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Abstract

For gradient flows of energies, both spectral renormalization (SRN) and energy
landscape (EL) techniques have been used to establish slow motion of orbits
near low-energy manifold. We show that both methods are applicable to flows
induced by families of gradients and compare the scope and specificity of the
results. The SRN techniques capture the flow in a thinner neighbourhood of the
manifold, affording a leading order representation of the slow flow via as pro-
jection of the flow onto the tangent plane of the manifold. The SRN approach
requires a spectral gap in the linearization of the full gradient flow about the
points on the low-energy manifold. We provide conditions on the choice of
gradient under which the spectral gap is preserved, and show that up to repa-
rameterization the slow flow is invariant under these choices of gradients. The
EL methods estimate the magnitude of the slow flow, but cannot capture its
leading order form. However the EL only requires normal coercivity for the
second variation of the energy, and does not require spectral conditions on the
linearization of the full flow. It thus applies to a much larger class of gradi-
ents of a given energy. We develop conditions under which the assumptions of
the SRN method imply the applicability of the EL method, and identify a large
family of gradients for which the EL methods apply. In particular we apply both
approaches to derive the interaction of multi-pulse solutions within the 1 + 1D
functionalized Cahn—Hilliard gradient flow, deriving gradient invariance for a
class of gradients arising from powers of a homogeneous differential operator.
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1. Introduction

Gradient flows play a fundamental role in material science, biology, and other physical systems
in which dissipation is dominant. They provide mechanisms for self organization of patterns
that minimize the underlying energy of the system. The basic structure is provided by an energy
J that is a smooth map from a Hilbert space H into R, and a gradient, G, that relates the flow
of the system to the dissipation of the energy. Typically the energy is naturally posed in terms
of the inner product on a larger Hilbert space X that lies between H and its X-dual, H'. The
underlying PDE takes the form

u = —GVxJ(u),

where VxJ denotes the variational derivative of J in the X inner product, and G a non-negative,
X-self-adjoint linear operator. The energy J decreases along the orbits and minimizers of J
are strong candidates for asymptotically stable equilibrium of the gradient flow. The energy
landscape (EL) method arose to identify conditions under which manifolds of low-energy
configurations engender slow flows that remain trapped within a thin neighbourhood of the
manifold. The EL method seems to have originated in the study of slow motion of radial inter-
faces in the Cahn—Hilliard system [1], and was developed into a more general framework in
[13] and more recently in [2]. The method makes few direct assumptions on the smoothness
of the manifold nor upon the gradient, requiring only that the energy has little variation over
the manifold, increases uniformly in the direction normal the manifold, and that there is well-
defined projection from an H-neighbourhood of the manifold onto the manifold. It is natural
to compare these results to the spectral renormalization (SRN) framework developed in [14]
for damped-forced Hamiltonian systems and adapted in [3, 5] to singularly-perturbed reaction
diffusion systems.

The SRN method establishes the existence of slow flows in a neighbourhood of a mani-
folds comprised of quasi-steady solutions. It belongs to the family of global centre manifold
approaches for these problems and is distinguished by the mechanism by which it builds the
linear semi-group estimates for the linearization about the slowly evolving pattern. The SRN
replaces the temporally dependent linear problem with a sequence of time independent prob-
lems by freezing the underlying pattern. The difference between the frozen and evolving pattern
is tucked into an error term. As the system evolves away from the frozen pattern, this error
grows and a point the frozen pattern must be updated in a re-projection or ‘renormalization’
step. Additional global centre manifold approaches arose out of the early work of Sandst-
ede [19], and culminated in the framework of [22] that introduces an artificial projection that
eliminates the neutral modes to arrive at the linear semi-group estimates.

To complete the renormalization step, the SRN requires detailed assumptions on the spec-
trum of the linearization, L. .= — gV%J , of the vector field F:= — GVxJ at the points on the
manifold, in particular it requires the manifold to be a graph over a finite dimensional space.
Heuristically, if the vector field evaluated on the manifold satisfies | F(u)||z ~ § then the slow
flow evolves on an O(9) time-scale. The SRN approach attracts orbits into a neighbourhood of
the manifold that has an O(d)H-norm thickness, with the distance of the orbit to the manifold
contributing an O(6 2y error. On the other hand the EL method embeds the manifold in a forward
invariant neighbourhood with an O(V/3) thickness in the H-norm, whose O(d) contribution to
the error swamps the resolution of the slow flow. The SRN method resolves the leading order
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terms in the projection of the residual flow onto the tangent plane of the manifold, yielding a
finite dimensional, closed form reduction of the slow flow. The EL approach affords bounds
on the rate of the slow flow, but does not extract leading order information on the projection of
the slow flow onto the tangent plane of the manifold.

While the SRN method is quite general, applying to broad classes of damped-dispersive and
dissipative systems, it requires significantly more machinery to apply than the EL approach,
in particular it requires a spectral gap condition on the point-wise linearizations of the full
gradient flow at each location on the manifold. For a given energy we establish conditions under
which families of gradients which share the same kernel preserve the spectral gap. We show
that within these families the slow flows are equivalent up to reparameterization. To compare
the applicability of the SRN and EL approaches, we develop mild additional conditions under
which the assumptions of the SRN method guarantee the applicability of the EL approach.
Indeed the generality of the EL approach allows it to encompass a substantially larger class of
gradients than the SRN methodology. It is not intuitively obvious what becomes of the slow
flow for choices of gradients for which the SRN fails while the EL approach holds. It is unclear
if the failure of the SRN approach is technical, or if there is the potential for a more complex
flow that is not slaved at leading order to its projection onto the tangent plane of the manifold.

The EL approach has strong analogy to the much older orbital stability approach for Hamil-
tonian systems, pioneered by Benjamin [4]. These exploit the conservation of the underlying
energy, H : H — R, rather than its decay, to maintain proximity of solutions of the Hamiltonian
flow to a manifold of orbits. The Hamiltonian flows take the form

u = JVxH,

where the linear operator 7 is skew with respect to the inner product of a Hilbert space X, which
again resides between H and its X-induced dual H'. The approach characterizes critical points
of the energy ‘H as minimizers subject to additional constraints induced by conserved quantities
arising from symmetries of the energy. The symmetries generate a manifold of equilibrium
from the orbit of a single critical point under their group action. The orbital stability approach
has broad applicability since it is largely independent of the specific form of the skew operator,
and relies principally upon the analysis of the second variation of the energy H at the point on
the manifold of equilibrium. This is fortuitous as the second variation, V¥ is a self-adjoint
linear operator in the inner-product in which it is taken, while the full linearization, J VJZ(’H
is generically not self-adjoint. If the critical point of H is a strict minimizer, then the second
variation has no negative eigenvalues; however this is rarely the case. Various stability indices
have been developed that relate the number of negative eigenvalues of V%A to the number of
complex eigenvalues of JV%H with positive real part: eigenvalues which denote instability.
Generically the larger the number of negative eigenvalues of the second variation, the greater
the number of instabilities that are available to the flow. A central result is that if the conserved
quantities of the flow constrain it to lie in a finite co-dimensional space, then the relevant index
is the number of negative eigenvalues of the second variation constrained to act on the reduced
space. The calculation of this constrained eigenvalue count is the basis of the seminal work
of Grillakis et al [9, 10], and is summarized in [11, chapter 5]. This constrained eigenvalue
count approach is exploited in this work to establish the implication of the EL assumptions
under the SRN hypotheses. Indeed, the SRN framework was originally derived to extend the
orbital stability approach to classes of weakly damped-forced Hamiltonian systems arising in
nonlinear optics.

