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1. Introduction

Amphiphilic molecules play an essential role in the self assembly of nano-scale structures in solvent, in biological
context they play an essential role in the formation of cell membranes and other organelles, and they are increasingly
important in applications of synthetic chemistry. There are distinct approaches to model the free energy of amphiphilic
mixtures that emphasize different scalings and assumptions on morphology. The classical sharp interface approximations
include the Canham-Helfrich energy [1,2] which characterizes the free energy of a codimension one interface embedded
in R? in terms of its two curvatures. This is an appealingly simple formulation but does not readily handle singularities
associated with topological change. Conventional phase field models based on the Cahn-Hilliard (CH) energy describe
single layer interfaces, see [3-9] and references therein. Single-layer interfaces separate dissimilar phases which cannot
be merged and describe the transition region around the boundary between the phases as if it were a high-energy void.
For oil and water blends this is a very reasonable approximation, as a hydrophobic molecule generates a cavity when
placed within water, [10] and see Fig. 1(left). Amphiphilic materials can create interfaces between similar fluids [11],
see Fig. 1(right), or reside at interfaces between dissimilar fluids, such as oil and water. In this latter case they are
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Fig. 1. (left) Results of molecular dynamics simulation showing shape of void induced in solvent phase in response to hydrophobic molecules
of different shapes. Reprinted with permission from [10] Copyright (2012) American Chemical Society. (right) All atom simulation of packing of
amphiphilic molecule (gray) at interface between external solvent molecules (reddish) and internal solvent (not imaged to show internal structure).
Reproduced from [11] with permission from the Royal Society of Chemistry. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

also called surfactants and lower the overall mixture energy by packing the hydrophobic cavity. Modeling amphiphilic
interfaces with single layer energies presents certain limitations, the first is that single layer models allow the transition
region around the interface to change without material transport. Even when the total volume of the transition region is
preserved by external constraint, transition volume removed at one point may reappear at another distant point without
requiring transport of surfactant. In many applications transport of surfactant is the most significant rate limiting step,
this is particularly true of highly amphiphilic molecules. A second limitation of single layer models is that the single layer
interface cannot be punctured. The opening of holes in vesicles requires the introduction of additional order parameters
for each vesicle, in particular the total number of vesicles must be predetermined [8].

The functionalized Cahn-Hilliard (FCH) free energy is a phenomenological model describing the free energy of
amphiphilic mixtures [12-18], that supports codimension one bilayer interfaces that separate two identical phases by
a thin region of a second phase — the amphiphilic material. Bilayer interfaces can be punctured and can form free edges
and open structures. Gradient flows of the FCH free energy transport amphiphilic molecules either along the interface or
through the bulk solvent phase. Over a bounded domain 2 C R", the conventional Cahn-Hilliard functional takes the
form

E.(u) :=/ (8|Vu|2+1W(u)> dx, 1)
o \2 £

where u is the relative concentration of the two phases, the double well potential W : R +— R has two equal-depth
minimizers at u = 0 and u = u, > 0 corresponding to the two phases, and ¢ > 0 is a small parameter characterizing the
width of the void region between the phases. The weak functionalization form of the FCH functional can be scaled as

— 1 1 ’ 2 me 2 n2
Fo(u) == /Q {28 (—SAu—i- gW(u)> - (7|Vu| n SW(u))} dx. )

The first term on the left-hand side of (2) is the square of the variational derivative of a Cahn-Hilliard type energy and
its volume integral captures distance of the configuration u from a critical point of the underlying Cahn-Hilliard type
functional — these critical points represent the optimal packings of the amphiphilic molecules. The double well has
unequal depth minima, W(0) = 0 > W(u,). The parameters n; > 0 and n, € R model the strength of hydrophilic
interactions and the aspect ratio of the amphiphilic molecule respectively. For fixed ¢ > 0 and mass amphiphilic mass
fraction M = f o Udx the functional F; is bounded from below with a negative lower bound that diverges to negative
infinity as e — 0 [19].

A key experimental quantity is the exchange rate which governs the probability of an amphiphilic molecule being
ejected from an interface and returning to the bulk solvent. This rate is governed by the difference in free energies
of a molecule when it is in the interface and when it is in the bulk. The insertion rate, that is, the propensity of an
amphiphilic molecule in the bulk to be absorbed onto an interface, typically varies inversely to the exchange rate. These
two processes mediate the exchange of surfactant materials between disjoint interfaces. The experimental literature shows
that the exchange rate decays exponentially with the length of the hydrophobic moiety [20], diminishing effectively to
zero for sufficiently diblocks with sufficiently long hydrophobic regions. These “highly amphiphilic” surfactants have a
prohibitively large solvation energy and produce structures that have almost no measurable exchange of amphiphilic
molecules with the bulk. The structures they form act like isolated islands in a sea of solvent. Important classes of
amphiphilic are considered to be highly amphiphilic, these include most lipids which are characterized by a small
hydrophilic head and longer, double-branched hydrophobic tail.
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Analysis of mass-preserving gradient flows of the FCH functional has focused on the stability and asymptotic dynamics
of codimension one bilayers and codimension two filamentous pore structures. The analysis shows that the temporal rate
of surfactant exchange is inversely proportional to the second derivative of the double well at the pure solvent phase,
W”(0). This is relatively transparent from the form of the FCH free energy (2), for which direct calculation shows that a
spatially constant distribution u = ¢ has an energy

F(0) = e CIHIW O +0( ) 3)

Moreover interfaces decay exponentially in space to the bulk constant value at a rate inversely proportional to e,/W”(0).
The exchange rate of an interfacial structure depends primarily upon its codimension. The differing exchange rates
between structures of different codimension generically leads to growth of structures whose codimension has the lowest
associated exchange rate at the expense of those structures with higher exchange rates [13-18]. To model highly
amphiphilic molecules we drive the exchange rate to zero by considering a double well which is smooth for u > 0 but
only C'** in a neighborhood of u = 0. This generates minimizers of the FCH that are potentially compactly supported,
with no mechanism to exchange surfactant molecules between disjoint structures.

