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a b s t r a c t

We present a modified form of the Functionalized Cahn–Hilliard (FCH) functional which
models highly amphiphilic systems in solvent. A molecule is highly amphiphilic if the
energy of a molecule isolated within the bulk solvent molecule is prohibitively high. For
such systems once the amphiphilic molecules assemble into a structure it is very rare
for a molecule to exchange back into the bulk. The highly amphiphilic FCH functional
has a well with limited smoothness and admits compactly supported critical points. In
the limit of molecular length ε → 0 we consider sequences with bounded energy whose
support resides within an ε-neighborhood of a fixed codimension one interface. We
show that the FCH energy is uniformly bounded from below, independent of ε > 0, and
identify assumptions on tangential variation of sequences that guarantee the existence
of subsequences that converge to a weak solution of a rescaled bilayer profile equation,
and show that sequences with limited tangential variation enjoy a lim inf inequality.
For fixed codimension one interfaces we construct bounded energy sequences which
converge to the bilayer profile and others with larger tangential variation which do
not converge to the bilayer profile but whose limiting energy can violate the lim inf
inequality, depending upon the energy parameters.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Amphiphilic molecules play an essential role in the self assembly of nano-scale structures in solvent, in biological
ontext they play an essential role in the formation of cell membranes and other organelles, and they are increasingly
mportant in applications of synthetic chemistry. There are distinct approaches to model the free energy of amphiphilic
ixtures that emphasize different scalings and assumptions on morphology. The classical sharp interface approximations

nclude the Canham–Helfrich energy [1,2] which characterizes the free energy of a codimension one interface embedded
n R3 in terms of its two curvatures. This is an appealingly simple formulation but does not readily handle singularities
ssociated with topological change. Conventional phase field models based on the Cahn–Hilliard (CH) energy describe
ingle layer interfaces, see [3–9] and references therein. Single-layer interfaces separate dissimilar phases which cannot
e merged and describe the transition region around the boundary between the phases as if it were a high-energy void.
or oil and water blends this is a very reasonable approximation, as a hydrophobic molecule generates a cavity when
laced within water, [10] and see Fig. 1(left). Amphiphilic materials can create interfaces between similar fluids [11],
ee Fig. 1(right), or reside at interfaces between dissimilar fluids, such as oil and water. In this latter case they are
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Fig. 1. (left) Results of molecular dynamics simulation showing shape of void induced in solvent phase in response to hydrophobic molecules
of different shapes. Reprinted with permission from [10] Copyright (2012) American Chemical Society. (right) All atom simulation of packing of
amphiphilic molecule (gray) at interface between external solvent molecules (reddish) and internal solvent (not imaged to show internal structure).
Reproduced from [11] with permission from the Royal Society of Chemistry. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

also called surfactants and lower the overall mixture energy by packing the hydrophobic cavity. Modeling amphiphilic
interfaces with single layer energies presents certain limitations, the first is that single layer models allow the transition
region around the interface to change without material transport. Even when the total volume of the transition region is
preserved by external constraint, transition volume removed at one point may reappear at another distant point without
requiring transport of surfactant. In many applications transport of surfactant is the most significant rate limiting step,
this is particularly true of highly amphiphilic molecules. A second limitation of single layer models is that the single layer
interface cannot be punctured. The opening of holes in vesicles requires the introduction of additional order parameters
for each vesicle, in particular the total number of vesicles must be predetermined [8].

The functionalized Cahn–Hilliard (FCH) free energy is a phenomenological model describing the free energy of
amphiphilic mixtures [12–18], that supports codimension one bilayer interfaces that separate two identical phases by
a thin region of a second phase — the amphiphilic material. Bilayer interfaces can be punctured and can form free edges
and open structures. Gradient flows of the FCH free energy transport amphiphilic molecules either along the interface or
through the bulk solvent phase. Over a bounded domain Ω ⊂ Rn, the conventional Cahn–Hilliard functional takes the
orm

Eε(u) :=

∫
Ω

(
ε

2
|∇u|2 +

1
ε
W (u)

)
dx, (1)

where u is the relative concentration of the two phases, the double well potential W : R ↦→ R has two equal-depth
minimizers at u = 0 and u = u+ > 0 corresponding to the two phases, and ε > 0 is a small parameter characterizing the
width of the void region between the phases. The weak functionalization form of the FCH functional can be scaled as

Fε(u) :=

∫
Ω

{
1
2ε

(
−ε∆u +

1
ε
W ′(u)

)2

−

(η1ε

2
|∇u|2 +

η2

ε
W (u)

)}
dx. (2)

he first term on the left-hand side of (2) is the square of the variational derivative of a Cahn–Hilliard type energy and
ts volume integral captures distance of the configuration u from a critical point of the underlying Cahn–Hilliard type
unctional — these critical points represent the optimal packings of the amphiphilic molecules. The double well has
nequal depth minima, W (0) = 0 > W (u+). The parameters η1 > 0 and η2 ∈ R model the strength of hydrophilic
nteractions and the aspect ratio of the amphiphilic molecule respectively. For fixed ε > 0 and mass amphiphilic mass
raction M :=

∫
Ω
u dx the functional Fε is bounded from below with a negative lower bound that diverges to negative

nfinity as ε → 0 [19].
A key experimental quantity is the exchange rate which governs the probability of an amphiphilic molecule being

jected from an interface and returning to the bulk solvent. This rate is governed by the difference in free energies
f a molecule when it is in the interface and when it is in the bulk. The insertion rate, that is, the propensity of an
mphiphilic molecule in the bulk to be absorbed onto an interface, typically varies inversely to the exchange rate. These
wo processes mediate the exchange of surfactant materials between disjoint interfaces. The experimental literature shows
hat the exchange rate decays exponentially with the length of the hydrophobic moiety [20], diminishing effectively to
ero for sufficiently diblocks with sufficiently long hydrophobic regions. These ‘‘highly amphiphilic’’ surfactants have a
rohibitively large solvation energy and produce structures that have almost no measurable exchange of amphiphilic
olecules with the bulk. The structures they form act like isolated islands in a sea of solvent. Important classes of
mphiphilic are considered to be highly amphiphilic, these include most lipids which are characterized by a small
ydrophilic head and longer, double-branched hydrophobic tail.
2
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Analysis of mass-preserving gradient flows of the FCH functional has focused on the stability and asymptotic dynamics
f codimension one bilayers and codimension two filamentous pore structures. The analysis shows that the temporal rate
f surfactant exchange is inversely proportional to the second derivative of the double well at the pure solvent phase,

′′(0). This is relatively transparent from the form of the FCH free energy (2), for which direct calculation shows that a
spatially constant distribution u ≡ c has an energy

Fε(c) =
1
2
ε−3c2|Ω|·|W ′′(0)|2+O(ε−3c3). (3)

Moreover interfaces decay exponentially in space to the bulk constant value at a rate inversely proportional to ε
√
W ′′(0).

The exchange rate of an interfacial structure depends primarily upon its codimension. The differing exchange rates
between structures of different codimension generically leads to growth of structures whose codimension has the lowest
associated exchange rate at the expense of those structures with higher exchange rates [13–18]. To model highly
amphiphilic molecules we drive the exchange rate to zero by considering a double well which is smooth for u > 0 but
only C1+α in a neighborhood of u = 0. This generates minimizers of the FCH that are potentially compactly supported,
with no mechanism to exchange surfactant molecules between disjoint structures.

