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Abstract

In this paper, we theoretically and numerically verify that the discontinuous Galerkin

(DG) methods with central fluxes for linear hyperbolic equations on non-uniform meshes

have sub-optimal convergence properties when measured in the L2-norm for even degree

polynomial approximations. On uniform meshes, the optimal error estimates are pro-

vided for arbitrary number of cells in one and multi-dimensions, improving previous

results. The theoretical findings are found to be sharp and consistent with numerical

results.
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1 Introduction

A fundamental form of energy transmission is wave propagation, which arises in many

fields of science, engineering and industry, such as petroleum engineering, geoscience,

telecommunication, and the defense industry (see [8, 12]). It is important for these

applications to study efficient and accurate numerical methods to solve wave propagation

problems. Experience reveals that energy-conserving numerical methods, which conserve

the discrete approximation of energy, are favorable, because they are able to maintain

the phase and shape of the waves more accurately, especially for long-time simulation.

Various numerical approximations of wave problems modeled by linear hyperbolic

systems can be found in the literature. Here, we will focus on the classical Runge-Kutta

DG method of Cockburn and Shu [6]. There are several approaches to obtain an optimal,

energy conserving DG method. Chung and Engquist [4] presented an optimal, energy

conserving DG method for the acoustic wave equation on staggered grids. Chou et al. [3]

proposed an optimal energy conserving DG using alternating fluxes for the second order

wave equation. More recently, Fu and Shu [9] developed an optimal energy conserving

DG method by introducing an auxiliary zero function.

As is well known, the simplest energy conserving DG method for hyperbolic equations

is the one using central fluxes. However, it has sub-optimal convergence of order k

measured in the L2-norm when piece-wise polynomials of an odd degree k are used; see,

e.g. [15]. When k is even, we usually observe higher convergence rates than kth order

for a general regular non-uniform meshes, such as random perturbation over an uniform

mesh, see section 4. In fact, many papers have mentioned that the optimal convergence

rates can be observed when even degree polynomials are used; see for example [1, 2, 15, 7].

In this paper, we provide a counter example to show that the scheme only has sub-optimal

error accuracy of order k for a regular non-uniform mesh, when k is even. We refer to

the work of Guzmán and Rivière [11] in which they constructed a special mesh sequence

to produce the sup-optimal accuracy for the non-symmetric DG methods for elliptic
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problems when k is odd. For uniform meshes, the classical DG scheme with the central

flux does have the optimal convergence rate k+1, observed in the numerical experiments

and proved theoretically under the condition that the number of cells in the mesh is odd

[1, 15]. In this paper, we provide a new proof which is available for arbitrary number of

cells and dimensions for linear hyperbolic equations. We have used the shifting technique

[13, 14] to construct the special local projection to obtain the optimal error estimate on

uniform meshes. We also numerically find the superconvergence phenomenon for the cell

averages and numerical fluxes.

The outline of the paper is as follows. In section 2, we review the DG scheme

for hyperbolic equations with central fluxes and give the error estimates for the semi-

discrete version in one dimension. We extend our analysis to multi-dimensions in section

3. In section 4, we give numerical examples to show the sub-optimal convergence for

non-uniform meshes and optimal convergence for uniform meshes in both one and two-

dimensional cases. Finally, we give concluding remarks in section 5. Some of the technical

proof of the lemmas and propositions is included in the Appendix A.

2 One dimensional problems

We consider the following one dimensional linear hyperbolic equation



ut + ux = 0, x ∈ [0, 1], t ≥ 0

u(x, 0) = u0(x), x ∈ [0, 1],
(2.1)

with periodic boundary condition. We first introduce the usual notations of the DG

method. For a given interval Ω = [0, 1] and the index set ZN = {1, 2, . . . , N}, the usual

DG mesh IN is defined as:

0 = x 1

2

< x 3

2

< . . . < xN+ 1

2

= 1. (2.2)

We denote

Ij = (xj− 1

2

, xj+ 1

2

), xj =
1

2
(xj− 1

2

+ xj+ 1

2

), hj = xj+ 1

2

− xj− 1

2

, j ∈ ZN . (2.3)
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We also assume the mesh is regular, i.e., the ratio between the maximum and minimum

mesh sizes shall stay bounded during mesh refinements. That means there exists a

positive constant σ ≥ 1, such that,

1

σ
h ≤ hj ≤ σh, h =

1

N
, ∀j ∈ ZN . (2.4)

We define the approximation space as

V k
h = {vh : (vh)|Ij ∈ Pk(Ij), j = 1, . . . , N}. (2.5)

Here Pk(Ij) denotes the set of all polynomials of degree at most k on Ij. We first introduce

some standard Sobolev space notations. For any integer m > 0, Wm,p(D) denote the

standard Sobolev spaces on the sub-domain D ⊂ Ω equipped with the norm ‖ · ‖m,p,D

and the semi-norm | · |m,p,D. If p = 2, we set Wm,p(D) = Hm(D), and | · |m,p,D = | · |m,D

and we omit the index D, when D = Ω.

The semi-discrete DG scheme is to seek uh ∈ Vh such that for all vh ∈ Vh,

((uh)t, vh)j + aj(uh, vh) = 0, ∀j ∈ ZN , (2.6)

where

aj(uh, vh) = −(uh, (vh)x)j + ûhv
−

h |j+ 1

2

− ûhv
+
h |j− 1

2

, (2.7)

where (u, v)j =
∫
Ij
uv dx, v−|j+ 1

2

and v+|j+ 1

2

denote the left and right limits of v at the

point xj+ 1

2

, respectively, and ûh are the numerical fluxes. Here, we consider the central

flux,

ûh = {uh} =
1

2
(u−

h + u+
h ). (2.8)

For the central flux, we have,

N∑

j=1

aj(uh, uh) = 0, ∀uh ∈ Vh. (2.9)
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The initial datum uh(x, 0) = Pu0 is obtained by the standard L2 projection,

(u0 − Pu0, vh)j = 0, ∀vh ∈ Pk(Ij). (2.10)

Thus, we have,

‖u0 − uh(·, 0)‖ . hk+1‖u‖k+1. (2.11)

Here and below, an unmarked norm ‖ · ‖ denotes the L2 norm, and A . B denotes that

A can be bounded by B multiplied by a constant independent of the mesh size h. As

mentioned earlier, we have the following energy-conserving results [15].