In experimental situations the amphiphilic materials typically occupy a small fraction of the total volume of the domain.
Indeed, to produce an O(1) surface area of codimension one bilayer requires an O(e) volume of amphiphile. Given the
compactly supported nature of the critical points of the FCH energy it is natural to consider distributions u € H?(£2) of
amphiphile whose support lies in a small subset £2, within the total domain £2. Considering the boundary 952 of the
domain to be unfavorable for amphiphilic molecules, for example a clean glass beaker, it is natural to impose no-contact,
no-flux boundary conditions

ou
— =0, 4
o (4)

where v is the outer normal of d2. These boundary conditions indicate that amphiphilic structures lie in §£2 and away
from the boundary 9£2. We further require the local regularity assumption

u=20,

W(u) ~ u" for some 3/2 <r <2asu— 07, (5)

and the growth rate assumptions

CilulP + G <W(u) < Glulf + G, (6)
IW'(u)] < GrplulP™" + Cj, (7)
CiplulP + Cq <W'(w)u. (8)

for some constants C; > 0 and G, C3, C5, C4 € R and all u € R. Here

2<p<o0o ifn=2 and 2<p< ifn> 3. (9)

Specifically for n = 3, we require 2 < p < 4. These conditions imply that
W(0)=W’'(0)=0, W"(0")= +oo.

The requirement r > 3/2 guarantees that the solvent-free profile, u = 0, is a critical point of F,, and the requirement
r < 2 signals the highly amphiphilic nature of the surfactant and guarantees the existence of compactly supported bilayer
profiles corresponding to critical points of F,. The growth rate requirements on p are technical considerations to establish
the existence of minimizers, the value of p has little impact on the model and no physical significance. A generic example
of a double well satisfying these requirements is

1+r
W(u) = x(u)|u|’<(u—u+)2+r (u— u+>> + Cs(1 — x()lul?, (10)
where x : R +— R is a C* cut-off function which is 1 on [—1, 2u, ] and zero outside a compact set. The parameter Cs > 0
is chosen large enough to guarantee that W’ has no zeros outside of [0, u, ]. The parameter t controls the depth of the
right well: W(u;) = —Z|ug|"*" < 0 for t > 0.

Remark 1.1. Finding local minimizers of F, under the restriction that u > 0 is both analytically and numerically
challenging as the variational derivative of F, involves W” which is not well defined at 0. One approach is to use variational
inequalities, as outlined in [21]. While the model here differs from those considered for the Cahn-Hilliard equation with
degenerate mobility [22-28], the mechanism that prevents interaction through the bulk is fundamentally distinct. For
degenerate mobility molecules in the bulk are frozen in place and cannot move. In the model presented here molecules
in the bulk phase would readily move and be rapidly and permanently absorbed in finite time; once depleted there is no
mechanism to replenish the bulk density and bulk diffusion ceases.
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1.1. Summary of main results

This discussion motivates the introduction of “geometrically localized critical points”, u, of F, over the set of functions
in H%(£2) whose support is contained within an open subset §2, compactly contained in £2. These critical points are
constructed in Section 2 for fixed values of ¢ > 0. In Section 3 for fixed £ > 0 we take £2, to be the £¢ neighborhood
of a fixed codimension one interface I" compactly embedded in §2, and analyze behaviors of sequences of functions
{ug, }p2, with masses {m, };2, whose energies {7, (ug,)};2; are uniformly bounded as ep — 0 as k — oo. We call
these codimension-one £-bounded sequences with respect to I", and establish upper bounds on their plane and tangential
derivatives. In Theorem 3.1, under the assumption of slightly stronger bounds on the tangential derivatives, (42), we
establish the existence of a subsequence which converges to a weak solution of the codimension one bilayer equation

Uy, = W/(U), (11)

on a rescaled domain £2; where z is e-scaled distance to I'. In Section 4, in Theorem 4.1 we establish a lim inf inequality
that holds for all codimension-one £ bounded sequences that satisfy a yet slightly stronger bound, (66), on the tangential
derivatives. The lim inf inequality provides a lower bound in terms of a sup of codimension-one energy, G, defined in (63),
evaluated at the weak solutions of the bilayer equation, see Corollary 4.2. Moreover for general codimension-one interface
I" we construct codimension-one ¢-bounded sequences composed of solutions of the bilayer equation which converge in a
strong sense to the codimension-one energy G, achieving the lower bound. However, for the same interfaces, we construct
a second family of codimension-one ¢ bounded sequences composed of superpositions of codimension n critical points,
called micelles when n = 3, with disjoint, compact support. These sequences do not satisfy the enhanced bounds on the
tangential derivatives, and do not have a subsequence converging to the bilayer equation, but their energies converge to
a limit that may be lower than the associated codimension one limit, depending upon the choice of the functionalization
parameters 1 and 1, and the size of the curvatures of I".

2. Geometrically localized minimizers of F,

Compactly supported solutions and positive solutions for reaction-diffusion equations have been of interest for
theoretical and application reasons, see [29] and references therein. In [29] it has been shown that if the domain £
is sufficiently large, then a class of low regularity reaction-diffusion equations admits compactly supported positive
solutions, which can be interpreted as compactly supported positive critical points for free energies of the form (1), with
& = 1 and a nonsmooth potential

— 1 a+1 A 2
Wa.k(u) — o+ 1 |u| 2u )
forany 0 < @ < 1, and A > Ay, where A; > 0 is the first eigenvalue for the Laplace operator with Dirichlet boundary
conditions. In our context a large domain is equivalent to a sufficiently small value of ¢. Although the potential W, ,
approaches negative infinity as |u| — oo, it shares the same strong absorption property as our non-smooth potential W,
namely, W, (0) =0, W/,(0") = 4o0.

In this section, we will show that for any subset £2, C £2 such that 32, is C!, F, has a minimizer u, over the class of

nonnegative functions in H2(£2) with support inside of §2, subject to a prescribed total mass of the lipid phase,

/ udx = ms. (12)
¢

Since F.(0) = 0, we need only consider the integral of the FCH energy density over the subset £2,, denoted by F,|,, over
all u in the admissible set

Ap = {ueHg(.Qg): u>0in £,, udx:mg}. (13)

2

To construct u,, we first derive a lower bound of F; |, overallu € HS(.QS ). The proof is a modification of that [19], which
incorporates the positivity assumption that allows an explicit formulation of the lower bound on ¢. We highlight the key
steps of the calculation.