In experimental situations the amphiphilic materials typically occupy a small fraction of the total volume of the domain.
Indeed, to produce an O(1) surface area of codimension one bilayer requires an O(ε) volume of amphiphile. Given the
compactly supported nature of the critical points of the FCH energy it is natural to consider distributions u ∈ H2(Ω) of
mphiphile whose support lies in a small subset Ωε within the total domain Ω . Considering the boundary ∂Ω of the
omain to be unfavorable for amphiphilic molecules, for example a clean glass beaker, it is natural to impose no-contact,
o-flux boundary conditions

u = 0,
∂u
∂ν

= 0, (4)

where ν is the outer normal of ∂Ω . These boundary conditions indicate that amphiphilic structures lie in Ω and away
from the boundary ∂Ω . We further require the local regularity assumption

W (u) ∼ ur for some 3/2 < r < 2 as u → 0+, (5)

and the growth rate assumptions

C1|u|p + C2 ≤W (u) ≤ C1|u|p + C3, (6)

|W ′(u)| ≤ C1p|u|p−1
+ C ′

3, (7)

C1p|u|p + C4 ≤W ′(u)u. (8)

for some constants C1 > 0 and C2, C3, C ′

3, C4 ∈ R and all u ∈ R. Here

2 ≤ p < ∞ if n = 2 and 2 ≤ p <
2n − 2
n − 2

if n ≥ 3. (9)

Specifically for n = 3, we require 2 ≤ p < 4. These conditions imply that

W (0) = W ′(0) = 0, W ′′(0+) = +∞.

The requirement r > 3/2 guarantees that the solvent-free profile, u ≡ 0, is a critical point of Fε , and the requirement
< 2 signals the highly amphiphilic nature of the surfactant and guarantees the existence of compactly supported bilayer
rofiles corresponding to critical points of Fε . The growth rate requirements on p are technical considerations to establish
he existence of minimizers, the value of p has little impact on the model and no physical significance. A generic example
f a double well satisfying these requirements is

W (u) = χ (u)|u|r
(
(u − u+)2 + τ

(
u −

1 + r
r

u+

))
+ C5(1 − χ (u))|u|p, (10)

here χ : R ↦→ R is a C∞ cut-off function which is 1 on [−1, 2u+] and zero outside a compact set. The parameter C5 > 0
s chosen large enough to guarantee that W ′ has no zeros outside of [0, u+]. The parameter τ controls the depth of the
ight well: W (u+) = −

τ
r |u+|

1+r < 0 for τ > 0.

Remark 1.1. Finding local minimizers of Fε under the restriction that u ≥ 0 is both analytically and numerically
challenging as the variational derivative of Fε involvesW ′′ which is not well defined at 0. One approach is to use variational
inequalities, as outlined in [21]. While the model here differs from those considered for the Cahn–Hilliard equation with
degenerate mobility [22–28], the mechanism that prevents interaction through the bulk is fundamentally distinct. For
degenerate mobility molecules in the bulk are frozen in place and cannot move. In the model presented here molecules
in the bulk phase would readily move and be rapidly and permanently absorbed in finite time; once depleted there is no
mechanism to replenish the bulk density and bulk diffusion ceases.
3
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1.1. Summary of main results

This discussion motivates the introduction of ‘‘geometrically localized critical points’’, uε of Fε over the set of functions
n H2(Ω) whose support is contained within an open subset Ωε compactly contained in Ω . These critical points are
onstructed in Section 2 for fixed values of ε > 0. In Section 3 for fixed ℓ > 0 we take Ωε to be the εℓ neighborhood
f a fixed codimension one interface Γ compactly embedded in Ω , and analyze behaviors of sequences of functions
uεk}

∞

k=1 with masses {mεk}
∞

k=1 whose energies {Fεk (uεk )}
∞

k=1 are uniformly bounded as εk → 0 as k → ∞. We call
hese codimension-one ℓ-bounded sequences with respect to Γ , and establish upper bounds on their plane and tangential
erivatives. In Theorem 3.1, under the assumption of slightly stronger bounds on the tangential derivatives, (42), we
stablish the existence of a subsequence which converges to a weak solution of the codimension one bilayer equation

Uzz = W ′(U), (11)

n a rescaled domain Ω1 where z is ε-scaled distance to Γ . In Section 4, in Theorem 4.1 we establish a lim inf inequality
hat holds for all codimension-one ℓ bounded sequences that satisfy a yet slightly stronger bound, (66), on the tangential
erivatives. The lim inf inequality provides a lower bound in terms of a sup of codimension-one energy, G1, defined in (63),
valuated at the weak solutions of the bilayer equation, see Corollary 4.2. Moreover for general codimension-one interface
we construct codimension-one ℓ-bounded sequences composed of solutions of the bilayer equation which converge in a

trong sense to the codimension-one energy G1, achieving the lower bound. However, for the same interfaces, we construct
second family of codimension-one ℓ bounded sequences composed of superpositions of codimension n critical points,
alled micelles when n = 3, with disjoint, compact support. These sequences do not satisfy the enhanced bounds on the
angential derivatives, and do not have a subsequence converging to the bilayer equation, but their energies converge to
limit that may be lower than the associated codimension one limit, depending upon the choice of the functionalization
arameters η1 and η2 and the size of the curvatures of Γ .

. Geometrically localized minimizers of Fε

Compactly supported solutions and positive solutions for reaction–diffusion equations have been of interest for
heoretical and application reasons, see [29] and references therein. In [29] it has been shown that if the domain Ω

s sufficiently large, then a class of low regularity reaction–diffusion equations admits compactly supported positive
olutions, which can be interpreted as compactly supported positive critical points for free energies of the form (1), with
= 1 and a nonsmooth potential

Wα,λ(u) =
1

α + 1
|u|α+1

−
λ

2
u2,

or any 0 < α < 1, and λ > λ1, where λ1 > 0 is the first eigenvalue for the Laplace operator with Dirichlet boundary
onditions. In our context a large domain is equivalent to a sufficiently small value of ε. Although the potential Wα,λ

pproaches negative infinity as |u| → ∞, it shares the same strong absorption property as our non-smooth potential W ,
amely, W ′

α,λ(0) = 0, W ′′

α,λ(0
+) = +∞.

In this section, we will show that for any subset Ωε ⊂ Ω such that ∂Ωε is C1, Fε has a minimizer uε over the class of
onnegative functions in H2(Ω) with support inside of Ωε subject to a prescribed total mass of the lipid phase,∫

Ωε

u dx = mε. (12)

ince Fε(0) = 0, we need only consider the integral of the FCH energy density over the subset Ωε , denoted by Fε|Ωε , over
ll u in the admissible set

Aε :=

{
u ∈ H2

0 (Ωε) : u ≥ 0 in Ωε,

∫
Ωε

u dx = mε

}
. (13)

o construct uε , we first derive a lower bound of Fε|Ωε over all u ∈ H2
0 (Ωε). The proof is a modification of that [19], which

ncorporates the positivity assumption that allows an explicit formulation of the lower bound on ε. We highlight the key
teps of the calculation.

emma 2.1. Suppose W is a double well potential satisfying (5) and the growth assumptions (6)–(8) with p ≥ 2 (but not
ecessarily the upper bound in (9)), then for ε sufficiently small and η2 < pη1 there exist constants A1, A2 > 0 depending only
n η1, η2, p, C1, C3, and C4, such that for any u ∈ H2

0 (Ωε)

