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ABSTRACT

Lakes in the permafrost zone have been proposed to serve as key outlets for methane and
carbon dioxide emissions. However, there has been no geological record of the hydrological
and biogeochemical responses of lakes throughout the thawing of surrounding permafrost.
We use multiple biomarker and isotopic proxies to reconstruct hydrological and biogeo-
chemical changes in Lake Wudalianchi in northeastern China during regional thawing of
the permafrost. We show permafrost thawing, as indicated by lignin degradation, initiated
rapid lake water freshening as a result of the opening of groundwater conduits, and negative
organic §"°C excursion due to increased inorganic and organic carbon fluxes. These hydro-
logical changes were followed, with an ~5-7 yr delay, by abrupt and persistent increases in
microbial lake methanotrophy and methanogenesis, indicating enhanced anaerobic organic
decomposition and methane emissions from lakes as permafrost thaws. Our data provide
a detailed assessment of the processes involved during permafrost thaw, and highlight the

importance of lakes in ventilating greenhouse gases to the atmosphere.

INTRODUCTION

Permafrost soils, which currently cover
~14% (21 x 10°km?) of the global land surface
(Obu et al., 2019) and store >30% (1330-1580
x 10" g) of global soil organic carbon (Schuur
et al., 2015), are particularly sensitive to cli-
mate warming. Warming-induced permafrost
thaw greatly increases groundwater conductiv-
ity (Walvoord and Kurylyk, 2016; Lamontagne-
Hall¢ et al., 2018) and rates of biogeochemi-
cal cycling (Vonk et al., 2015), leading to rapid
loss of previously frozen organic carbon through
microbial decomposition (Schuur et al., 2015).
The resulting fluxes of the greenhouse gases
methane (CH,) and carbon dioxide (CO,) cre-
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ate a positive feedback mechanism to accelerate
global climate warming (Koven et al., 2011).
Lakes in the permafrost zone are consid-
ered “hotspots” for greenhouse gas release to
the atmosphere via ebullition (Walter et al.,
2006; Walter Anthony et al., 2016; Wik et al.,
2016). Numerous incubation experiments and
field observations based on '“C signatures have
demonstrated that excessive CH, and CO, emit-
ted from permafrost-affected lakes are derived
primarily from old soil organic carbon with
variable ages ranging from Pleistocene to late
Holocene (Zimov et al., 1997; Walter et al.,
2006; Walter Anthony et al., 2016). The strong
correlation between the radiocarbon ages of the
released CH, and those of the surrounding per-
mafrost soil carbon suggests that the CH, ebul-
lition is primarily produced from soil carbon

inputs (Walter Anthony et al., 2016). However,
results based solely on radiocarbon ages in CH,
could be confounded by variably old carbon pre-
served in the seasonally frozen ground of the
surrounding permafrost (Wild et al., 2019). Up
until now, there has been no geological record
from lakes indicating an abrupt or progressive
input of carbon and the associated biogeochemi-
cal changes from regions undergoing permafrost
thaw.

We present an annually to biannually
resolved record of lignin degradation, lipid bio-
markers, and isotopic ratios (8'*C and 6"°N) in
a sediment core of exceptionally high sedimen-
tation rate from Lake Wudalianchi, northeast-
ern China. The Wudalianchi region has under-
gone permafrost thaw starting from the 1970s
and 1980s (Jin et al., 2007), creating a unique
and valuable opportunity to investigate the full
process of hydrological and biogeochemical
changes throughout the permafrost thaw in the
context of regional and global climate changes.

MATERIALS AND METHODS

Lake Wudalianchi (48°40'N—48°47'N,
126°06'E~126°15'E) is currently located near
the southern limit of permafrost (SLP, Fig. 1B)
(Jin et al., 2007; Fig. S1 and Text S1 in the
Supplemental Material'). A sediment core was
collected from the center of Lake Wudalianchi
Pool 2 (Fig. S2) and was well dated by '°Pb and
137Cs (Fig. S3; Text S2). We determined mul-
tiple proxies, including alkenone isomers, lignin
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Figure 1. Map of Lake
Wudalianchi study site,
with modeled changes in
the southern limit of per-
mafrost (SLP) boundary,
in northeastern China.
(A) Global map of per-
mafrost zones (Brown
et al., 2014). Red rectangle
shows location of B. (B)
Modeled SLP changes in
northeastern China in the
1970s, 1980s, and 2010s
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groundwater table is ~5-30 m, in general, in our study region (Chen, 1994). Red circle represents our study sediment core site in Lake Wuda-
lianchi Pool 2; black circles represent published sediment core sites in Pool 3 and Pool 5 (Gui et al., 2012).

phenols, diploptene carbon isotopes, isoprenoid
glycerol dialkyl glycerol tetraethers (iGDGTs),
bulk nitrogen and organic carbon isotopes, and
total nitrogen and organic carbon contents (Text
S3), for reconstructing past hydrological and
biogeochemical changes.

