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Abstract
For gradient flows of energies, both spectral renormalization (SRN) and energy
landscape (EL) techniques have been used to establish slow motion of orbits
near low-energy manifold. We show that both methods are applicable to flows
induced by families of gradients and compare the scope and specificity of the
results. The SRN techniques capture the flow in a thinner neighbourhood of the
manifold, affording a leading order representation of the slow flow via as pro-
jection of the flow onto the tangent plane of the manifold. The SRN approach
requires a spectral gap in the linearization of the full gradient flow about the
points on the low-energy manifold. We provide conditions on the choice of
gradient under which the spectral gap is preserved, and show that up to repa-
rameterization the slow flow is invariant under these choices of gradients. The
EL methods estimate the magnitude of the slow flow, but cannot capture its
leading order form. However the EL only requires normal coercivity for the
second variation of the energy, and does not require spectral conditions on the
linearization of the full flow. It thus applies to a much larger class of gradi-
ents of a given energy. We develop conditions under which the assumptions of
the SRN method imply the applicability of the EL method, and identify a large
family of gradients for which the EL methods apply. In particular we apply both
approaches to derive the interaction of multi-pulse solutions within the 1 + 1D
functionalized Cahn–Hilliard gradient flow, deriving gradient invariance for a
class of gradients arising from powers of a homogeneous differential operator.
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1. Introduction

Gradient flows play a fundamental role in material science, biology, and other physical systems
in which dissipation is dominant. They provide mechanisms for self organization of patterns
that minimize the underlying energy of the system. The basic structure is provided by an energy
J that is a smooth map from a Hilbert space H into R, and a gradient, G, that relates the flow
of the system to the dissipation of the energy. Typically the energy is naturally posed in terms
of the inner product on a larger Hilbert space X that lies between H and its X-dual, H′. The
underlying PDE takes the form

ut = −G∇XJ(u),

where ∇XJ denotes the variational derivative of J in the X inner product, and G a non-negative,
X-self-adjoint linear operator. The energy J decreases along the orbits and minimizers of J
are strong candidates for asymptotically stable equilibrium of the gradient flow. The energy
landscape (EL) method arose to identify conditions under which manifolds of low-energy
configurations engender slow flows that remain trapped within a thin neighbourhood of the
manifold. The EL method seems to have originated in the study of slow motion of radial inter-
faces in the Cahn–Hilliard system [1], and was developed into a more general framework in
[13] and more recently in [2]. The method makes few direct assumptions on the smoothness
of the manifold nor upon the gradient, requiring only that the energy has little variation over
the manifold, increases uniformly in the direction normal the manifold, and that there is well-
defined projection from an H-neighbourhood of the manifold onto the manifold. It is natural
to compare these results to the spectral renormalization (SRN) framework developed in [14]
for damped-forced Hamiltonian systems and adapted in [3, 5] to singularly-perturbed reaction
diffusion systems.

The SRN method establishes the existence of slow flows in a neighbourhood of a mani-
folds comprised of quasi-steady solutions. It belongs to the family of global centre manifold
approaches for these problems and is distinguished by the mechanism by which it builds the
linear semi-group estimates for the linearization about the slowly evolving pattern. The SRN
replaces the temporally dependent linear problem with a sequence of time independent prob-
lems by freezing the underlying pattern. The difference between the frozen and evolving pattern
is tucked into an error term. As the system evolves away from the frozen pattern, this error
grows and a point the frozen pattern must be updated in a re-projection or ‘renormalization’
step. Additional global centre manifold approaches arose out of the early work of Sandst-
ede [19], and culminated in the framework of [22] that introduces an artificial projection that
eliminates the neutral modes to arrive at the linear semi-group estimates.

To complete the renormalization step, the SRN requires detailed assumptions on the spec-
trum of the linearization, L := − G∇2

XJ, of the vector field F := − G∇XJ at the points on the
manifold, in particular it requires the manifold to be a graph over a finite dimensional space.
Heuristically, if the vector field evaluated on the manifold satisfies ‖F(u)‖H ≈ δ then the slow
flow evolves on an O(δ) time-scale. The SRN approach attracts orbits into a neighbourhood of
the manifold that has an O(δ)H-norm thickness, with the distance of the orbit to the manifold
contributing an O(δ2) error. On the other hand the EL method embeds the manifold in a forward
invariant neighbourhood with an O(

√
δ) thickness in the H-norm, whose O(δ) contribution to

the error swamps the resolution of the slow flow. The SRN method resolves the leading order
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terms in the projection of the residual flow onto the tangent plane of the manifold, yielding a
finite dimensional, closed form reduction of the slow flow. The EL approach affords bounds
on the rate of the slow flow, but does not extract leading order information on the projection of
the slow flow onto the tangent plane of the manifold.

While the SRN method is quite general, applying to broad classes of damped-dispersive and
dissipative systems, it requires significantly more machinery to apply than the EL approach,
in particular it requires a spectral gap condition on the point-wise linearizations of the full
gradient flow at each location on the manifold. For a given energy we establish conditions under
which families of gradients which share the same kernel preserve the spectral gap. We show
that within these families the slow flows are equivalent up to reparameterization. To compare
the applicability of the SRN and EL approaches, we develop mild additional conditions under
which the assumptions of the SRN method guarantee the applicability of the EL approach.
Indeed the generality of the EL approach allows it to encompass a substantially larger class of
gradients than the SRN methodology. It is not intuitively obvious what becomes of the slow
flow for choices of gradients for which the SRN fails while the EL approach holds. It is unclear
if the failure of the SRN approach is technical, or if there is the potential for a more complex
flow that is not slaved at leading order to its projection onto the tangent plane of the manifold.

The EL approach has strong analogy to the much older orbital stability approach for Hamil-
tonian systems, pioneered by Benjamin [4]. These exploit the conservation of the underlying
energy,H : H �→ R, rather than its decay, to maintain proximity of solutions of the Hamiltonian
flow to a manifold of orbits. The Hamiltonian flows take the form

ut = J∇XH,

where the linear operatorJ is skew with respect to the inner product of a Hilbert space X, which
again resides between H and its X-induced dual H′. The approach characterizes critical points
of the energyH as minimizers subject to additional constraints induced by conserved quantities
arising from symmetries of the energy. The symmetries generate a manifold of equilibrium
from the orbit of a single critical point under their group action. The orbital stability approach
has broad applicability since it is largely independent of the specific form of the skew operator,
and relies principally upon the analysis of the second variation of the energy H at the point on
the manifold of equilibrium. This is fortuitous as the second variation, ∇2

XH is a self-adjoint
linear operator in the inner-product in which it is taken, while the full linearization, J∇2

XH
is generically not self-adjoint. If the critical point of H is a strict minimizer, then the second
variation has no negative eigenvalues; however this is rarely the case. Various stability indices
have been developed that relate the number of negative eigenvalues of ∇2

XH to the number of
complex eigenvalues of J∇2

XH with positive real part: eigenvalues which denote instability.
Generically the larger the number of negative eigenvalues of the second variation, the greater
the number of instabilities that are available to the flow. A central result is that if the conserved
quantities of the flow constrain it to lie in a finite co-dimensional space, then the relevant index
is the number of negative eigenvalues of the second variation constrained to act on the reduced
space. The calculation of this constrained eigenvalue count is the basis of the seminal work
of Grillakis et al [9, 10], and is summarized in [11, chapter 5]. This constrained eigenvalue
count approach is exploited in this work to establish the implication of the EL assumptions
under the SRN hypotheses. Indeed, the SRN framework was originally derived to extend the
orbital stability approach to classes of weakly damped-forced Hamiltonian systems arising in
nonlinear optics.

As a test case, we apply both the SRN and EL approaches to the gradient flows of the
functionalized Cahn–Hilliard (FCH) free energy on a bounded, one-dimensional domain. The
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FCH free energy, presented in [15] and in [6], is a reformulation of the energy of oil-water-
surfactant microemulsions proposed by [21] and revised in [8]. The FCH assigns an energy
to a mixture of surfactant and solvent according to the volume fraction, u of surfactant via its
proximity to the large class of solutions of the second-order nonlinear system:

ε2Δu = W ′(u), (1.1)

subject to appropriate boundary conditions. More specifically the FCH energy takes the form

F (u) =
∫
Ω

1
2

(
ε2Δu − W ′(u)

)2 − εp

(
η1ε

2

2
|∇u|2 + η2W(u)

)
dx, (1.2)

where ε 
 1 is the ratio of amphiphilic molecule length to domain size and η1 > 0, η2 ∈ R.
For p = 1, the FCH corresponds to the strong functionalization while for p = 2 it is a model
for the weak functionalization. We assume that W(u) is a double-well with two unequal depth
minima at b− < b+, satisfying W(b−) = 0 > W(b+). The minima are non-degenerate in the
sense that α± :=W ′′(b±) > 0. As we restrict ourselves to one space dimension, the function-
alization terms, those with the prefactors η1 and η2, play a negligible role and we set them
equal to zero. In this case all solutions of the 1D version of (1.1) are global minimizers of the
FCH free energy. In [16], the existence of global minimizers was established over a variety of
admissible function space for a class of generalizations of the FCH free energy.