Fε|Ωε (u) ≥

∫
Ωε

{
1
4ε

(
δEε

δu

)2

+
η1ε

2
|∇u|2 +

A1

ε
|u|p

}
dx −

A2

ε
|Ωε|. (14)
4
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Proof. The L2 variational derivative of Eε takes the form
δEε

δu
= −ε∆u +

1
ε
W ′(u), (15)

and we may write∫
Ωε

δEε

δu
u dx =

∫
Ωε

ε|∇u|2 +
1
ε
W ′(u)u. (16)

hen

Fε|Ωε (u) =

∫
Ωε

{
1
2ε

(
δEε

δu

)2

−
η1ε

2
|∇u|2 −

η2

ε
W (u)

}
dx

=

∫
Ωε

{
1
2ε

(
δEε

δu

)2

− η1
δEε

δu
u + η1

(
ε|∇u|2 +

1
ε
W ′(u)u

)

−
η1ε

2
|∇u|2 −

η2

ε
W (u)

}
dx. (17)

ince

η1
δEε

δu
u ≤

1
4ε

(
δEε

δu

)2

+ εη2
1u

2, (18)

lugging into (17), we have

Fε|Ωε (u) ≥

∫
Ωε

{
1
4ε

(
δEε

δu

)2

+
η1ε

2
|∇u|2

+
1
ε

(
η1W ′(u)u − η2W (u) − η2

1ε
2u2
)}

dx. (19)

ince p ≥ 2, by (6) and (8), we have

η1W ′(u)u − η2W (u) − η2
1ε

2u2
≥
(
C1(η1p − η2) − ε2η2

1

)
|u|p + (η1C4 − η2C3).

or ε sufficiently small and η2 < η1p we find A1, A2 > 0, depending only on η1, η2, p, C1, C3, C4 such that

η1W ′(u)u − η2W (u) − η2
1ε

2u2
≥ A1|u|p − A2,

or all u. From the lower bound (19) we arrive at the estimate (14). □

To establish the existence of a minimizer of Fε we impose additional restrictions on p.

heorem 2.2. In addition to the assumptions in Lemma 2.1, assume the upper bound on p described in (9) holds, then there
xists uε ∈ Aε that minimizes Fε|Ωε over Aε .

roof. This theorem can be proved following a standard procedure (see, e.g., [19]). For the convenience of the readers,
e briefly describe the procedures for n ≥ 3. The case n = 2 is similar and simpler. Write 2∗

:= 2n/(n − 2). Suppose
uk} is a minimizing sequence in Aε for Fε . By (14), {uk} is bounded in H1(Ωε). By the Sobolev embedding theorem, {uk}

s bounded in Lq(Ωε) for any 1 ≤ q ≤ 2∗. Furthermore, by the compact embedding theorem, there is a subsequence, not
elabeled, and a function uε ∈ H1(Ωε) such that

uk → uε a.e. in Ωε and strongly in Lq(Ωε) for 1 ≤ q < 2∗. (20)

f p < 2n−2
n−2 , then |W ′(uk)| ∼ |uk|

p−1 is bounded in L2(Ωε). By (14), −ε∆uk +
1
ε
W ′(uk) =

δEε

∂u (uk) is bounded in L2(Ωε). The
riangle inequality implies that ∆uk is bounded in L2(Ωk). So actually uk is bounded in H2(Ωε). We can extract a further
subsequence, not relabeled, such that

uk ⇀ uε weakly in H2(Ωε), (21)

uk → uε strongly in H1(Ωε), (22)

uk → uε a.e. in Ωε and strongly in Lq(Ωε) (23)

for any 1 ≤ q < ∞ if n ≤ 4 and 1 ≤ q < 2n/(n − 4) if n > 4. Since Aε is a closed convex subset of H2(Ωε), we see that
∈ A .
ε ε

5
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Since uk → uε a.e. in Ωε , by the continuity of W ′, we have W ′(uk) → W ′(uε) a.e. in Ωε . By the growth condition (7)
f W ′, we have |W ′(uk)| ≤ C1p|uk|

p−1
+ C ′

3. Since |uk|
p−1

→ |uε|
p−1 strongly in L2(Ωε), using the generalized Dominated

onvergence Theorem (see, e.g., [30]), we know that W ′(uk) → W ′(uε) strongly in L2(Ωε). Combined with (21), we have

−ε∆uk +
1
ε
W ′(uk) ⇀ −ε∆uε +

1
ε
W ′(uε) weakly in L2(Ωε). (24)

ence ∫
Ωε

(
−ε∆uε +

1
ε
W ′(uε)

)2

dx ≤ lim inf
k→∞

∫
Ωε

(
−ε∆uk +

1
ε
W ′(uk)

)2

dx. (25)

y (22), we have∫
Ωε

|∇uε|
2 dx = lim

k→∞

∫
Ωε

|∇uk|
2 dx. (26)

ince |W (u)| ∼ |u|p as |u| → ∞ and 2 ≤ p < 2n−2
n−2 , which is smaller than 2n/(n− 4) if n > 4, by (23) and the generalized

ominated Convergence Theorem, we have∫
Ωε

W (uε) dx = lim
k→∞

∫
Ωε

W (uk) dx. (27)

ombining (25), (26), and (27), we have Fε|Ωε (uε) ≤ lim infk→∞ Fε|Ωε (uk). Since uk ∈ Aε is a minimizing sequence for
ε|Ωε (uε) and uε ∈ Aε , we conclude that uε is a minimizer for Fε|Ωε in Aε . □

Since Fε|Ωε is a non-convex functional, the family of critical points is typically not unique. Since Aε is a closed and
onvex subset of H2

0 (Ω), we may resort to techniques of variational inequalities. Let uε ∈ Aε be any minimizer of Fε|Ωε

ver Aε . Fix any v ∈ Aε , define jΩε (s) := Fε|Ωε (uε + s(v − uε)) for any s ∈ [0, 1]. Then jΩε (0) ≤ jΩε (s) for any s ∈ [0, 1]. So
f jΩε (s) is differentiable, then j′Ωε

(0) ≥ 0, which gives a variational inequality⟨
δFε|Ωε

δu
(uε), v − uε

⟩
:=

∫
Ωε

{
1
ε

(
−ε∆uε +

1
ε
W ′(uε)

)(
−ε∆(v − uε) +

1
ε
W ′′(uε)(v − uε)

)
−

(
η1ε∇uε · ∇(v − uε) +

η2

ε
W ′(uε)(v − uε)

)}
dx

≥0 for all v ∈ Aε. (28)

Given a minimizer uε ∈ Aε for Fε|Ωε , we extend uε by zero outside of Ωε . We denote this extension by uε . Then

uε ∈ AΩ,ε :=

{
v ∈ H2

0 (Ω), v ≥ 0 in Ω,

∫
Ω

v dx = mε

}
.

uε may not be a minimizer of Fε over AΩ,ε , but uε does have some nice properties. We split Fε into two parts, Fε|Ωε and
Fε|Ω\Ωε

, where Ωε indicates the closure of Ωε . For any φ ∈ H2
0 (Ω \ Ωε), a straightforward calculation shows that under

he assumption (5), the first order variational derivative of Fε|Ω\Ωε
at 0 along φ is zero, that is,⟨

δFε|Ω\Ωε

δu
(0), φ

⟩
:= lim

s→0

Fε|Ω\Ωε
(sφ) − Fε|Ω\Ωε

(0)
s

= 0. (29)

he combination of (28) and (29) gives that for any v ∈ H2
0 (Ω) such that v|Ωε∈ Aε , we have⟨