Theorem 2.1. Suppose uh is the solution of DG scheme (2.6), then it satisfies

d

dt
‖uh‖

2 = 0. (2.12)

Next we consider the error estimate, first we recall the following basic facts [5]. For

any function wh ∈ Vh,

(i) ‖(wh)x‖ . h−1‖wh‖,

(ii) ‖wh‖Γh
. h−

1

2‖wh‖, (2.13)

where Γh denotes the set of boundary points of all elements Ij , and the norm ‖wh‖Γh
=

(∑N
j=1((wh)

+
j+ 1

2

)2 + ((wh)
−

j− 1

2

)2
) 1

2

. In order to obtain the optimal error estimate for the

case of uniform meshes, we need to use the shifting technique [13, 14] to construct a

special projection P ⋆
h , which is defined as follows. For any given function w ∈ L∞(Ω)

and each j,

∫

Ij

P ⋆
hw(x) dx =

∫

Ij

w(x) dx, (2.14)

P̃h(P
⋆
hw; v)j = P̃h(w; v)j ∀v ∈ Pk(Ij), (2.15)

where P̃h(w; v)j is defined as

P̃h(w; v)j = −(w, vx)j +
w(x−

j+ 1

2

) + w(x+
j− 1

2

)

2
(v(x−

j+ 1

2

)− v(x+
j− 1

2

)). (2.16)
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Note that the projection P ⋆
h is a local projection, so we only consider the projection

defined on the reference interval [−1, 1]. We have the following lemma to establish the

fact that the projection is well defined.

Lemma 2.1. When k is even, the projection P ⋆
h defined by (2.14) on the interval [−1, 1]

exists and is unique for any L∞ function w, and the projection is bounded in the L∞

norm, i.e.,

‖P ⋆
hw‖∞ ≤ C(k)‖w‖

∞
, (2.17)

where C(k) is a constant that only depends on k but is independent of w.

Proof. We provide the proof of this lemma in the appendix; see section A.1.

Remark 2.1. The projection P ⋆
h is only well defined when k is even. In fact, when k is

odd, for example k = 1, we can take wI = x ∈ P1([−1, 1]), which satisfies

∫ 1

−1

wI(x) dx = 0, (2.18)

P̃h(wI ; v) = −

∫ 1

−1

wI(x)vx dx+
wI(1) + wI(−1)

2
(v(1)− v(−1)) = 0, ∀v ∈ P1([−1, 1]).

(2.19)

It means that there exists a nonzero function wI = P ⋆
hw, where w ≡ 0. This implies that

P ⋆
hw is not unique.

Remark 2.2. In fact, the projection P ⋆
h has an equivalent definition as follows,

∫ x
j+1

2

x
j− 1

2

P ⋆
hwv dx =

∫ x
j+1

2

x
j− 1

2

wv dx, ∀v ∈ Pk−1(Ij), (2.20)

1

2
(P ⋆

hw(x
−

j+ 1

2

) + P ⋆
hw(x

+
j− 1

2

)) =
1

2
(w(xj+ 1

2

) + w(xj− 1

2

)). (2.21)

As a direct corollary of lemma 2.1 and the locality of the projection, the standard

approximation theory [5] implies, for a smooth function w,

‖P ⋆
hw(x)− w(x)‖+ h

1

2‖P ⋆
hw(x)− w(x)‖Γh

. hk+1‖w‖k+1. (2.22)

We also have the following properties of the projection P ⋆
h ,
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Lemma 2.2. Suppose that u = xk+1. Let uj = P ⋆
hu|Ij . If hj−1 = hj = hj+1 = h, then

we have the following relationship:

(x− h)k+1 − uj−1(x− h) = xk+1 − uj(x) = (x+ h)k+1 − uj+1(x+ h), ∀x ∈ Ij .

(2.23)

where P ⋆
hu|Ij means that the projection of u is defined on the subinterval Ij, and uj−1(x−

h), uj+1(x + h) refer to the projection of u on the element Ij−1 and Ij+1 respectively,

since x ∈ Ij implies (x− h) ∈ Ij−1 and (x+ h) ∈ Ij+1.

Proof. The proof of this lemma is by the same arguments as in [13, 14], so we omit it

here.

By this lemma, we also have the following superconvergence results.

Proposition 2.1. Given the index j, suppose that u is a (k + 1)th degree polynomial

function in Pk+1(Ij−1

⋃
Ij
⋃
Ij+1). If hj−1 = hj = hj+1 = h, we have

aj(P
⋆
hu, vh) = aj(u, vh) ∀vh ∈ Pk(Ij), (2.24)

where aj is defined by (2.7).

Then we can state the main theorem of this paper.