2. SRN and EL approaches for quasi-steady flows

We present frameworks for the SRN and the EL approaches for deriving slow ‘quasi-steady’
flows in neighbourhoods of manifolds with low energy variation. We consider classes of gradi-
ents with common kernels, and derive conditions on the gradients under which the SRN applies
uniformly. We also develop conditions under which the SRN assumptions satisfy the assump-
tions required to apply the EL approach, and show that this includes choices of gradients for
which the SRN does not directly apply.

2.1. The SRN framework

The framework presented in [14] was designed for damped-forced dispersive wave systems
but applies more generally to abstract dynamical system of the form

ut = F(u), (2.1)

that are locally well-posed on a pair of nested Hilbert spaces H ⊂ X ⊂ H′. The key assumption
is the existence of a quasi-steady manifold M which is explicitly parameterized as the graph
of a map Φ : P ⊂ R

n �→ H

M = {Φ (p) |p ∈ P ⊂ R
n} . (2.2)

The domain P may be with or without boundary. We assume that the vector field F admits an
expansion of the form

F(Φ+ v) = R(p) + Lpv +NS(v), (2.3)

where the residual, R(p) :=F(Φ(p)) is small, L = Lp is the linearization of F at Φ(p) and the
nonlinearity for the spectral approach satisfies a generic estimate

‖NS(v)‖H � C‖v‖r
H, (2.4)

6893



Nonlinearity 33 (2020) 6890 H G Cakir and K Promislow

where r > 1 and C may be chosen independent of p ∈ P . We assume that there exists a fixed
value of δ > 0, for which the quasi-steady manifold and the associated linearization satisfy the
following hypotheses:

(H0) The manifold M is quasi-steady: that is, there exists C0 > 0 such that for all p ∈ P ,

‖R(p)‖H � C0δ. (2.5)

(H1) There exists k0, ks > 0 such that for each p ∈ P the spectrum of the operator Lp,
viewed as a map from H into X consists of a stable part σs ⊂ {λ|Re(λ) � −ks} and
a slow part σ0 ⊂ {λ||λ| � c0δ}. The associated slow eigenspace Yp has dimension n,
equal to both the dimension P and to the tangent space to M.

(H2) There exists C2 > 0 such that for each fixed p ∈ P , the operator Lp generates a C0

semigroup Sp which satisfies

‖Sp(t)u‖H � C2e−kst‖u‖H, (2.6)

for all t � 0 and all u ∈ Y ′
p :=Y⊥

p ∩ H, where the perp is taken in the X norm.
(H3) For each p ∈ P , Yp is well-approximated by the tangent plane T (p) of M at p.

Specifically, there exists a constant C3 > 0 and an ordering {ψ1, . . . ,ψn} of the
eigenfunctions of Yp such that∥∥∥∥ψi(p) − ∂Φ(·; p)

∂pi

∥∥∥∥
H

� C3δ, for, i = 1, . . . , n, (2.7)

holds for all p ∈ P .
(H4) There exists a constant C4 > 0 such that the normalized eigenvectors {ψ1, . . . ,ψn} of

the Yp satisfy

max
i=1,...,n

p∈P

(
‖ψi(p)‖H +

∥∥∇2
pψi(p)

∥∥
H

)
� C4. (2.8)

Under these hypotheses we have the following reduction.

Theorem 2.1 [14, theorem 2.1]. Suppose that the system (2.1) has a manifold M for which
the hypotheses (H0)–(H4) and (2.4) are satisfied for some r > 1 and some δ > 0 sufficiently
small. Then there exists η0 and M0 > 0, such that the solutions u of (2.1) corresponding to
initial data u0 that lie within an η0-neighbourhood of M in H can be decomposed as

u(t) = Φ(·, p(t)) + w(·, t), (2.9)

where the deviation w ∈ Y′
p(t) satisfies

‖w(·, t)‖H � M0(η0e−ks(t−t0) + δ) for t ∈ (0, Texit). (2.10)

If p(0) is an O(1) distance to ∂P , then the exit time Texit � c0δ
−1. After a transient time, T1

= O(|lnδ/η0|) 
 Texit, the deviation satisfies ‖w‖H = O(δ) and the parameters p(t) evolve at
leading order via the closed system

ṗi =

〈
R(p),

∂Φ

∂pi

〉
X

+O(δ1+r, δ2) for t > T1, (2.11)

for i = 1, . . . , n. If the set P is forward invariant under this flow, then we may take Texit = ∞.
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2.2. The EL framework

We compare the scope and results of theorem 2.1 with the EL techniques introduced in [13]
and refined in [2]. The EL approach uses the uniform coercivity of the energy in the directions
normal to the quasi-steady manifold to develop an excluded zone which dynamically traps
orbits in a thin neighbourhood of the manifold. Specifically, the approach assumes an energy
J : H �→ R, nested Hilbert spaces H ⊂ X ⊂ H∗, and an associated gradient system

ut = F(u) := − G∇XJ(u), (2.12)

with the variational derivative of J taken in the X norm. It is often the case that the energy
is naturally formulated in the inner product on one space, X, while the gradient is calculated
in a different inner product. To emphasize this we have introduced the gradient operator G, a
non-negative X-self-adjoint, linear operator that may possess a finite dimensional kernel. We
assume that G has an inverse that is uniformly bounded as a map, G−1 : XG �→ XG , where ΠG
is the X-orthogonal projection onto XG := ker (G)⊥. We introduce G1 :=G 1

2 , and the associated
inner product

〈u, v〉G := 〈G−1
1 u,G−1

1 v〉X . (2.13)

It straightforward to see that for u ∈ H the variational derivative of J in the G-inner product
satisfies the relation ∇GJ = G∇XJ, and hence (2.12) is the gradient flow of J in the G norm.
This flow decreases the energy,

d
dt

J(u(t)) = 〈∇XJ, ut〉X = −‖G1∇XJ‖2
X = −‖∇GJ‖2

G � 0, (2.14)

and for any initial data u0 ∈ H it leaves the space u0 + XG invariant. Indeed if v ∈ ker(G) then

d
dt
〈u(t), v〉X = −〈G∇XJ(u), v〉X = −〈∇XJ(u),Gv〉X = 0. (2.15)

The main result of the EL approach states that if u ∈ H is sufficiently close to the quasi-steady
manifold M, the manifold is normally H-coercive, and the energy of u is low, then the H-
distance of u to M, denoted dH(u,M), is controlled by the energy, which is non-increasing,
and hence u must remain close to manifold so long is it does not reach its boundary. In addition
to the normal coercivity assumption, a key role is played by a projection onto the manifold.

For simplicity of presentation we consider a less general framework than that presented
in [2]. Some of these modifications arise from the fact that we have explicitly factored the
variational derivative of J into a variational derivative in the base space X and a linear gradient
G. While this sacrifices some generality, it makes the relative independence of the results upon
the choice of gradient G more explicit.

(A0) There exists a smooth manifold M embedded into the Hilbert space H, a δ0 > 0, and
an energy J defined in H on which the energy has small variation,

|J(u1) − J(u2)| � δ0, for all u1, u2 ∈ M. (2.16)

(A1) There exists a projectionΠM on M, with complement Π̃M := I −ΠM, defined within
an H-neighbourhood of size η > 0 of M and a constant c1 > 0 such that for all u in
the neighbourhood

‖Π̃Mu‖H � c1dH(M, u), (2.17)

where dH denotes the H-norm distance function.
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(A2) For all u with dH(u,M) < η, the functional J admits an X-variation expansion of the
form

J(u) = J(ΠMu) +
〈
∇XJ(ΠMu), Π̃Mu

〉
X
+

〈
∇2

XJ(ΠMu)Π̃Mu, Π̃Mu
〉

X

+ NE(Π̃Mu), (2.18)

which satisfies the following: small residual,∣∣∣〈∇XJ(ΠMu), Π̃Mu
〉

X

∣∣∣ � δ2‖Π̃Mu‖H, (2.19)

X to H normal coercivity,〈
∇2

XJ(ΠMu)Π̃Mu, Π̃Mu
〉

X
� μ2‖Π̃Mu‖2

H, (2.20)

and bounded nonlinearity,

|NE(Π̃Mu)| � c2‖Π̃Mu‖ρH, (2.21)

for some δ2, c2 > 0, some μ2 > 0, and ρ > 2.
The result exploits the structure of the energy J and hence remarkably, is substantially inde-

pendent of the choice of the gradient G. The proof requires little more than the quadratic
formula.