δFε

δu
(uε), v − uε

⟩
≥ 0. (30)

ere the variational derivative of Fε is defined the same way as that of Fε|Ωε in (28), with Ωε replaced by Ω . (30) states
hat uε is a critical point of Fε under perturbations that are away from ∂Ωε , and also preserves the total concentration in

ε . In this sense, we say that uε is a geometrically localized minimizer of Fε . If u is a minimizer of Fε over AΩ,ε , then u
atisfies⟨

δFε

δu
(u), v − u

⟩
≥ 0 for all v ∈ AΩ,ε. (31)

In this case, the lipid domain Ωε is implicitly defined as {x ∈ Ω : u(x) > 0}. We leave the exploration of (31) for future
studies.
6
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3. Codimension one minimizers

We address the issue of convergence of sequences with bounded energy as ε → 0 by imposing the additional
ssumption that Ωε is a thin region composed of points x ∈ Ω that are O(ε) from a sufficiently smooth, non-self-
ntersecting, codimension one hypersurface Γ . In parametric form, we can write Γ = {φ(s) : s = (s1, . . . , sn−1) ∈ Q ⊂

Rn−1
}, where the parameterization is chosen so that si is the arc length along the ith coordinate curve and the coordinate

curves are lines of curvature. Let n be the normal of Γ and assume all principal curvatures κj(s), j = 1, . . . , n − 1, of Γ

are continuously differentiable and bounded. That is, there exists κ0 > 0 such that

|κj(s)| ≤ κ0,

⏐⏐⏐⏐∂κj

∂si
(s)
⏐⏐⏐⏐ ≤ κ0 for all s ∈ Q and all i, j = 1 . . . , n − 1. (32)

he boundedness of κj(s) guarantees that there exists ℓ > 0 such that the thin region

Ωℓ
1 := {φ(s) + zn(s) : s ∈ Q , −ℓ < z < ℓ}. (33)

oes not self-intersect. The change of variables x ↦→ (s, z) for x ∈ Ωε given by

x = φ(s) + εzn,

s well defined and smooth with a smooth inverse x ↦→ (s, z) on Ωℓ
1 . The inverse x ↦→ φ(s(x)) is the projection of point

∈ Ωε onto Γ , and z ∈ (−ℓ, ℓ) is the ε-scaled signed distance of x to Γ .
We define Ωε ⊂ Ω to be the region of distance 2εℓ to Γ . More specifically

Ωε := {φ(s) + zn(s) : s ∈ Q , −εℓ < z < εℓ}, (34)

nd it has volume |Ωε| = ε|Ωℓ
1 |. Defining ũ(s, z) = u(x(s, z)), then ũ ∈ H2(Ωℓ

1 ), and ũ(s, ±ℓ) = 0 for all s ∈ Q .
We will use a subscript x to indicate operators in the Cartesian coordinates x. Let κ1, . . . , κn−1 be the principal

urvatures of Γ and T1, . . . , Tn−1 the corresponding unit tangent vectors. Under the change of variables x ↦→ (s, z), ∇xu(x)
nd ∆xu(x) have the following forms in the (s, z) coordinates [13,16]

∇xu(x) =

n−1∑
j=1

Tj

1 + εzκj

∂ ũ
∂sj

+ ε−1n
∂ ũ
∂z

=: D̃ũ(s, z), (35)

∆xu(x) =

n−1∑
j=1

1
(1 + εzκj)2

∂2ũ
∂s2j

+ ε−1
n−1∑
j=1

κj

1 + εzκj

∂ ũ
∂z

+ ε−2 ∂2ũ
∂z2

− ε

n−1∑
j=1

∂κj

∂sj

1
(1 + εzκj)3

∂ ũ
∂sj

=: ∆̃ũ(s, z). (36)

y (35) and (36), Fε(u) = F̃ ℓ
ε (ũ) where

F̃ ℓ
ε (ũ) :=

∫
Ωℓ

1

{
1
2

(
−ε∆̃ũ +

1
ε
W ′(ũ)

)2

−

(
η1ε

2

2
|D̃ũ|

2
+ η2W (ũ)

)}
Jdsdz. (37)

ere the scaled Jacobian can be expressed as

J(s, z) =

n∑
j=0

εjKj(s)z j, (38)

in terms of the jth Gaussian curvatures K0 = 1, and

Kj :=

∑
1≤i1<···<ij≤n−1

κi1 · · · κij .

In particular we remark that K1 = H0:=
∑n−1

j=1 κj is the total curvature of Γ and J → 1 in all Sobolev norms as ε → 0. In
the scaled variables the lower bound (14) takes the form,

F̃ ℓ
ε (ũ) ≥

∫
Ωℓ

1

{
1
4

(
−ε∆̃ũ +

1
ε
W ′(ũ)

)2

+
η1ε

2

2
|D̃ũ|

2
+ A1|ũ|

p

}
Jdsdz

− A |Ωℓ
|. (39)
2 1
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Taking mε = mε in the mass constraint, (12), we rewrite the equivalent condition,∫
Ωℓ

1

ũ Jdsdz = m (40)

n the rescaled domain.

heorem 3.1. Fix a codimension one interface Γ with curvature bound κ0 as above, and choose ℓ ∈ (0, 1/(2κ0)). Then for
ny codimension-one ℓ-bounded sequence {ũk}

∞

k=1 from H2(Ωℓ
1 ) and a sequence εk → 0+ such that

lim sup
k→∞

F̃ ℓ
εk
(ũk) < ∞,

there exists C > 0 such that the following bounds hold for all k ∈ N+,ũk

Lp(Ωℓ

1 )
+

∂ ũk

∂z


L2(Ωℓ

1 )
+ εk

n−1∑
j=1

∂ ũk

∂sj


L2(Ωℓ

1 )
≤ C . (41)

f we assume in addition that

n−1∑
j=1

⎛⎝∂ ũk

∂sj


L2(Ωℓ

1 )
+ εk

∂2ũk

∂s2j


L2(Ωℓ

1 )

⎞⎠ ≤ C (42)

for all k ∈ N+, then we have the following conclusions.

(i) In the limit when k → ∞, the Cahn–Hilliard energy is equi-partitioned along the normal direction, that is,

lim
k→∞

∫
Ωℓ

1

⏐⏐⏐⏐⏐12
(

∂ ũk

∂z

)2

− W (ũk)

⏐⏐⏐⏐⏐ Jdsdz = 0. (43)

(ii) There exists a subsequence ũki and a ũ∗
∈ H1

0 (Ω
ℓ
1 ) ∩ Lp(Ωℓ

1 ), such that ũki converges weakly to ũ∗. Moreover ũ∗ is a
weak solution to the bilayer equation

−
∂2ũ∗

∂z2
+ W ′(ũ∗) = 0, (44)

over Ωℓ
1 , in the sense that∫
Ωℓ

1

(
∂ ũ∗

∂z
∂φ

∂z
+ W ′(ũ∗)φ

)
Jdsdz = 0, (45)

for all φ ∈ H1
0 (Ω

ℓ
1 ) if p ≤ 2∗

= 2n/(n − 2), and for all φ ∈ H1
0 (Ω

ℓ
1 ) ∩ Lp(Ωℓ

1 ) if p > 2∗.

roof. We infer from (39) that there exists M > 0 such that∫
Ωℓ

1

{
1
4

(
−εk∆̃ũk +

1
εk

W ′(ũk)
)2

+
η1ε

2
k

2
|D̃ũk|

2
+ A1|ũk|

p

}
Jdsdz ≤ M. (46)