As a test case, we apply both the SRN and EL approaches to the gradient flows of the
functionalized Cahn—Hilliard (FCH) free energy on a bounded, one-dimensional domain. The
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FCH free energy, presented in [15] and in [6], is a reformulation of the energy of oil-water-
surfactant microemulsions proposed by [21] and revised in [8]. The FCH assigns an energy
to a mixture of surfactant and solvent according to the volume fraction, u of surfactant via its
proximity to the large class of solutions of the second-order nonlinear system:

EAu= W (), (1.1)

subject to appropriate boundary conditions. More specifically the FCH energy takes the form
1, / 2 77152 2
F(u) = 5(s Au—Ww) —e T\W\ + mW(u) | dx, (1.2)
Q

where € < 1 is the ratio of amphiphilic molecule length to domain size and n; > 0, 7, € R.
For p = 1, the FCH corresponds to the strong functionalization while for p = 2 it is a model
for the weak functionalization. We assume that W(u) is a double-well with two unequal depth
minima at b_ < b, satisfying W(b_) = 0 > W(b). The minima are non-degenerate in the
sense that a ;= W”(by) > 0. As we restrict ourselves to one space dimension, the function-
alization terms, those with the prefactors 1, and n,, play a negligible role and we set them
equal to zero. In this case all solutions of the 1D version of (1.1) are global minimizers of the
FCH free energy. In [16], the existence of global minimizers was established over a variety of
admissible function space for a class of generalizations of the FCH free energy.

2. SRN and EL approaches for quasi-steady flows

We present frameworks for the SRN and the EL approaches for deriving slow ‘quasi-steady’
flows in neighbourhoods of manifolds with low energy variation. We consider classes of gradi-
ents with common kernels, and derive conditions on the gradients under which the SRN applies
uniformly. We also develop conditions under which the SRN assumptions satisfy the assump-
tions required to apply the EL approach, and show that this includes choices of gradients for
which the SRN does not directly apply.

2.1. The SRN framework

The framework presented in [14] was designed for damped-forced dispersive wave systems
but applies more generally to abstract dynamical system of the form

uy = F(u), Q2.1

that are locally well-posed on a pair of nested Hilbert spaces H C X C H'. The key assumption
is the existence of a quasi-steady manifold M which is explicitly parameterized as the graph
ofamap®:PCR"— H

M={®@p) |peP CR"}. (2.2)

The domain P may be with or without boundary. We assume that the vector field /' admits an
expansion of the form

F(® +v) = R(p) + Lpv + Ns(v), (2.3)

where the residual, R(p) := F(®(p)) is small, . = L, is the linearization of F at ®(p) and the
nonlinearity for the spectral approach satisfies a generic estimate

INs)||g < CllvllF, 2.4)
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where r > 1 and C may be chosen independent of p € P. We assume that there exists a fixed
value of § > 0, for which the quasi-steady manifold and the associated linearization satisfy the

following hypotheses:
(HO0) The manifold M is quasi-steady: that is, there exists Cy > 0 such that for all p € P,
IRl < Cood. (2.5)

(H1) There exists ko, k; > 0 such that for each p € P the spectrum of the operator Ly,
viewed as a map from H into X consists of a stable part o, C {A\|Re(\) < —k,} and
aslow part 0y C {\||A] < ¢od}. The associated slow eigenspace Y}, has dimension n,
equal to both the dimension P and to the tangent space to M.

(H2) There exists C, > 0 such that for each fixed p € P, the operator L, generates a Cy
semigroup S, which satisfies

I1Sp(@ull; < Coe™Jue]|m, (2.6)

forallt > Oandall u € Yl’, = Ypl N H, where the perp is taken in the X norm.

(H3) For each p € P, Y}, is well-approximated by the tangent plane 7(p) of M at p.
Specifically, there exists a constant C3 > 0 and an ordering {¢,...,%,} of the
eigenfunctions of Y}, such that

0%2(;p)

‘ Pi(p) — < G364, for,i=1,...,n, 2.7
61y H
holds for all p € P.
(H4) There exists a constant C4 > 0 such that the normalized eigenvectors {1, ..., 1, } of
the Y, satisfy
max (@l + || Vi@, ) < Ce. 2.8)
pep

Under these hypotheses we have the following reduction.

Theorem 2.1 [14, theorem 2.1]. Suppose that the system (2.1) has a manifold M for which
the hypotheses (H0)—(H4) and (2.4) are satisfied for some r > 1 and some § > O sufficiently
small. Then there exists 1y and My > 0, such that the solutions u of (2.1) corresponding to
initial data ug that lie within an ny-neighbourhood of M in H can be decomposed as

u(t) = @, p(0) + w0, (2.9)
where the deviation w € Y, satisfies

Jw(-, D]l < Mo(noe =0 + 8)  for t € (0, Texiv)- (2.10)
If p(0) is an O(1) distance to OP, then the exit time Teyy > 00671. After a transient time, T)

= O(|Ind /ny|) < Texir, the deviation satisfies ||w||g = O(5) and the parameters p(t) evolve at
leading order via the closed system

0P
b= <R(p>, —> + 0", 8 fort>T, 2.11)
alﬁ X
fori=1,...,n Ifthe set P is forward invariant under this flow, then we may take Ty = 0.
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2.2. The EL framework

We compare the scope and results of theorem 2.1 with the EL techniques introduced in [13]
and refined in [2]. The EL approach uses the uniform coercivity of the energy in the directions
normal to the quasi-steady manifold to develop an excluded zone which dynamically traps
orbits in a thin neighbourhood of the manifold. Specifically, the approach assumes an energy
J : H — R, nested Hilbert spaces H C X C H*, and an associated gradient system

u, = F(u) = — GVxJ (), 2.12)

with the variational derivative of J taken in the X norm. It is often the case that the energy
is naturally formulated in the inner product on one space, X, while the gradient is calculated
in a different inner product. To emphasize this we have introduced the gradient operator G, a
non-negative X-self-adjoint, linear operator that may possess a finite dimensional kernel. We
assume that G has an inverse that is uniformly bounded as a map, G~ ! : Xg — Xg, where Ilg
is the X-orthogonal projection onto Xg := ker (G)*. We introduce G; :== G 3 , and the associated
inner product

(u,v)g = <gf1u, Qflv>x. (2.13)

It straightforward to see that for u € H the variational derivative of J in the G-inner product
satisfies the relation VgJ = GVxJ, and hence (2.12) is the gradient flow of J in the G norm.
This flow decreases the energy,

d
aJ(u(z)) = (Vxl,u)y = —|GIVxJ |z = —||VaJ |5 <0, (2.14)

and for any initial data uy € H it leaves the space up + X¢ invariant. Indeed if v € ker(G) then

%(u(t), v)x = —(GVxJW),v)y = —(VxJ(u),Gv)y = 0. (2.15)
The main result of the EL approach states that if u € H is sufficiently close to the quasi-steady
manifold M, the manifold is normally H-coercive, and the energy of u is low, then the H-
distance of u to M, denoted dy(u, M), is controlled by the energy, which is non-increasing,
and hence # must remain close to manifold so long is it does not reach its boundary. In addition
to the normal coercivity assumption, a key role is played by a projection onto the manifold.

For simplicity of presentation we consider a less general framework than that presented
in [2]. Some of these modifications arise from the fact that we have explicitly factored the
variational derivative of J into a variational derivative in the base space X and a linear gradient
G. While this sacrifices some generality, it makes the relative independence of the results upon
the choice of gradient G more explicit.