RESULTS AND DISCUSSION

We used the alkenone isomer—based RIKj;
index as a salinity proxy (Kaiser et al., 2019; Yao
etal., 2020a; Text S4) to reconstruct past hydro-
logical changes in Lake Wudalianchi. Employ-
ing our regional RIK;;-salinity calibration (Figs.
S4 and SS5; Text S1), our reconstructed salinity
has varied between 0.13%o and 1.76%o in Lake
Waudalianchi since 1776 CE (Fig. 2A). Unfor-
tunately, there are no continuously monitored
salinity data available from Lake Wudalianchi
to verify our reconstructed salinity values; our
emphasis here is on the timing and rate of rela-
tive salinity changes (i.e., not absolute salinity
values) since 1776. We observe an abrupt salin-
ity decrease starting from 1975 to 1982 at a rate
of ~0.14%o per year. After 1982, salinity gener-
ally continued to decrease but at a slower pace.
The rapid freshening from 1975 to the present
is not consistent with overall changes in rainfall
and relative humidity, as illustrated by Palmer
drought severity index (PDSI) variations (Cook

et al., 2010) (Fig. 2), indicating precipitation
and soil moisture content are not the primary
controls on the lake water salinity.

The abrupt freshening of lake water coincides
with significant regional warming (Figs. 2A and
2D). Due to the lack of glaciers in the Wuda-
lianchi region (Chen, 1994), ice and/or snow
meltwater has a negligible impact on changes
in lake water salinity. Importantly, northeastern
China has the second largest permafrost region
in China, after the Tibetan Plateau (Jin et al.,
2007), and warming-induced regional perma-
frost thaw is thus the most likely culprit for the
observed hydrological changes since 1975. Our
isotherm model results show that the Wudalian-
chi catchment crossed over the SLP from the
1970s to the 1980s (Fig. 1B; Fig. S1; Text S5),
indicating the potential loss of regional perma-
frost or substantial deepening of the active layer
(the layer of soil on top of permafrost that does
not stay frozen all year) around that time. Before
the 1980s, permafrost served as an impermeable
barrier and restrained vertical and lateral ground-
water flow (Walvoord and Kurylyk, 2016) due to
the relative shallow seasonally frozen ground in
our study region (Fig. 1C). With the accelerated
warming after the 1980s (Fig. 2D), the regional
permafrost loss or substantial deepening of the
active layer opened up previously permafrost-

blocked hydrogeological pathways (Walvoord
and Kurylyk, 2016; Figs. 1B and 1D; Fig. S1).
This provided a perennially open conduit for lat-
erally transmitting underground fresh water into
the Wudalianchi catchment and the connected
rivers, leading to the persistent freshening of
lake water since 1975 (Fig. 2A).

Lignin biomarkers derived from vascular
plants are excellent tracers for thawing per-
mafrost (Text S7). Vd/VI ratio (vanillic acid/
vanillin) and lignin acid (vanillic acid, syringic
acid, p-coumaric acid, and ferulic acid) fluxes in
our records abruptly increase from the 1970s to
the 1980s, generally coinciding with periods of
decreasing salinity (Figs. 3A-3C). These data
indicate a rapid increase in the degree of lignin
decomposition and increased fluxes of residual
lignin degradation products into Lake Wuda-
lianchi. Our lignin data are fully consistent with
regional permafrost thaw from the 1970s to the
1980s. The several-year delay in changes in the
Vd/Vl ratio relative to total lignin acids may be
due to the relatively slow degradation rate of
vanillic acid.