Theorem 2.2 [2, theorem 2.1]. Suppose there exists a choice of gradient G for which the
energy J, the manifold M, and the projection ΠM satisfy (A0)–(A2). Assume u ∈ H satisfies

J(u) � sup
Φ∈M

J(Φ) + δ1, (2.22)

for some δ1 > 0. Define

η∗ := min

{
η,

1
c1

(
μ1

2c2

) 1
s−2

}
(2.23)

and

η∗ :=
δ2

μ2
+

√
δ2

2

μ2
2

+ 2
δ0 + δ1

μ2
. (2.24)

If δ0, δ1, and δ2 are small enough that η∗ < η∗, then

dH(u,M) < η∗ =⇒ dH(u,M) < η∗. (2.25)

The SRN and the EL techniques have non-trivial overlap in their applicability. We first con-
sider the ‘base-case’ in which the gradient G is taken to be the X-orthogonal projection onto a
prescribed kernel. We show that the SRN hypotheses imply the majority of the EL assumptions
for this case, and develop two additional hypotheses, one for the SRN and one for the EL, under
which the EL assumptions hold in their entirety. The first assumption simplifies the interaction
of the manifold and the kernel of the gradient, and the second mirrors standard interpolation
results used to boost coercivity into the strong norm. The result, theorem 2.4, emphasizes that
the EL approach holds for a large class of gradients which share the same kernel. The second
main result, given in section 2.3 develops additional assumptions on the gradients for which
the SRN may be extended beyond the base-case gradient. This extension requires a non-trivial
reformulation of the problem to symmetrize the gradient flow linearization L.
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(EH1) Let u0 denote the initial data to (2.12), the manifold M lies in the invariant plane
u0 + XG .

(EA) There exist positive parameters μe, γe such that for all Φ ∈ M we have

〈(
∇2

XJ(Φ) + γe

)
v, v

〉
X

� μe‖v‖2
H , (2.26)

for all v ∈ H ∩ XG and all Φ ∈ M.

Remark 2.3. The assumption (EH1) implies that Tp ⊂ XG for all p ∈ P . One way to satisfy
this assumption is to insert extra parameters, p̃ into the ansatz Φ = Φ(p, p̃), and constrain p
and p̃ to enforce ΠG(Φ− u0) = 0. The key is to show that the reduced family of parameters
satisfies the remaining hypotheses. This approach is employed in section 3.

To establish a non-trivial overlap between the assumptions of the SRN and the EL
approaches we show that (H0)–(H4), together with (EH1) and (EA), imply (A1)–(A2). While
the assumption (A0) is not required for the SRN approach, we show that there is a wide class of
gradients for which the EL approach applies. Indeed we fix a finite co-dimension space X0 ⊂ X
with orthogonal projectionΠ0 : X �→ X0 and a quasi-steady manifoldM and consider the class
CX0 of non-negative, X-self adjoint gradients

CX0 = {G : H �→ X0| ker(G) = X⊥
0 ;G−1 : X0 �→ DG ⊂ X0, X- norm bounded}. (2.27)

We show that the choice of gradient from this class has limited impact on the slow-flow result
associated to the underlying low-energy manifold.

Theorem 2.4. Fix the space X0 and the class of gradient CX0 as in (2.27). Suppose that
the energy J and the manifold M correspond to the framework of (2.12). If the hypotheses
(H0)–(H4), (EH1), and (EA) hold for this system with the gradient G = Π0, then there exists
a projection ΠM for which (A1)–(A2) are valid. Moreover assume (A0) holds and initial data
u0 satisfies (2.22) with δ, δ0, and δ1 sufficiently small that η∗ < η∗. Then the corresponding
solution u(t) of (2.12) can be decomposed as in (2.9) where the residual w satisfies ‖w‖H � η∗
for all t ∈ (0, Texit) where Texit := inf{t|p(t) /∈ P}.

Remark 2.5. If the assumptions of theorem 2.1 hold for the gradient G = ΠX0 then one
recovers the attraction of an O(η0)H-neighbourhood of M into an O(δ)H-neighbourhood of
the manifold, as well as the leading order asymptotics of the flow projected onto the tangent
plane of the manifold, so long as p ∈ P . For the flows produced by the other gradients G ∈ CX0

one recovers the forward invariance of a generically wider O(η∗)H−neighbourhood of M, up
to the boundary of M, however the decomposition of the solution into modes tangential and
normal to M is generically not accurate enough to recover the leading order projection of ut

onto the tangent plane of the M, but do afford lower bounds on the exit time, as given in [2,
theorem 2.2].

Proof. We assume the existence of a quasi-steady manifold, M that verifies (H0)–(H4) for
F = Π0∇XJ. The existence of the projection ΠM is established in proposition 2.2 of [14]. In
particular this result establishes the existence of an η0 > 0 for which u ∈ X with dX(u,M)
� η0 can be decomposed as u = Φ(p∗) + η0Ŵ0, with ‖Ŵ0‖X � 1. Moreover it establishes the
existence of a function p̂ = p̂(u) = p∗ + η0H(Ŵ) withH(0) = 0,H smooth in the H norm, and
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for which the projection ΠMu :=Φ(p̂(u)) enjoys the property Π̃Mu ∈ T ⊥
M(p̂). By the triangle

inequality we deduce that

‖Π̃Mu‖H � ‖u − Φ(p∗)‖H + ‖Φ(p∗) − Φ(p̂)‖H = dH(u,M) + ‖Φ(p∗) − Φ(p̂)‖H.

(2.28)

Since H is smooth there exists M0 > 0 such that

|p∗ − p̂| � η0M0‖Ŵ0‖H � M0dH(u,M).

Since Φ is a smooth function of p we deduce that (A1) holds with η = η0 for η0 sufficiently
small.

For the gradient flow, (2.12), the choice of gradient G = Π0 reduces to the identity on X0.
This affords the identification

Π0∇XJ = −G−1F(u) = −Π0F(u) = −F(u). (2.29)

As the space u0 + X0 is invariant under the flow, it is sufficient to establish the bounds (A2)
on X0. Indeed, writing u = Φ + v with Φ ∈ M, by (EH1) we have Φ− u0 ∈ X0, so that ΠMu
= Φ ∈ X0 and v = Π̃Mu ∈ X0. We may use the expansion (2.3) to write

Π0∇XJ(Φ+ v) = −Π0R(p) −Π0Lpv −Π0NS(Φp; v), (2.30)

where L denotes the linearization of the full gradients flow F at Φp. Comparing this with the
expansion (2.21) and using the fundamental theorem of calculus we find for each v ∈ H ∩ X0,
that the expansion holds with

NE(v) := −
∫ 1

0
〈NS(Φ, sv), v〉X ds. (2.31)

Since the H-norm controls the X-norm, and NS satisfies (2.4) we determine that (2.21) holds
with ρ = r + 1 > 2 on XG , which is consistent with the application of theorem 2.2. Since
∇XJ(Φ(p)) = −Π0R(p), the bound (2.5) implies that the small residual assumption (2.19)
holds with δ2 = c0δ. To establish assumption (A2) it remains to verify the coercivity estimate
(2.20) which we establish in lemma 2.6.

The second variation of J at a point Φp on M with perturbations taken from the constrained
set X0, induces the constrained operator

∇2
X0

J(Φ(p)) = −Π0Lp = −Π0LpΠ0. (2.32)

Lemma 2.6. Assume (H0)–(H4), (EH1), and (EA) hold then the manifold is normally H-
coercive. That is exists a μ > 0 such that for all p ∈ P the bilinear form (2.20) induced by the
constrained second variation L of J at Φ(p) satisfies

〈−Lv, v〉X � μ‖v‖2
H, (2.33)

for all v ∈ T ⊥
p .

Proof. By construction of the projection and (EH1), Range(Π̃M(p)) = T ⊥
p ⊂ X0. We first

establish X coercivity of −L on T ⊥
p by finding a μ̃ > 0 such that

〈−(L− μ̃)v, v〉X � 0, (2.34)
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for all v ∈ T ⊥
p . We introduce the bilinear form

b[v,w] := 〈−(L− μ̃)v,w〉X , (2.35)

associated to −(L− μ̃). Restricting the bilinear form to T ⊥
p , induces the constrained operator

−Π̃M(L− μ̃)Π̃M. We remark from hypothesis (H1) that −Lp has a finite number of negative
eigenvalues. The X-coercivity of −L is equivalent to the the statement n(−Π̃M(L− μ̃)Π̃M)
= 0, where the negative index n(L) denotes the number of negative eigenvalues of a self-adjoint
operator L counted according to multiplicity.