Lemma 2.1. Suppose W is a double well potential satisfying (5) and the growth assumptions (6)-(8) with p > 2 (but not
necessarily the upper bound in (9)), then for ¢ sufficiently small and n, < pn, there exist constants A;, A, > 0 depending only
on 1, N2, p, C1, G, and Cy, such that for any u € Hé(.Qg)

1 (SE.\*> 1mie A A
Fglgg(u)z/ {48(811) +7|Vu|2+;|u|" dx—;lﬂgl- (14)
2

4



S. Dai and K. Promislow Journal of Computational and Applied Mathematics 388 (2021) 113320

Proof. The [? variational derivative of E, takes the form

SE, 1
— = —sAu+ -W'(u), (15)
su e
and we may write
SE, 1
/ —udx = / e|Vul? + —W’(u)u. (16)
2. ou 2 £

Then

1 (SE\* ne n
Felo, (u) =/ [2 () — v - 2W(u)} dx
2 | 26 \ du 2 €

1 (SE.\* SE 1
= / { (*S> —m——u+m <8|VU|2 + *W,(U)U>
2. | 2¢ \ du ou &

_ M g - '”W(u)} dx. (17)
2 e

Since

SE, 1 (SE.\>
—u<—\|— u-, 18
M5y _4s<8u> ten (18)

plugging into (17), we have

1 (SE\> me _
F u) > — - —|Vu
s|ge()_/gs[48(8u)+2| |

1
+e (mW/(u)u — W(u) — n%&ﬁ)} dx. (19)

Since p > 2, by (6) and (8), we have
mW (wu — n,W(u) — nie’u® = (Crimp — m2) — €°n3) |ul® + (11C4 — n2G3).

For ¢ sufficiently small and 7, < n1p we find A, A, > 0, depending only on 71, 13, p, C1, C3, C4 such that
mW/(wu — naW(u) — nje’u® > Ayful’ — Ay,

for all u. From the lower bound (19) we arrive at the estimate (14). O

To establish the existence of a minimizer of F, we impose additional restrictions on p.

Theorem 2.2. In addition to the assumptions in Lemma 2.1, assume the upper bound on p described in (9) holds, then there
exists u, € A, that minimizes F;|q, over A,.

Proof. This theorem can be proved following a standard procedure (see, e.g., [19]). For the convenience of the readers,
we briefly describe the procedures for n > 3. The case n = 2 is similar and simpler. Write 2* := 2n/(n — 2). Suppose
{uy} is a minimizing sequence in A, for F,. By (14), {u} is bounded in H!(£2,). By the Sobolev embedding theorem, {u}
is bounded in LI(£2,) for any 1 < q < 2*. Furthermore, by the compact embedding theorem, there is a subsequence, not
relabeled, and a function u, € H'(£2,) such that

Ux —> U, a.e. in £, and strongly in L(£2,) for 1 < g < 2*. (20)

If p < 222, then |W'(uy)| ~ |ug[P~" is bounded in L*($2,). By (14), —e Aui + 2W'(uy) = %= (uy) is bounded in L?(£2,). The
triangle inequality implies that Auy is bounded in L?(£2;). So actually uy is bounded in H%(£2,). We can extract a further

subsequence, not relabeled, such that

u — u, weakly in H3(£2,), (21)
U — u, strongly in H'(£2,), (22)
U — u, a.e. in £2, and strongly in L9(£2,) (23)

forany 1 <q<ocifn<4and1<gq<2n/(n—4)ifn > 4. Since A, is a closed convex subset of H*(£2,), we see that
U, € A,.
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Since u, — u, a.e. in £2,, by the continuity of W/, we have W’'(u,) — W'(u,) a.e. in £2,. By the growth condition (7)
of W', we have |W'(uy)| < Ciplug/P~! + (3. Since lug|P~' — |u,|P~! strongly in L?(£2,), using the generalized Dominated
Convergence Theorem (see, e.g., [30]), we know that W'(u) — W’(u,) strongly in L?(£2, ). Combined with (21), we have

1 1
—eAup + —W'(uy) = —eAu, + —W'(u,) weakly in [2(£2,). (24)
& &
Hence
1 2 1 2
/ (—8Au£ + fW/(u8)> dx < lim inf/ (—sAuk + fW’(uk)> dx. (25)
2 £ k— o0 2 &
By (22), we have
/ [Vu,|? dx = lim / |Vu)? dx. (26)
2 k— 00 2

Since |W(u)| ~ |ul” as |u| — oo and 2 < p < 2=2

Dominated Convergence Theorem, we have

, which is smaller than 2n/(n — 4) if n > 4, by (23) and the generalized

W(u,)dx = klim W (uy)dx. (27)

98 — 00 95

Combining (25), (26), and (27), we have F,|q, (u.) < liminfi_, o F.|o,(ux). Since ux € A, is a minimizing sequence for
File.(u:) and u, € A,, we conclude that u, is a minimizer for F,|p, in A,. O

Since F,|g, is a non-convex functional, the family of critical points is typically not unique. Since A, is a closed and
convex subset of Hé(Q), we may resort to techniques of variational inequalities. Let u, € A, be any minimizer of F|g,
over A,. Fix any v € A,, define jo_(s) := F|q, (U, +s(v — u.)) for any s € [0, 1]. Then jg, (0) < jg,(s) for any s € [0, 1]. So
if j,(s) is differentiable, then j’Qs(O) > 0, which gives a variational inequality

<‘3F 2 (), 0 u£>
1 1 1
;:/ {7 <—8Au£ + —W’(us)) (—8A(U —ue)+ —W"(u)(v — us))
o le 3 3
_ (msVug V(v —ug)+ %W/(us)(v — us))}dx
>0 forallv e A,. (28)

Given a minimizer u, € A, for F;|g,, we extend u, by zero outside of §2,. We denote this extension by u,. Then
U € Ag, = {u € H}(£2), v=>0in 2, / vdx=mg}.
2
u, may not be a minimizer of F, over Ag ., but u, does have some nice properties. We split F, into two parts, F.|,, and

Felg\g,» where 2, indicates the closure of £2,. For any ¢ € Hg(.Q \ £2,), a straightforward calculation shows that under
the assumption (5), the first order variational derivative of Felg\g, at 0 along ¢ is zero, that is,

SF oo Felove (s¢) — Fo|ove. (0
<7g|9\96 (0), ¢>>  lim 12280~ Felo2, (0 (29)
Su s—0 S
The combination of (28) and (29) gives that for any v € Hg(.Q) such that v|,, € A,, we have
SF,
Su

Here the variational derivative of F; is defined the same way as that of F, |, in (28), with £2, replaced by £2. (30) states
that u, is a critical point of F, under perturbations that are away from 92, and also preserves the total concentration in
£2.. In this sense, we say that U, is a geometrically localized minimizer of F. If u is a minimizer of F, over A ., then u
satisfies

Su
In this case, the lipid domain £2, is implicitly defined as {x € £2 : u(x) > 0}. We leave the exploration of (31) for future
studies.