Theorem 2.2. Suppose uh is the numerical solution of the DG scheme (2.6) for equation

(2.1) with a smooth initial condition u(·, 0) ∈ Hk+2(Ω), and u is the exact solution of

(2.1), then the approximation uh satisfies the following L2 error estimate:

‖u(·, T )− uh(·, T )‖ . hk, (2.25)

where k is the degree of the piecewise polynomials in the finite element spaces Vh. Fur-

thermore, when k is even and the mesh is uniform, we have the optimal error estimate:

‖u(·, T )− uh(·, T )‖ . hk+1. (2.26)

Proof. Obviously, the exact solution u of (2.1) also satisfies

(ut, vh) + aj(u, vh) = 0, ∀vh ∈ Vh. (2.27)
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Subtracting (2.6) from (2.27), we obtain the error equation

((u− uh)t, vh)j + aj(u− uh, vh) = 0, ∀vh ∈ Vh. (2.28)

We denote

ξ = uh − P ⋆u; η = u− P ⋆u, (2.29)

where P ⋆ is some projection. From the error equation (2.28), and taking vh = ξ, we have

(ξt, ξ)j + aj(ξ, ξ) = (ηt, ξ)j + aj(η, ξ). (2.30)

For the nonuniform mesh case, the sub-optimal error estimate can be easily obtained by

using the standard L2 projection P . We take P ⋆ as the standard L2 projection P , then

we have,

‖u− Pu‖+ h
1

2‖u− Pu‖Γh
. hk+1‖u‖k+1. (2.31)

For the left-hand side of (2.30), we can use (2.9) to obtain

1

2

d

dt
‖ξ‖2 = −

N∑

j=1

{η}j+ 1

2

[ξ]j+ 1

2

. hk‖ξ‖‖u‖k+1, (2.32)

where the last inequality is from (2.31) and (ii) of (2.13). Thus, by using Gronwall’s

inequality and (2.11), we have,

‖ξ‖ . hk‖u‖k+1. (2.33)

The triangle inequality implies our designed results for the general non-uniform mesh

case.

For the case of uniform meshes, when k is even, we take P ⋆ as P ⋆
h which is defined

in (2.14). Let u
j
I be the Taylor expansion polynomial of order k + 1 of u over Dj =

(xj− 3

2

, xj+ 3

2

), i.e., uj
I(x) =

∑k+1
i=0 u

(i)(xj)(x − xj)
i, x ∈ Dj. Let rju denote the remainder

term, i.e., rju = u− u
j
I . Recalling the Bramble-Hilbert lemma in [5], we have

‖rju‖L∞(Dj) . hk+ 3

2 |u|k+2,Dj
. (2.34)
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Thus, using Proposition 2.1, we have

aj(η, ξ) = aj(u
j
I − P ⋆

hu
j
I , ξ) + aj(r

j
u − P ⋆

hr
j
u, ξ)

= aj(r
j
u − P ⋆

hr
j
u, ξ).

By using the property of the projection (2.17) and (2.34), and the inverse inequality in

(2.13) for ξ, we have

∑

j

aj(η, ξ) . h2k+2‖u‖k+2 + ‖ξ‖2. (2.35)

Therefore, form (2.30), (2.22) and the stability result (2.1), we have

1

2

d

dt
‖ξ‖2 . h2k+2‖u‖k+2 + ‖ξ‖2. (2.36)

This together with the approximation results (2.22) and the initial datum (2.11), implies

the desired error estimate (2.26).

We summarize the theoretical findings and numerical findings in Table 2.1.

Table 2.1. Summarization of the L2 error accuracy for the 1D case.

mesh k is odd k is even

Numerically
uniform

kth
(k + 1)th

non-uniform kth

Theoretically
uniform

kth
(k + 1)th

non-uniform kth

From Table 2.1, we can see that our theoretical findings are sharp and consistent

with the numerical results. We emphasize that when k is even, in order to produce

the sub-optimal accuracy, we have designed a special regular mesh sequence which is

motivated by [11], see section 4.

3 Multi-dimensional problems

In this section, we consider the semidiscrete DG method with central fluxes for mul-

tidimensional linear hyperbolic equations. Without loss of generality, we only study the
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two dimensional problem; all the arguments we present in our analysis depends on the

tensor product structure of the mesh and the finite element space and can be easily ex-

tended to the more general cases d > 2. Hence, we consider the following two-dimensional

problem 


ut + ux + uy = 0, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.
(3.1)

again with periodic boundary conditions. Without loss of generality, we assume Ω =

[0, 1]2. We use the regular Cartesian mesh,
{
Ki,j = Ii × Jj = [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

]
}
,

i = 1, . . . , Nx, j = 1, . . . , Ny. We denote hi
x = xi+ 1

2

− xi− 1

2

, hj
y = yj+ 1

2

− yj− 1

2

and

h = maxi,j(h
i
x, h

j
y). Let Wh := {v ∈ L2(Ω) : v|Ki,j

∈ Qk(Ki,j), ∀i, j}, where Qk(Ki,j)

denotes the space of tensor-product polynomials of degrees at most k in each variable

defined on Ki,j.

The semidiscrete DG scheme with central fluxes is as follows. We seek uh ∈ Wh, such

that for all test functions v ∈ Wh, and all i, j,

∫

Ki,j

(uh)tv dxdy =

∫

Ki,j

(uhvx + uhvy) dxdy

−

∫ y
j+1

2

y
j− 1

2

(
ûh(xi+ 1

2

, y)v(x−

i+ 1

2

, y)− ûh(xi− 1

2

, y)v(x+
i− 1

2

, y)
)
dy

−

∫ x
i+1

2

x
i− 1

2

(
ũh(x, yj+ 1

2

)v(x, y−
j+ 1

2

)− ũh(x, yj− 1

2

)v(x, y+
j− 1

2

)
)
dx (3.2)

=: bi,j(uh, v), (3.3)

where

ûh(xi+ 1

2

, y) =
uh(x

+
i+ 1

2

, y) + uh(x
−

i+ 1

2

, y)

2
; ũh(x, yj+ 1

2

) =
uh(x, y

+
j+ 1

2

) + uh(x, y
−

j+ 1

2

)

2
.

(3.4)

For the initial data, we take uh(0) = Pu0, where P is the L2 projection into Wh, and we

have [5]

‖u0 − Pu0‖ . hk+1‖u0‖k+1. (3.5)
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We also have

Nx∑

i=1

Ny∑

j=1

bi,j(uh, uh) = 0, ∀uh ∈ Wh. (3.6)

Thus we have the following energy conservative property

Proposition 3.1. The numerical solution of (3.2) satisfies

1

2

d

dt
‖uh‖

2 = 0. (3.7)

3.1 A priori error estimates

Let us now state our main result as a theorem, whose proof will be provided in the

next subsection.