To examine how permafrost thaw affects
carbon cycling in Lake Wudalianchi, we mea-
sured §'*C values of the bulk organic matter to
decipher the overall changes in carbon cycling.
We also analyzed two sets of lipid biomarkers,
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Figure 2. Comparison between salinity changes reconstructed from a Lake Wudalianchi (north-
eastern China) sediment core and regional environmental conditions. (A) RIK;-inferred salinity
changes in the Lake Wudalianchi sediment core (we did not find detectable alkenones except
for samples marked with red squares during 1880-1955 CE). Black square represents mea-
sured salinity (0.09%.) in the summer of 2016 (Yao et al., 2019a). (B) Palmer drought severity
index (PDSI) in our study region (blue line, 47.5°N-50°N, 125°E-126.5°E) extracted from grid-
ded PDSI data set during the past millennium (Cook et al., 2010). Another PDSI (pink line) is
calculated based on instrumental data from Harbin station (Fig. 1B). (C) Instrumental mean
annual precipitation (MAP) from the Harbin and Bei’an weather stations (Fig. 1B; Text S6 [see
footnote 1]). (D) Instrumental mean annual air temperature (MAAT) from Harbin and Bei’an
weather stations (Fig. S6; Text S6; red line represents 10-point running means for Harbin sta-
tion; black star represents exceptionally high temperature in 1975). Red shaded area represents

age range from 1975 to 1982; gray shaded area represents age from 1982 to 2016.

diploptene from bacteria and iGDGTs from
archaea, to reconstruct changes in CH, cycling
regulated primarily by microbial methanotrophy
and methanogenesis. Bulk organic §"3C values
range from —27.8%o to —25.3%o at our study
site, showing a trend of increasing '*C depletion
from ca. 1975 to present (Fig. 3J). Our record
shows a trend broadly similar to previously pub-
lished data from two other Wudalianchi pools
(Gui et al., 2012; Pool 3: —26.8%0 to —25.7%o;
Pool 5: —24.9%0 to —22.3%o), although Pool
3 appears to display the most abrupt changes
starting from ca. 1978 (Fig. S7A). The slight
differences among the bulk §'*C records from

the three pools may be attributed to different
pool size, depth, and volume; local hydrologi-
cal factors; and sediment core dating uncertain-
ties. Several factors may have contributed to the
observed decrease in bulk organic matter 5'*C
values since ca. 1975: (1) input to Lake Wuda-
lianchi of 3C-depleted CO, from decomposing
permafrost organic carbon in the permafrost soil
(Elder et al., 2018), which is subsequently incor-
porated into aquatic biomass through photosyn-
thesis and eventually sediments; (2) increased
CH, fluxes (Paytan et al., 2015) leading to
enhanced microbial methanotrophic biomass
in the lake; (3) oxidation of CH, into CO, with
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low 6'°C values (Segarra et al., 2013), which
is subsequently incorporated into the aquatic
biomass through photosynthesis; and (4) direct
input of dissolved and particulate organic matter
with low 8'*C values from decomposing per-
mafrost soils (Wild et al., 2019). Overall, the
observed negative §"°C excursion likely results
from enhanced fluxes of '*C-depleted carbon
and strengthening of the CH, cycle due to per-
mafrost thaw.

Diploptene 6'*C values show an abrupt
decrease, by >10%o, from 1982 (Fig. 3E). At
the same time, diploptene flux increased by ~9 x
(Fig. 3D). The average $'*C value of diploptene
is —50.3%0 + 1.9%0 after 1982, which is com-
monly associated with consumption of highly
13C-depleted biogenic CH, by methanotrophic
bacteria (Pancost and Sinninghe Damsté, 2003;
Davies et al., 2016; Elvert et al., 2016). We also
estimated temporal changes in the contributions
of methanotrophs to diploptene using a carbon
isotopic mass-balance approach (Text S8). Our
results show that ~13% of carbon in diploptene
originates from methanotrophs before 1982,
whereas the methanotroph contribution increases
to ~38% after 1982 (Fig. 3F). This approximately
three-fold increase in bacterial methanotrophic
contribution to diploptene indicates substantially
elevated CH, fluxes from the early 1980s.

