Strategic Revenue Management of Preemptive versus
Non-Preemptive Queues

Jonathan Chamberlain*, David Starobinski

Department of Electrical and Computer Engineering, Boston University, 8 St Mary’s Street,
Boston MA 02215

Abstract

Consider a two-class unobservable priority queue, with Poisson arrivals, gener-
ally distributed service, and strategic customers. Customers are charged a fee
when joining the premium class. We analyze the maximum revenue achievable
under the non-preemptive (NP) and preemptive-resume (PR) policies, and show
that a provider is always better off implementing the PR policy. Further, the
maximum revenue under PR is sometimes achieved when only a fraction of the
customers join the premium class.
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1. Introduction

Priority scheduling is utilized in many contexts in order to triage service to
those who require more urgent service, or to enable a separate revenue stream by
customers paying an additional fee to upgrade to higher priority service. In this
work, we consider strategic behavior under an M|G|1 queue with two classes,
where customers have the option to pay a fee to upgrade to the higher priority
class. In particular, our focus is on the provider’s revenue management, the
stability of the resulting equilibrium, and the resulting social welfare. Under
this model, we show that under a non-preemptive (NP) policy, the provider
always has incentive to charge a fee such that all customers purchase a priority
upgrade in order to maximize revenue. In contrast, under preemptive-resume
(PR), for sufficiently high variance in service times and low traffic loads, revenues
are maximized when the upgrade fee is at a level when only some customers
are willing to purchase an upgrade. Otherwise, revenues are maximized when
charging a fee where all customers will purchase an upgrade, as in NP.

In any event, the revenue-maximizing fee yields a stable equilibrium, and
thus the provider is guaranteed to receive the maximum revenue by setting
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the fee accordingly. This holds regardless of the preemption policy, variance
in service times, or traffic load. Furthermore, for any given traffic load and
service time variance the provider will always have incentive to implement the
PR policy over the NP one.

1.1. Related Work

Analyses of performance of non-preemptive priority queues has been done
for contexts including traffic routing over networks [1], hospital management [2],
and smart grids [3]. Under these works however, customers/objects are tagged
with class membership based upon predetermined characteristics and cannot
purchase the ability to upgrade. Strategic behavior under preemptive-resume
models are considered in [4, pp 83-85], [5], [6]. However, these models explicitly
or implicitly assume an M|M|1 queue to be in effect. Further, while two [5] or
an arbitrary number of classes [6] are considered in the latter two works, there is
no option to upgrade between classes, and thus the problem being considered is
not identical to the one analyzed here. Similarly, Zhu and Wang [7] consider an
equilibrium and social welfare analysis akin to the one presented here, but their
model is a loss system with customers preselected into primary and secondary
classes; in contrast we consider a model wherein customers are able to upgrade
on entry and without limits on queue capacity. In [4, pp 83-85], customers are
able to pay an upgrade fee. However, as it too is based on an M|M|1 queue, it is
asserted that mixed equilibria states will never be stable. As determined in the
analysis of the M|G|1 version of the model in [8], this does not hold in general,
which has implications for a revenue maximizing provider as noted below.

2. Game Model

Our model is based on an unobservable M|G|1 priority queue, similar to
that analyzed in [8]. To keep the paper self-contained, we summarize in this
section key results of [8], which serve as the basis of our main findings presented
in Section 3. In this queue, customers are by default assigned to the ordinary
class, but on entry may pay an optional fee C' to join the premium class. We
assume that paying C' only impacts a customer’s priority class, and not the
actual service. We use the standard notation to denote the mean arrival rate
(M), mean service rate (i), and traffic load (p = A/p). In addition, C' is used to
indicate the fee to join the premium class, ¢ denotes the fraction of customers
who have joined the premium class, and K is a variance parameter defined such
that the second moment of service is equal to K/u>.