Theorem 3.1. Suppose uh is the numerical solution of the DG scheme (3.2) for equation

(3.1) with a smooth initial condition u(x, y, 0) ∈ Hk+2(Ω), and u is the exact solution of

(3.1), then the approximation uh satisfies the following L2 error estimate:

‖u(x, y, T )− uh(x, y, T )‖ . hk, (3.8)

where k is the degree of the piecewise tensor-product polynomials in the finite element

spaces Wh. Furthermore, when k is even and the mesh is uniform, we have the optimal

error estimate,

‖u(x, y, T )− uh(x, y, T )‖ . hk+1. (3.9)

Remark 3.1. We note that the finite element space Vh := {v ∈ L2(Ω) : v|Ki,j
∈

Pk(Ki,j), ∀i, j}, where Pk(Ki,j) denotes the space of polynomials of degrees at most k

defined on Ki,j, can also be taken as the approximation space. But it only has the sub-

optimal accuracy of order k in the numerical examples, see section 4. Thus, here we only

consider the tensor product space.
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By the same arguments as in the one dimensional problem, we also have the error

equation

∫

Ki,j

(u− uh)tv dxdy − bi,j(u− uh, v) = 0, ∀v ∈ Wh, ∀i, j. (3.10)

3.2 Proof of the error estimates

We divide the proof of Theorem 3.1 into several steps. First, for non-uniform meshes,

the proof of the sub-optimal error estimate is straightforward. We just need to use the

standard L2 projection and follow the standard error estimates of DG methods which is

the same as in the one dimensional case. Thus next we only consider the uniform mesh

case. In order to prove the optimal error estimate when k is even, we need to construct

the special local projection Π⋆
h. In addition, the optimal approximation properties of Π⋆

h

are derived. The superconvergence results of the special projections would be given in

the subsection 3.2.2. Finally, we finish the proof of Theorem 3.1 in subsection 3.2.3.

3.2.1 The special projection Π⋆
h

Since our finite element space consists of piecewise Qk polynomials, we use the ten-

sor product technique to construct the 2D projection. We define Π⋆
h as the following

projection into Wh. For each Ki,j,

∫

Ki,j

Π⋆
hw(x, y)v(x, y) dxdy =

∫

Ki,j

w(x, y)v(x, y) dxdy, ∀v ∈ Qk−1(Ki,j). (3.11a)

∫
Ii

Π⋆
h
w(x,y−

j+1
2

)+Π⋆
h
w(x,y+

j−1
2

)

2
ϕ(x) dx =

∫
Ii

w(x,y−
j+1

2

)+w(x,y+
j−1

2

)

2
ϕ(x) dx, ∀ϕ(x) ∈ Pk−1(Ii)

(3.11b)
∫
Jj

Π⋆
h
w(x−

i+1
2

,y)+Π⋆
h
w(x+

i− 1
2

,y)

2
ϕ(y) dy =

∫
Jj

w(x−

i+1
2

,y)+w(x+

i− 1
2

,y)

2
ϕ(y) dy, ∀ϕ(y) ∈ Pk−1(Jj)

(3.11c)

1

4

(
Π⋆

hw(x
−

i+ 1

2

, y−
j+ 1

2

) + Π⋆
hw(x

−

i+ 1

2

, y+
j− 1

2

) + Π⋆
hw(x

+
i− 1

2

, y−
j+ 1

2

) + Π⋆
hw(x

+
i− 1

2

, y+
j− 1

2

)
)

=
1

4

(
w(x−

i+ 1

2

, y−
j+ 1

2

) + w(x−

i+ 1

2

, y+
j− 1

2

) + w(x+
i− 1

2

, y−
j+ 1

2

) + w(x+
i− 1

2

, y+
j− 1

2

)
)
. (3.11d)
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Again, since the projection is local, we only consider the projection defined on the

reference cell [−1, 1]×[−1, 1]. We establish the existence and uniqueness of the projection

when k is even in the following lemma

Lemma 3.1. When k is even, the projection Π⋆
h defined by (3.11) on the cell [−1, 1] ×

[−1, 1] exists and is unique for any L∞ function w, and the projection is bounded in the

L∞ norm, i.e.

‖Π⋆
hw‖∞ ≤ C(k)‖w‖

∞
, (3.12)

where C(k) is a constant that only depends on k but is independent of w.

Proof. The proof of this lemma is given in the Appendix; see section A.2.

Since the projection is a k-th degree polynomial preserving local projection, standard

approximation theory [5] implies, for a smooth function w,

‖w −Π⋆
hw‖L2(Ki,j) . hk+1‖w‖k+1,Ki,j

. (3.13)

For the two dimensional space, for any ωh ∈ Wh, the following inequalities hold,

‖∂xωh‖ . h−1‖ωh‖, ‖ωh‖L2(∂Ki,j) . h−1/2‖ωh‖, ‖ωh‖∞ . h−1‖ωh‖, (3.14)

where ∂Ki,j is the boundary of cell Ki,j.

Remark 3.2. By similar arguments as in the one dimensional problem, we note that

the projection Π⋆
h is not well defined when k is odd.

3.2.2 Properties of the projection Π⋆
h

By the similar arguments in the one dimensional case, we have the following lemma:

Lemma 3.2. Assume that u = xk+1 or yk+1. Let ui,j = Π⋆
hu|Ki,j

. If hi−1
x = hi

x = hi+1
x =

hx and hj−1
y = hj

y = hj+1
y = hy, then ∀(x, y) ∈ Ki,j, we have following relationship:

u(x− hx, y)− ui−1,j(x− hx, y) = u(x, y)− ui,j(x, y) = u(x+ hx)− ui+1,j(x+ hx, y)

= u(x, y + hy)− ui,j+1(x, y + hy) = u(x, y − hy)− ui,j−1(x, y − hy). (3.15)

13



Similar to the one dimensional case, we also have the following superconvergence

result.