The GDGT-0/crenarchaeol ratio, considered
an indicator for methanogenic archaea (Blaga
etal., 2009; Naeher et al., 2014), also shows an
abrupt increase from 1982 to 1985, followed
by a persistent (but slower rate of) increase
to the present (Fig. 3H). Similarly, GDGT-0
fluxes increased since 1982, and continue to
rise until the present (Fig. 3G). The enhanced
biomarker fluxes of archaeal methanogenesis
since 1982 observed in our record may reflect
(1) an increase in CH, flux to Lake Wudalianchi
from decomposing organic matter in permafrost
soils (Paytan et al., 2015); (2) enhanced flux of
methanogenic archaeal lipids to the lake from
thawing permafrost soils; and (3) enhanced
methanogenic activity within the lake, given
that increased supply of allochthonous organic
matter from permafrost soils and enhanced lake
primary productivity provide additional sub-
strates for methanogenesis (Fig. 3K). Because
the lake does not become anoxic after perma-
frost thawing, as indicated by our HP5 index
as a redox proxy (Fig. 3I; Yao et al., 2020b),
the positive 8N trend also mainly reflects
increased lake primary productivity (Fig. 3J;
Text S9). Our recent study of surface sediments,
suspended particulate matter, and surround-
ing surface soils in volcanic lakes in north-
eastern China indicate that iGDGTs in Lake
Waudalianchi are derived primarily from in situ
production of lakes (Yao et al., 2019b). Thus,
the enhanced archaeal methanogenesis mainly
reflects increased contribution from autochtho-
nous sources in modern times.



1950 1960 1970 1980 1990 2000 2010
0.0 i 1 i 1 i 1 " 1 n 1 i 1 §
A 08000090000
;é* 0.5+ .,00
2 10- -
£
© 30
w
- 20
L 10
S _
3 - 15
- 10
L5
£ [°
O
"o
[0} — 60
c
2 L
&
2 - 40
Q L
- 20
< I
= —
S s -0
)
O - 60
o< I
0]
e - 40
- ._.'..—... L
06-H ) - 20
| tpee.¢.0-00000-0-0-0-00% Lo
o 05, X wtes |
1 ® *o oo oo *oe
T % o s 0%e%e
04 qg™*® ** ¢ ¢
*
~6.0
L 55
L 5.0
45
L 4.0
L35
~05
- 0.4
-0.3
0.2
1 ; ; ; . . . 0.1

T T T T
1980 1990 2000 2010

Year (CE)

T
1970

T
1950 1960

Lignin acid flux
(ug/glyr)

(ng/glyr)

Diploptene flux

J‘.methan-:: (%)

GDGT-0/crenarchaeol

3"°N (%)

TN (%)

Figure 3. Comparison of reconstructed salin-
ity changes and carbon and nitrogen cycling
from Lake Wudalianchi (northeaster China)
sediment core. (A) RIK;;-inferred salinity. (B)
Lignin acid flux (line is two-point running
mean). (C) Vd/VI (vanillic acid/vanillin) ratio
(two-point running mean). (D) Diploptene flux
(two-point running mean). (E) Diploptene §°C
values (before 1980 CE, most samples have
very low concentrations of diploptene that are
insufficient for carbon isotope measurements).
(F) Average contributions of methanotrophic
bacteria to diploptene (f,wnano) USing carbon
isotopic mass-balance equation (see Text S8
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tetraether 0 (GDGT-0) flux (two-point running
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gen (TN). Red shaded area represents age
range from 1975 to 1982; Gray shaded area
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We note that there is a 5-7 yr delay in the
major rises in methanogenic and methanotrophic
activities relative to lake water freshening and
bulk organic $'*C decrease in our Wudalianchi
records (Fig. 3). We attribute this delay to the
progressive deepening of the permafrost active
layer starting from ca. 1975 and the vertical
profile of redox potential in the decomposing
organic-rich soils. As permafrost starts to thaw
and the active layer deepens, the greenhouse
gases released from decomposition gradually
change from those with a relatively high CO,/
CH, ratio (when a sufficient amount of oxygen
is available to serve as the dominant electron
acceptor in shallower soils) to those with a rela-
tively low CO,/CH, ratio (when thawing reaches
deeper soil where soil water is depleted in oxy-
gen) (Hodgkins et al., 2014). This change in gas
composition may have taken ~5-7 yr to occur,
resulting in our observed timing difference in the
bulk organic §"3C excursion and rapid ramping
up of the CH, cycle in Lake Wudalianchi.

In summary, our biomarker proxies from
Lake Wudalianchi indicate abrupt changes in
hydrology and CH, cycling as regional per-
mafrost thaws. Enhanced CH, cycling due to
warming of permafrost soils has been previously
reported in high-latitude lake sediment records
(e.g., Wooller et al., 2012; van Hardenbroek
et al., 2013; Elvert et al., 2016). Our analysis
further demonstrates the important role that
lakes play in ventilating greenhouse gases to
the atmosphere as mid- to high-latitude warming
speeds up, which would further form a positive
feedback cycle and amplify global warming.
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