We apply proposition 5.3.1 of [11], which equates the number of the negative eigenvalues
of a constrained operator to the difference of the number of the negative eigenvalues of the
operator and an associated constraint matrix. More specifically, given an invertible, X-self-
adjoint operator L and an orthogonal projectionΠV onto a finite-codimension subspace V ⊂ X.
Then the number of negative eigenvalues of the constrained operator ΠV LΠV , as a map from
V �→ V , is given by

n(ΠV LΠV ) = n(L) − n(D), (2.36)

where the finite-dimensional constraint matrix D is defined by

Dij := 〈si, L−1s j〉, for i, j = 1, . . . , n (2.37)

where {si}n
i=1 is a basis for V⊥. We apply this theorem with L = −(L− μ̃), X = X0, and

V = Tp. From (H1), for μ̃ ∈ (ks/2, ks), we have n(−(L− μ̃)) = n.
To determine n(D(μ̃)), from (H1) and (H3) the slow-space eigenfunctions of −(L− μ̃) take

the form ψi = si + ψ⊥
i where ‖ψ⊥

i ‖H = O(δ), and si := ∂Φ
∂pi

. We denote the slow-eigenvalues
of L by {λ1, . . . ,λn}. Since −(L− μ̃) has an O(1) inverse we deduce that

Dij(μ̃) =
〈
si,−(L− μ̃)−1sj

〉
X
=

〈
si,−(λi − μ̃)−1φi

〉
X
+O(δ) =

−1
λi − μ̃

δij +O(δ).

(2.38)

From (H1) we have |λi| = O(δ) and hence D(μ̃) = 1
μ̃ In×n +O(δ) and n(D(μ̃)) = n. From the

variational formulation of eigenvalues we deduce that

〈−Lv, v〉X � μ̃‖v‖2
X, (2.39)

for v ∈ T ⊥
p .

To establish the H coercivity. We introduce α ∈ (0, 1) and write

〈−Lv, v〉X = α

(
〈−Lv, v〉X +

1 − α

α
〈−Lv, v〉X

)
� α

(
〈Lv, v〉X +

(1 − α)μ̃
α

‖v‖2
X

)
.

(2.40)

Choosing α = μ̃
μ̃+γe

we have (1−α)μ̃
α

= γe. Applying (2.26) of (EA) we deduce

〈−Lv, v〉X � μ̃

μ̃+ γe
μe‖v‖2

H, (2.41)

which establishes (2.33) with μ = μ̃μe
μ̃+γe

. �
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Returning to the proof of theorem 2.4, we consider (2.12) with any gradient G ∈ CX0 and
deduce that theorem 2.2 holds with η∗ = η0 as given by theorem 2.1 and η∗ given by (2.24)
so long as δ, δ0, and δ1 are sufficiently small that η∗ < η0. From theorem 2.2 it follows that
the solution u = u(t) of (2.12) can be decomposed as u(t) = Φ(p(t)) + w where w = Π̃Mu(t)
satisfies ‖w‖H � η∗, so long as p ∈ P . �

2.3. Gradient invariance of slow flows

We extend the applicability of the SRN approach to a class of gradients that includes Π0, and
shares its kernel. This class is more restrictive than CX0 given in (2.27). For for all t > 0 the
solution u of (2.12) satisfies u(t) −M ∈ X0. This motivates the decomposition

u = Φ(·; p) + ρ−1G1w, (2.42)

where w ∈ HG1 ⊂ X0 satisfies w⊥G−1
1 T . The scaling parameter ρ � 1 is included to allow the

incorporation of singularly perturbed energies such as the FCH whose differential operators are
homogeneously scaled by the small parameter ε 
 1. The operator G1 is defined as the square
root of G and the space HG1 denotes the functions in H for which the norm ‖w‖HG1

:= ‖G1w‖H ,
is finite.

With this decomposition we re-write the gradient flow

ut = −G2
1∇XJ(u), (2.43)

as

ρG−1
1 ∇pΦ · ṗ + wt = −ρG1R− G1LG1w − ρG1NS(ρ−1G1w), (2.44)

whereL = ∇XJ(Φp) is the second variation of J in the X-inner product. The key point is that the
linear operatorL :=G1LG1 has been symmetrized and the nonlinearity has been scaled. Indeed,
comparing to the base case G = Π0, we see that the tangent plane ∇pΦ has been scaled and
mapped to G−1

1 ∇pΦ, and the residual is scaled and mapped by G1.
We have the following immediate result

Corollary 2.7. There exists μG > 0 such that the bilinear form

bG1 (w,w) := 〈G1LG1w,w〉X � μ‖G1w‖2
H � μG‖w‖2

H ,

for all w ∈ (G−1
1 T )⊥ ∩ HG1 . Here μ is the coercivity constant from lemma 2.6.

Proof. Since w ∈ (G−1
1 T )⊥ ∩ X0, we have w = G−1

1 v where v⊥T . In particular

〈G1LG1w,w〉X = 〈Lv, v〉X � μ‖v‖2
H = μ‖G1w‖2

H � μ

M2
‖w‖2

H,

where M is the bound on G−1
1 : X0 ∩ H �→ X0 ∩ H. �

Without loss of generality we may rescale both G and the temporal variable so that the X-
operator norm of G−1

1 is bounded sharply by the constant 1 on its domain X0. To recover the
leading order reduced flow we require two extra assumptions that constrain the choice of ρ,
which must satisfy δG := δρ3 
 1.

(EH2) There exists c > 0, independent of ρ � 1 for which the nonlinearity NS introduced
in (2.4) satisfies

ρ‖G1NS(ρ−1G1w)‖HG1
� c‖w‖2

HG1
. (2.45)
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(EH3) There exists a constant c > 0, independent of ρ, for which the following estimates

‖G1∇XJ(Φ(p))‖HG1
� cρ2δ, (2.46)

and

‖G1u‖X � cρ‖u‖X, ∀ u ∈ Tp, (2.47)

hold uniformly for p ∈ P .

Theorem 2.8. Assume that theorem 2.1 and its hypotheses hold for the choice of gradient
G = Π0. If in addition hypotheses (EH2) and (EH3) hold for parameters ρ and δ satisfy-
ing ρ � 1 and δG := δρ3 
 1, then the flow (2.44) satisfies the hypotheses (H0)–(H4) for the
pair HG1 ⊂ X with δ replaced by δG and a reparameterization of the manifold M through a
smooth transformation p̃ = p̃(p). The solution u of (2.12) can be decomposed as (2.42) where
w̃ := ρ−1w satisfies the bounds (2.10) in the norm HG and the rescaled parameters p̃ satisfy

˙

p̃i =

〈
R(p̃),

∂Φ

∂ p̃i

〉
X

+O(δ1+r
G , δ2

G). (2.48)

Remark 2.9. Within this framework the impact of the change of gradient in to rescale the
pulse dynamics. As we demonstrate explicitly in section 2.3, for simple manifolds this rescaling
can be uniform across the manifold, in which case it amounts to a linear scaling of time.

Proof. Since G−1
1 T is an n dimensional space, corollary 2.7 that n(G1LG1 − μG) � n. The

main step to establish the hypotheses (H0)–(H4) for the general gradient flow is to show that
the operator G1LG1 retains its spectral gap. To this end consider the eigenvalue problem

G1LG1Ψ = λΨ.

For λ ∈ σ(G1LG1) ∩ [−∞,μG) we decompose the eigenfunction as

Ψ = G−1
1 φ+Ψ⊥, (2.49)

where φ lies in Yp and Ψ⊥⊥G−1
1 Yp. Projecting the eigenvalue problem onto G−1

1 φ we have

〈Lφ,φ〉 + 〈G1Ψ
⊥,Lφ〉X = λ‖G−1

1 φ‖2
X . (2.50)

Isolating λ and bounding the first inner product with (H1), we use (EH3) and Rayleigh–Ritz
to obtain

|λ| � c0δ‖φ‖2
X + c0δ‖G1φ‖X‖Ψ⊥‖X

‖G−1
1 φ‖2

X

� c0δρ
2

(
1 +

‖Ψ⊥‖X

‖G−1
1 φ‖X

)
. (2.51)

Projecting the eigenvalue relation onto Ψ⊥ yields

〈Lφ,G1Ψ
⊥〉X + 〈G1LG1Ψ

⊥,Ψ⊥〉X = λ‖Ψ⊥‖2
X .

Using the coercivity result on the second term and applying (H1) and (EH3) to the first term
on the right-hand side we find that

(μ− λ)‖Ψ⊥‖HG1
� c0δρ

2‖G−1
1 φ‖X .
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In particular we bound

‖Ψ⊥‖X

‖G−1
1 φ‖X

�
‖Ψ⊥‖HG1

‖G−1
1 φ‖X

� c0δρ
2

(μG − λ)
.