We consider customer and provider behavior under the non-preemptive and
preemptive-resume policies. The possible equilibria states depend on the cus-
tomers’ decisions, which in turn depend on the time spent waiting for service
and the fee C. Letting E[W}] be the time spent waiting for service as a member
of the premium class, and E[W,] be the time spent waiting for service as a
member of the ordinary class, there are three possible equilibria states:

1. All join (i.e. ¢ =1): E[W,]+ C < E[W,] for all ¢.



2. None join (i.e. ¢ =0): E[W,] + C > E[W,] for all ¢.
3. Some join (i.e. E[W,]+ C = E[W,] for some ¢ € (0,1)): Customers are
indifferent, and join the premium class with probability ¢.

2.1. Equilibria under the NP policy

The cost function associated with the NP policy is given as follows:
_ Kp?
2u(1 = p)(1 = ¢p)’

Evaluating this function, we find that regardless of the values of the pa-
rameters K and p, this is always a monotone increasing function in ¢. Thus
it has the following equilibrium structure. If C < Cyp(0), all join is the
unique equilibrium. If C > Cnp(1l), none join is the unique equilibrium.
If Cyp(0) < C < Cyp(1), all join, none join, and some join equilibrium
¢ = 1/p — (Kp)/(2pC(1 — p) are all possible equilibria. The pure all join
and none join equilibria are always stable. The mixed some join equilibrium is
never stable.

Cnp(9)

(1)

2.2. Equilibria under the PR policy
The cost function for the PR policy is derived as follows:

_ Kp+(2-K)ép(l—p)
Crr(¢) = 2u(1 = p)(1 — ¢p)

Unlike Cyp(¢), this function’s behavior depends on the values of K and p,
although it is always monotone or constant:

1. f K >2and p< (K —2)/(2K — 2), Cpr(¢) is monotone decreasing.
2. Else, if K >2 and p= (K —2)/(2K — 2), Cpr(¢) is constant valued.
3. Otherwise, Cpr(¢) is monotone increasing.

(2)

This in turn influences the equilibrium structure under preemptive-resume.
In particular, there are circumstances in which the some join equilibrium will
be stable. If the some join equilibrium exists, it is the solution to Cpr(¢) = C,
and we denote this by

bo = 2uC(1 —p) — Kp
© o p(l-p)2uC+2 - K)

If C < minCpr(®), all join is the unique equilibrium. If C' > maxCpr(¢), none
join is the unique equilibrium. If minCpr(¢) < C < maxCpr(¢), and Cpr(®)
is monotone decreasing, the some join equilibrium ¢ = ¢, is the unique equilib-
rium. If minCpgr(¢) < C < maxCpr(¢), and Cpr(¢) is monotone increasing,
the equilibrium outcomes are similar to those of the NP policy.

With the equilibria states established, we now turn to analyzing the revenues
collected from customers upgrading to the premium class under each preemption
policy.



3. Revenue Management

As noted, the customers’ decision of whether to join the premium class or
not depends on the cost of waiting as a member of each class. This decision
is influenced by the joining fee C', which is controlled by the provider. As the
provider is rational, they are interested in maximizing their revenues, and thus
will set C' appropriate. However, as seen in the previous section, not all possible
equilibria are stable. In particular, any time a some join state is unstable, a
none join equilibrium is possible. In such a case, there is a risk the provider
would not collect any revenue from customers upgrading to the premium class.

Thus, we define and analyze a revenue function for each preemption policy
in order to determine the equilibrium corresponding to the provider’s maximum
revenue. We also determine whether that equilibrium is stable. While revenue
is defined in terms of the cost and the total number of customers purchasing
the upgrade, the latter is not knowable until the completion of service. Thus,
we define the revenue R(¢) in terms of average revenue per time unit. Given an
arrival rate of A, and the fraction ¢ of customers, we derive the revenue function
as

R(¢) = ApC(9). (3)

We further denote the maximum revenue under each preemption policy as
R* = max(be[o,l] R(¢)

3.1. NP Model

Under the NP policy, the corresponding revenue function is derived from the
definition in Equation (3) and Cyp(¢) as follows:

Kp’¢
2(1=p)(1 = ¢p)

Evaluating the derivative of Ry p(¢), we determine that for all K and p, the
function is monotone increasing. As a result, the maximum revenue is obtained
when ¢ = 1. The resulting maximum revenue is equal to

Rnp(¢) = (4)

Kp?
2(1—p)*

Thus, under the non-preemptive policy, the variance in service and the traf-
fic load will influence the revenue collected, but the provider will always have
incentive to set the fee C' to be equal to Cyp(1). As shown below, this is not
necessarily the case under the preemptive-resume policy.