SF,
< (u), v — u> >0 forallv e Ag,. (31)
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3. Codimension one minimizers

We address the issue of convergence of sequences with bounded energy as ¢ — 0 by imposing the additional
assumption that £2, is a thin region composed of points x € £2 that are O(¢) from a sufficiently smooth, non-self-

intersecting, codimension one hypersurface I'. In parametric form, we can write I" = {¢(s) : s = (51,...,5,-1) € Q C
R™1}, where the parameterization is chosen so that s; is the arc length along the ith coordinate curve and the coordinate
curves are lines of curvature. Let n be the normal of I" and assume all principal curvatures «j(s),j =1,...,n—1,0f I"
are continuously differentiable and bounded. That is, there exists «q > 0 such that
aKj ..
|ki(s)] < Ko, g(s) <ko forallseQandalli,j=1...,n—1. (32)
1

The boundedness of «;(s) guarantees that there exists £ > 0 such that the thin region

Qb= {p(s)+zn(s):s€Q,—L <z < £). (33)
does not self-intersect. The change of variables x — (s, z) for x € 2, given by

X = ¢(s) + ezn,

is well defined and smooth with a smooth inverse x — (s, z) on .Qf The inverse x — ¢(s(x)) is the projection of point
x € 2. onto I', and z € (—¢, £) is the g-scaled signed distance of x to I".
We define §2, C £2 to be the region of distance 2¢¢ to I". More specifically

Q. = {¢p(s)+2zn(s):s € Q, —el <z < &l}, (34)

and it has volume |£2,| = el.Qfl. Defining (s, z) = u(x(s, z)), then it € Hz(.Qf), and (s, £¢) = 0 for all s € Q.

We will use a subscript x to indicate operators in the Cartesian coordinates x. Let x4, ..., k;,_1 be the principal
curvatures of I" and Ty, . . ., T, the corresponding unit tangent vectors. Under the change of variables x — (s, z), Vyu(x)
and A,u(x) have the following forms in the (s, z) coordinates [13,16]

n—1 ~

T, g~

Z +e'n = Pis, z), (35)
1+ ezk; Bs] 4

II
3\
__.._.
E}
|
—_

u 4 kj  ou _,0°U
+e — L et
. (1 + ezi)? sj2 ,_21 1+ ezx; 0z 022

—ei%;@ =: Ail(s, z) (36)
— asj (1 +82Kj)3 as; - e

By (35) and (36), F.(u) = F{(ii) where

2 2
FU(il) = / {; (—eAa + gw/(a)) - (%uﬁaf + nZW(ﬁ)> }]dsdz. (37)
af

Here the scaled Jacobian can be expressed as

n
z2) =) &Ks)Z, (38)
j=0
in terms of the jth Gaussian curvatures Ko = 1, and

K; = Z Kiy -+ Kij.

1<iq <~~<ij§n71

In particular we remark that K; = Hy:= Z]”,f k; is the total curvature of I” and ] — 1 in all Sobolev norms as ¢ — 0. In
the scaled variables the lower bound (14) takes the form,

- 1 1 2 opet <o
Fj(a)z/ Z(—sAﬁ—i-fW’(ﬂ)) + LBl + AifaP jdsdz
2! €

— A2 (39)
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Taking m, = me in the mass constraint, (12), we rewrite the equivalent condition,
/ it Jdsdz = m (40)
Q(
1
on the rescaled domain.

Theorem 3.1. Fix a codimension one interface I" with curvature bound ko as above, and choose ¢ € (0, 1/(2«o)). Then for
any codimension-one ¢-bounded sequence {ii;};2, from Hz(Qf) and a sequence g, — 0% such that

lim supF (uk) < 00,

k—00

there exists C > O such that the following bounds hold for all k € N,

dil o || 9y
il + |52 +a |5 <c ay
2@ o 1Sl
If we assume in addition that
n—1 9~
% |5, )= )
j=1 L2(827 ) J Lsz)

for all k € N, then we have the following conclusions.

(i) In the limit when k — oo, the Cahn-Hilliard energy is equi-partitioned along the normal direction, that is,

1/9
lim / ( "") — W(ip)
k—o00 _QZ 2 0z

(ii) There exists a subsequence i, and a i* € H,($2]) N LP($2]), such that T, converges weakly to ii*. Moreover ii* is a
weak solution to the bilayer equation

Jdsdz = 0. (43)

2
oz PW@)=0 (44)
over 2%, in the sense that
i 06
/ ( oz 9z TG )"’) Jasdz =0, (45)

forall ¢ € HY(2Y) if p < 2* = 2n/(n — 2), and for all ¢ € HA(25) NIP(2Y) if p > 2%,
Proof. We infer from (39) that there exists M > 0 such that
1 ~ . 1 o~ 771 k p
— | —&Ally + —W (uk) |Du,<| + Aq|t|” ¢ Jdsdz < M. (46)
o | 4 Ek

Dropping the first two terms on the left-hand side of (46) yields the bound

B M 1/p
lielinagy < (3:) - (47

Recalling (35) and keeping only the second term on the left-hand side of (46) imply the bound
n n—1 e 2
1 k
2 Jat ]:Zl <l + SkZKj)

Since |kj| < ko and |z] < £ on £2¢, we have the uniform estimate

~ 12
8le

0z

~ |2
Buk

Jdsdz < M. (48)
3Sj

28k Ek
— < ————— < 2¢,
3 1+ EXZKj
for all k such that ¢ < 1/(2lkg), and hence % is uniformly bounded while %" can grow at most as fast 51:]- More
specifically we have established that

ol 3vM
— < , (49)
3Sj ,_2(9{,) «/2)7]8;{
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ol V2M
‘ . < : (50)
0 llpty — M

Taken together, (47), (49), and (50) imply (41).
To establish the convergence to a weak solution of the bilayer equation, we impose the enhanced constraint and (42)
return to the first term on the left-hand side of (46), deducing that

< 2VM. (51)

-~ 1 N
H —& Al + *W,(uk)
12(2%)

Ek

Using (36) to expand the left-hand side of (51), we group terms by formal powers of g,
-~ 1 5
— ek Al + — W' (i)
Ek
n—1

1w 1, ki Ol
= + —W'(u) — —_—
Sk 072 Ek (&) Z] 1+ EKZK| 0z

N RN PR N
KL (15 gz ds? k — 05 (1 + exzis)? s

and employ the triangle inequality

1 921y, 3%y
— | - +W(i) ) —¢
Ek < 072 ( k) k Z 1+ SkZK] sz

224
— Bl
9z

~ 1 - Kj
—&x Ay + *W,(uk) !
Ek

+ RN S—
reh o 11+ ek

1o(24) 1224

HX—I:

j=1

Ikj
as; (1+ SkZKJ)3

otk

N (52)

