total energy consumption by multiplying the power
measurement by the time it takes to execute inference on a
batch of 128. Every batch of data predicts 256 MP values based
on the configured LAMP parameters, for a total of 128×256
predictions per inference. Batch sizes larger than 128 led to
degraded results on the Raspberry Pi, so we reported results
that represent a best-case for our baseline. We report resource
utilization results from Vivado’s post-implementation reports.

As mentioned in Section II, the user can configure the DPU’s
degree of parallelism and its parameters for resource utilization.
We evaluated the efficiency of all DPU variants that we could
fit onto the Ultra96-V2 platform. The number in each DPU
variant’s name indicates it’s peak throughput, e.g., a DPU B512
can perform up to 512 operations per cycle. The Ultra96-v2
board can fit no more than one DPU core. We set the DPU’s

0 10000 20000 30000 40000 50000 60000 70000 80000

8

6

4

2

0

2

4

6

8 X Axis
Y Axis
Z Axis
Label

Figure 10. A snippet of chicken accelerometer data with corresponding labels
(Preening: label height = 3, dustbathing: label height = 4, and pecking: label
height = 6).

BRAM and DSP usage to low and disabled the average pool
and softmax instructions since the LAMP neural network does
not perform these operations. The DPU IP provides two distinct
clock inputs:we set the input clock for DSP blocks to 300 MHz
and the input clock for general logic to 150 MHz.

D. Benchmarks

We trained neural networks for three time series datasets and
measured the error of the model’s predictions; this methodology
is similar in principle to prior work on LAMP [5].

(1) Seismology Domain: The Earthquake dataset is obtained
from a seismic station [6]. Real-time event prediction impacts
seismic hazard assessment, response, and early warning sys-
tems [2–4]. We split the time series into 120 million data points
for training and 30 million data points for inference.

(2) Entomology Domain: The Insect EPG dataset is obtained
from an Electrical Penetration Graph (EPG) that records insect
behavior [6]. This time series is the record of an insect
feeding on a plant and observed behaviors were classified
by an entomologist as Xylem Ingestion, Phloem Ingestion,
or Phloem Salivation. Understanding feeding behavior of
insects can help farmers identify vector-bearing pests that may
decimate crops. We split the time series into 2.5 million data
points for training and 5 million data points for inference.

(3) Poultry Farming Domain: The Chicken Accelerometer
dataset was collected by placing a tracking sensor on the back of
a chicken [18]. The sensor outputs acceleration measurements
along the x-, y-, and z-axes at a 100 Hz sampling frequency.
The data was labeled to classify the chicken’s behavior into
one of three categories: Pecking, Preening, or Dustbathing.
This classification allows farmers to detect and stop the spread
of diseases among the poultry. For example, infected chickens
exhibit a marked increase in preening and dustbathing behavior
compared to uninfected chickens. Fig. 10 depicts a snippet
of the dataset corresponding to the x-, y-, and z-axes and
behavioral labels. Using only the x-axis measurements, we
split the time series into six million data points for training
and 2 million data points for inference.

E. Source code and Data Availability

All the data, code, and models used to produce the results
in this paper is available and released [19].

Table I
THROUGHPUT (GOPS) AND RESOURCE UTILIZATION COMPARISON BETWEEN DIFFERENT DPU ARCHITECTURES; (DPU + IP) USES A B2304 DPU.

DPU + ARM DPU + ARM DPU + ARM DPU + ARM DPU + ARM DPU + ARM DPU + IP DPU + IP
(B512) (B800) (B1024) (B1152) (B1600) (B2304) (ultra_fast) (fastexp_512)

Logic Usage 39K (56%) 42K (59%) 46K (65%) 44K (62%) 49K (70%) 52K (75%) 57K (82%) 60K (86%)
Register Usage 50K (36%) 57K (40%) 65K (46%) 64K (45%) 77K (54%) 87K (62%) 95K (67%) 100K (71%)