Dropping the first two terms on the left-hand side of (46) yields the boundũk

Lp(Ωℓ

1 )
≤

(
M
A1

)1/p

. (47)

ecalling (35) and keeping only the second term on the left-hand side of (46) imply the bound

η1

2

∫
Ωℓ

1

⎧⎨⎩
n−1∑
j=1

(
εk

1 + εkzκj

)2 ⏐⏐⏐⏐∂ ũk

∂sj

⏐⏐⏐⏐2 +

⏐⏐⏐⏐∂ ũk

∂z

⏐⏐⏐⏐2
⎫⎬⎭ Jdsdz ≤ M. (48)

ince |κj| ≤ κ0 and |z| ≤ ℓ on Ωℓ
1 , we have the uniform estimate

2εk
3

≤
εk

1 + εkzκj
≤ 2εk,

or all k such that εk < 1/(2lκ0), and hence ∂ ũk
∂z is uniformly bounded while ∂ ũk

∂sj
can grow at most as fast ε−1

k . More
specifically we have established that∂ ũk

∂s


ℓ

≤
3
√
M

√
2η ε

, (49)

j L2(Ω1 ) 1 k
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∂ ũk

∂z


L2(Ωℓ

1 )
≤

√
2M

√
η1

. (50)

aken together, (47), (49), and (50) imply (41).
To establish the convergence to a weak solution of the bilayer equation, we impose the enhanced constraint and (42)

eturn to the first term on the left-hand side of (46), deducing that−εk∆̃ũk +
1
εk

W ′(ũk)

L2(Ωℓ

1 )
≤ 2

√
M. (51)

sing (36) to expand the left-hand side of (51), we group terms by formal powers of εk,

− εk∆̃ũk +
1
εk

W ′(ũk)

= −
1
εk

∂2ũk

∂z2
+

1
εk

W ′(ũk) −

n−1∑
j=1

κj

1 + εkzκj

∂ ũk

∂z

− εk

n−1∑
j=1

1
(1 + εkzκj)2

∂2ũk

∂s2j
+ ε2

k

n−1∑
j=1

∂κj

∂sj

1
(1 + εkzκj)3

∂ ũk

∂sj
,

and employ the triangle inequality 1
εk

(
−

∂2ũk

∂z2
+ W ′(ũk)

)
− εk

n−1∑
j=1

1
(1 + εkzκj)2

∂2ũk

∂s2j


L2(Ωℓ

1 )

≤

−εk∆̃ũk +
1
εk

W ′(ũk)

L2(Ωℓ

1 )
+

n−1∑
j=1

 κj

1 + εkzκj


L∞(Ωℓ

1 )

∂ ũk

∂z


L2(Ωℓ

1 )

+ ε2
k

n−1∑
j=1

∂κj

∂sj

1
(1 + εkzκj)3


L∞(Ωℓ

1 )

∂ ũk

∂sj


L2(Ωℓ

1 )
. (52)

ombining the uniform bounds on εk over k ≥ 1 and on κj and
∂κj
∂sj

for j = 1, . . . , n − 1, with the bounds (49), (50), and
(51), imply the existence of a constant M1 > 0 such that for all k ∈ N 1

εk

(
−

∂2ũk

∂z2
+ W ′(ũk)

)
− εk

n−1∑
j=1

1
(1 + εkzκj)2

∂2ũk

∂s2j


L2(Ωℓ

1 )

≤ M1. (53)

he assumption (42) implies that the tangential second derivatives scale as O(ε−1
k ) and are lower order. Moving them to

he right-hand side we conclude that 1
εk

(
−

∂2ũk

∂z2
+ W ′(ũk)

)
L2(Ωℓ

1 )

≤M1 + εk

n−1∑
j=1

 1
(1 + εkzκj)2


L∞(Ωℓ

1 )

∂2ũk

∂s2j


L2(Ωℓ

1 )

≤ M2, (54)

or some constant M2 > 0 independent of εk, and consequently−∂2ũk

∂z2
+ W ′(ũk)


L2(Ωℓ

1 )
≤ M2εk → 0 (55)

as k → ∞. We use this convergence to establish the equi-partition, (43). Since all terms are zero at z = ±ℓ we have the
bound ⏐⏐⏐⏐⏐12

(
∂ ũk

∂z
(z)
)2

− W (ũk(z))

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐∫ z

−l

(
∂2ũk

∂z2
(ζ ) − W ′(ũk(ζ ))

)
∂ ũk

∂z
(ζ ) dζ

⏐⏐⏐⏐
≤

(∫ l

−l

(
∂2ũk

∂z2
(ζ ) − W ′(ũk(ζ ))2dζ

)1/2
)(∫ l

−l

⏐⏐⏐⏐∂ ũk

∂z
(ζ )
⏐⏐⏐⏐2 dζ

)1/2

,

9
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from which we deduce the L1 estimate∫
Ωℓ

1

⏐⏐⏐⏐⏐12
(

∂ ũk

∂z
(z)
)2

− W (ũk(z))

⏐⏐⏐⏐⏐ Jdsdz
≤

(∫
Ω l

1

∫ l

−l

(
∂2ũk

∂z2
(ζ ) − W ′(ũk(ζ ))

)2

dζ Jdsdz

)1/2

·

(∫
Ωℓ

1

∫ l

−l

⏐⏐⏐⏐∂ ũk

∂z
(ζ )
⏐⏐⏐⏐2 dζ Jdsdz

)1/2

≤2l
−∂2ũk

∂z2
+ W ′(ũk)


L2(Ωℓ

1 )

∂ ũk

∂z


L2(Ωℓ

1 )
.

From (41) and (55) we see that the right-hand side tends to zero as k → ∞ and we deduce (i).
To establish that the limit function ũ∗ is a weak solution of the bilayer equation, (ii)-(44), we recall that assumption

(42) implies that the first order tangential derivatives ∂ ũk
∂sj

are uniformly bounded in L2(Ωℓ
1 ) for j = 1, . . . , n − 1 and all

k ∈ N. This fact, in conjunction with (47) and (50), implies that ũk is bounded in H1(Ωℓ
1 ). We deduce that there exist a

subsequence ũki and a function ũ∗
∈ H1(Ωℓ

1 ) such that

ũki ⇀ ũ∗ weakly in H1(Ωℓ
1 ). (56)

Moreover the Sobolev embedding and compact embedding theorems imply that ũk is bounded in L2
∗

(Ωℓ
1 ) and ũki → ũ∗

strongly in Lq(Ωℓ
1 ) for any 1 ≤ q < 2∗

:= 2n/(n − 2). Extracting a further subsequence, not relabeled, we have that
ũki → ũ∗ a.e. in Ωℓ

1 . Since ũk is bounded in Lp(Ωℓ
1 ), we can improve the strong convergence so that

ũki → ũ∗ strongly in Lq(Ωℓ
1 ) for any 1 ≤ q < q0 := max{p, 2n/(n − 2)}. (57)

roceeding, from the H1 weak convergence, for any φ ∈ H1
0 (Ω

ℓ
1 ), we have

lim
i→∞

∫
Ωℓ

1

∂ ũki

∂z
∂φ

∂z
Jdsdz =

∫
Ωℓ

1

∂ ũ∗

∂z
∂φ

∂z
Jdsdz. (58)

ince W ′(u) is continuous in u, and |W ′(u)| ≤ C |u|p−1 as |u| → ∞, the strong convergence of ũki → ũ∗ in Lq(Ωℓ
1 ) for any