Proposition 3.2. For a given index (i, j), suppose that u is a (k+1)th degree polynomial

function in Pk+1(Di,j), where Di,j = Ki−1,j

⋃
Ki+1,j

⋃
Ki,j

⋃
Ki,j−1

⋃
Ki,j+1. If hi−1

x =

hi
x = hi+1

x and hj−1
y = hj

y = hj+1
y , then we have

bi,j(Π
⋆
hu, v) = bi,j(u, v) ∀v ∈ Qk(Ki,j), (3.16)

where bi,j(·, ·) is defined by (3.3).

Proof. We provide the proof of this Proposition in the Appendix; see section A.3.

3.2.3 Proof of Theorem 3.1

Let

ξ = uh − Π⋆
hu; η = u− Π⋆

hu. (3.17)

From (3.10), we obtain

∫

Ki,j

(ξ)tv dxdy − bi,j(ξ, v) =

∫

Ki,j

(η)tv dxdy − bi,j(η, v), ∀v ∈ Qk(Ki,j). (3.18)

Take v = ξ ∈ Wh, for the left hand side of (3.18), we use (3.6) to obtain

∑

i,j

∫

Ki,j

(ξ)tξ dxdy − bi,j(ξ, ξ) =
1

2

d

dt
‖ξ‖2. (3.19)

For each element Ki,j, we consider the Taylor expansion of u around (xi, yj):

u = Tu+Ru, (3.20)

where

Tu =

k+1∑

l=0

l∑

m=0

1

(l −m)!m!

∂lu(xi, yj)

∂xl−m∂ym
(x− xi)

l−m(y − yj)
m,

Ru = (k + 2)
k+2∑

m=0

(x− xi)
k+2−m(y − yj)

m

(k + 2−m)!m!

∫ 1

0

(1− s)
∂k+2u(xs

i , y
s
j )

∂xk+2−m∂ym
ds.
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with xs
i = xi + s(x− xi), y

s
j = yj + s(y − yj). Clearly, Tu ∈ Pk+1(Di,j). By the linearity

of the projection, and from (3.16), we then get

bi,j(η, v) = bi,j(Tu−Π⋆
hTu, v) + bi,j(Ru− Π⋆

hRu, v)

= bi,j(Ru− Π⋆
hRu, v). (3.21)

Again recalling the Bramble-Hilbert lemma in [5] , we have

‖Ru‖L∞(Di,j) ≤ Chk+1|u|Hk+2(Di,j). (3.22)

Thus, this together with the standard approximate proposition of the projection (3.13),

and the inverse inequality in (3.14) for ξ, we have

∑

i,j

bi,j(η, ξ) . h2k+2‖u‖2k+2 + ‖ξ‖2. (3.23)

From (3.19), (3.23) and (3.18), we have

1

2

d

dt
‖ξ‖2 . h2k+2‖u‖2k+2 + ‖ξ‖2. (3.24)

This together with the approximation results (3.13) and the initial discretization (3.5),

implies the desired error estimate (3.9).

To end this section, we summarize our theoretical findings and numerical findings for

the 2D problem in Table 3.1. Again our theoretical proof is sharp and consistent with

the numerical results.

Table 3.1. Summarization of the L2 error accuracy for the 2D case.

mesh k is odd k is even

Qk-space
Numerically

uniform
kth

(k + 1)th
non-uniform kth

Theoretically
uniform

kth
(k + 1)th

non-uniform kth
Pk-space Numerically/Theoretically uniform/nonuniform kth kth

15



4 Numerical examples

In this section, we present some numerical examples to verify our theoretical findings.

In our numerical experiments, we present the E2, EA, and Ef errors, respectively. They

are defined by

E2 =‖u− uh‖. (4.1)

EA =





(
1
N

∑N
j=1(

1
hj

∫
Ij
(u− uh) dx)

2
) 1

2

, for one dimension,
(

1
NxNy

∑Ny

j=1

∑Nx

i=1(
1

hi
xh

j
y

∫
Ki,j

(u− uh) dxdy)
2
) 1

2

, for two dimensions.
(4.2)

Ef =

(
1

N

N∑

j=1

(uj+ 1

2

− {uh}j+ 1

2

)2

) 1

2

. (4.3)

Example 4.1. We consider the linear hyperbolic equation with periodic boundary con-

dition:




ut + ux = 0, (x, t) ∈ [0, 2π]× (0, T ),
u(x, 0) = exp(sin(x)),
u(0, t) = u(2π, t).

(4.4)

The exact solution to this problem is

u(x, t) = exp(sin(x− t)). (4.5)

We use two kinds of non-uniform meshes. The first one is the non-uniform mesh with 30%

random perturbation from N uniform cells on [0, 2π], and the other mesh is constructed

as follows. Let x̃j+ 1

2

= jh for j = 0, . . . , N where h = 2π
N

and x̃N+ 1

2

= 1, then we define

the nodes of our mesh as follows

x2j− 1

2

= x̃2j− 1

2

+ αh, j = 1, . . . ,

⌊
N

2

⌋
.

where ⌊m⌋ denotes the maximal integer no more than m. Here the parameter α satisfies

−1 < α < 1. For example, if α = 0 then the resulting mesh is uniform.