Ryp=Rnp(1) = (5)

3.2. PR Model

Under the PR policy, the corresponding revenue function is derived from
Equations (3) and (2) as

K¢p? + (2 - K)¢*p*(1 — p)
Rerl®) =30 =)0 - ap) )
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Unlike under NP, this revenue function’s behavior does depend on the values
of K and p. To show this, we compute the derivative with respect to ¢:

e’ (2001 = p)(2 = 90) + K (1= 6(1 = p)(2 — ép)) .
PRl = 21 p)(1 - op)° '
Evaluating the expression, we determine that the sign of the derivative (and
thus the increasing/decreasing behavior of Rpgr(¢)) depends solely on the sign
of the expression

20(1 = p)(2 = ¢p) + K(1 = o1 = p)(2 = p).

Given the restrictions on the parameters, K € [1,00) and p € (0,1), we solve
for where the expression is positive to determine where Rpgr(¢) is increasing.
In doing so, we determine the following: If 1 < K < 4, Rpr(¢) is monotone
increasing regardless of the value of p. If K > 4, R pr(¢) is monotone increasing
if pe[3/2—(1/2)/(5K —2)/(K —2),1). If K > 4, Rpr(¢) is unimodal with
a unique maximum if p € (0,3/2 — (1/2)/(5K — 2)/(K — 2)).

In the first two cases, the monotone increasing behavior of Rpg(¢) results
in the maximum revenue being achieved when ¢ = 1. Thus, Rj; = Rpr(1),
which equals

Kp*+ (2 - K)p*(1-p)
-7 ¥

However, when K > 4, and p < 3/2 — (1/2)\/(5K —2)/(K — 2), Rpgr(¢) is
unimodal with a unique maximum. As a result, the revenue is maximized at a
some join equilibrium. The value of ¢ which maximizes Rpr(o) is

mam_l . K_Q_QP(K—l)
’ ‘p(l \/<K_2)(1_,,> )

The corresponding maximum revenue is equal to

. 2AK -2 - pBK-4) , _[K—2-2p(K 1)
PRE T ) . 2>\/ ®-a0-p

8.8. Equilibrium Stability and Guarantee of Mazimum Revenue

Having determined the values of the maximum possible revenue, we consider
next the question of whether the provider is actually guaranteed to receive such
revenue if the fee C is set accordingly.

Theorem 1. For each of the NP and PR policies, there exists a stable Nash
equilibrium that results in a revenue arbitrarily close to the maximum.

Proof. For the NP policy, the maximum revenue is obtained when ¢ = 1 per
Equation (5). This corresponds to the all join equilibrium. However, Cyp(1) is
a boundary case with respect to the stability of the all join equilibrium. Hence



in practice, the cost should be set to Cyp(1) — € for any € > 0 to ensure that a
stable all join equilibrium exists.

For the PR policy, if Rpr(¢$) is monotone increasing, the same argument
applies. Next, assume that Rpgr(¢) is unimodal with a unique maximum. In
this case, Rpgr(¢) is maximised when ¢ is set equal to ¢™**. By definition,
the resulting cost is set equal to Cpr(¢™*) therefore ¢™** is the corresponding
mixed equilibrium. Mixed equilibria are stable so long as the corresponding cost
function Cpg(¢) is itself monotone decreasing.

Thus, if Cpr(¢) is shown to be monotone decreasing under these circum-
stances, then ¢™** is ESS stable and thus the corresponding revenue is guaran-
teed. Cpr(¢) is monotone decreasing when K > 2 and p < (K — 2)/(2K — 2).
Rpr(¢) is unimodal if K >4 and p < 3/2 — (1/2)/(5K —2)/(K — 2).