With the normalization 1 = ‖Ψ‖2
X = ‖G−1

1 φ‖2
X + ‖Ψ⊥‖2

X , the estimate above and (2.51) imply
that

|λ|+
‖Ψ⊥‖HG1

‖G−1
1 φ‖X

� cδρ2 � cδG . (2.52)

This shows that λ ∈ σ(G1LG1) and λ < μG implies that |λ| < cδG 
 μG , which establishes the
spectral gap. Moreover, to leading order in δG , the operator G−1

1 maps the slow eigenfunctions
of L onto the slow eigenfunctions of G1LG1, even though this relation does not generically
hold for the eigenfunctions of the stable spectrum.

We assume that the hypotheses (H0)–(H4) and (2.4) hold for the system with gradient Π0

and verify that they hold for the flow (2.43), written in the form (2.44). This amounts to the
replacement of the spaces X = X, H = HG1 , the small parameter δ with δG , the residual R
with RG1 := ρG1R and the role of the tangent plane T with G−1

1 T . The equivalent of esti-
mate (2.4) for the nonlinear term of (2.44) follows immediately by assumption (EH2). The
hypotheses (H0) with bound δG holds for RG1 from assumption (2.46) of (EH3). Since the
eigenfunctions {ψi}n

i=1 of L are orthonormal in X, we deduce that the dim(G−1
1 Yp) = n. Moti-

vated by (2.52) we may introduce the slow space Yp,G1 associated to G1LG1 with ks = μG . Since
the bilinear form bG1 introduced in corollary 2.7 satisfies bG1 (u, v) � c0δ for all u, v ∈ G−1

1 Yp

we deduce that dimYp,G1 = n and that (H1) holds. The operator G1LG1 constrained to act on
G−1

1 Tp ∩ X0 is self-adjoint and has its spectrum contained in (ks,∞). It follows that the resol-
vent of −G1LG1 is uniformly bounded on the set {IRλ < ks} and hence the semigroup Sp

associated to−G1LG1 is analytic and satisfies (2.6). The slow eigenfunctions{Ψi}n
i=1 ofG1LG1

satisfy

Ψi = G−1
1

∂Φ

∂pi
+Ψ⊥

i ,

where Φ is smooth and the error term Ψ⊥
i satisfies the bound (2.52). Since

∂G−1
1 Φ

∂pi
= G−1

1
∂Φ

∂pi
,

and since (H3) holds with gradient Π0, the bounds (2.52) establish (H3) for G1, that is up to
a reparameterization of p, the bound (2.7) holds with ∂piΦ replaced with ∂p̃iG−1

1 Φ and with
δ replaced with small parameter δG . Since the operator G−1

1 is uniformly bounded on H, the
reparameterization p̃ of M is uniformly smooth in p the Hessian G−1

1 ∇2
p̃Φ is bounded in the

HG1 norm. The assumption (H4) follows.
The ODE (2.48) arises from the projection of the linear terms in (2.44) onto the small

eigenspace, Yp, of G1LG1. The factors of ρ cancel out, and the action of G1 on R is cancelled
by the G−1

1 prefactor that maps Yp for Π0 onto the leading order form of Yp for G1. The error
terms arise from the bound on ‖w‖HG1

which follows from the estimates on the decomposition
analogous to (2.10). �
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3. Pulse dynamics and gradient invariance in FCH gradient flows

We apply the results of section 2 to gradient flows of FCH energy (1.2) on the bounded domain
[0, d] ⊂ R. For simplicity of presentation we set η1 = η2 = 0, as these parameters have limited
impact in the one-dimensional setting.

3.1. Construction of the n-pulse quasi-steady manifold

Introducing the inner scaling z = x
ε
, we re-write the FCH as

J (u) =
∫ d

ε

0

1
2

(
∂2

z u − W ′(u)
)2

dz, (3.1)

and subject it to the mass constraint∫ d
ε

0
(u − b−)dz = M, (3.2)

where b− is the location of the left well of W and u − b− denotes the mass fraction of polymer.
It is natural to consider J acting on admissible functions that satisfy the mass constraint and
first-order Neumann boundary conditions

A =

{
u ∈ H2

([
0,

d
ε

]) ∣∣∣∣∣
∫ d

ε

0
(u − b−)dz = M, uz(0) = uz

(
d
ε

)
= 0

}
. (3.3)

The critical points of the inner scaling of FCH over the admissible space A ∩ H4
([

0, d
ε

])
are

the solutions to the Euler–Lagrange equation⎧⎪⎨⎪⎩
∇XJ :=

(
∂2

z − W ′′(u)
) (

∂2
z u − W ′(u)

)
= λε,

∂3
z u(0) = 0, ∂3

z u

(
d
ε

)
= 0, ∂zu(0) = 0, ∂zu

(
d
ε

)
= 0,

(3.4)

where ∇X is the first variational derivative of J with respect to L2 inner product and λε is the
ε-dependent Lagrange multiplier. The no-flux boundary conditions arise naturally from the
Euler–Lagrange formulation. To leading order the low-energy manifold is constructed from
solutions

∂2
z u − W ′(u) = 0, (3.5)

that satisfy the no-flux boundary conditions. Classical phase-plane arguments show that (3.5)
supports a homoclinic solution satisfying φh → b− as z →±∞. The n-pulse ansatz, defined
on all of R, is given by

un := b− +

n∑
j=1

φh

(
z − pj

)
, (3.6)

where φh :=φh − b− and p = (p1, p2, . . . , pn)t ∈ R
n is the vector of pulse locations. The

admissible set of pulse locations is given by

P := {p ∈ R
n : pi < pi+1 for i = 0, . . . , n and Δp � �}, (3.7)
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where Δp :=min
i �= j

|pi − pj|, and the boundary pulse locations p0 and pn+1 are introduced

below. The pulse spacing parameter � > 0 will be chosen sufficiently large that the exponential
tail–tail interaction terms δ := e−

√
α−� arising in the calculations are small compared to ε. In

particular this implies that � � |ln ε|.
To complete the definition of the pulse manifold we introduce the operator

L := ∂2
z − W ′′(φh), (3.8)

corresponding to the linearization of (3.5) about φh, as well as the operator

Ln(p) := ∂2
z − W ′′ (un) , (3.9)

with both acting on the unbounded domain H2(R). To accommodate the mass constraint into
the pulse ansatz we introduce B j ∈ L∞(R) for j = 1, 2 as the solutions of

L jB j = 1, (3.10)

that are orthogonal to the kernel of L. These functions can be decomposed as

B j = Bj + B j,∞, (3.11)

where B j ∈ L2(R) decays exponentially to zero and the constant B j,∞ = (−α−)− j where
α− = W ′′(b−) > 0. We introduce the background correction

B j,n(z; p) :=B j,∞ +

n∑
i=1

B j(z − pi), (3.12)

and the boundary correction

E(z; p) = E0(z; p) + En+1(z; p)

:= (1 + e0z)e−
√
α−(z−p0) + (1 + en+1z)e

√
α−(z−pn+1). (3.13)

The full n-pulse ansatz takes the form

Φ(z; p) := un(z; p) + δλB2,n(z; p) + E(z, p,λ). (3.14)

The parameters in the boundary correction E are chosen dynamically to satisfy the four bound-
ary conditions in (3.4) while the Euler–Lagrange parameterλ is chosen dynamically to enforce
the prescribed total mass constraint,∫ d/ε

0
Φ(z; p)dz = M. (3.15)

Based upon lemma 3.1, we can write this in the form

Φ(z; p) = un(z; p) + δP, (3.16)

where the perturbations P are uniformly bounded in H4(0, d/ε). Through these relations, the
five internal parameters p̃ := (p0, pn+1, e0, en+1,λ), are prescribed as functions of n pulse posi-
tions p. To leading order, the boundary pulse locations p0 and pn+1 are the reflection of p1 and
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pn about the boundary points 0 and d/ε, respectively. The parameters p0 and e0 characterize
the linearization of the two dimensional stable manifold of the fourth order system

(∂2
z − W ′′(u))(∂2

z u − W ′(u)) = 0,

at the equilibria (b−, 0, 0, 0) while pn+1 and en+1 characterize the linearization of the unstable
manifold associated of this system at (b−, 0, 0, 0).

The manifold of n-pulse solutions with mass M takes the form

Mn,M := {Φ(p)|p ∈ P }. (3.17)

The tangent plane to Mn,M at Φ(p) takes the form

T (p) = span

{
∂Φ(p)
∂pi

|i = 1, . . . , n, p ∈ P
}
. (3.18)

Lemma 3.1. The ansatz Φ in (3.14) satisfies the boundary conditions in (3.4) for the choice
of internal parameters

e0 =
√
α−

d3 − α−d1

d3 − 3α−d1
, and p0 = −p1 + O(δ), (3.19)

where we have introduced d1 = u′
n(0) + λB′

2,n(0) and d3 = u′′′
n (0) + λB′′′

2,n(0). Similar rela-
tions hold for en+1 and pn+1. Assume that the system mass takes the form M = nMh + M1,
where M1 ∈ (0, Mh) is O(1), and Mh=

∫
R

(φh − b−) dz is the mass the homoclinic pulse in the
scaled variables. If nε 
 1 and M1 � δ then the Lagrange multiplier λ satisfies

λ = ε
M1

dB2,∞ + εnMB

+ O (εδ) , (3.20)

and in particular ∂piλ = O (εδ).