We set the number of subintervals, N = 2i× 10, i = 0, . . . , 9, in our experiments. We

use the DG scheme (2.6) with central fluxes using Pk polynomials with k = 0, 2, 4. The
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initial datum is obtained by the standard L2 projection. To reduce the time discretization

error, the seventh-order strong stability-preserving Runge-Kutta method [10] with the

time step ∆t = 0.01h is used. The errors and corresponding convergence rates for the

special nonuniform mesh with α = 0.1, the uniform mesh, and random perturbation mesh

are separately listed in the Tables 4.1-4.3. Since the convergence rates have oscillations,

especially for EA and Ef , we have used the least square method to fit the convergence

orders of the errors, denoted by “LS order” in the tables. We can find that E2 only

has k-th order accuracy, but EA and Ef have (k + 1)-th order convergence for k = 2, 4,

when the parameter of mesh α = 0.1. For the uniform mesh, i.e., α = 0, we observe the

(k + 1)-th optimal convergence rates. We can also find the convergence rates of the L2

errors to be around k + 1
2
for the randomly perturbed meshes.

In two dimensions, we consider the following problem.

Example 4.2. We solve the following linear hyperbolic equation with periodic boundary

condition:

{
ut + ux + uy = 0, (x, y, t) ∈ [0, 2π]2 × (0, T ),
u(x, y, 0) = sin(x+ y).

(4.6)

The exact solution to this problem is

u(x, y, t) = sin(x+ y − 2t). (4.7)

In each dimension, we apply the same partition as in the one-dimensional case. We choose

the parameters α = 0.3 (see Fig 4.1). The tensor product space Qk or the piecewise kth

polynomial Pk is taken as the approximation space. We test the DG scheme with the

central flux, and take the terminal time T = 1. When Qk elements are used and k = 0, 2,

for the special nonuniform mesh with α = 0.3, the sub-optimal kth convergence rates

can be observed which are listed in Table 4.4. For the uniform mesh, i.e., α = 0, the

scheme has (k + 1)th optimal convergence orders, see Table 4.5. However, for Pk finite

element space, it only has kth suboptimal convergence rates no matter whether k is even

or odd, see Table 4.6.
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Table 4.1. The errors and corresponding convergence rates for the DG with k = 0, 2, 4
in 1D. The terminal time T = 1 and the parameter of the mesh α = 0.1.

k = 0

N E2 Rate EA Rate Ef Rate
10 5.14E-01 – 1.23E-01 – 1.15E-01 –
20 2.75E-01 0.90 7.32E-02 0.75 3.20E-02 1.85
40 2.02E-01 0.44 6.98E-02 0.07 7.66E-03 2.06
80 1.82E-01 0.15 7.01E-02 -0.01 5.75E-03 0.41
160 1.77E-01 0.04 7.03E-02 -0.00 6.45E-03 -0.16
320 1.75E-01 0.01 7.03E-02 -0.00 6.68E-03 -0.05
640 1.75E-01 0.00 7.03E-02 -0.00 6.75E-03 -0.01
1280 1.75E-01 0.00 7.04E-02 -0.00 6.76E-03 -0.00
2560 1.75E-01 0.00 7.04E-02 -0.00 6.77E-03 -0.00
5120 1.75E-01 0.00 7.04E-02 -0.00 6.77E-03 -0.00

LS order 0.12 0.05 0.32

k = 2

10 9.30E-03 – 1.09E-03 – 2.07E-03 –
20 7.82E-04 3.57 8.21E-05 3.73 2.20E-04 3.23
40 1.33E-04 2.55 9.77E-06 3.07 2.10E-05 3.39
80 2.00E-05 2.73 9.26E-07 3.40 2.19E-06 3.26
160 4.21E-06 2.25 1.21E-07 2.94 2.36E-07 3.22
320 9.99E-07 2.07 2.10E-08 2.52 1.48E-08 4.00
640 2.46E-07 2.02 1.98E-09 3.41 3.35E-09 2.14
1280 6.13E-08 2.01 3.37E-10 2.55 8.36E-11 5.32
2560 1.53E-08 2.00 4.64E-12 6.18 7.30E-11 0.20
5120 3.83E-09 2.00 1.14E-12 2.03 8.80E-12 3.05

LS order 2.28 3.27 3.17

k = 4

10 1.21E-04 – 2.18E-06 – 1.61E-05 –
20 1.62E-06 6.22 6.45E-08 5.08 6.56E-07 4.62
40 9.60E-08 4.08 2.82E-09 4.51 1.41E-08 5.53
80 5.28E-09 4.19 1.50E-10 4.24 4.13E-10 5.10
160 3.22E-10 4.04 1.72E-12 6.44 1.64E-11 4.65
320 1.99E-11 4.02 8.17E-14 4.40 2.34E-13 6.13
640 1.24E-12 4.00 3.41E-16 7.90 1.81E-14 3.69
1280 7.75E-14 4.00 3.18E-17 3.42 4.93E-16 5.19
2560 4.85E-15 4.00 1.27E-18 4.64 1.59E-17 4.95
5120 3.03E-16 4.00 5.35E-20 4.57 4.69E-19 5.08

LS order 4.16 5.14 5.00

5 Concluding remarks

In this paper, we have studied the error estimates of the DG methods for linear

hyperbolic equations with central fluxes when the degree of piecewise polynomial is

even. Numerically, we provide a counter example to show that the scheme only has the
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Table 4.2. The errors and corresponding convergence rates for the DG with k = 0, 2, 4
using the uniform mesh in 1D. The terminal time T = 1.

k = 0

N E2 Rate EA Rate Ef Rate
10 4.82E-01 – 1.07E-01 – 1.22E-01 –
20 2.16E-01 1.16 3.06E-02 1.80 3.53E-02 1.79
40 1.03E-01 1.07 7.91E-03 1.95 9.16E-03 1.95
80 5.09E-02 1.02 1.99E-03 1.99 2.31E-03 1.99
160 2.54E-02 1.01 4.99E-04 2.00 5.79E-04 2.00
320 1.27E-02 1.00 1.25E-04 2.00 1.45E-04 2.00
640 6.34E-03 1.00 3.12E-05 2.00 3.62E-05 2.00
1280 3.17E-03 1.00 7.81E-06 2.00 9.06E-06 2.00
2560 1.58E-03 1.00 1.95E-06 2.00 2.27E-06 2.00
5120 7.92E-04 1.00 4.88E-07 2.00 5.66E-07 2.00