(A0) There exists a smooth manifold M embedded into the Hilbert space H, a 6y > 0, and

an energy J defined in H on which the energy has small variation,

|](u1) — ](u2)| < 6o, forall uy,u, € M. (2.16)

(A1) There exists a projection 1, on M, with complement s =1 — I, defined within
an H-neighbourhood of size n > 0 of M and a constant ¢; > 0 such that for all « in
the neighbourhood

[Tl < crdu(M, u), (2.17)
where dy denotes the H-norm distance function.
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(A2) For all u with dy(u, M) < n, the functional J admits an X-variation expansion of the
form

T(w) = J(T ) + <VXJ(HMu), f[Mu>X n <V§J(HMu)ﬁMu, f[Mu>X
+ Ne(yw), (2.18)

which satisfies the following: small residual,

(VI o, Tlagae) | < 8|l 2.19)
X to H normal coercivity,

(VR g, Ty} > gl agul (2.20)
and bounded nonlinearity,

We(yw)| < e Ty (2.21)

for some d,, ¢, > 0, some 1, > 0, and p > 2.
The result exploits the structure of the energy J and hence remarkably, is substantially inde-
pendent of the choice of the gradient G. The proof requires little more than the quadratic
formula.

Theorem 2.2 [2, theorem 2.1]. Suppose there exists a choice of gradient G for which the
energy J, the manifold M, and the projection 11 satisfy (A0)—(A2). Assume u € H satisfies

J(w) < sup J(P®) + 4y, (2.22)
PeM

for some §; > 0. Define

1
1 =
7" = min {n, L (’“ ) } (2.23)
C1 202

and
1) 82 o+ 96
N = 22 + _22 + 20T (2.24)
M2 M3 H2

If b9, 01, and &, are small enough that ), < n*, then

dyu, M) < n* = dy(u, M) < 1,. (2.25)

The SRN and the EL techniques have non-trivial overlap in their applicability. We first con-
sider the ‘base-case’ in which the gradient G is taken to be the X-orthogonal projection onto a
prescribed kernel. We show that the SRN hypotheses imply the majority of the EL assumptions
for this case, and develop two additional hypotheses, one for the SRN and one for the EL, under
which the EL assumptions hold in their entirety. The first assumption simplifies the interaction
of the manifold and the kernel of the gradient, and the second mirrors standard interpolation
results used to boost coercivity into the strong norm. The result, theorem 2.4, emphasizes that
the EL approach holds for a large class of gradients which share the same kernel. The second
main result, given in section 2.3 develops additional assumptions on the gradients for which
the SRN may be extended beyond the base-case gradient. This extension requires a non-trivial
reformulation of the problem to symmetrize the gradient flow linearization L.
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(EH1) Let uy denote the initial data to (2.12), the manifold M lies in the invariant plane
uy + Xg.
(EA) There exist positive parameters /i, 7y, such that for all ® € M we have

(V@) +7e) v, 0)y = pre||v]| s (2.26)

forallv € HNXg and all ® € M.

Remark 2.3. The assumption (EH1) implies that 7, C X for all p € P. One way to satisfy
this assumption is to insert extra parameters, p into the ansatz ® = ®(p, p), and constrain p
and p to enforce IIg(® — up) = 0. The key is to show that the reduced family of parameters
satisfies the remaining hypotheses. This approach is employed in section 3.

To establish a non-trivial overlap between the assumptions of the SRN and the EL
approaches we show that (H0)—(H4), together with (EH1) and (EA), imply (A1)—(A2). While
the assumption (A0) is not required for the SRN approach, we show that there is a wide class of
gradients for which the EL approach applies. Indeed we fix a finite co-dimension space Xy C X
with orthogonal projection Il : X — X/ and a quasi-steady manifold M and consider the class
Cx, of non-negative, X-self adjoint gradients

Cx, = {G:H — Xo|ker(G) = X;;G ' : Xo = Dg C Xo, X-norm bounded}. (2.27)

We show that the choice of gradient from this class has limited impact on the slow-flow result
associated to the underlying low-energy manifold.

Theorem 2.4. Fix the space Xy and the class of gradient Cx, as in (2.27). Suppose that
the energy J and the manifold M correspond to the framework of (2.12). If the hypotheses
(HO0)-(H4), (EH1), and (EA) hold for this system with the gradient G = 11y, then there exists
a projection 11 for which (A1)—(A2) are valid. Moreover assume (A0) holds and initial data
uy satisfies (2.22) with 9, do, and 81 sufficiently small that n, < n*. Then the corresponding
solution u(t) of (2.12) can be decomposed as in (2.9) where the residual w satisfies | w||g < 7,
Jorall t € (0, Texit) where Texi == inf{z|p(¢) ¢ P}

Remark 2.5. If the assumptions of theorem 2.1 hold for the gradient G = Ilx, then one
recovers the attraction of an O(7),)H-neighbourhood of M into an O(§)H-neighbourhood of
the manifold, as well as the leading order asymptotics of the flow projected onto the tangent
plane of the manifold, so long as p € P. For the flows produced by the other gradients G € Cx,
one recovers the forward invariance of a generically wider O(n, )H—neighbourhood of M, up
to the boundary of M, however the decomposition of the solution into modes tangential and
normal to M is generically not accurate enough to recover the leading order projection of u,
onto the tangent plane of the M, but do afford lower bounds on the exit time, as given in [2,
theorem 2.2].

Proof. We assume the existence of a quasi-steady manifold, M that verifies (H0)—(H4) for
F =TIy VxJ. The existence of the projection Il is established in proposition 2.2 of [14]. In
particular this result establishes the existence of an 7, > 0 for which u € X with dx(u, M)
< 10 can be decomposed as u = ®(p,) + 1,Wo, with | W||x < 1. Moreover it establishes the
existence of a function p = p(u) = p, + UOH(W) with H(0) = 0, H smooth in the H norm, and

6897



Nonlinearity 33 (2020) 6890 H G Cakir and K Promislow

for which the projection ITu := ®(p(u)) enjoys the property Iy € T3 (). By the triangle
inequality we deduce that
Tpulln < [lu— D@0+ [|2@.) — 2@®)# = duu, M) + [|2(p,) — @) 4-
(2.28)

Since H is smooth there exists My > 0 such that
[p. = Bl < moMo||Wolln < Modi(u, M).

Since @ is a smooth function of p we deduce that (A1) holds with 1 = 5, for 7, sufficiently
small.

For the gradient flow, (2.12), the choice of gradient G = I, reduces to the identity on Xj.
This affords the identification

oV = —G ' F(u) = —TIyF(u) = —F(u). (2.29)

As the space uy + Xy is invariant under the flow, it is sufficient to establish the bounds (A2)
on Xy. Indeed, Writigg u=® + v with ® € M, by (EH1) we have ® — uy € Xy, so that ITyu
=& € Xp and v = IIpqu € Xo. We may use the expansion (2.3) to write

o VxJ(® + v) = I R(p) — LoLLyv — IpNs(Pp; v), (2.30)

where I denotes the linearization of the full gradients flow F at ®,. Comparing this with the
expansion (2.21) and using the fundamental theorem of calculus we find for each v € H N X,
that the expansion holds with

1
Ne() = —/ (Ns(®, 5v),v)y ds. (2.31)
0

Since the H-norm controls the X-norm, and Ny satisfies (2.4) we determine that (2.21) holds
with p=r+ 1> 2 on Xg, which is consistent with the application of theorem 2.2. Since
VxJ(®(p)) = —IIyR(p), the bound (2.5) implies that the small residual assumption (2.19)
holds with §, = ¢(d. To establish assumption (A2) it remains to verify the coercivity estimate
(2.20) which we establish in lemma 2.6.