Proof. The results on the parameters e0 and p0 follow from a simple calculation from the
form of Φ given in (3.14). For the mass we calculate the leading order asymptotic∫ d/ε

0
(Φ− b−) dz = nMh + λ

(
d
ε

B2,∞ + nMB

)
− e

√
α−p0 + e−

√
α−(d/ε−pn+1)

√
α−

+ O(εδ2). (3.21)

The results follow from the assumption on the size of the mass M. �

The lemma 3.1 allows us to simplify the form of the tangent plane. Indeed we see that the
boundary term satisfies ‖E‖H4 = O(δ), and we calculate that

T (p) = span
({

φ′
h(z − pi) + δλB′

2(z − pi) +
√
α−δ1iE0 −

√
α−δniEn+1

}n

i=1
+ O(εδ, δ2)

)
(3.22)

where δi j denotes the usual Kronecker delta function and the boundary corrections E0, En+1

are defined in (3.13).
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3.2. Modulational stability of n-pulses via SRN

We apply the SRN theorem to the zero-mass gradient flow of FCH energy subject to no-flux
boundary conditions, obtaining the asymptotic attractivity and modulational stability of the
n-pulse manifold. Specifically we set X = L2(0, d/ε) and H = H4(0, d/ε) subject to zero flux
boundary conditions. We consider the L2 mass-preserving gradient flow of the FCH,

ut = F(u) := −Π0∇XJ(u),

u(z, 0) = u0(z),
(3.23)

where the zero-mass projection, Π0, is defined as Π0 f := f − 〈 f〉d with 〈 f〉d denoting the
average value of f over [0, d

ε
]. This corresponds to the choice of gradient G = Π0 and XG

= {1}⊥. The zero-mass projection gradient flow of the Cahn–Hilliard free energy modelling
a phase separation process in a binary mixture was analysed in [18].

We consider solutions of (3.23) corresponding to initial data of the form

u0 = Φ(z; p0) + w0(z), (3.24)

where p0 ∈ P and w0 ∈ H with ‖w0‖H4 sufficiently small, has zero mass, so that u0 satisfies
the boundary conditions and has mass M. We show that such initial data remain near MM so
long as they avoid its boundary, and during this time the solution satisfies a decomposition

u(t) = Φ(·; p(t)) + w(t), (3.25)

and project the dynamics of (3.23) onto the tangent plain of Mn,M to derive an evolution
for the pulse positions p for which the remainder w, remains small. Moreover we iden-
tify small regions in the interior of P associated to nearly equispaced pulse positions which
the reduced flow (2.11) leaves forward invariant. For initial data in these sets the exit time
Texit = +∞.

We Taylor expand the the variational derivative of J about Φ(p)

δJ
δu

(u) = ∇XJ(Φ(p)) +∇2
XJ(Φ)w +NS(w). (3.26)

Using the expansion (3.16) we identify leading order terms in the residual,

R := −Π0
δJ
δu

(Φ(p)) = −Π0(∂2
z − W ′′(un + δ P))

(
∂2

z un − W ′(un) + δLnP + O(δ2)
)

,

= −Π0 (LnRn + δλ) + O(δ2),

(3.27)

where we have introduced the n-pulse residual

Rn(p) := ∂2
z un − W ′(un). (3.28)

We denote the second variation of J as

Lp :=∇2
XJ =

(
∂2

z − W ′′(Φ)
)2 −

(
∂2

z Φ− W ′(Φ)
)

W ′′′(Φ). (3.29)
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We drop the p subscript where doing so causes no ambiguity. Using the form of (3.16) we
expand (3.29) about un up to O(δ2) terms

L =
(
Ln − δW ′′′(un)P +O(δ2)

)2 −
(
Rn + δLnP +O(δ2)

)
×

(
W ′′′(un) + δW (4)(un)P +O(δ2)

)
. (3.30)

From lemma 3.1 we see that LnP = λBn,1 + O(δ), and expanding out the operators we find that

L = L2
n − δ

(
Ln(W ′′′(un)P·) − W ′′′(un)PLn

)
− W ′′′(un)(Rn + δλB1) +O(δ2). (3.31)

In particular the dominant term in L is the positive semi-definite operator L2
n with the lower

order terms relatively compact with respect to L2
n. The bilinear form

b(u, v) := 〈Lu, v〉L2 , (3.32)

with u, v ∈ H, generated by the constrained operator Π0LΠ0 which is self-adjoint. Indeed, the
linearization L of the vector field F = −Π0∇XJ at Φ takes the form

L = −Π0L. (3.33)

Since the first projection in Π0LΠ0 is superfluous when acting on H, L can be viewed as the
negative of the generator of the bilinear form b over H. Consequently the spectrum of both L

and L are real and the adjoint eigenfunctions agree with the eigenfunctions, with the exception
of the kernel of L given at leading order by B2 while the kernel of L† is spanned by 1. We scale
the eigenfunctions of L to have X norm one.

3.2.1. Verification of SRN hypothesis—the Π0 gradient flow. We establish that the mani-
fold Mn,M and the family of associated linearized operators {Lp}p∈P satisfy the hypotheses
(H0)–(H4). To establish (2.5) of (H0), we recall the form of the residual, (3.27). Since Π0

annihilates constants, it follows that Π0λ = 0 and

‖R‖H = ‖LRn‖H + O(δ2). (3.34)

The residual term is dominated by tail–tail interactions of the adjacent pulses. For j =
1, . . . , n − 1 we introduce the midpoints m j := (pj + pj+1)/2 and set m0 = 0 and mn = d/ε.
We partition [

0, d/ε
]
= ∪n

j=0[m j, m j+1],

and on the interval I j := [m j−1, m j] we write

un = φh, j + T j, (3.35)

where φh, j :=φh(z − pj) and the tail term T j :=
∑

k �= jφh(z − pk). Expanding the n-pulse resid-
ual on I j we obtain

Rn = (∂2
z − W ′′(φh, j))T j −

1
2

W ′′′(φh, j)T
2
j +O

(
δ

3
2

)
, for z ∈ I j. (3.36)

We introduce the far-field operator L∞ := ∂2
z − α− and write

Rn = L∞T j − (α− − W ′′(φh, j))T j −
1
2

W ′′′(φh, j)T
2
j +O

(
δ

3
2

)
, for z ∈ I j. (3.37)
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Using the facts that L∞e±
√
α−z = 0, that the functionα− − W ′′(φh, j) decays exponentially away

from z = pj, and that the functions in Rn are smooth with L2 norms of all derivatives of the
same order, it is straightforward to estimate that

‖Rn‖H4(I j) = O(δ). (3.38)

Summing over the intervals we obtain (2.5).
To establish (H1) we observe from (3.31) and (3.38) that we have the decomposition

−Π0LΠ0 = −Π0L2Π0 +O(δ), (3.39)

where the error terms are small and relatively compact as operators on H. We first examine
the operator L acting on H2(R), where it is a self-adjoint Sturm Liouville operator arising as
the linearization of the pulse equation (3.5) about the homoclinic pulse φh. The spectrum of L
is real and takes the form σ(L) = [−∞,−α−] ∪ {λr < · · · < λ2 < λ1 = 0 < λ0}, where the
number of point spectrum, r � 1 is finite and depends upon the choice of well W. Since un is
an n-pulse constructed from n well-separated copies of φh, the results of [20] imply that the
point spectrum of Ln, the linearization of (3.5) about un, is composed of n copies of σp(L), up
to O(δ). That is, to each λk ∈ σp(L), there are n eigenvalues {λk, j}n

j=1 ∈ σp(Ln(p)), such that
max

j=1,...,n
|λk − λk, j| = O(δ). By standard perturbation theory, restricting the operator Ln to act

on the bounded domain H perturbs the point spectrum by at most O(δ), see [11, section 9.6],
for a detailed discussion. By the spectral mapping theorem, since Ln is self-adjoint on H, σ(L2

n)
=

{
λ2|λ ∈ σ(Ln)

}
. In particular we have

σ(L2
n) ⊂

{
λ2

1,1 � · · · � λ2
1,n

}
∪ [ks,∞), (3.40)

where ks := min{λ2
2,α2

−} > 0 independent of ε and δ.
To localize the spectrum of Π0L2

nΠ0 we introduce the bilinear form

bn(u, v) := ((L2
n − μ)u, v)L2 , (3.41)

constrained to act on u, v ∈ H ∩ XG = {1}⊥. The constrained operator Π0L2
nΠ0 is induced by

bilinear form acting on H ∩ XG , while L2
n is induced by the form acting on all of H. The