1o(2!) 12(24)

Combining the uniform bounds on &, over k > 1 and on «; and %, S forj=1, — 1, with the bounds (49), (50), and
(51), imply the existence of a constant M; > 0 such that for all k € N

1 821l %1y
— | —— — & < M. 53
&k < 0z2 +Ww ) k Z 1 + 8kZK] 2 3512 =" ( )

12(24)

The assumption (42) implies that the tangential second derivatives scale as O(sk_l) and are lower order. Moving them to
the right-hand side we conclude that

1 82L~lk -
— | = w’
e < 922 + W)

1 + EkZK]

12(24)
9~
d Uy

2
st

<M, (54)
122}

1o(24)
for some constant M, > 0 independent of ¢, and consequently
H a2 uk

< Mg — 0 (55)
12(2f)

+ w’ (uk)

as k — oo. We use this convergence to establish the equi-partition, (43). Since all terms are zero at z = +£ we have the
bound

10, \° Y

= d

2<az(z)) ‘f (822 e (;))) My g‘

1/2
82u 1/2 1 2
< (/ (8 Ok ey — (k(z))zd;) / a) .
z -1

9

ol
0z

(¢)
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from which we deduce the L' estimate

~ 2
! (a”" (z)) — W(i(2))

j;?@ 2\ 0z
2
( / / (azuk —W’(ak(;») dqudz)
Ql

Jdsdz

1/2

Dom, P i
(/ / e d;]dsdz)
ot 1| 9z
9% o1l
<2l ‘—‘;" + W/(iie) =
0z 22 9z 22

From (41) and (55) we see that the rlght—hand side tends to zero as k — oo and we deduce (i).
To establish that the limit function ii, is a weak solutlon of the bilayer equation, (ii)-(44), we recall that assumption
(42) implies that the first order tangential denvatlves %, are uniformly bounded in LZ(Q Jforj=1,...,n—1and all

k € N. This fact, in conjunction with (47) and (50), implies that i1, is bounded in H (.Qf). We deduce that there exist a
subsequence i, and a function &* € H'(£2¢) such that
i, — U* weakly in H'(£27). (56)

Moreover the Sobolev embedding and compact embedding theorems imply that i, is bounded in LZ*(Qf) and iy, — u*
strongly in Lq(Qf) forany 1 < q < 2* := 2n/(n — 2). Extracting a further subsequence, not relabeled, we have that
i, — U* a.e.in .Qf Since iy is bounded in L"(.Qf), we can improve the strong convergence so that

Uy, — u*  strongly in Lq(.Qf) for any 1 < q < qo := max{p, 2n/(n — 2)}. (57)
Proceeding, from the H' weak convergence, for any ¢ € H(}(.Qf), we have
a u* o
lim / il i’]d dz = / —¢]dsd (58)
i—00 Qé 0z 0z Q{ 0z 0z

Since W’(u) is continuous in u, and |W'(u)| < Clu/P~! as |u| — oo, the strong convergence of iy, — U* in Lq(Qf) for any
q € [p — 1, qo) and a.e. convergence in .Qf together with the Generalized Dominated Convergence Theorem imply that
forany q € [p — 1, qo).

W'(ily,) — W/(ii*) strongly in LY?~D(2{) and a.e. in 2}. (59)
Since W/(ily,) is bounded in L90/?P=1(2%), by extracting a further subsequence if necessary, by (59), we obtain

W/(ily,) — W'(@*)  weakly in L/~ D(25). (60)
Thus

lim W' (i, )¢ Jdsdz = / W' ()¢ Jdsdz, (61)

i—o00 Ql Qf

for any ¢ € L’(.Q‘) with r = qo/(qo — p + 1). Combining (58) and (61), we deduce that
oy, -
f (8” % . wi )¢> Jdsdz = lim < thy 96 -I—W/(ukl.)¢> Jdsdz
1

0z 0z imoo Jor \ 0z 0z
Uy, )~
= lim <— 7 + Wity )) ¢ Jdsdz
i—o00 Qf 90z
=0, (62)

for any ¢ € Hj(22£)NL"(£2%). We remark that if p < 2%, then go = 2* and r < 2*, so that the Sobolev embedding theorem
implies that H}(£2¢) N L"(22Y) = HJ(£2}). On the other hand, if p > 2* then qo = p, r = p, and HJ(22}{) N L'(2}) =
Hi(@HnIreh)., o
4. Upper and lower bounds on codimension-one sequences

A key goal of our analysis is to identify properties of codimension-one £-bounded energy sequences which characterize
the form of their limiting energy. Theorem 3.1 establishes a condition on the tangential derivatives which guarantees that

such sequences have subsequences that converge to weak solutions of the bilayer equation. We show that the asymptotic
scaling of the tangential derivatives is essential to the form of the limiting energy.

10
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4.1. Codimension-one lower bounds

We establish that a slightly stronger constraint on the tangential derivatives imposes a class of codimension-one lower
bounds for the energy of each subsequence that has an H! weak limit. More specifically if ii* € H 1(.{21‘) is a weak solution
of the bilayer equation in the sense of (45), then we define the associated codimension-one energy

G, u*) = / (&*Hg —(m+ nz)B*) ds, (63)
r

where Hy = ZJ'-:]] k;j is the total curvature of I", and

¢
as(s) = 1/
/ W(i*)d (65)

While this result falls short of establishing a unique codimension-one limiting energy it establishes a liminf inequality for
a class of codimension one ¢-bounded sequences.

2

a“‘*
dz, (64)

0z

Theorem 4.1. Suppose 2 < p < 2* and let {ii };2; be a codimension-one £-bounded sequence satisfying the assumptions of
Theorem 3.1; in particular (41) holds. If in addition we strengthen assumption (42) to include a stronger bound on the second
tangential derivatives,

n—1
82uk
=o(g ), (66)

j=1 12(24)

then for any subsequence fl,(j that converges weakly to a function u* in H(}(Qf), we have the following codimension-one liminf
inequality:
liminf F’ (akj) > Gy(I, i*). (67)

]—)

Proof. Without loss of generality, we assume i, — * in H(}(.Qf) and i, satisfies all assumptions in the theorem. We
write the energy integral as the difference of the quadratic and functionalization terms,

- 1 B R
Fy (i) = /[ 3 (—8kAuk + =W (Uk)> Jdsdz
21 Ek

—/ ("‘ k| Dily | +nzW(uk))]dsdz
o

=1-1. (68)