The second variation of J at a point ®, on M with perturbations taken from the constrained
set Xy, induces the constrained operator

V3, J(@(p) = ~TloLp = — Lyl (2.32)

Lemma 2.6. Assume (HO)—(H4), (EH1), and (EA) hold then the manifold is normally H-
coercive. That is exists a |1 > 0 such that for all p € P the bilinear form (2.20) induced by the
constrained second variation L of J at (p) satisfies

(~Luv,v)x = pllvl (2.33)
forallv € Ty

Proof. By construction of the projection and (EH1), Range(f[ MmP) = 7;l C Xo. We first
establish X coercivity of —IL on 7? by finding a &t > 0 such that

(=(L = v, v)x >0, (2.34)
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forallv € 7?. We introduce the bilinear form
blv,w] = (=L — @)v, w)y, (2.35)

associated to —(IL — f1). Restricting the bilinear form to 7;{ induces the constrained operator
—II ML — /])1:[ M. We remark from hypothesis (H1) that —IL;, has a finite number of negative
eigenvalues. The X-coercivity of —LL is equivalent to the the statement n(—f[ ML — /1)1:[ M)
= 0, where the negative index n(L) denotes the number of negative eigenvalues of a self-adjoint
operator L counted according to multiplicity.

We apply proposition 5.3.1 of [11], which equates the number of the negative eigenvalues
of a constrained operator to the difference of the number of the negative eigenvalues of the
operator and an associated constraint matrix. More specifically, given an invertible, X-self-
adjoint operator L and an orthogonal projection 11y onto a finite-codimension subspace V C X.
Then the number of negative eigenvalues of the constrained operator Il LIy, as a map from
V — V, is given by

n(IlyLITy) = n(L) — n(D), (2.36)
where the finite-dimensional constraint matrix D is defined by
Dy:=(si,L™'s}), fori,j=1,...,n (2.37)

where {s;}7_, is a basis for V. We apply this theorem with L = —(L — f1), X = Xo, and
V = Tp. From (H1), for i € (k,/2, k), we have n(—(L — 1)) = n.

To determine n(D(1)), from (H1) and (H3) the slow-space eigenfunctions of —(IL — 1) take
the form ¢; = s; + ¥;- where || ||z = O(9), and s; :== g—j. We denote the slow-eigenvalues
of L by {A1,..., A\ }. Since —(IL — j2) has an O(1) inverse we deduce that

D) = (si, —(L— i) "'sj) = (5. =\ — )" 1), + O6) = ﬁ&j + 0.
(2.38)

From (H1) we have |\;| = O(d) and hence D(j1) = %Inxn + O(9) and n(D(f1)) = n. From the
variational formulation of eigenvalues we deduce that

(~Lv, vy = fllv], (2.39)

forv e T,".
To establish the H coercivity. We introduce o € (0, 1) and write

(—Lv,v)y = « ((—Lv, v)y + I?TO((—]LU,WX) >« ((EU,U>X + wwni) .

(2.40)
Choosing o = ﬁj% we have @’Z = 7,.. Applying (2.26) of (EA) we deduce
fi 2
—Lv,v)y > = <lvll5, 2.41
(~Lo,v)y > = peloly @4
which establishes (2.33) with ;1 = ﬁ% O
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Returning to the proof of theorem 2.4, we consider (2.12) with any gradient G € Cx, and
deduce that theorem 2.2 holds with * = 7, as given by theorem 2.1 and 7, given by (2.24)
so long as 4, &g, and §, are sufficiently small that n, < 7,. From theorem 2.2 it follows that
the solution u = u(¢) of (2.12) can be decomposed as u(r) = ¢(p(¢)) + w where w = I mu(t)
satisfies ||w|/y < 7n,,solongasp € P. O

2.3. Gradient invariance of slow flows

We extend the applicability of the SRN approach to a class of gradients that includes 11, and
shares its kernel. This class is more restrictive than Cx, given in (2.27). For for all > 0 the
solution u of (2.12) satisfies u(r) — M € X,. This motivates the decomposition

u=oC;p)+p 'Giw, (2.42)

where w € Hg, C X, satisfies w1 G, ' T The scaling parameter p >> 1 is included to allow the
incorporation of singularly perturbed energies such as the FCH whose differential operators are
homogeneously scaled by the small parameter ¢ < 1. The operator G, is defined as the square
root of G and the space Hg, denotes the functions in H for which the norm ||w|| Hg, = 1G1w]|m,
is finite.

With this decomposition we re-write the gradient flow

u = —GiVxJ(u), (2.43)

as
PG 'Vp® - p+w, = —pGiR — GILGiw — pGiNs(p~ ' Giw), (2.44)

where £ = VxJ(®p)is the second variation of J in the X-inner product. The key point is that the
linear operator IL := G; £G; has been symmetrized and the nonlinearity has been scaled. Indeed,
comparing to the base case G = Iy, we see that the tangent plane V,® has been scaled and
mapped to G, ! V@, and the residual is scaled and mapped by G;.

We have the following immediate result

Corollary 2.7. There exists pug > 0 such that the bilinear form
bg, (w, w) = (G LG 1w, w)x = pl|Grwlf = pgllw||z
forallw € (QI_IT)l M Hg,. Here 11 is the coercivity constant from lemma 2.6.

Proof. Since w € (G, 'T)* N Xy, we have w = G, 'v where v L 7. In particular

(G1LG 1w, w)x = (Lv,v)x = pllollf = plGiwlly = 5wl

Ll
M2
WhereMistheboundongl_l:XODHHXODH. O

Without loss of generality we may rescale both G and the temporal variable so that the X-
operator norm of G, ' is bounded sharply by the constant 1 on its domain X. To recover the
leading order reduced flow we require two extra assumptions that constrain the choice of p,
which must satisfy g = dp* < 1.

(EH2) There exists ¢ > 0, independent of p >> 1 for which the nonlinearity N introduced

in (2.4) satisfies

p”glNS(p_lglw)”Hgl < C||w\|%qgl- (2.45)
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(EH3) There exists a constant ¢ > 0, independent of p, for which the following estimates
1G1VxJ(@P) g, < p?d, (2.46)
and
1Giullx < cpllully, YV ueTp, (2.47)

hold uniformly for p € P.

Theorem 2.8. Assume that theorem 2.1 and its hypotheses hold for the choice of gradient
G = 1ly. If in addition hypotheses (EH2) and (EH3) hold for parameters p and 6 satisfy-
ing p > 1 and dg = §p> < 1, then the flow (2.44) satisfies the hypotheses (H0)—(H4) for the
pair Hg, C X with 6 replaced by 6g and a reparameterization of the manifold M through a
smooth transformation p = p(p). The solution u of (2.12) can be decomposed as (2.42) where
W = p~'w satisfies the bounds (2.10) in the norm Hg and the rescaled parameters p satisfy

f),- = <R(f>), ?> + 0651, 69). (2.48)
X

1

Remark 2.9. Within this framework the impact of the change of gradient in to rescale the
pulse dynamics. As we demonstrate explicitly in section 2.3, for simple manifolds this rescaling
can be uniform across the manifold, in which case it amounts to a linear scaling of time.

Proof. Since G, T is an n dimensional space, corollary 2.7 that n(G, LG, — ug) < n. The
main step to establish the hypotheses (H0)—(H4) for the general gradient flow is to show that
the operator G; LG, retains its spectral gap. To this end consider the eigenvalue problem

GILGIY = \V.
For A\ € (G LG) N [—0o0, 11g) we decompose the eigenfunction as
U =Glg+ 0, (2.49)
where ¢ lies in Y}, and \I!LJ_QI’ ! Y}. Projecting the eigenvalue problem onto G, ¢ we have
(Lo, 0) +(GiI, Loyx = MGy o]k (2.50)

Isolating A\ and bounding the first inner product with (H1), we use (EH3) and Rayleigh—Ritz
to obtain

2 €L €
< QIO e (WY

19" 0l1% 19161l
Projecting the eigenvalue relation onto U yields
(£6.GIU5)x + (GILGTH T )y = AW ;.