Rayleigh–Ritz formulation of eigenvalues implies that the spectrum of Π0L2
nΠ0 is generi-

cally more positive than the spectrum of L2
n since the minimization in the Rayleigh–Ritz

formulation is taken over smaller spaces. More specifically, recalling the notation n(L) that
denotes the number of negative eigenvalues of a self-adjoint operator L, we deduce that
n(Π0(L2

n − μ)Π0) � n(L2
n − μ) for all values of μ. In particular for μ ∈ (c0δ, ks) we have

n(Π0(L2
n − μ)Π0) � n(L2

n − μ) = n. (3.42)

However the projection off of the constant vector 1, is not perturbative, our analysis requires
an exact measure of the dimension of the slow space. To establish that n(Π0(L2

n − μ)Π0) = n,
we show that Π0(L2

n − μ)Π0 is negative on the n-dimensional tangent space T (p) ⊂ H ∩ XG .
The estimates employed to establish (H0) verify that ‖L2

n
∂Φ
∂pj

‖L2 = O(δ) for j = 1, . . . , n and〈
∂Φ

∂pi
,
∂Φ

∂pj

〉
L2

= ‖φ′
h‖2

L2δi j + O(δ).

In particular we deduce that

Mij :=

〈
(Π0L2

nΠ0 − μ)
∂Φ

∂pi
,
∂Φ

∂pj

〉
=

〈
(L2

n − μ)
∂Φ

∂pi
,
∂Φ

∂pj

〉
= μδi j‖φ′

h‖2
L2 +O(δ).
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For δ sufficiently small the matrix M is diagonally dominant and is indeed a perturbation
of the matrix −μIn×n with n negative eigenvalues. We deduce that n(Π0L2

nΠ0 − μ) = n for
μ ∈ (c0δ, ks), and hence −Π0L2

nΠ0 enjoys the slow-stable decomposition of (H1). This decom-
position extends to L = −Π0LΠ0, modulo an O(δ) perturbation to ks, since this operator is a
self-adjoint O(δ)-perturbation of −Π0L2Π0.

To establish (H2) we observe that for each p ∈ P the space Y⊥
p is the range of the spectral

projection associated to the stable spectrum, which in turn is contained in the the set {λ|IRλ �
ks}. It follows that the resolvent (L− λ)−1 is uniformly bounded for these λ as an operator
on Y ′

p. The semigroup estimate (2.6) follows directly from application of the Gearhardt–Prüss
Theorem, see [7, 17].

The verification of hypotheses (H3) follows from the spectral decomposition (H1). Indeed
the spectral decomposition and the Rayleigh–Ritz variational eigenvalue formulation implies
that

‖Lv‖X � ks‖v‖X, (3.43)

for all v ∈ Y ′
p. From a standard interpolation argument, the linear nature of the leading order

fourth-derivative term in L affords the existence of μ > 0, independent of ε, for which

‖Lv‖X � μ‖v‖H. (3.44)

We decompose the tangent-plane basis elements as

∂Φ

∂pi
=

n∑
j=1

βi jψ j + ψ⊥
i , (3.45)

where ψ⊥
i ∈ Y ′

p, and apply L. Taking the L2 norm and using the triangle inequality we obtain
the upper bound

‖Lψ⊥
i ‖L2 �

∥∥∥∥∥∥
n∑

j=1

βi jλ jψ j

∥∥∥∥∥∥
L2

+

∥∥∥∥L∂Φ

∂pi

∥∥∥∥
L2
. (3.46)

For each i = 1, . . . , n, we have |λi| � c0δ while ‖L ∂Φ
∂pi

‖L2 = O(δ); we infer from the H-

coercivity estimate that ‖ψ⊥
j ‖H = O(δ). Since the matrix β maps Rn to R

n is symmetric and
maps an orthonormal basis of Yp asymptotically close to the asymptotically orthonormal basis
of T , it is close to an orthogonal matrix. Using β to reparameterize the pulse coordinates yields
(2.7).

The hypothesis (H4) follows from the well-known analytic parametric dependence of the
eigenvectors of an unbounded, self-adjoint operator with compact resolvent, see for example
[12].

This verifies the hypotheses of theorem 2.1, in particular we deduce the reduced flow (2.11)
for the pulse dynamics in the zero-mass gradient flow of the FCH energy.

3.3. Π0-gradient pulse dynamics

The application of theorem 2.1 gives the ODE system (2.11) for the pulse positions. To simplify
this flow and obtain the stability of the equispaced pulse, we first write the system mass to be in
the form M = nMh + M1, where M1 ∈ (0, Mh) is O(1), and Mh=

∫
R

(φh − b−) dz is the mass
the homoclinic pulse in the scaled variables. From lemma 3.1, the mass parameter λ satisfies
(3.20). We recall the decomposition of the domain [0, d/ε] into the union of I j, j = 1, . . . , n,

6909



Nonlinearity 33 (2020) 6890 H G Cakir and K Promislow

and the form (3.36) of the n-pulse residual. For the pulses away from the boundary, that is for
i = 2, . . . , n − 1, we have Π0φh,i = O(δ

3
2 ) and we reduce the the inner product in (2.11) to the

sum

ṗi = − 1∥∥φ′
h

∥∥2

L2(R)

n∑
j=1

〈
L jT j +

1
2

W ′′′(φh, j)T
2
j , ∂zφh,i

〉
I j

+O(δ
3
2 ), (3.47)

where we have introduced the local operator L j := ∂2
z − W ′′(φh, j) considered to act on the

unbounded domain. The function ∂zφh,i lies in the kernel of Li, and for j = i we determine
that

〈LiTi, ∂zφh,i〉Ii
= −(∂zφh,i)(∂zTi)|mi

mi−1
. (3.48)

Similarly, for the second term on the right-hand side of (3.47) we write W ′′′(φh,i)∂zφh,i

= ∂z

(
W ′′(φh,i)

)
, and integrate by parts to obtain〈

1
2

W ′′′(φh,i)T2
i , ∂zφh,i

〉
Ii

= −〈Ti∂zTi, W ′′(φh,i)〉Ii
+

1
2

W ′′(φh,i)T2
j |mi

mi−1
. (3.49)

Since φh tends to b− at an exponential rate, replacing W ′′(φh,i) with is constant asymptotic

value α− incurs an O(δ
3
2 ) error in the integral and the boundary term, while integrating by

parts on 〈Ti∂zTi,α−〉Ii cancels out the leading order boundary terms. We deduce that〈
1
2

W ′′′(φh,i)T
2
i , ∂zφh,i

〉
Ii

= O
(
δ

3
2

)
. (3.50)

For j = i ± 1 the quadratic term W ′′′(φh, j)T2
j is uniformly O(δ

3
2 ) and hence negligible. The

linear term, L jTj, takes the form,

〈L jT j, ∂zφh,i〉I j
= −(∂zφh,i)(∂zT j)|

m j
m j−1 + 〈T j, (α− − W ′′(φh, j)∂zφh,i〉I j

. (3.51)

The integrand in the inner product term on the right-hand side has L∞ norm O(δ
3
2 ) and is neg-

ligible. The inner product on the left-hand side is dominated by the boundary terms; recalling
the definition of Tj and keeping only leading order terms we find

ṗi = −−∂zφh,i∂zφh,i+1|mi + ∂zφh,i∂zφh,i−1|mi−1 −
(
∂zφh,i

)2|mi−1 +
(
∂zφh,i

)2|mi

‖∂zφh‖L2

+ O(δ
3
2 ). (3.52)

The pulse profiles have the far-field asymptotic form

φh(z) = φmaxe−
√
α−|z|, (3.53)

where the constant φmax is determined by matching to the exact pulse shape φh.
Since pi−1 < mi−1 < pi < mi < pi+1 it follows that ∂zφh,i(mi)∂zφh,i+1(mi) < 0 and
∂zφh,i(mi−1)∂zφh,i−1(mi−1) < 0. We conclude that

ṗi = − 2α−φ
2
max

‖∂zφh‖L2

(
e−

√
α−(pi+1−pi) − e−

√
α−(pi−pi−1)

)
+O(δ

3
2 ), (3.54)
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for i = 2, . . . , n − 1. The same result for i = 1, n follows by replacing the boundary correction
terms E in (3.13) with a pulse located at p0 and pn+1 given by lemma 3.1. This replacement
incurs a higher order error, and the analysis above extends to the cases i = 1, n.