DSP Usage 78 (21%) 117 (32%) 154 (42%) 164 (45%) 232 (64%) 289 (79%) 290 (80%) 326 (90%)
On-chip RAM Usage 77 (35%) 95 (44%) 109 (50%) 127 (58%) 131 (60%) 171 (79%) 174 (81%) 174 (81%)

Throughput 70.4 107.0 154.2 167.6 220.2 367.1 453.5 428.3
Peak Throughput 153 240 307 345 480 691 691 691

IV. RESULTS

A. Throughput and Resource Utilization

Table I summarizes the resource utilization and the measured
throughput of FA-LAMP inference using various system
configurations on the Ultra96-V2 FPGA board. The DPU
+ ARM columns report results when the custom kernel
(fully connected, GAP, and sigmoid layers) run on the ARM
CPU, while the DPU + IP columns report results for the
custom kernel implemented as FPGA IP blocks that connect
directly to the DPU; the largest and best-performing B2304
DPU is used when reporting results for DPU + IP. Results
are reported for the custom kernel implemented using two
sigmoid approximations: ultra_fast_sigmoid (ultra_fast) and
sigmoid_fastexp_512 (fastexp_512) to approximate the sig-
moid function.

The DPU + ARM results in Table I show that system
throughput increases as DPU size and complexity increases,
from B512 to B2304. The highest overall throughput is achieved
for the DPU + IP configurations, as the three custom kernel
layers that the DPU cannot execute are moved from the ARM
CPU to a custom accelerator. Data transfer overhead remains
present in both cases between the DPU and ARM CPU / IP
block: each read for an input batch of data takes around 0.3
ms and each write takes around 0.1 ms; the port throughput is
around 250 MB/s.

Table I also reports the peak (achievable) DPU throughput for
each system configuration; this does not include the throughput
of the ARM CPU or IP block because the inference procedure,
at present, does not lend itself to concurrent execution. The
percentage of achievable throughput ranges from 43.6% to
53.1% for the DPU + ARM configurations, and jumps to
65.6% and 62.0% for the two DPU + IP configurations. Even
if a hypothetical next-generation DPU could support the three
custom kernel operations, the overhead of DPU reconfiguration,
which we avoided in the design(s) evaluated here, would also
limit the achievable throughput.

DPU resource utilization depends on the degree of paral-
lelism in the chosen configuration; on-chip RAM buffers the
weights, bias, and intermediate features. As DPU I/O channel
parallelism increases, more on-chip RAM is needed to store
more intermediate data and more DSP slices are needed to
process that data. When the low DSP usage option is chosen,
the DPU uses DSP slices exclusively for multiplication in

Table II
FA-LAMP NEURAL NETWORK INFERENCE ACCURACY.

Time Series Dataset FA-LAMP Inference Accuracy

Name
Train / Test

Split

32-bit

float

Proposed:

ultra_fast

Proposed:

fastexp_512

Earthquake 120M / 30M 97.4% 91.4% 92.5%

Insect EPG 2.5M / 5M 97.2% 90.8% 93.2%

Chicken Accel. 6M / 2M 95.8% 86.9% 91.1%

the convolution layers and offloads accumulation to LUTs.
This explains the observed increase in LUT usage as DPU
throughput increases.

The custom IP kernels consume additional resources.
sigmoid_fastexp_512 performs more multiplication operations
and constant division operations than ultra_fast_sigmoid,
noting that the latter performs mostly constant multiplica-
tions. As a consequence, ultra_fast_sigmoid achieves higher
throughput and lower resource utilization compared to
sigmoid_fastexp_512; however, as we will see in the next
subsection, these benefits come at the cost of lower accuracy.