Using the coercivity result on the second term and applying (H1) and (EH3) to the first term
on the right-hand side we find that

(1= M g, < codp?(IG; ¢ llx-
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In particular we bound

19 Il codp?
16 ol ~ 11G " ollx — (g — M)

With the normalization 1 = ||¥[|% = ||G, '¢||% + || ¥"||%, the estimate above and (2.51) imply
that

+ L7 cop? < ¢b (2.52)
M TR X G- .
1G7 ' llx

Al
This shows that A € o(G;£G) and A < pug implies that |\| < cdg < pug, which establishes the
spectral gap. Moreover, to leading order in dg, the operator G- ! maps the slow eigenfunctions
of L onto the slow eigenfunctions of G, LG, even though this relation does not generically
hold for the eigenfunctions of the stable spectrum.

We assume that the hypotheses (H0)—(H4) and (2.4) hold for the system with gradient II
and verify that they hold for the flow (2.43), written in the form (2.44). This amounts to the
replacement of the spaces X = X, H = Hg,, the small parameter ¢ with dg, the residual R
with Rg, = pGiR and the role of the tangent plane 7 with G, 7. The equivalent of esti-
mate (2.4) for the nonlinear term of (2.44) follows immediately by assumption (EH2). The
hypotheses (H0) with bound dg holds for Rg, from assumption (2.46) of (EH3). Since the
eigenfunctions {¢;}"_, of L are orthonormal in X, we deduce that the dim(G," ! Yp) = n. Moti-
vated by (2.52) we may introduce the slow space Y}, g, associated to G; LG, with k; = pg. Since
the bilinear form bg, introduced in corollary 2.7 satisfies bg, (u, v) < coé for all u,v € g;lyp
we deduce that dimY,, g, = n and that (H1) holds. The operator G; LG, constrained to act on
g;17;, N Xp is self-adjoint and has its spectrum contained in (ky, 00). It follows that the resol-
vent of —G,£G, is uniformly bounded on the set {IRA < k;} and hence the semigroup S,
associated to —G; LG, is analytic and satisfies (2.6). The slow eigenfunctions { ¥;}"_, of G, LG,
satisfy

api

v, =G, +‘If,-J',

where ® is smooth and the error term \If,L satisfies the bound (2.52). Since

oG, '
opi

0P
_ -1
- g] apl ’

and since (H3) holds with gradient Iy, the bounds (2.52) establish (H3) for G, that is up to
a reparameterization of p, the bound (2.7) holds with 0,,® replaced with 95,G;'® and with
§ replaced with small parameter dg. Since the operator G, ' is uniformly bounded on H, the
reparameterization p of M is uniformly smooth in p the Hessian Ql’IV%@ is bounded in the
Hg, norm. The assumption (H4) follows.

The ODE (2.48) arises from the projection of the linear terms in (2.44) onto the small
eigenspace, Y}, of G LG,. The factors of p cancel out, and the action of G; on R is cancelled
by the G, I prefactor that maps Y, p for Iy onto the leading order form of Y}, for G;. The error
terms arise from the bound on ||w||s; which follows from the estimates on the decomposition
analogous to (2.10). O
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3. Pulse dynamics and gradient invariance in FCH gradient flows
We apply the results of section 2 to gradient flows of FCH energy (1.2) on the bounded domain
[0,d] C R. For simplicity of presentation we set 7, = 1, = 0, as these parameters have limited

impact in the one-dimensional setting.

3.1. Construction of the n-pulse quasi-steady manifold

Introducing the inner scaling z = %, we re-write the FCH as

d
1
J(u) = /0 5 (O2u — W’(u))zdz, (3.1)
and subject it to the mass constraint

/? (u—>b_)dz=M, (3.2)
0

where b_ is the location of the left well of W and u — b_ denotes the mass fraction of polymer.
It is natural to consider J acting on admissible functions that satisfy the mass constraint and
first-order Neumann boundary conditions

A= {u € H? ({0, ﬂ) /g (u—b_)dz = M,u.(0) = u, (i) = O} ) (3.3)
0

The critical points of the inner scaling of FCH over the admissible space .A N H* ([0, ¢]) are
the solutions to the Euler—Lagrange equation
Vxl = (02 = W' W) (02u — W) = \.,
(3.4)

2u(0) = 0,92u (i) =0, 9,u(0) = 0, ,u (‘Z) —0,

where Vy is the first variational derivative of J with respect to L? inner product and ). is the
e-dependent Lagrange multiplier. The no-flux boundary conditions arise naturally from the
Euler—Lagrange formulation. To leading order the low-energy manifold is constructed from
solutions

O’u— W) =0, (3.5)

that satisfy the no-flux boundary conditions. Classical phase-plane arguments show that (3.5)
supports a homoclinic solution satisfying ¢, — b_ as z — f00. The n-pulse ansatz, defined
on all of R, is given by

u, =b_ + Za}, (Z - pj) s (3.6)
j=1

where 5;, =¢p—b_ and p = (p1, p2,...,pn) € R" is the vector of pulse locations. The
admissible set of pulse locations is given by

P={peR":p<piy1 fori=0,...,nand Ap >/}, 3.7)
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where Ap:= rrin |pi — pj|, and the boundary pulse locations p, and p,,, are introduced
i#]

below. The pulse spacing parameter ¢ > 0 will be chosen sufficiently large that the exponential
tail—tail interaction terms & := e~ v* arising in the calculations are small compared to €. In
particular this implies that £ > [In¢|.

To complete the definition of the pulse manifold we introduce the operator

L:=02 — W), (3.8)
corresponding to the linearization of (3.5) about ¢,, as well as the operator
Ly(p):=092 = W' (uy), (3.9)

with both acting on the unbounded domain H*(R). To accommodate the mass constraint into
the pulse ansatz we introduce B; € L*(R) for j = 1,2 as the solutions of

L'B;=1, (3.10)
that are orthogonal to the kernel of L. These functions can be decomposed as
Bj =B+ Bjw, (3.11)

where B; € L*(R) decays exponentially to zero and the constant B = (—a_)"/ where
a_ = W"(b_) > 0. We introduce the background correction

Bjn(z:p)=Bjoc + Y _Bjz— pi), (3.12)
i=1
and the boundary correction
E(z;p) = Eo(z;p) + Ent1(z:p)
= (1 + epz)e VTP 4 (1 + e, 12)eV P, (3.13)
The full n-pulse ansatz takes the form
®(z; p) = un(z; ) + OAB2u(z;p) + E(z, P, N). (3.14)

The parameters in the boundary correction E are chosen dynamically to satisfy the four bound-
ary conditions in (3.4) while the Euler—Lagrange parameter ) is chosen dynamically to enforce
the prescribed total mass constraint,

d/e
/ B(z; p)dz = M. (3.15)
0

Based upon lemma 3.1, we can write this in the form
P(z; p) = un(z; p) + 0P, (3.16)

where the perturbations P are uniformly bounded in H*(0, d/¢). Through these relations, the
five internal parameters p := (po, Pu+-1- €0» €n+1, A), are prescribed as functions of n pulse posi-
tions p. To leading order, the boundary pulse locations p, and p, ,  are the reflection of p; and
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p, about the boundary points 0 and d/e, respectively. The parameters p, and ey characterize
the linearization of the two dimensional stable manifold of the fourth order system

(02 — W' (w)(O2u — W'(w)) =0,

at the equilibria (b, 0, 0,0) while p,,; and e, characterize the linearization of the unstable
manifold associated of this system at (b_, 0, 0, 0).
The manifold of n-pulse solutions with mass M takes the form