∈ [p − 1, q0) and a.e. convergence in Ωℓ
1 , together with the Generalized Dominated Convergence Theorem imply that

or any q ∈ [p − 1, q0),

W ′(ũki ) → W ′(ũ∗) strongly in Lq/(p−1)(Ωℓ
1 ) and a.e. in Ωℓ

1 . (59)

ince W ′(ũki ) is bounded in Lq0/(p−1)(Ωℓ
1 ), by extracting a further subsequence if necessary, by (59), we obtain

W ′(ũki ) ⇀ W ′(ũ∗) weakly in Lq0/(p−1)(Ωℓ
1 ). (60)

hus

lim
i→∞

∫
Ωℓ

1

W ′(ũki )φ Jdsdz =

∫
Ωℓ

1

W ′(ũ∗)φ Jdsdz, (61)

or any φ ∈ Lr (Ωℓ
1 ) with r = q0/(q0 − p + 1). Combining (58) and (61), we deduce that∫

Ωℓ
1

(
∂ ũ∗

∂z
∂φ

∂z
+ W ′(ũ∗)φ

)
Jdsdz = lim

i→∞

∫
Ωℓ

1

(
∂ ũki

∂z
∂φ

∂z
+ W ′(ũki )φ

)
Jdsdz

= lim
i→∞

∫
Ωℓ

1

(
−

∂2ũki

∂z2
+ W ′(ũki )

)
φ Jdsdz

= 0, (62)

or any φ ∈ H1
0 (Ω

ℓ
1 )∩ Lr (Ωℓ

1 ). We remark that if p ≤ 2∗, then q0 = 2∗ and r ≤ 2∗, so that the Sobolev embedding theorem
mplies that H1

0 (Ω
ℓ
1 ) ∩ Lr (Ωℓ

1 ) = H1
0 (Ω

ℓ
1 ). On the other hand, if p > 2∗, then q0 = p, r = p, and H1

0 (Ω
ℓ
1 ) ∩ Lr (Ωℓ

1 ) =
1
0 (Ω

ℓ
1 ) ∩ Lp(Ωℓ

1 ). □

. Upper and lower bounds on codimension-one sequences

A key goal of our analysis is to identify properties of codimension-one ℓ-bounded energy sequences which characterize
he form of their limiting energy. Theorem 3.1 establishes a condition on the tangential derivatives which guarantees that
uch sequences have subsequences that converge to weak solutions of the bilayer equation. We show that the asymptotic
caling of the tangential derivatives is essential to the form of the limiting energy.
10
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4.1. Codimension-one lower bounds

We establish that a slightly stronger constraint on the tangential derivatives imposes a class of codimension-one lower
ounds for the energy of each subsequence that has an H1 weak limit. More specifically if ũ∗

∈ H1(Ωℓ
1 ) is a weak solution

f the bilayer equation in the sense of (45), then we define the associated codimension-one energy

G1(Γ , ũ∗) :=

∫
Γ

(
ã∗H2

0 − (η1 + η2)b̃∗

)
ds, (63)

here H0 =
∑n−1

j=1 κj is the total curvature of Γ , and

ã∗(s) :=
1
2

∫ ℓ

−ℓ

⏐⏐⏐⏐∂ ũ∗

∂z

⏐⏐⏐⏐2 dz, (64)

b̃∗(s) :=

∫ ℓ

−ℓ

W (ũ∗)dz. (65)

While this result falls short of establishing a unique codimension-one limiting energy it establishes a liminf inequality for
a class of codimension one ℓ-bounded sequences.

Theorem 4.1. Suppose 2 ≤ p < 2∗ and let {ũk}
∞

k=1 be a codimension-one ℓ-bounded sequence satisfying the assumptions of
Theorem 3.1; in particular (41) holds. If in addition we strengthen assumption (42) to include a stronger bound on the second
tangential derivatives,

n−1∑
j=1

∂2ũk

∂s2j


L2(Ωℓ

1 )

= o(ε−1
k ), (66)

hen for any subsequence ũκj that converges weakly to a function ũ∗ in H1
0 (Ω

ℓ
1 ), we have the following codimension-one liminf

inequality:

lim inf
j→∞

F̃ ℓ
εκj

(ũκj ) ≥ G1(Γ , ũ∗). (67)

Proof. Without loss of generality, we assume ũk ⇀ ũ∗ in H1
0 (Ω

ℓ
1 ) and ũk satisfies all assumptions in the theorem. We

write the energy integral as the difference of the quadratic and functionalization terms,

F̃ ℓ
εk
(ũk) =

∫
Ωℓ

1

1
2

(
−εk∆̃ũk +

1
εk

W ′(ũk)
)2

Jdsdz

−

∫
Ωℓ

1

(
η1ε

2
k

2
|D̃ũk|

2
+ η2W (ũk)

)
Jdsdz

=: I − II. (68)

sing the Laplacian expansion (36) we rewrite I as

I =

∫
Ωℓ

1

1
2

(
−εk∆̃ũk +

1
εk

W ′(ũk)
)2

Jdsdz

=

∫
Ωℓ

1

1
2

⎧⎨⎩−εk

n−1∑
j=1

1
(1 + εkzκj)2

∂2ũk

∂s2j
−

n−1∑
j=1

κj

1 + εkzκj

∂ ũk

∂z

+ε2
k

n−1∑
j=1

∂κj

∂sj

1
(1 + εkzκj)3

∂ ũk

∂sj
+

1
εk

(
−

∂2ũk

∂z2
+ W ′(ũk)

)⎫⎬⎭
2

Jdsdz. (69)

From (42) and (66), it is easy to see that the tangential derivative terms, i.e., the first and third terms in the quadratic
expression, tend to zero in L2(Ωℓ

1 ) as k → ∞, while from (50) and (55), the through-plane derivative terms, i.e., the
second and fourth terms, are uniformly bounded in L2(Ωℓ

1 ). It follows that the tangential terms may be neglected in the
k → ∞ limit. Moreover

n−1∑ κj

1 + εkzκj
→ H0,
j=1

11



S. Dai and K. Promislow Journal of Computational and Applied Mathematics 388 (2021) 113320

w

B

F

S
s

F

in L∞(Ωℓ
1 ) as k → ∞ and we may make this replacement in the limit, observing that

lim
k→∞

I = lim
k→∞

∫
Ωℓ

1

{
1
2
H2

0

(
∂ ũk

∂z

)2

+
1

2ε2
k

(
−

∂2ũk

∂z2
+ W ′(ũk)

)2

−
1
εk

H0
∂ ũk

∂z

(
−

∂2ũk

∂z2
+ W ′(ũk)

)}
Jdsdz,

=: lim
k→∞

(I1 + I2 + I3). (70)

Addressing these terms one-by-one we find,

lim
k→∞

I3 = lim
k→∞

−
1
εk

∫
Γ

H0

∫ ℓ

−ℓ

∂ ũk

∂z

(
−

∂2ũk

∂z2
+ W ′(ũk)

)
J(s, z)dzds

= lim
k→∞

−
1
εk

∫
Γ

H0

∫ ℓ

−ℓ

∂

∂z

(
−

1
2

⏐⏐⏐⏐∂ ũk

∂z

⏐⏐⏐⏐2 + W (ũk)

)
J(s, z)dzds

= lim
k→∞

1
εk

∫
Γ

H0

∫ ℓ

−ℓ

(
−

1
2

⏐⏐⏐⏐∂ ũk

∂z

⏐⏐⏐⏐2 + W (ũk)