B. Inference Accuracy

Table II summarizes the accuracy of the FA-LAMP neural
network models that we evaluated in the preceding section.
We include results for a 32-bit floating-point CPU-only
implementation of the FA-LAMP models to quantify the
loss in accuracy due to quantization, which is 4.0–4.9% for
sigmoid_fastexp_512, and 6.0–8.9% for ultra_fast_sigmoid.
The 8.9% accuracy loss for the Chicken Accelerometer dataset
for ultra_fast_sigmoid can be attributed to the range of values
in the input numbers to the sigmoid kernel. Referring back to
Section II, we note that sigmoid layer’s input values line in the
range [-0.12 1.85], where ultra_fast_sigmoid has the largest
error, when inference is performed on this dataset.

C. Comparison to a Raspberry Pi 3

Next we compare the performance and energy consumption
of FA-LAMP neural network inference running on the Ultra96-
V2 FPGA board to a Raspberry Pi 3, being representative of a
purely CPU-based edge computing system. Table III reports the
throughput (inference rate) and energy consumption (in Joules)
of processing a single batch size of 128 on each platform. The
runtime of FA-LAMP neural network inference does not depend

Table III
INFERENCE RATE AND ENERGY CONSUMPTION OF LAMP NEURAL

NETWORK INFERENCE ON A RASPBERRY PI 3 AND ULTRA96-V2 BOARD.

Raspberry DPU + DPU + IP DPU + IP
Pi 3 ARM ultra_fast fastexp_512

Inf. Rate (Hz) 1.4K 12.1K 15.0K 14.2K
Energy (J) 105.8 7.2 6.7 9.1

on the size of the representative dataset used for training; thus,
the inference rate and energy consumption is identical across
all datasets.

Both the inference rate and energy consumption of all
three Ultra96-V2 FPGAs improve by 1-2 orders of magni-
tude compared to the Raspberry Pi; according to our power
measurements, the Ultra96-V2 FPGA board consumed ∼3W
of power compared to ∼4W for the Raspberry Pi. As expected,
the DPU + IP options achieve a higher inference rate than the
reported DPU + ARM configuration. Notably, the DPU + IP
option using sigmoid_fastexp_512 consumes more energy than
both the DPU + ARM and DPU + IP using ultra_fast_sigmoid;
referring back to Table I, this occurs due to the higher demand
for DSP blocks (36 more than ultra_fast_sigmoid) which are
clocked twice as fast as the FPGA general logic.

D. Case Study: Interpreting the FA-LAMP Output

The Matrix Profile can be computed using existing methods
in an offline context [6], where LAMP is used to predict it
on streaming data [5]. Regardless of how the Matrix Profile
is obtained, subsequent post-processing steps are needed to
extract actionable information from it.

As a representative example, we explain how FA-LAMP
neural network inference can help a scientist to classify the
behavior of an insect in real-time. First, we take the training
data (2.5M data points, collected over 7 hours) from an insect
feeding on a plant. We then create two classes [5]:

Class A:Xylem Ingestion/Stylet Passage
Class B:Non-Probing
We take a representative dataset from each class (RA and RB)

and train two distinct FA-LAMP models, which we respectively
denote as MA and MB. Let S be a subsequence of streaming
data. If MA(S) > MB(S), we predict that behavior A is
occurring; if MA(S) < MB(S), we predict that behavior B
is occurring; otherwise, the prediction is inconclusive.

For evaluation data we consider the inference data (2.5M data
points, collected over the next 5 hours from the same insect),
whose behavior has also been labeled by an entomologist to
provide ground truth. We observed 98.2% accuracy in the
results of classification using FA-LAMP. Fig. 11 shows the
time series and the actual and predicted labels reported by the
FA-LAMP model for a snippet of test data.

V. RELATED WORK

Most FPGA-based deep neural network studies focus on
accelerator design, compilation frameworks, and/or domain-
specific overlays. Our work borrows ideas from all three
areas. Our HLS-generated IP blocks employ optimizations

Class A

Class B

Insect Data Predicted Label LabelActual

Figure 11. A snippet of insect EPG time series dataset along with the actual
and predicted behavior (Class A: label height=1; Class B: label height=0).

such as loop tiling [20], data reuse [21–23], weight-stationary
multiplication [24], memory packing [25], fixed-point numeric
formats [26], and model weight quantization [27–32].