Mup={2(PIp € P} (3.17)
The tangent plane to M,, 5 at (p) takes the form

09(p)
opi

Lemma 3.1. The ansatz © in (3.14) satisfies the boundary conditions in (3.4) for the choice
of internal parameters

'T(p):span{ i:l,...,n,peP}. (3.18)

d3 — a,dl
= e, d = — 0(9), 3.19
WEVa- TR g A =a + 0(9) (3.19)

where we have introduced d, = u,(0) 4+ AB} ,(0) and ds = u,'(0) + ABY', (0). Similar rela-
tions hold for e, 1 and p, . Assume that the system mass takes the form M = nM;, + M,
where M, € (0, M,,) is O(1), and M= fR(¢h — b_)dz is the mass the homoclinic pulse in the
scaled variables. If ne < 1 and M, > § then the Lagrange multiplier \ satisfies

M,

PP o —
4By + enMs

+ 0 (€6), (3.20)

and in particular Op, A = O (€0).
Proof. The results on the parameters ¢y and p, follow from a simple calculation from the
form of ® given in (3.14). For the mass we calculate the leading order asymptotic
d/e d
/ (®—b_)dz=nM; + X (Bg,oo + nMB>
0 €

Va=po —Va=(d/e=pnt1)
_ ¢ re + 0(ed?). (3.21)
A/ O

The results follow from the assumption on the size of the mass M. (]

The lemma 3.1 allows us to simplify the form of the tangent plane. Indeed we see that the
boundary term satisfies ||E|| 4+ = O(9), and we calculate that

T(p) = span ({¢},(z — pi) + 6ABy(z — pi) + \/a—01:Eo — /O—6uiEnt1 },_, + O(€0,6%))
(3.22)

where §;; denotes the usual Kronecker delta function and the boundary corrections Eo, E, 41
are defined in (3.13).
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3.2. Modulational stability of n-pulses via SRN

We apply the SRN theorem to the zero-mass gradient flow of FCH energy subject to no-flux
boundary conditions, obtaining the asymptotic attractivity and modulational stability of the
n-pulse manifold. Specifically we set X = L*(0,d/¢) and H = H*(0, d/¢) subject to zero flux
boundary conditions. We consider the L? mass-preserving gradient flow of the FCH,

u; = F(u) = — 1y VxJ(u),
u(z,0) = uo(2),

(3.23)

where the zero-mass projection, Iy, is defined as Ilyf:= f — (f)a with (f), denoting the
average value of f over [0, g]. This corresponds to the choice of gradient G = Il and Xg
= {1}*. The zero-mass projection gradient flow of the Cahn—Hilliard free energy modelling
a phase separation process in a binary mixture was analysed in [18].

We consider solutions of (3.23) corresponding to initial data of the form

up = ©(z; py) + wo(2), (3.24)

where p, € P and wy € H with ||wy|| 44 sufficiently small, has zero mass, so that u satisfies
the boundary conditions and has mass M. We show that such initial data remain near My, so
long as they avoid its boundary, and during this time the solution satisfies a decomposition

u(®) = ¢(¢;p@) + w(@), (3.25)

and project the dynamics of (3.23) onto the tangent plain of M, to derive an evolution
for the pulse positions p for which the remainder w, remains small. Moreover we iden-
tify small regions in the interior of P associated to nearly equispaced pulse positions which
the reduced flow (2.11) leaves forward invariant. For initial data in these sets the exit time
Texit = +00.

We Taylor expand the the variational derivative of J about ®(p)

oJ
5, W = VxJ(@(p)) + Vi (@)w + Ns(w). (3.26)
Using the expansion (3.16) we identify leading order terms in the residual,

Ri=— Ho%@([’)) = T — W', + 6 P)) (02un — W'(us) + OL,P + O(5%)) ,

= —Iy (L, Ry + 6X) 4 O(52),

(3.27)
where we have introduced the n-pulse residual
Ru(p) = 02u, — W'(uy). (3.28)
We denote the second variation of J as
Ly=V3I = (67 = W'(@®))" — (82D — (D)) W"(®). (3.29)
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We drop the p subscript where doing so causes no ambiguity. Using the form of (3.16) we
expand (3.29) about u, up to O(4?) terms

L= (L, — W" ()P + O@*)° = (R, + SL,P + O(5%))
x (W"(up) + SWPw,)P + O()) . (3.30)
From lemma 3.1 we see that L,P = AB,,; + O(J), and expanding out the operators we find that
L =1L, — 6 (LaW"u,)P) — W (u)PL,) — W )Ry + 0AB1) + O(5°). (3.31)

In particular the dominant term in £ is the positive semi-definite operator L2 with the lower
order terms relatively compact with respect to L2. The bilinear form

b(u,v):=(Lu,v),2, (3.32)

with u, v € H, generated by the constrained operator 11y LI which is self-adjoint. Indeed, the
linearization IL of the vector field F = —1IyVxJ at ® takes the form

L = —II,L. (3.33)

Since the first projection in 11y LIl is superfluous when acting on H, LL can be viewed as the
negative of the generator of the bilinear form b over H. Consequently the spectrum of both L.
and L are real and the adjoint eigenfunctions agree with the eigenfunctions, with the exception
of the kernel of L given at leading order by B, while the kernel of I is spanned by 1. We scale
the eigenfunctions of £ to have X norm one.

3.2.1. Verification of SRN hypothesis —the Tly gradient flow. We establish that the mani-
fold M, and the family of associated linearized operators {Ly } ,cp satisfy the hypotheses
(HO0)—(H4). To establish (2.5) of (H0), we recall the form of the residual, (3.27). Since 1I,
annihilates constants, it follows that IIpA = 0 and

IRl = LRl + O@?). (3.34)
The residual term is dominated by tail-tail interactions of the adjacent pulses. For j =
1,...,n—1 we introduce the midpoints m;:= (p; + p;;,)/2 and set mo = 0 and m, = d/e.
We partition

[0, d/é] = U;ZO[mj, ijrl]’
and on the interval Z; := [m;_;, m;] we write
U, = ¢h,j + Tj, (3.35)

where ¢, ; := ¢;,(z — p;) and the tail term 7} := Zk# ,Eh(z — pr)- Expanding the n-pulse resid-
ual on Z; we obtain

1 ;
R, = (322 — W (g NT; — EW”’(qsh,j)Tf +0 (5%) , forzel. (3.36)
We introduce the far-field operator L., := 822 — o_ and write

1 A
Ry = LooTj— (o — W (g )T} — zW”’((;S,L,)T} +0 (5%) , forzeZ,. (3.37)
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Using the facts that Lo.e™v®~< = 0, that the function oo — W"(¢,, ;) decays exponentially away
fromz = p i and that the functions in R,, are smooth with L? norms of all derivatives of the
same order, it is straightforward to estimate that

1Ralltz,) = O0). (3.38)

Summing over the intervals we obtain (2.5).
To establish (H1) we observe from (3.31) and (3.38) that we have the decomposition