For a given d and n there is a unique equally spaced pulse configuration with pi+1 − pi =
d
nε

for i = 0, . . . , n + 1. Here we recall that the p0 and pn+1 denote the placements of shadow
pulses outside the domain [0, d/ε]. We conclude from (3.54) that if the pulses are equally
separated then the pulse locations are stationary to leading order. Furthermore, the Jacobian
matrix of the ODE system taken at the equispaced pulse locations takes the form

J = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ −γ

2
0 0 . . . 0

−γ

2
γ −γ

2
0 . . . 0

0 −γ

2
γ −γ

2
0

...
... 0

. . .
. . .

. . . 0

0
...

. . .
. . .

. . . −γ

2
0 0 . . . 0 −γ

2
γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.55)

where γ := 2α−φ2
max

‖∂zφh‖L2
e−

√
α−� = 2α−φ2

max
‖∂zφh‖L2

δ. The standard result for spectrum of tri-diagonal matri-

ces shows that J has n negative eigenvalues

λk = −γ

(
1 + cos

(
k

n + 1

))
< 0, for k = 1, . . . , n. (3.56)

We conclude that the equispaced pulse solution is linearly stable under the leading-order flow.
Since the flow for p is smooth, there exists an O(δ

1
2 ) neighbourhood of the equispaced pulse

configuration that is forward invariant under the flow. Initial data of the system (3.23) cor-
responding to initial data u0 with a decomposition (3.24) with ‖w‖H = O(δ) and p0 within
O(

√
δ) of the equispaced pulse configuration will remain within O(

√
δ) of the equispaced

pulse configuration for all time.

3.4. EL assumption verification—general gradients

To apply theorem 2.4 for the flow (2.12) with a general gradient G ∈ CX0 , we must verify that
(A0) and the assumptions (EH1) and (EA) hold, and impose conditions for which η∗ < η∗.
From the form of (3.14), and more particularly (3.16) it is straight forward to see that

J(Φ) =

∥∥∥∥∥∥
n∑

j=1

L j(T j + δP)

∥∥∥∥∥∥
2

X

� c0δ, (3.57)

for some c0 > 0 independent of p ∈ P . This bound is sharp since from (2.11) we have the
leading order result

∂pjJ(Φ) =

〈
∇XJ(Φ),

∂Φ

∂pj

〉
X

= ṗj + O(δ2). (3.58)

Introducing the equispaced n-pulse peq then from (3.54) we see that

|ṗ| � d0δ|p − peq|,
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for some d0 > 0 independent of p ∈ P and δ. It is trivial to show that the set of u0 ∈ X0 ∩ H
with

J(u0) < sup
p∈P

J(Φ(p)) + δ,

is non-empty, since this set contains the manifold Mn,M . Thus we may take δ0 = c0δ and
δ1 = δ, for which choice we have η∗ = O(

√
δ) and this upper bound is asymptotically sharp

for a set P that is at least O(1) wide. The assumption (EH1) is satisfied by construction of
Mn,M , while the normal coercivity assumption (EA) is equivalent to the argument used to
establish (3.44). Indeed we may write ∇2

XJ(Φ) = L in the form

L = ∂4
z + q2(z)∂2

z + q1(z)∂z + q0(z) + α2
−,

where q2, q0 ∈ L2(0, d/ε). For γe > 0 sufficiently large we may write

L = (∂4
z + α2

− + γe) (I + B) ,

where B := (∂4
z + α2

− + γe)−1
(
q2(z)∂2

z + q1(z)∂z + q0(z)
)
, is a bounded map from H into H

whose norm decreases to zero with increasing values of γe. The assumption (EA) follows.
We deduce that for any gradient, in particular the H−1 gradient G = −∂2

z , that the manifold
Mn,M is quasi-steady under the flow (2.12). In particular if u0 is within a ε-neighbourhoodofM
in the H norm, and satisfies (A0) with δ1 = δ, then it is within an η∗ = O(

√
δ) neighbourhood

and will remain there until time Texit, which can be bounded from below using [2, theorem 2.2].

3.5. Pulse dynamics for the H−s gradient flow

We apply theorem 2.8 to (2.12) for a family of gradients parameterized by s ∈ [0, 1]. Defin-
ing the gradients by their inverses, we introduce the space L2

0(0, d/ε) comprised of zero-mass
functions and consider the operator D : L2

0(0, d/ε) �→ H2
0 that maps f ∈ L2

0 onto the solution u
of

−uzz = f in (0, d/ε),

uz(0) = uz(d/ε) = 0,
(3.59)

subject to Π0u = u. The space L0
2 denotes L2 functions with zero-mass, on this space the oper-

ator D has eigenvalues {λn = d2/(ε2π2n2)}∞n=1, which tend to zero as n →∞. Consequently
its norm is given by λ1 = d2/(π2ε2). The operator Ds denotes the s’th root of D, with the
same eigenfunctions but eigenvalues defined equal to {λs

n}∞n=1. Correspondingly, we establish
a norm-1 inverse operator by setting G = λs

1D−s so that

G1 :=λ
s/2
1 D−s/2 =

ds

εsπs
D−s/2, (3.60)

has smallest non-zero eigenvalue equal to 1. In particular, for s = 0 we have G = G1 = Π0

while for s = 1 we have G = d2

ε2π2 D−1 = d2

ε2π2∂
2
z and G1 = d

επD− 1
2 . For s = 1, the operator G is

proportional to ∂2
z , however G1 is a positive, self-adjoint operator and is not proportional to ∂z.

Theorem 2.1 has been established for gradient Π0, we extend it to recover the pulse dynam-
ics for the H−s gradient flow for s ∈ [0, 1]. To address the nonlinear estimate (EH2) we remark
that for v ∈ H4, we have the expansion,

NS(v) = G
(

W ′′′(Φ)vLnv −
1
2

Ln(W ′′′(Φ)v2)

)
+ O(‖v‖3

H4),
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where the operator Ln is defined in (3.9). We must establish identify a large parameter ρ = ρ(ε)
for which we have the bound

‖ρG1NS(ρ−1G1w)‖HG1
= ‖ρG2

1NS(ρ−1G1w)‖H4 � c‖G1w‖2
H4 , (3.61)

for some constant c > 0, independent of ε and ρ. The argument of the norm on the left-hand
side has leading order terms

ρG2
1NS(ρ−1G1w) ∼ (ε2sρ)−1D−s

(
W ′′′(Φ)(G1w)Ln(G1w) − 1

2
Ln(W ′′′(Φ)(G1w)2)

)
.

Since the potential W and the profile Φ are smooth, D−s is bounded as a map from H2s to L2,
Ln is bounded as an operator from H2 into L2, and the Hk norm is an algebra on R for k > 1/2,
we have the estimate

‖ρG2
1NS(ρ−1G1w)‖H4 � c‖G1w‖2

H2+2s ,

so long as ρ � ε−2s. This establishes (3.61) and hence (EH2) for s ∈ [0, 1].
To establish the bounds in (EH3), we recall that ∇xJ (Φ(p)) = R(p) and return to the iden-

tities (3.27) and (3.37). Applying the HG1 norm to G1R and using the scaling (3.60), we find that
(2.46) holds with ρ = ε−s. If u ∈ Tp, then up to exponentially small terms, u is a linear combina-
tion of translates ofφ′

h and (2.47) holds with ρ = ε−s. Since δ = e−
√
α−� and � � |lnε| it follows

that δ 
 εp for any p > 0 and in particular ρ2δ = ε−2sδ 
 1 for any choice of s ∈ [0, 1]. This
establishes theorem 2.8 for this range of gradients.

To interpret the scale of the reduced flow (2.11) we first must identify the proper reparame-
terization the the pulse locations p̃ = p̃(p) for which (H3) holds with eigenfunctions Ψi given
by (2.49) and Φ replaced with G−1

1 Φ. This requires the normalization ‖G−1
1 ∂p̃iΦ‖L2 = 1 for

i = 1, . . . , n, and can be achieved via the linear transformation p̃ = αp + p∗ where p∗ is a
fixed vector in R

n and the scaling constant

α(s) := ‖G−1
1 Π0φ

′
h‖L2 = λ

−s/2
1 ‖Ds/2Π0φ

′
h‖L2 .

It is straightforward to calculate that, up to exponentially small terms, α(0) = ‖φ′
h‖L2(R) and

α(1) =
(
επ
d

)s‖Π0φh‖L2(R). Moreoverα is a strictly decreasing function of s as all the eigenval-
ues of G−1

1 are less than or equal to one, hence its norm decreases with growing s. Changing
variables from p̃ to p in (2.48) we find

ṗi =
1

α2(s)

〈
R(p),

∂Φ

∂pi

〉
+ O

(
α−1δ1+r

G ,α−1δ2
G
)

, for i = 1, . . . , n. (3.62)

The inner-product on the right-hand side equals the leading order term on the right-hand side
of (3.54). This demonstrates that the impact of the change of gradient on the leading-order
pulse dynamics amounts to a rescaling of their velocity.
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