Commercial frameworks, such as Xilinx’s Vitis AI frame-
work, which we used, or Intel’s Deep Learning Acceleration
(DLA) suite [33], take inspiration from general-purpose lan-
guages and frameworks such as HeteroCL [34, 35], as well as
frameworks specific to neural networks [36–49].

We used the Xilinx programmable DPU overlay [9],
which was optimized for well-known convolutional neural
networks [7, 50, 51]; similar overlays include Microsoft’s
Project Brainwave [52], Intel DLA [53], and Light-OPU [54].
Our work includes mixed use of a programmable overlay and
custom IP blocks designed using HLS, and a fairly detailed
analysis of how to implement the sigmoid activation function.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an energy-efficient accelerator for
time series similarity prediction using CNNs. We integrated a
custom IP accelerator block with Xilinx DPU to enable whole-
model acceleration of the FA-LAMP CNN on Xilinx Ultra96-
V2 FPGA. We analyzed two approximation functions for the
output layer of the model in terms of accuracy, performance,
resource utilization, and energy consumption, and we showed
how FA-LAMP combined with a post-processing classifier can
solve a real-world problem. Compared to a Raspberry Pi 3,
our design achieved 10.7× higher inference rate and improved
the energy efficiency by 15.8×

We envision several avenues of future work to improve FA-
LAMP. We would like to further improve the accuracy of the
FA-LAMP CNN by re-training the model after quantization.
We also hope to port the FA-LAMP system to a larger
and more powerful development board, which would enable
the integration of multiple DPUs, along with our custom
IP accelerators. We would also like to more thoroughly
explore the space of sigmoid approximation functions, including
piecewise alternatives to ultra_fast_sigmoid, which might be
able to reduce its error, and variants of sigmoid_fastexp_N
for values of 𝑁 other than 512; there is also considerable
opportunity to explore the internal architecture and precision
of sigmoid_fastexp_N. Long-term, it may be possible to harden
the FA-LAMP inference engine so that it can be integrated in
the same System-on-a-Chip (SoC) as the sensor(s) whose data
it will process.

ACKNOWLEDGMENT

This work was supported in part by NSF Awards #1528181
and #1763795.

REFERENCES

[1] E. Oyekanlu, “Predictive edge computing for time series of industrial
IoT and large scale critical infrastructure based on open-source software
analytic of big data,” in IEEE International Conference on Big Data
(Big Data), 2017, pp. 1663–1669.

[2] S. E. Minson, M.-A. Meier, A. S. Baltay, T. C. Hanks, and E. S. Cochran,
“The limits of earthquake early warning: Timeliness of ground motion
estimates,” Science Advances, vol. 4, no. 3, 2018.

[3] R. Allen, H. Brown, M. Hellweg, O. Khainovski, P. Lombard, and
D. Neuhauser, “Real-time earthquake detection and hazard assessment
by ElarmS across California,” Geophysical Research Letters - GEOPHYS
RES LETT, vol. 36, 2009.

[4] C. Satriano, A. Lomax, and A. Zollo, “Real-time evolutionary earthquake
location for seismic early warning,” Bulletin of the Seismological Society
of America, vol. 98, pp. 1482–1494, 2008.

[5] Z. Zimmerman et al., “Matrix profile XVIII: time series mining in the
face of fast moving streams using a learned approximate matrix profile,”
in IEEE International Conference on Data Mining (ICDM), 2019, pp.
936–945.

[6] Z. Zimmerman, K. Kamgar, N. S. Senobari, B. Crites, G. Funning,
P. Brisk, and E. Keogh, “Matrix Profile XIV: Scaling time series motif
discovery with GPUs to break a quintillion pairwise comparisons a
day and beyond,” in Proceedings of the ACM Symposium on Cloud
Computing (SoCC). ACM, 2019, p. 74–86.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[8] Z. Wang, W. Yan, and T. Oates, “Time series classification from
scratch with deep neural networks: A strong baseline,” arXiv preprint
arXiv:1611.06455, 2016.