—IIoLI1y = —IIoL*1Iy + O(5), (3.39)

where the error terms are small and relatively compact as operators on H. We first examine
the operator L acting on H?*(R), where it is a self-adjoint Sturm Liouville operator arising as
the linearization of the pulse equation (3.5) about the homoclinic pulse ¢,. The spectrum of L
is real and takes the form o(L) = [—o0, —a_JU {\, < -+ < XAy < A\ = 0 < A}, where the
number of point spectrum, » > 1 is finite and depends upon the choice of well W. Since u, is
an n-pulse constructed from n well-separated copies of ¢, the results of [20] imply that the
point spectrum of L,, the linearization of (3.5) about u,, is composed of n copies of o ,(L), up
to O(). That is, to each A, € o,(L), there are n eigenvalues { A, j}?:l € o,(L,(p)), such that

on the bounded domain H perturbs the point spectrum by at most O(6), see [11, section 9.6],
for a detailed discussion. By the spectral mapping theorem, since L, is self-adjoint on H, o(L?)
= {M|X € o(L,)}. In particular we have

o(L2) C {N, < < N2, } Uk, 00), (3.40)

where k ;== min{\3, o> } > 0 independent of € and 6.
To localize the spectrum of HoLﬁHO we introduce the bilinear form

by(u, v) = (L2 — p)u, v),2, (3.41)

constrained to act on u,v € H N Xg = {1}*. The constrained operator II,L2I], is induced by
bilinear form acting on H N Xg, while L? is induced by the form acting on all of H. The
Rayleigh—Ritz formulation of eigenvalues implies that the spectrum of IIoL2I1, is generi-
cally more positive than the spectrum of L? since the minimization in the Rayleigh—Ritz
formulation is taken over smaller spaces. More specifically, recalling the notation n(L) that
denotes the number of negative eigenvalues of a self-adjoint operator L, we deduce that
n(Iy(L2 — )1ly) < n(L2 — p) for all values of j. In particular for z € (cod, ky) we have

n(Ilo(L} — )TTp) < n(L) — 1) = n. (3.42)

However the projection off of the constant vector 1, is not perturbative, our analysis requires
an exact measure of the dimension of the slow space. To establish that n(Ho(Lﬁ — wllpy) = n,
we show that ITo(Z? — )Ty is negative on the n-dimensional tangent space 7 (p) C H N Xg.
The estimates employed to establish (HO) verity that ||Lﬁg—l‘f |2 =0()for j=1,...,nand
J
< 0P 09

2 a—p,> =164 28+ 0.
i L

In particular we deduce that

0P 0P
- “)_Bp-’ ) <(Lﬁ — 1) > = udijl| Iz + O).
i OPj

3Pi’ 3_171

6908



Nonlinearity 33 (2020) 6890 H G Cakir and K Promislow

For § sufficiently small the matrix M is diagonally dominant and is indeed a perturbation
of the matrix —ul,,, with n negative eigenvalues. We deduce that n(ITyL21I, — p) = n for
€ (cod, ks), and hence —IToL211, enjoys the slow-stable decomposition of (H1). This decom-
position extends to . = —1IIyLII,, modulo an O(J) perturbation to k, since this operator is a
self-adjoint O(6)-perturbation of —IToL>1I,,.

To establish (H2) we observe that for each p € P the space Ypl is the range of the spectral
projection associated to the stable spectrum, which in turn is contained in the the set { \[IR\ <
ky}. It follows that the resolvent (L. — A\)~! is uniformly bounded for these A as an operator
on Y;,. The semigroup estimate (2.6) follows directly from application of the Gearhardt—Priiss
Theorem, see [7, 17].

The verification of hypotheses (H3) follows from the spectral decomposition (H1). Indeed
the spectral decomposition and the Rayleigh—Ritz variational eigenvalue formulation implies
that

[Lvllx > kllv]]x, (3.43)

forallv € Y;,. From a standard interpolation argument, the linear nature of the leading order
fourth-derivative term in L affords the existence of ;¢ > 0, independent of €, for which

|Lollx = pllvlla (3.44)
We decompose the tangent-plane basis elements as

oL~
3, = 2B+ i (3.45)

=1

where ;i € Yl’,, and apply L. Taking the L? norm and using the triangle inequality we obtain
the upper bound

- o
st 2 < || Bidws|| + HLfP |l - (3.46)
j=1 2 Di 12
For each i =1,...,n, we have |\;| < cyd while HLg_z”B = 0(6); we infer from the H-

coercivity estimate that [|¢; ||z = O(9). Since the matrix 3 maps R” to R" is symmetric and
maps an orthonormal basis of ¥, asymptotically close to the asymptotically orthonormal basis
of T, itis close to an orthogonal matrix. Using 3 to reparameterize the pulse coordinates yields
(2.7).

The hypothesis (H4) follows from the well-known analytic parametric dependence of the
eigenvectors of an unbounded, self-adjoint operator with compact resolvent, see for example
[12].

This verifies the hypotheses of theorem 2.1, in particular we deduce the reduced flow (2.11)
for the pulse dynamics in the zero-mass gradient flow of the FCH energy.

3.3. Tlp-gradient pulse dynamics

The application of theorem 2.1 gives the ODE system (2.11) for the pulse positions. To simplify
this flow and obtain the stability of the equispaced pulse, we first write the system mass to be in
the form M = nM,, + M,, where M, € (0,M},) is O(1), and M= fR(¢h — b_)dz is the mass
the homoclinic pulse in the scaled variables. From lemma 3.1, the mass parameter \ satisfies
(3.20). We recall the decomposition of the domain [0, d/¢] into the union of Z;, j = 1,...,n,
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and the form (3.36) of the n-pulse residual. For the pulses away from the boundary, that is for

i=2,...,n—1,wehave lly¢,; = (’)(5%) and we reduce the the inner productin (2.11) to the
sum

n

. 1 !
pi = 72 <LjTj —+ EW/N(QSh,j)Tzﬂ az¢h,i>

- + 067, (3.47)
H¢hHL2(R) =1 Zj

7

where we have introduced the local operator L;:=d? — W”(¢,;) considered to act on the
unbounded domain. The function 0.¢;,; lies in the kernel of L;, and for j = i we determine
that

(LT, 0600y = —@:bn) @I . (3.48)

Similarly, for the second term on the right-hand side of (3.47) we write W"”(¢y,)0.¢n;
= 0. (W"(¢n,)), and integrate by parts to obtain

1 1 )
<2W”’(¢h,l~)r,-2,az¢h,,-> = (LT, W (n)g, + S W) Ti [ - (349)

I
Since ¢, tends to b_ at an exponential rate, replacing W”(¢,;) with is constant asymptotic

value a_ incurs an O(§ %) error in the integral and the boundary term, while integrating by
parts on (T;0.T;, a_)7, cancels out the leading order boundary terms. We deduce that

1 3
(W enrt.on) —o(s). (3:50)

I

For j =i+ 1 the quadratic term W"(¢y, j)Tj2 is uniformly O(5%) and hence negligible. The
linear term, LT}, takes the form,

(LT}, az¢h,i>1j = —(az¢h,i)(asz)|Z;;,1 + (T}, (a- — W"(¢h,j)az¢h,i>zj~ (3.51)

The integrand in the inner product term on the right-hand side has L> norm O(d %) and is neg-
ligible. The inner product on the left-hand side is dominated by the boundary terms; recalling
the definition of 7; and keeping only leading order terms we find

b= —_ - On,i0-Onit1|m; + O-OniO:Pni—t|m_, — (5z¢h,i)2\m,-,1 + (3z¢h,i)2|m,-
l [10-¢n| 2

+ 06, (3.52)

The pulse profiles have the far-field asymptotic form
On(2) = Pmaxe VO H, (3.53)

where the constant ¢, is determined by matching to the exact pulse shape ¢,,.
Since p; | <miy < p; <m; < p;y it follows that 0.¢,;(m)0.¢,,1(m) <0 and
0.0y, .(m;_1)0.¢y, ;1 (mi—1) < 0. We conclude that

2a 2
b= _W (e—\/I(PH-I_Pi) _ e—ﬁ(m—mq)) + @(5%), (3.54)
zPhl| 12
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fori =2,...,n— 1. The same result for i = 1, n follows by replacing the boundary correction
terms E in (3.13) with a pulse located at p, and p,,; given by lemma 3.1. This replacement
incurs a higher order error, and the analysis above extends to the cases i = 1, n.