Thus, clearly the condition on the service variance parameter K is satisfied,
and thus we must simply show that for K > 4, the inequality

1 5K—2< K -2
2V K-2 2K -2

3
2

holds. Solving for K, we determine that the inequality holds if K < 0 or
K > 2, thus it certainly holds when K > 4. Therefore the traffic load resulting
in a unimodal Rpgr(¢) is in the range which results in a monotone decreasing
Cpr(¢). Therefore, the resulting revenue maximizing equilibrium ¢™** is stable
and therefore the maximum revenue is guaranteed. O

We conclude that the maximum revenue is guaranteed, assuming that the
provider can steer customers to the desired equilibrium. We next consider which
preemption policy will result in the greatest revenues from customer upgrades.

8.4. Comparison of Mazimum Revenues

As the provider is rational and selects the preemption policy in effect, they
are incentivized to select the policy which corresponds to the greater maximum
revenue for a given traffic load p and variance in service as denoted by K. We
claim that regardless of the traffic load or variance in service, a rational revenue
maximizing provider will always implement a preemptive-resume policy:

Theorem 2. Consider a two class M|G|1 queuing model, where customers pay
a fee C if they wish to upgrade to the premium class. The provider is always
better off implementing the preemptive-resume policy, as the maximum revenue
under the non-preemptive policy is always lower.

Proof. Let p and K be arbitrary but fixed. There are two cases to consider
based on the behavior of the corresponding Rpgr(¢).

Assume that Rpgr(¢) is monotone increasing, thus Ry is defined as in
Equation (8). Comparing this to R p as defined in Equation (5), we claim the
following holds if R pr(¢) is monotone increasing:

KpP+ 2 -K)p*1—p) _ Kp®
2(1-p)? 2(1-p)?




This reduces to determining whether 2(1 — p)p? > 0, which is true for all p €
(0,1), and is independent of K. Thus, Rpp > Riyp in the case where Rpgr(¢) is
monotone increasing. In fact, this result shows that Rpgr(1) > R}y in general.
This implies that as expected, Rjp > Ry p as well when Rpgr(¢) is unimodal.

O

Therefore, we find that regardless of the variance in service time distribution,
and regardless of the traffic load, the provider is always best off implementing
the preemptive-resume policy in order to maximize their revenues.

8.5. Impact on Social Welfare

We now turn to a brief analysis of how the maximum revenue situation
impacts the social welfare of the system. Under this model, the social welfare is
defined in terms of the average wait time across all customers, as all other costs
are either fixed or are a transfer of payment between players [8]:

S(9) = GEW] + (1 = ) E[W,] (10)

Under the non-preemptive policy, we determine that the social welfare is
constant valued, a result we expect as wait times in an M|G|1-NP queue are
known to be constant with respect to the reordering of customers:

__ K
2u(1 —p)

Thus, under NP, the provider does not impact the overall welfare by behaving
in a revenue maximizing fashion. However, under the preemptive-resume pol-
icy, social welfare is not constant as preemption behaviors impact the overall
wait times due to the differences between the service time of the preempting
customer, and the residual service of the customer being preempted. The social
welfare function under PR is derived from the definition as follows

Snp () (11)

p(K = 20p+ (2= K)o(1 - (1~ p))

2u(1 = p)(1 = ¢p)

Here, the value of K determines which states are socially optimal: If K < 2,
the socially optimal states are the pure equilibria states ¢ € {0,1}. If K = 2,
all equilibria states are socially optimal. If K > 2, the socially optimal state is
the some join state

(12)

Spr(¢) =

From this, we conclude that a revenue maximizing provider also acts in the
socially optimal manner whenever K < 2. If K > 2, this is not the case. In fact,
for 2 < K <4, we find that a revenue maximizing provider is in the worst case
social outcome, as the all join equilibrium leads to the longest expected wait
times. When K > 4, under sufficiently low traffic loads the worst case outcome
is avoided. However, the revenue maximizing equilibrium will never be socially
optimal under these circumstances.
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