[9] “DPU for convolutional neural network v3.0, DPU IP product guide.”
[Online]. Available: https://www.xilinx.com/support/documentation/ip_
documentation/dpu/v3_0/pg338-dpu.pdf

[10] Z. Que et al., “Optimizing reconfigurable recurrent neural networks,”
in IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2020, pp. 10–18.

[11] Y. Gao, F. Luan, J. Pan, X. Li, and Y. He, “FPGA-based implementation
of stochastic configuration networks for regression prediction,” Sensors,
vol. 20, p. 4191, 2020.

[12] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-farley, and Y. Bengio, “Theano: A CPU and
GPU math compiler in python,” in Proceedings of the 9th Python in
Science Conference, 2010, pp. 3–10.

[13] N. G. Timmons and A. Rice, “Approximating activation functions,” arXiv
preprint arXiv:2001.06370, 2020.

[14] S. Decherchi, P. Gastaldo, A. Leoncini, and R. Zunino, “Efficient digital
implementation of extreme learning machines for classification,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 8,
pp. 496–500, 2012.

[15] “Deep learning with INT8 optimization on Xilinx devices,” 2017.
[Online]. Available: https://www.xilinx.com/support/documentation/
white_papers/wp486-deep-learning-int8.pdf

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
3rd International Conference on Learning Representations, ICLR, 2014.

[17] D. Falbel, “Keras,” https://github.com/keras-team/keras.
[18] A. Abdoli, S. Alaee, S. Imani, A. Murillo, A. Gerry, L. Hickle, and

E. Keogh, “Fitbit for chickens? time series data mining can increase
the productivity of poultry farms,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD). ACM, 2020, p. 3328–3336.

[19] FA-LAMP source code repository: https://github.com/fccm2021sub/fccm-
lamp.

[20] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2015, p. 161–170.

[21] M. Hardieck, M. Kumm, K. Möller, and P. Zipf, “Reconfigurable
convolutional kernels for neural networks on FPGAs,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 2019, p. 43–52.

[22] X. Han, D. Zhou, S. Wang, and S. Kimura, “CNN-MERP: An FPGA-
based memory-efficient reconfigurable processor for forward and back-
ward propagation of convolutional neural networks,” in IEEE 34th

International Conference on Computer Design (ICCD), 2016, pp. 320–
327.

[23] Y. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy
efficiency of deep neural network accelerators,” IEEE Micro, vol. 37,
no. 3, pp. 12–21, 2017.

[24] E. Wu, X. Zhang, D. Berman, I. Cho, and J. Thendean, “Compute-
efficient neural-network acceleration,” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA).
ACM, 2019, p. 191–200.

[25] L. Petrica, T. Alonso, M. Kroes, N. Fraser, S. Cotofana, and M. Blott,
“Memory-efficient dataflow inference for deep CNNs on FPGA,” arXiv
preprint arXiv:2011.07317, 2020.

[26] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and
K. Nealis, “Exploration of low numeric precision deep learning inference
using Intel FPGAs,” in IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2018, pp.
73–80.

[27] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella,
M. Blott, L. Lavagno, K. Vissers, J. Wawrzynek, and K. Keutzer,
“Synetgy: Algorithm-hardware co-design for ConvNet accelerators on
embedded FPGAs,” in Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA). ACM, 2019,
p. 23–32.

[28] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded FPGA
platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA). ACM, 2016, p. 26–35.

[29] H. Nakahara, Z. Que, and W. Luk, “High-throughput convolutional
neural network on an FPGA by customized JPEG compression,” in IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2020, pp. 1–9.

[30] K. Ando et al., “Dither NN: An accurate neural network with dithering
for low bit-precision hardware,” in International Conference on Field-
Programmable Technology (FPT), 2018, pp. 6–13.

[31] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. W. Leong, “PIR-DSP: An
FPGA DSP block architecture for multi-precision deep neural networks,”
in IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019, pp. 35–44.