Using the Laplacian expansion (36) we rewrite I as

1 , 1,0\
I :/ — (—ekAﬂk + —W/(uk)) Jdsdz
2t 2 &k

1 at 1 32ﬁk al Kj ol
[ -
! 2 = (1 4+ exzk;) asj = 1+ exzkj 0z
2
Ok o, 1 21y
———+W dsdz. 69
Zas] 1+ekz;cj) as; +5k< 022 + W) J (69)

From (42) and (66), it is easy to see that the tangential derivative terms, i.e., the first and third terms in the quadratic
expression, tend to zero in LZ(Qf) as k — oo, while from (50) and (55), the through-plane derivative terms, i.e., the
second and fourth terms, are uniformly bounded in Lz(Qf). It follows that the tangential terms may be neglected in the
k — oo limit. Moreover

n—1
2 : Kj

_— }{0,
= 1+ erzk;

11
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in L°°(.Qf) as k — oo and we may make this replacement in the limit, observing that

. . auk 1 32ﬂk ~ 2
lim I = lim H? — - +W
kLoo kLoo -Qf {2 0 ( 0z ) + 2813 ( 972 + (uk)

1 9 2ii
_ gy, Ot (97U
& 0z 072

+ W/(ﬁk)> } Jdsdz,

=: lim (11 + L+ 13)‘ (70)
k— 00

Addressing these terms one-by-one we find,

ot 01 -
lim I3 = lim _7/ / Uk (_uk + W’(uk)>](s,z)dzds
k—o00 k—o00 322

ol
= lim —— / / - (— % W(ﬂk)> I(s, z)dzds
auk -
klg&g/ HO/ (— — +W(uk)> 0,J(s, z)dzds, (71)

where we used W (i, (£l)) = W(0) = 0 and %(il) = 0in the integration by parts step. Recalling the form of the Jacobian,
(38), and the definitions (64) and (65) we find that

¢
1
llm I; = lim Hé(s)/ (—
k— 00 k—o00 r —¢ 2

the last conclusion relies on equipartition, (43).
For Iy, since iy — u* weakly in H1(Qf), we have

~ |2
Buk

0z

+ W(ﬁk)> dzds = 0, (72)

n—1 P afl i n—1
J k ; 1 ot
E —_— weakly in H (£27). 73
P 1+ erzj 0z Z = Ho y ( 1) (73)
By weak lower semicontinuity and the strong convergence of J as ¢ — 0 we deduce that
1 aur \° 3
liminfl; > = Ho ) J|,_,dsdz = [ a*Hgds. (74)
k—o00 2 ot 0z =0 r
1
For I, we merely observe that it is positive and bounded below by zero, hence liminfy_, , I; > 0. For II, we have
~ 12 2 n—1 ~ 12
n1 | Ol ~ N1} 1 iy,
II = — | — +mW(uy) + _— [ — dsdz. 75
/Q]z 2 |oz| TEWEIE ; (1 + ezi? | 0s; J (75)

Since p < 2*, by the compact embedding theorem we have i, — #* strongly in Lp(.Qf), and hence W(il,) — W(u*)
strongly in L1(Qf). From the strong convergence of the tangential derivatives, (42), we have

n—1
7718
k—>ocf JZ]: 1+ SkZKj

Finally equipartition, (43), allows us to deduce that

Buk

dsdz = 0.
st Jdsdz

Buk

lim I = lim {”‘
ot 9z

k— 00 k—o00 2

+ UzW(ﬂk)} Jdsdz,
= (m +n2) lim / W (i) Jdsdz,
k—o0 [t

— (1 +m2) f b* ds. (76)
r

Combining (72), (74) and (76) we obtain (67). O

In general @ and b* may depend on s. Since we have the limiting equipartition of energy, (43), ideally we would hope
to keep the equipartition of energy in the limiting profile u*, i.e., a* = b*. However, by the weak convergence i, — u*

12
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in H}(£2!), and the strong convergence W (i) — W(ir*) in L'(£2¢), we can only obtain

0< / a*(s)ds < / b*(s) ds.
r r

Indeed we have the following string of inequalities

~ i | .. aflkv z
/ a*(s)ds = / Jdzds < llmmf/ L\ Jdzds
r et | 0z oo Jot| 8z
= liminf W (i) Jdzds = W(i*) Jdzds = / b*(s)ds.
J=oo Jat 2! r

It is an interesting question to explore the possible loss of energy in the weak convergence. This is left for future studies.
We define S(I', £) to consist of the set of i € Hl(.Qf) that are weak solutions of the bilayer equation, and introduce the
1

—H . ~ . - . . .
set {u,} of functions i € Hl(Qf) that are H! weak limits of a subsequence of {ii;}. With this notation we reformulate

Theorem 4.1.

Corollary 4.2. Fix a codimension-one interface I satisfying (32). Every codimension-one £-bounded sequence {ii}y°, that
satisfies (42) and (66) has the lower bound

~ T |
likmianfk(ﬂk) > sup 1 Gy(I", u*) | i € S(I', £) N {ﬁk}H } (77)
—> 00

— !
Proof. By Theorem 3.1 the set S(I", £)N{ii} is not empty and by Theorem 4.1 for each i, in this set, the value G{(I", i)

is a lower bound for liminfFf, (@i). O
4.2, Codimension-one upper bounds

For a given codimension one interface, I, upper bounds on the limiting energy of codimension-one ¢-bounded
sequences can be obtained for specific examples. We present a sequence that satisfies the enhanced bounds (42) and
(66), and whose codimension one energy provides a sharp lower bound. We also present a codimension-one ¢-bounded
sequence that does not satisfy the enhanced bounds, has no subsequences that are weakly convergent in H!, yet
nonetheless has a limiting energy that may be higher or lower than the codimension-one energy, particularly if the
curvatures of I" are sufficiently large.

4.2.1. Sharp codimension-one energy

In light of Corollary 4.2, to construct sharp bounds it seems meritorious to reduce the size of the set S(I", £). If the
H! weak closure of the sequence is also a H> weak closure, then the limiting bilayer equation solution will reside in
Hg(Qf). The additional regularity implies that u* is a strong solution of the bilayer equation and hence is comprised of
N, s-dependent curves of translates of the bilayer profile, U! € H?(R), defined as the unique single-pulse solution of (79)
that is symmetric about z = 0. The profile U} has compact support, denoted by [—L, L], and remark that N must satisfy
NL < ¢.