LS order 1.02 1.98 1.98

k = 2

10 9.11E-03 – 1.27E-03 – 2.50E-03 –
20 5.47E-04 4.06 1.78E-05 6.15 8.32E-05 4.91
40 6.12E-05 3.16 5.25E-07 5.08 3.13E-06 4.73
80 7.52E-06 3.03 1.23E-08 5.42 3.41E-07 3.20
160 9.32E-07 3.01 3.29E-10 5.22 2.44E-08 3.81
320 1.16E-07 3.00 1.45E-11 4.50 3.58E-10 6.09
640 1.45E-08 3.00 1.84E-13 6.31 1.27E-10 1.50
1280 1.82E-09 3.00 1.08E-14 4.08 5.42E-12 4.55
2560 2.27E-10 3.00 4.23E-16 4.68 1.35E-13 5.32
5120 2.84E-11 3.00 6.77E-18 5.97 2.95E-14 2.20

LS order 3.08 5.18 4.04

k = 4

10 1.18E-04 – 1.56E-06 – 2.03E-05 –
20 1.03E-06 6.84 2.28E-08 6.09 3.13E-07 6.02
40 2.76E-08 5.22 1.27E-10 7.49 5.78E-09 5.76
80 8.11E-10 5.09 1.83E-12 6.11 8.19E-11 6.14
160 2.49E-11 5.03 4.99E-15 8.52 1.94E-12 5.40
320 7.78E-13 5.00 2.19E-17 7.83 2.71E-14 6.16
640 2.43E-14 5.00 1.71E-19 7.00 3.79E-16 6.16
1280 7.59E-16 5.00 5.35E-21 5.00 2.06E-18 7.53
2560 2.37E-17 5.00 2.05E-23 8.03 1.20E-19 4.10
5120 7.41E-19 5.00 6.25E-26 8.35 1.50E-21 6.32

LS order 5.14 7.15 5.98

sub-optimal convergence rates for a particular regular non-uniform mesh sequence. The-

oretically, we show that the scheme does have the optimal accuracy for uniform meshes

in both one and multi-dimensional problems. Our proof does not have the constraint on

the number of cells in the mesh. In numerical experiments, we have also observed that
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Table 4.3. The errors and corresponding convergence rates for the DG with k = 0, 2, 4
using random perturbation mesh in 1D. The terminal time T = 1.

k = 0

N E2 Rate EA Rate Ef Rate
10 6.99E-01 – 2.30E-01 – 1.48E-01 –
20 9.78E-01 -0.48 4.30E-01 -0.90 1.82E-01 -0.30
40 3.06E-01 1.68 1.16E-01 1.89 4.26E-02 2.10
80 2.90E-01 0.08 1.12E-01 0.05 2.54E-02 0.75
160 1.63E-01 0.83 6.49E-02 0.79 1.48E-02 0.78
320 1.74E-01 -0.10 6.99E-02 -0.11 1.39E-02 0.09
640 8.47E-02 1.04 3.37E-02 1.05 5.15E-03 1.43
1280 6.77E-02 0.32 2.69E-02 0.33 2.96E-03 0.80
2560 5.35E-02 0.34 2.14E-02 0.33 2.08E-03 0.51
5120 2.71E-02 0.98 1.08E-02 0.98 1.01E-03 1.04

LS order 0.53 0.52 0.83

k = 2

10 2.73E-02 – 1.89E-03 – 6.94E-03 –
20 7.18E-03 1.93 1.72E-04 3.46 4.07E-04 4.09
40 1.05E-03 2.78 1.46E-05 3.55 3.14E-05 3.70
80 1.10E-04 3.24 4.44E-06 1.72 7.56E-06 2.05
160 3.27E-05 1.75 4.76E-07 3.22 8.11E-07 3.22
320 4.21E-06 2.96 7.29E-08 2.71 1.16E-07 2.81
640 1.00E-06 2.07 1.07E-08 2.77 1.67E-08 2.80
1280 8.97E-08 3.48 1.52E-09 2.81 2.12E-09 2.98
2560 3.12E-08 1.52 1.99E-10 2.93 2.52E-10 3.07
5120 6.36E-09 2.29 2.80E-11 2.83 3.52E-11 2.84

LS order 2.51 2.83 2.98

k = 4

10 2.28E-04 – 7.01E-06 – 3.73E-05 –
20 7.81E-06 4.87 3.74E-07 4.23 1.92E-06 4.28
40 2.72E-07 4.84 6.81E-09 5.78 3.37E-08 5.83
80 1.53E-08 4.15 3.41E-10 4.32 1.71E-09 4.31
160 1.57E-09 3.29 1.34E-11 4.66 6.94E-11 4.62
320 7.00E-11 4.48 3.46E-13 5.28 1.38E-12 5.65
640 5.60E-12 3.65 1.43E-14 4.59 5.33E-14 4.70
1280 7.04E-14 6.31 4.29E-16 5.06 1.57E-15 5.09
2560 1.88E-15 5.23 1.70E-17 4.66 5.10E-17 4.94
5120 1.48E-16 3.66 5.87E-19 4.85 1.67E-18 4.93

LS order 4.46 4.85 4.95

the superconvergence results for the errors of the cell averages and numerical fluxes. The

theoretical proof of these superconvergence results would be interesting and challenging

for our future work.
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Table 4.4. The errors and corresponding convergence rates for the DG with k = 0, 2 in
2D. The terminal time T = 1 and the parameter of the mesh α = 0.3.