)
∂z J(s, z)dzds, (71)

here we used W (ũk(±l)) = W (0) = 0 and ∂ ũk
∂z (±l) = 0 in the integration by parts step. Recalling the form of the Jacobian,

(38), and the definitions (64) and (65) we find that

lim
k→∞

I3 = lim
k→∞

∫
Γ

H2
0 (s)

∫ ℓ

−ℓ

(
−

1
2

⏐⏐⏐⏐∂ ũk

∂z

⏐⏐⏐⏐2 + W (ũk)

)
dzds = 0, (72)

the last conclusion relies on equipartition, (43).
For I1, since ũk ⇀ ũ∗ weakly in H1(Ωℓ

1 ), we have

n−1∑
j=1

κj

1 + εkzκj

∂ ũk

∂z
⇀

∂ ũ∗

∂z

n−1∑
j=1

κj =
∂ ũ∗

∂z
H0 weakly in H1(Ωℓ

1 ). (73)

y weak lower semicontinuity and the strong convergence of J as ε → 0 we deduce that

lim inf
k→∞

I1 ≥
1
2

∫
Ωℓ

1

(
∂ ũ∗

∂z
H0

)2

J
⏐⏐
ε=0dsdz =

∫
Γ

ã∗H2
0ds. (74)

or I2 we merely observe that it is positive and bounded below by zero, hence lim infk→∞ I2 ≥ 0. For II , we have

II =

∫
Ωℓ

1

⎧⎨⎩η1

2

⏐⏐⏐⏐∂ ũk

∂z

⏐⏐⏐⏐2 + η2W (ũk) +
η1ε

2
k

2

n−1∑
j=1

1
(1 + εkzκj)2

⏐⏐⏐⏐∂ ũk

∂sj

⏐⏐⏐⏐2
⎫⎬⎭ Jdsdz. (75)

ince p < 2∗, by the compact embedding theorem we have ũk → ũ∗ strongly in Lp(Ωℓ
1 ), and hence W (ũk) → W (ũ∗)

trongly in L1(Ωℓ
1 ). From the strong convergence of the tangential derivatives, (42), we have

lim
k→∞

∫
Ωℓ

1

η1ε
2
k

2

n−1∑
j=1

1
(1 + εkzκj)2

⏐⏐⏐⏐∂ ũk

∂sj

⏐⏐⏐⏐2 Jdsdz = 0.

inally equipartition, (43), allows us to deduce that

lim
k→∞

II = lim
k→∞

∫
Ωℓ

1

{
η1

2

⏐⏐⏐⏐∂ ũk

∂z

⏐⏐⏐⏐2 + η2W (ũk)

}
Jdsdz,

= (η1 + η2) lim
k→∞

∫
Ωℓ

1

W (ũk) Jdsdz,

= (η1 + η2)
∫

Γ

b∗ ds. (76)

Combining (72), (74) and (76) we obtain (67). □

In general ã∗ and b̃∗ may depend on s. Since we have the limiting equipartition of energy, (43), ideally we would hope
to keep the equipartition of energy in the limiting profile ũ∗, i.e., ã∗

= b̃∗. However, by the weak convergence ũ ⇀ ũ∗

kj
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in H1
0 (Ω

ℓ
1 ), and the strong convergence W (ũkj ) → W (ũ∗) in L1(Ωℓ

1 ), we can only obtain

0 ≤

∫
Γ

ã∗(s) ds ≤

∫
Γ

b̃∗(s) ds.

ndeed we have the following string of inequalities∫
Γ

ã∗(s) ds =

∫
Ωℓ

1

⏐⏐⏐⏐∂ ũ∗

∂z

⏐⏐⏐⏐2 Jdzds ≤ lim inf
j→∞

∫
Ωℓ

1

⏐⏐⏐⏐∂ ũkj

∂z

⏐⏐⏐⏐2 Jdzds
= lim inf

j→∞

∫
Ωℓ

1

W (ũkj ) Jdzds =

∫
Ωℓ

1

W (ũ∗) Jdzds =

∫
Γ

b̃∗(s) ds.

t is an interesting question to explore the possible loss of energy in the weak convergence. This is left for future studies.
We define S(Γ , ℓ) to consist of the set of ũ ∈ H1(Ωℓ

1 ) that are weak solutions of the bilayer equation, and introduce the

set {ũk}
H1

of functions ũ ∈ H1(Ωℓ
1 ) that are H1 weak limits of a subsequence of {ũk}. With this notation we reformulate

Theorem 4.1.

Corollary 4.2. Fix a codimension-one interface Γ satisfying (32). Every codimension-one ℓ-bounded sequence {ũk}
∞

k=1 that
satisfies (42) and (66) has the lower bound

lim inf
k→∞

F̃ ℓ
εk
(ũk) ≥ sup

{
G1(Γ , ũ∗)

⏐⏐ ũ∗
∈ S(Γ , ℓ) ∩ {ũk}

H1
}

. (77)

Proof. By Theorem 3.1 the set S(Γ , ℓ)∩{ũk}
H1

is not empty and by Theorem 4.1 for each ũ∗ in this set, the value G1(Γ , ũ∗)
s a lower bound for lim inf F̃ ℓ

εk
(ũk). □

.2. Codimension-one upper bounds

For a given codimension one interface, Γ , upper bounds on the limiting energy of codimension-one ℓ-bounded
equences can be obtained for specific examples. We present a sequence that satisfies the enhanced bounds (42) and
66), and whose codimension one energy provides a sharp lower bound. We also present a codimension-one ℓ-bounded
equence that does not satisfy the enhanced bounds, has no subsequences that are weakly convergent in H1, yet
onetheless has a limiting energy that may be higher or lower than the codimension-one energy, particularly if the
urvatures of Γ are sufficiently large.

.2.1. Sharp codimension-one energy
In light of Corollary 4.2, to construct sharp bounds it seems meritorious to reduce the size of the set S(Γ , ℓ). If the

1 weak closure of the sequence is also a H2 weak closure, then the limiting bilayer equation solution will reside in
2
0 (Ω

ℓ
1 ). The additional regularity implies that ũ∗ is a strong solution of the bilayer equation and hence is comprised of

, s-dependent curves of translates of the bilayer profile, U1
∗

∈ H2(R), defined as the unique single-pulse solution of (79)
hat is symmetric about z = 0. The profile U1

∗
has compact support, denoted by [−L, L], and remark that N must satisfy

L ≤ ℓ.
Indeed, for ũ∗

∈ S(Γ , ℓ) ∩ H2
0 (Ω

ℓ
1 ), then the extension

ũ∗

ext :=

{
ũ∗ if x ∈ Ωℓ

1 ,

0 otherwise (78)

elongs to H2(Rn) and ũ∗ is a strong solution of the bilayer equation

−
∂2ũ∗

∂z2
+ W ′(ũ∗) = 0, ũ∗(±ℓ) = 0,

∂ ũ∗

∂z
(±ℓ) = 0. (79)

his equation has a unique solution on each whisker W (s) := {x ∈ Ωℓ
1

⏐⏐φ(x) = s}. By standard dynamical systems
echniques we find that ũ∗ is a superposition of at most N compactly supported single-pulse bilayer solutions