Indeed, for u* € S(I", £) N Hg(.Qf), then the extension

~ i ifxe !,
Uext = {O otherwise (78)
belongs to H?(R") and #i* is a strong solution of the bilayer equation
0%1* . . our
— +W'(i*) =0, u*(+€) =0, (££)=0. (79)
0z2 0z
This equation has a unique solution on each whisker W(s) := {x € Qf| ¢(x) = s}. By standard dynamical systems
techniques we find that #* is a superposition of at most N compactly supported single-pulse bilayer solutions
N
i, =Y UMz — puls)), (80)
k=1

where the translates p; : I' — R are sufficiently far apart that their supports are disjoint and avoid the boundary. More
specifically this is achieved if require that p; < pgy1+2L, p1 > —£+L, py < £ —L, uniformly over s € I'. Since u, € H> we
deduce that each p; € H?(I"). The precise value of N depends upon the choice of £ and the value of the mass constraint.

13
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Pulling i, back to its unscaled version u,, we see that total mass can only take discrete values at leading order

L

f u,dx = e/ i, Jdsdz = el]"le Ulz)dz + 0(?). (81)
Q fol —L

Due to the rescaling, the translates have no impact on the mass in the limit as ¢ — 0.

For fixed I" and ¢ sufficiently large we may tune value of the total mass, so that N = 1. The H? solution set then reduces
to the translates of the single pulse, which we denote by !, and for any sequence {g;} we construct the corresponding
sequence {ii;} which agrees trivially with @' for each k, and their un-scaled forms {uy}. This is a codimension-one
¢-bounded sequence that satisfies (42) and (66). To evaluate its energy we rewrite (37) as

ka(uk) = /z[i (e ' (072" + W/(@1")) — Hoit' — gxAlt)
91

2
— T (s1vaa' +10.0"7) — nZW(ﬂ1)]jdsdz. (82)
A simple calculation shows that
Jim F () = fr (alH3(s) = (m1 + m2)b}) ds = Gy(I", U}), (83)
where al = b! > 0 are the corresponding constants
al = 1/L ou! dz, bl = /L W(U)dz. (84)
2 )| oz —L

4.2.2. Codimension-one sequence without codimension one energy

Pearling is a bifurcation characterized by rapid tangential oscillations in bilayer thickness. The existence of pearled
solutions as critical points of the FCH free energy has been established in a weakly nonlinear setting for a smooth well
W, [31]. However this construction requires analysis of the linearization about the underlying bilayer solution and does
not immediately extend to the case of a non-smooth well considered here. However in the strongly nonlinear setting
pearled solutions may reduce to disconnected micelles, that is, codimension n balls. These are radial solutions whose
profile U] solves

n—1
R

where R is the ¢ scaled distance to a center point. The codimension n profile U] satisfies 9;U}(0) = 0 and has support
contained within R € [0, Ry]. For a fixed codimension one interface I", we form a codimension-one ¢ bounded sequence

. . . . .. . . Nj . .
with £ > Ry. Taking {g;} tending to zero as j — oo and for each j identify N; points {x;s},., on I" whose separation is
greater than &;Ry. Since I" is far from self intersection there exists «p > 0 sufficiently small such that for each « € (0, o)
we may choose the points so that N; ~ ozsjl’”. We form the sequence {w;} according to the formula

N
wx) =Y U ("(_87"“") . (86)
k=1 J

To evaluate the energy we first consider, U]. Multiplying (85) by dzU}, integrating from s = R to s = oo, and using
W(U!(o0)) = W(0) = 0, we obtain

UM + aRUM = W'(UM), (85)

1 *1
102 = (n =) [ Sjaeuto)? ds = weu), 57)
Multiplying this expression by R"~! and integrating over the region R = 0 to R = oo yields
* nypn—1 <R n 2 n—1 n 1 n 2
W(UR"™ " dR = |0RUS | — ak(R") [ =I0RUL(s)|"ds | dR. (88)
0 0 2 n R S

The integral over s is identically zero for R beyond the support of U}, while it is bounded as R — 0. We may integrate by
parts on the second term on the right hand side, obtaining

* 2—n % 2—n
f W(U:})R”*l dR = —/ |8RU>’,;‘|2R”’1 dR= ——o,, (89)
o 2n Jo 2n
where we have introduced the codimension-n surface tension
o0
oy = / |0rU™2R"~'dR. (90)
0
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With these results it is easy to see that

_1f{m  2—n
Fs(U:) = —g"! (51 + on 7}2) On, (91)
and hence
. ~ m 2—n
jl_l)noloFf(wj) =—a <? + > n2> op. (92)

Moreover there exists a constant ¢ > 0 such that
I wJ’“LZ(Qf) z G

” Vsw H 12(24) = ngil’

-2
||Aswf||L2(Q/lé) = C8j ) (93)
for all j > 1. The codimension-one ¢-bounded sequence satisfies (41) but neither satisfies the enhanced bounds (42) nor

(66). In particular it is straightforward to choose the points {x; x} so that no subsequence of {w; j‘?; converges strongly in
L%(£2¢).

5. Discussion

We have shown that sequences of FCH-energy bounded functions whose support converges to the same codimension
one interface, I, may have fundamentally different structure and that their limiting energy can target different features
of the underlying interface. Consequently, the relative size of the corresponding limiting energy can be exchanged under
subtle changes in the parameters in the FCH energy. Specifically, the bilayer sequence {ii,} constructed in Section 4.2.1
and the micelle sequence {1y} constructed in Section 4.2.2 are both codimension-one £-bounded for any codimension-one
interface I' satisfying the curvature bounds (32). If . = —n; < 0, then the energy of the bilayer sequence converges
to a positive number. Indeed from Corollary 4.2, any codimension-one £-bounded sequence that satisfies the enhanced
tangential derivative bounds (42) or (66) has its energy bounded below by a positive lower bound, since G{(I", i*) > 0
for all 1 € S(I", £) when 1, < —n1. The energy of the micelle based sequence {wy} has a negative limit, —«(1 — %)ﬂlﬁn
in space dimension n > 2. Conversely, if 7, > -5 11 > 0, then the micelle sequence has a positive energy limit while the
bilayer sequence has a negative energy limit if the curvatures of I' are sufficiently small.

The attempt to obtain well defined lower bounds to free energy by restricting the support of u to lie in a thin
codimension-one domain is frustrated by the fact that the FCH free energy supports higher codimensional structures
that can be naturally embedded within a codimension one domain. However, we have shown that for sequences whose
tangential variation is sufficiently tame and whose H! weak limits lie in H 2(.Qf), then the possible limit set corresponds to
N translates of a bilayer, with a corresponding limiting energy. It is natural to extend this analysis to restrict the support
of u to lie in a thin neighborhood of a codimension-m domain, including codimension two filamentous pores in R3. It is
also important to characterize defect structures such as triple junctions, and open edges.