For a given d and n there is a unique equally spaced pulse configuration with p;| — p; = %
fori=0,...,n+ 1. Here we recall that the p, and p,,, denote the placements of shadow
pulses outside the domain [0, d/¢]. We conclude from (3.54) that if the pulses are equally
separated then the pulse locations are stationary to leading order. Furthermore, the Jacobian
matrix of the ODE system taken at the equispaced pulse locations takes the form

~ —% 0 0 ... 0
ol ol
> 7 > 0 0
o -2 4 -2 o
J=— 2 2 (3.55)
0 0
0 ETR—
. 2
0 0 0o -2
5 7

2047(1512113)( e (g — qu‘z’?nax
[0:¢nll 2 10-¢ll,2
ces shows that J has n negative eigenvalues

where v := 0. The standard result for spectrum of tri-diagonal matri-

)\k:—7<1+cos<L>><0, fork=1,...,n. (3.56)
n+1

We conclude that the equispaced pulse solution is linearly stable under the leading-order flow.
Since the flow for p is smooth, there exists an O(d %) neighbourhood of the equispaced pulse
configuration that is forward invariant under the flow. Initial data of the system (3.23) cor-
responding to initial data u with a decomposition (3.24) with |w||z = O(J) and p, within
O(+/9) of the equispaced pulse configuration will remain within O(v/9) of the equispaced
pulse configuration for all time.

3.4. EL assumption verification —general gradients

To apply theorem 2.4 for the flow (2.12) with a general gradient G € Cx,, we must verify that
(A0) and the assumptions (EH1) and (EA) hold, and impose conditions for which 7, < n*.
From the form of (3.14), and more particularly (3.16) it is straight forward to see that
2
J@®) = > LT+ 6P)|| < cob, (3.57)
=1 ¥
for some ¢y > 0 independent of p € P. This bound is sharp since from (2.11) we have the
leading order result
0P

OpJ(®) = <VXJ(‘I>), ap;
J

> = pj+ 0. (3.58)
X
Introducing the equispaced n-pulse p, then from (3.54) we see that

|p‘ 2 doé\p - peq|’
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for some djy > 0 independent of p € P and J. It is trivial to show that the set of uy € Xo N H
with

J(ug) < sup J(®(p)) + 9,
peP

is non-empty, since this set contains the manifold M, ;. Thus we may take §p = cod and
81 = 4, for which choice we have 7, = O(v/¢) and this upper bound is asymptotically sharp
for a set P that is at least O(1) wide. The assumption (EH1) is satisfied by construction of
M, m, while the normal coercivity assumption (EA) is equivalent to the argument used to
establish (3.44). Indeed we may write V4J(®) = £ in the form

L =0} + g0 + 1@ + qo(2) + a2,
where g5, g, € L*(0,d/e). For v, > 0 sufficiently large we may write
L= +a>+7)I+B),

where B:= (9% + o +7,) ! (qz(z)az2 + q1(2)0; + qo(z)), is a bounded map from H into H
whose norm decreases to zero with increasing values of v,. The assumption (EA) follows.
We deduce that for any gradient, in particular the H~' gradient G = —822, that the manifold
M., 1s quasi-steady under the flow (2.12). In particular if « is within a e-neighbourhood of M
in the H norm, and satisfies (A0) with §, = ¢, then it is within an 7, = O(+/§) neighbourhood
and will remain there until time 7 i, Wwhich can be bounded from below using [2, theorem 2.2].

3.5. Pulse dynamics for the H™® gradient flow

We apply theorem 2.8 to (2.12) for a family of gradients parameterized by s € [0, 1]. Defin-
ing the gradients by their inverses, we introduce the space L3(0, d/¢) comprised of zero-mass
functions and consider the operator D : L3(0,d/e) — Hj that maps f € L§ onto the solution u
of

—u; =f in(0,d/e),

(3.59)
uz(0) = uy(d/e) = 0,
subject to ITpu = u. The space L) denotes L? functions with zero-mass, on this space the oper-
ator D has eigenvalues {\, = d?/(e*7?n*)}>° |, which tend to zero as n — co. Consequently
its norm is given by \; = d/(n%€®). The operator D° denotes the s’th root of D, with the
same eigenfunctions but eigenvalues defined equal to {\}}2 ;. Correspondingly, we establish
a norm-1 inverse operator by setting G = A} D~ so that
G = \2p-s2 — Lo (3.60)
1 - 1 s 5 .
€T
has smallest non-zero eigenvalue equal to 1. In particular, for s = 0 we have G = G; = 1,
while for s = 1 we have G = %D*I = %812 and G, = %D’%. For s = 1, the operator G is
proportional to 83, however G is a positive, self-adjoint operator and is not proportional to 0,.
Theorem 2.1 has been established for gradient 11, we extend it to recover the pulse dynam-
ics for the H™* gradient flow for s € [0, 1]. To address the nonlinear estimate (EH2) we remark
that for v € H*, we have the expansion,

1
Ns(v)=G (W”’(cb)anv - ELn<W’”<<I>)v2>) +O([vl[7),
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where the operator L, is defined in (3.9). We must establish identify a large parameter p = p(¢)
for which we have the bound

1pGINs(p™ ' Grw)|lug, = [IpGiNs(p™ ' Grw) | < c[|Graw|3e (3.61)

for some constant ¢ > 0, independent of € and p. The argument of the norm on the left-hand
side has leading order terms

1
PGiNs(p~'Giw) ~ (¥p) 'D™* (W”’(@)(glw)Ln@lw) - ELn(W’”@)(glw)z)) .

Since the potential W and the profile ® are smooth, D~* is bounded as a map from H* to L?,
L, is bounded as an operator from H? into L?, and the H* norm is an algebra on R for k > 1/2,
we have the estimate

1pGiNs(p™ ' Grw)|l s < ellGrwlFpsas,

so long as p > €%, This establishes (3.61) and hence (EH2) for s € [0, 1].

To establish the bounds in (EH3), we recall that V, 7 (®(p)) = R(p) and return to the iden-
tities (3.27) and (3.37). Applying the Hg, normto G; R and using the scaling (3.60), we find that
(2.46) holds with p = ¢ *. If u € Ty, then up to exponentially small terms, u is a linear combina-
tion of translates of ¢, and (2.47) holds with p = €~*. Since § = e V®~“and £ >> [Ine] it follows
that § < €” for any p > 0 and in particular p>§ = ¢ 2§ < 1 for any choice of s € [0, 1]. This
establishes theorem 2.8 for this range of gradients.

To interpret the scale of the reduced flow (2.11) we first must identify the proper reparame-
terization the the pulse locations p = p(p) for which (H3) holds with eigenfunctions ¥; given
by (2.49) and & replaced with G, '®. This requires the normalization |G, '95,®||,> = 1 for
i=1,...,n, and can be achieved via the linear transformation p = ap + p, where p, is a
fixed vector in R” and the scaling constant

a(s) = |Gy o) |l,2 = A2 | Doy |-

It is straightforward to calculate that, up to exponentially small terms, a(0) = [|¢},[/;2®, and
a(1) = (Z)"||Mo¢nl| 2w, Moreover a is a strictly decreasing function of s as all the eigenval-
ues of G, I are less than or equal to one, hence its norm decreases with growing s. Changing
variables from p to p in (2.48) we find

1
a(s)

pi = <R(p),g—q)>+0(a1(%+’,aléé), fori=1,....n. (3.62)
Di

The inner-product on the right-hand side equals the leading order term on the right-hand side
of (3.54). This demonstrates that the impact of the change of gradient on the leading-order
pulse dynamics amounts to a rescaling of their velocity.
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