ũ∗ =

N∑
k=1

U1
∗
(z − pk(s)), (80)

here the translates pk : Γ ↦→ R are sufficiently far apart that their supports are disjoint and avoid the boundary. More
pecifically this is achieved if require that pk < pk+1+2L, p1 > −ℓ+L, pN < ℓ−L, uniformly over s ∈ Γ . Since u∗ ∈ H2 we
educe that each p ∈ H2(Γ ). The precise value of N depends upon the choice of ℓ and the value of the mass constraint.
k
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Pulling ũ∗ back to its unscaled version u∗, we see that total mass can only take discrete values at leading order∫
Ω

u∗dx = ε

∫
Ωℓ

1

ũ∗ Jdsdz = ε|Γ |N
∫ L

−L
U1

∗
(z) dz + O(ε2). (81)

ue to the rescaling, the translates have no impact on the mass in the limit as ε → 0.
For fixed Γ and ℓ sufficiently large we may tune value of the total mass, so that N = 1. The H2 solution set then reduces

o the translates of the single pulse, which we denote by ũ1, and for any sequence {εk} we construct the corresponding
equence {ũk} which agrees trivially with ũ1 for each k, and their un-scaled forms {uk}. This is a codimension-one
-bounded sequence that satisfies (42) and (66). To evaluate its energy we rewrite (37) as

F̃ ℓ
εk
(ũk) :=

∫
Ωℓ

1

[
1
2

(
εk

−1 (
−∂2

z ũ
1
+ W ′(ũ1)

)
− H∂z ũ1

− εk∆sũ1)2
−

η1

2

(
εk

2
|∇sũ1

|
2
+ |∂z ũ1

|
2
)

− η2W (ũ1)
]
Jdsdz. (82)

simple calculation shows that

lim
k→∞

F̃ ℓ
εk
(ũk) =

∫
Γ

(
a1

∗
H2

0 (s) − (η1 + η2)b1∗
)
ds = G1(Γ ,U1

∗
), (83)

here a1
∗

= b1
∗

> 0 are the corresponding constants

a1
∗

=
1
2

∫ L

−L

⏐⏐⏐⏐∂U1
∗

∂z

⏐⏐⏐⏐2 dz, b1
∗

=

∫ L

−L
W (U1

∗
)dz. (84)

4.2.2. Codimension-one sequence without codimension one energy
Pearling is a bifurcation characterized by rapid tangential oscillations in bilayer thickness. The existence of pearled

solutions as critical points of the FCH free energy has been established in a weakly nonlinear setting for a smooth well
W , [31]. However this construction requires analysis of the linearization about the underlying bilayer solution and does
not immediately extend to the case of a non-smooth well considered here. However in the strongly nonlinear setting
pearled solutions may reduce to disconnected micelles, that is, codimension n balls. These are radial solutions whose
profile Un

∗
solves

∂2
RU

n
∗

+
n − 1
R

∂RUn
∗

= W ′(Un
∗
), (85)

here R is the ε scaled distance to a center point. The codimension n profile Un
∗
satisfies ∂RUn

∗
(0) = 0 and has support

ontained within R ∈ [0, R0]. For a fixed codimension one interface Γ , we form a codimension-one ℓ bounded sequence
ith ℓ > R0. Taking {εj} tending to zero as j → ∞ and for each j identify Nj points {xj,k}

Nj
k=1 on Γ whose separation is

greater than εjR0. Since Γ is far from self intersection there exists α0 > 0 sufficiently small such that for each α ∈ (0, α0)
we may choose the points so that Nj ∼ αε1−n

j . We form the sequence {wj} according to the formula

wj(x) =

Nj∑
k=1

Un
∗

(
|x − xj,k|

εj

)
. (86)

To evaluate the energy we first consider, Un
∗
. Multiplying (85) by ∂RUn

∗
, integrating from s = R to s = ∞, and using

(Un
∗
(∞)) = W (0) = 0, we obtain

1
2
|∂RUn

∗
|
2
− (n − 1)

∫
∞

R

1
s
|∂RUn

∗
(s)|2 ds = W (Un

∗
). (87)

Multiplying this expression by Rn−1 and integrating over the region R = 0 to R = ∞ yields∫
∞

0
W (Un

∗
)Rn−1 dR =

∫
∞

0

[
Rn−1

2
|∂RUn

∗
|
2
−

n − 1
n

∂R
(
Rn) ∫ ∞

R

1
s
|∂RUn

∗
(s)|2 ds

]
dR. (88)

he integral over s is identically zero for R beyond the support of Un
∗
, while it is bounded as R → 0. We may integrate by

arts on the second term on the right hand side, obtaining∫
∞

0
W (Un

∗
)Rn−1 dR =

2 − n
2n

∫
∞

0
|∂RUn

∗
|
2Rn−1 dR =

2 − n
2n

σn, (89)

where we have introduced the codimension-n surface tension

σn :=

∫
∞

|∂RUn
∗
|
2Rn−1dR. (90)
0
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With these results it is easy to see that

Fε(Un
∗
) = −εn−1

(
η1

2
+

2 − n
2n

η2

)
σn, (91)

nd hence

lim
j→∞

F̃ ℓ
ε (wj) = −α

(
η1

2
+

2 − n
2n

η2

)
σn. (92)

oreover there exists a constant c > 0 such thatwj

L2(Ωℓ

1 )
≥ c,∇swj


L2(Ωℓ

1 )
≥ cε−1

j ,∆swj

L2(Ωℓ

1 )
≥ cε−2

j , (93)

or all j ≥ 1. The codimension-one ℓ-bounded sequence satisfies (41) but neither satisfies the enhanced bounds (42) nor
66). In particular it is straightforward to choose the points {xj,k} so that no subsequence of {wj}

∞

j=1 converges strongly in
L2(Ωℓ

1 ).

5. Discussion

We have shown that sequences of FCH-energy bounded functions whose support converges to the same codimension
one interface, Γ , may have fundamentally different structure and that their limiting energy can target different features
of the underlying interface. Consequently, the relative size of the corresponding limiting energy can be exchanged under
subtle changes in the parameters in the FCH energy. Specifically, the bilayer sequence {ũk} constructed in Section 4.2.1
and the micelle sequence {w̃k} constructed in Section 4.2.2 are both codimension-one ℓ-bounded for any codimension-one
interface Γ satisfying the curvature bounds (32). If η2 = −η1 < 0, then the energy of the bilayer sequence converges
to a positive number. Indeed from Corollary 4.2, any codimension-one ℓ-bounded sequence that satisfies the enhanced
tangential derivative bounds (42) or (66) has its energy bounded below by a positive lower bound, since G1(Γ , ũ∗) > 0
for all ũ ∈ S(Γ , ℓ) when η2 < −η1. The energy of the micelle based sequence {w̃k} has a negative limit, −α(1 −

1
n )η1σn

n space dimension n ≥ 2. Conversely, if η2 > n
n−2η1 > 0, then the micelle sequence has a positive energy limit while the

ilayer sequence has a negative energy limit if the curvatures of Γ are sufficiently small.
The attempt to obtain well defined lower bounds to free energy by restricting the support of u to lie in a thin

codimension-one domain is frustrated by the fact that the FCH free energy supports higher codimensional structures
that can be naturally embedded within a codimension one domain. However, we have shown that for sequences whose
tangential variation is sufficiently tame and whose H1 weak limits lie in H2(Ωℓ

1 ), then the possible limit set corresponds to
N translates of a bilayer, with a corresponding limiting energy. It is natural to extend this analysis to restrict the support
of u to lie in a thin neighborhood of a codimension-m domain, including codimension two filamentous pores in R3. It is
also important to characterize defect structures such as triple junctions, and open edges.
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