References

[1] P. Canham, Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell, J. Theoret. Biol. 26 (1970)
61-81.
[2] W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments, Z. Naturforsch. C 28 (1973) 693-703.
[3] Q. Dy, C. Liu, X. Wang, Retrieving topological information for phase field models, SIAM ]. Appl. Math. 65 (2005) 1913-1932.
[4] Q. Dy, C. Liu, X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, ]. Comput. Phys.
212 (2006) 757-777.
[5] P. Loreti, R. March, Propagation of fronts in a nonlinear fourth order equation, European J. Appl. Math. 11 (2000) 203-213.
[6] J. Lowengrub, A. Ratz, A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding,
and fission, Phys. Rev. E 79 (2009) 031925, 1:13.
[7] M. Roger, R. Schitzle, On a modified conjecture of de giorgi, Math. Z. 254 (2006) 675-714.
[8] RJ. Ryham, F.S. Cohen, R. Eisenberg, A dynamics model of open vesicles in fluids, Commun. Math. Sci. 10 (4) (2012) 1273-1285.
[9] S. Torabi, ]. Lowengrub, A. Voigt, S. Wise, A new phase-field model for strongly aniostropic systems, Proc. R. Soc. A 465 (2009) 1337-1359.
[10] H. Wiebe, J. Spooner, E. Deglint, E. Edwards, P. Dance, N. Weinberg, Calculation of molecular volumes and volumes of activity using molecular
dynamics simulations, J. Phys. Chem. C 116 (3) (2012) 2240-2245.
[11] P.WJ.M. Frederix, . Patmanidis, S.J. Marrink, Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection
to experiments, Chem. Soc. Rev. 47 (2018) 3470-3489.
[12] A. Christlieb, N. Kraitzman, K. Promislow, Competition and complexity in amphiphilic polymer morphology, Physica D 400 (2019) 132144.
[13] S. Dai, K. Promislow, Geometric evolution of bilayers under the functionalized cahn-hilliard equation, Proc. R. Soc. A 469 (2013) 20120505.
[14] S. Dai, K. Promislow, Competitive geometric evolution of amphiphilic interfaces, SIAM J. Math. Anal. 47 (1) (2015) 347-380.
[15] A. Doelman, G. Hayrapetyan, K. Promislow, B. Wetton, Meander and pearling of single-curvature bilayer interfaces, SIAM ]. Math. Anal. 46 (6)
(2014) 3640-3677.
[16] N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, Curvature driven flow of bi-layer interfaces, Physica D 240 (2011) 675-693.
[17] N. Gavish, ]. Jones, Z. Xu, A. Christlieb, K. Promislow, Variational models of network formation and ion transport: Applications to
perfluorosulfonate ionomer membranes, Polymers 4 (2012) 630-655.

15


http://refhub.elsevier.com/S0377-0427(20)30611-7/sb1
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb1
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb1
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb2
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb3
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb4
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb4
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb4
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb5
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb6
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb6
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb6
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb7
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb8
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb9
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb10
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb10
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb10
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb11
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb11
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb11
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb12
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb13
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb14
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb15
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb15
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb15
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb16
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb17
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb17
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb17

S. Dai and K. Promislow Journal of Computational and Applied Mathematics 388 (2021) 113320

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]

[30]
[31]

N. Kraitzman, K. Promislow, Pearling bifurcations in the strong functionalized Cahn-Hilliard free energy, SIAM J. Math. Anal. 50 (3) (2018)
3395-3426.

K. Promislow, H. Zhang, Critical points of functionalized Lagrangians, Discrete Contin. Dyn. Syst. 33 (4) (2013) 1231-1246.

S. Jain, E.S. Bates, On the origins of morphological complexity in block copolymer surfactants, Science 300 (5618) (2003) 460-464.

D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, in: Classics in Applied Mathematics, vol.
31, SIAM, 2000.

J-W. Cahn, C.M. Elliott, A. Novick-Cohen, The cahn-hilliard equation with a concentration-dependent mobility: motion by minus the Laplacian
of the mean curvature, European J. Appl. Math. 7 (1996) 287-301.

S. Dai, Q. Du, Motion of interfaces governed by the cahn-hilliard equation with highly disparate diffusion mobility, SIAM ]. Appl. Math. 72 (6)
(2012) 1818-1841.

S. Dai, Q. Du, Coarsening mechanism for systems governed by the cahn-hilliard equation with degenerate diffusion mobility, Multiscale Model.
Simul. 12 (4) (2014) 1870-1889.

S. Dai, Q. Du, Computational studies of coarsening rates for the cahn-hilliard equation with phase-dependent diffusion mobility, ]. Comput.
Phys. 310 (2016) 85-108.

S. Dai, Q. Du, Weak solutions for the cahn-hilliard equation with phase-dependent diffusion mobility, Arch. Ration. Mech. Anal. 219 (3) (2016)
1161-1184.

C. Elliott, H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM ]. Math. Anal. 27 (2) (1996) 404-423.

AA. Lee, A. Miinch, E. Siili, Sharp-interface limits of the cahn-hilliard equation with degenerate mobility, SIAM ]. Appl. Math. 76 (2) (2016)
433-456.

J.I. Diaz, J. Hernandez, Y. II'yasov, On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic
problem with strong absorption, Nonlinear Anal. 119 (2015) 484-500.

H.L. Royden, Real Analysis, third ed., Macmillan Publishing Company, New York, 1988.

K. Promislow, Q. Wu, Existence of pearled patterns in the planar functionalized cahn-hilliard equation, J. Differential Equations 259 (2015)
3298-3343.

16


http://refhub.elsevier.com/S0377-0427(20)30611-7/sb18
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb18
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb18
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb19
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb20
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb21
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb21
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb21
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb22
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb22
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb22
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb23
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb23
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb23
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb24
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb24
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb24
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb25
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb25
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb25
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb26
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb26
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb26
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb27
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb28
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb28
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb28
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb29
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb29
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb29
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb30
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb31
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb31
http://refhub.elsevier.com/S0377-0427(20)30611-7/sb31

	Codimension one minimizers of highly amphiphilic mixtures
	Introduction
	Summary of main results

	Geometrically localized minimizers of F
	Codimension one minimizers
	Upper and lower bounds on codimension-one sequences
	Codimension-one lower bounds
	Codimension-one upper bounds
	Sharp codimension-one energy
	 Codimension-one sequence without codimension one energy


	Discussion
	References