[32] Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, and H. Yang, “CNN-based
feature-point extraction for real-time visual SLAM on embedded FPGA,”
in IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2020, pp. 33–37.

[33] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An
OpenCL™ deep learning accelerator on Arria 10,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 2017, p. 55–64.

[34] Y.-H. Lai et al., “Heterocl: A multi-paradigm programming infrastructure
for software-defined reconfigurable computing,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 2019, p. 242–251.

[35] K. Kamalakkannan, G. R. Mudalige, I. Z. Reguly, and S. A. Fahmy,
“High-level FPGA accelerator design for structured-mesh-based explicit
numerical solvers,” arXiv preprint arXiv:2101.01177, 2021.

[36] H. Sharma et al., “From high-level deep neural models to FPGAs,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

[37] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. Hwu, and D. Chen,
“DNNBuilder: An automated tool for building high-performance DNN
hardware accelerators for FPGAs,” in IEEE/ACM International Confer-
ence on Computer-Aided Design, (ICCAD), 2018.

[38] C. Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong,
“Caffeine: Towards uniformed representation and acceleration for deep
convolutional neural networks,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2016, pp. 1–8.

[39] H. Zeng, R. Chen, C. Zhang, and V. K. Prasanna, “A framework
for generating high throughput CNN implementations on FPGAs,” in
Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2018, pp. 117–126.

[40] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic
generation of FPGA-based learning accelerators for the Neural Network
family,” in 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
2016, pp. 1–6.

[41] J. Xu, Z. Liu, J. Jiang, Y. Dou, and S. Li, “CaFPGA: An automatic gen-

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://github.com/keras-team/keras
https://github.com/fccm2021sub/fccm-lamp
https://github.com/fccm2021sub/fccm-lamp

eration model for CNN accelerator,” Microprocessors and Microsystems,
vol. 60, 2018.

[42] P. Xu et al., “AutoDNNchip: An automated DNN chip predictor and
builder for both FPGAs and ASICs,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA). ACM, 2020, p. 40–50.

[43] R. Zhao, H.-C. Ng, W. Luk, and X. Niu, “Towards efficient convolutional
neural network for domain-specific applications on FPGA,” in 28th
International Conference on Field Programmable Logic and Applications
(FPL), 2018, pp. 147–1477.

[44] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “An automatic RTL compiler for
high-throughput FPGA implementation of diverse deep convolutional neu-
ral networks,” in 27th International Conference on Field Programmable
Logic and Applications (FPL), 2017, pp. 1–8.

[45] S. I. Venieris and C. Bouganis, “fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,” in IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2016, pp. 40–47.

[46] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An open
framework for mapping DNN models to cloud FPGAs,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 2019, p. 73–82.

[47] T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” arXiv preprint arXiv:1802.04799, 2018.

[48] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
“LUTNet: Rethinking inference in FPGA soft logic,” in IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019, pp. 26–34.

[49] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2017, pp. 152–159.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2015.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[52] J. Fowers et al., “A configurable cloud-scale DNN processor for real-time
AI,” in ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 1–14.

[53] M. S. Abdelfattah et al., “DLA: Compiler and FPGA overlay for neural
network inference acceleration,” arXiv preprint arXiv:1807.06434, 2018.

[54] Y. Yu, T. Zhao, K. Wang, and L. He, “Light-OPU: An FPGA-based
overlay processor for lightweight convolutional neural networks,” in
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2020, p. 122–132.

	Introduction
	FA-LAMP System Overview
	Background: The Matrix Profile
	Background: LAMP
	Objective
	DPU Overlay
	HLS Kernel

	Experimental Setup
	Model Training
	Model Inference
	Measurements
	Benchmarks
	Source code and Data Availability

	Results
	Throughput and Resource Utilization
	Inference Accuracy
	Comparison to a Raspberry Pi 3
	Case Study: Interpreting the FA-LAMP Output

	Related Work
	Conclusions and Future Work