Q0

N ×N E2 Rate EA Rate
4× 4 3.67E+00 – 3.56E-01 –
8× 8 2.11E+00 0.80 2.34E-01 0.60
16× 16 1.74E+00 0.28 2.82E-01 -0.27
32× 32 1.67E+00 0.06 3.02E-01 -0.10
64× 64 1.66E+00 0.01 3.07E-01 -0.02
128× 128 1.65E+00 0.00 3.08E-01 -0.01
LS order 0.20 -0.01

Q2

5× 5 1.43E-01 – 4.08E-03 –
9× 9 4.28E-02 1.74 1.64E-03 1.32
17× 17 1.24E-02 1.78 3.06E-04 2.42
33× 33 3.33E-03 1.90 2.11E-05 3.85
65× 65 8.67E-04 1.94 3.12E-06 2.76
129× 129 2.21E-04 1.97 6.57E-07 2.25
LS order 1.99 2.85

Table 4.5. The errors and corresponding convergence rates for the DG with k = 0, 2
using the uniform mesh in 2D. The terminal time T = 1.

Q0

N ×N E2 Rate EA Rate
4× 4 3.65E+00 – 4.07E-01 –
8× 8 1.63E+00 1.17 1.34E-01 1.61
16× 16 7.43E-01 1.13 3.56E-02 1.91
32× 32 3.60E-01 1.04 9.04E-03 1.98
64× 64 1.79E-01 1.01 2.27E-03 1.99
128× 128 8.91E-02 1.00 5.68E-04 2.00
LS order 1.07 1.92

Q2

4× 4 1.99E-01 – 8.35E-03 –
8× 8 1.27E-02 3.97 7.97E-05 6.71
16× 16 1.21E-03 3.39 3.31E-06 4.59
32× 32 1.51E-04 2.99 1.85E-07 4.16
64× 64 1.88E-05 3.01 1.87E-09 6.63
128× 128 2.34E-06 3.01 1.17E-10 4.00
LS order 3.23 5.16

A Appendix: Proof of a few technical lemmas and

Propositions.

In this appendix, we provide the proof of some of the technical lemmas and proposi-

tions in the error estimates.
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Table 4.6. The errors and corresponding convergence rates for the DG with k = 0, 2
using random perturbation mesh in 2D. The terminal time T = 1.

Q0

N ×N E2 Rate EA Rate
4× 4 3.76E+00 – 3.80E-01 –
8× 8 1.78E+00 1.08 1.55E-01 1.30
16× 16 1.23E+00 0.53 1.56E-01 -0.01
32× 32 8.83E-01 0.48 1.31E-01 0.25
64× 64 7.05E-01 0.33 1.07E-01 0.30
128× 128 5.63E-01 0.32 8.85E-02 0.28
LS order 0.52 0.35

Q2

4× 4 4.62E-01 – 1.17E-02 –
8× 8 3.22E-02 3.84 1.31E-03 3.15
16× 16 1.04E-02 1.64 1.98E-04 2.73
32× 32 2.06E-03 2.33 2.23E-05 3.15
64× 64 3.34E-04 2.63 2.93E-06 2.93
128× 128 3.56E-05 3.23 4.41E-07 2.74
LS order 2.58 2.91

Table 4.7. The errors and corresponding convergence rates for the DG with using Pk

finite element space in 2D. The terminal time T = 1 and the parameter of the mesh
α = 0.

P1

N ×N E2 Rate EA Rate
4× 4 1.51E+00 – 7.53E-02 –
8× 8 6.88E-01 1.13 2.12E-02 1.83
16× 16 3.30E-01 1.06 5.77E-03 1.88
32× 32 1.63E-01 1.02 1.48E-03 1.96
64× 64 8.11E-02 1.01 3.72E-04 1.99
128× 128 4.05E-02 1.00 9.32E-05 2.00

P2

4× 4 3.81E-01 – 7.83E-03 –
8× 8 6.31E-02 2.59 1.82E-03 2.11
16× 16 2.01E-02 1.65 7.97E-05 4.51
32× 32 5.31E-03 1.92 5.05E-06 3.98
64× 64 1.34E-03 1.98 3.29E-07 3.94
128× 128 3.37E-04 2.00 2.04E-08 4.01

P3

4× 4 2.63E-01 1.93 1.30E-03 –
8× 8 7.84E-03 5.07 7.47E-05 4.12
16× 16 3.83E-04 4.35 3.63E-07 7.68
32× 32 3.39E-05 3.50 2.74E-08 3.73
64× 64 3.70E-06 3.19 4.84E-10 5.82
128× 128 4.46E-07 3.05 1.94E-11 4.64
256× 256 5.56E-08 3.01 9.59E-13 4.34
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Fig. 4.1. Example of non-uniform two dimensional mesh with h = 2π
17

and α = 0.3

A.1 Proof of Lemma 2.1

Proof. Note that the procedure to find P ⋆
hw ∈ Pk([−1, 1]) is to solve a linear system, so

the existence and uniqueness are equivalent. Thus, we only prove the uniqueness of the

projection P ⋆
h . We set wI(x) = P ⋆

hw(x) with w(x) = 0 and would like to prove wI(x) ≡ 0.

By the definition of the projection P ⋆
hw(x), then

P̃h(wI ; v) = −

∫ 1

−1

wIvx dx+
wI(−1) + wI(1)

2
(v(1)− v(−1)) = 0, ∀v ∈ Pk([−1, 1]),

(A.1)
∫ 1

−1

wI dx = 0. (A.2)

If k = 0, the lemma obviously holds. If k ≥ 2, we take v = x in (A.1), we have

0 = P̃h(wI ; x) = −

∫ 1

−1

wI dx+ (wI(−1) + wI(1))

= (wI(−1) + wI(1)), (A.3)

here we have used (A.2). Thus in (A.1), we have

0 = P̃h(wI ; v) = −

∫ 1

−1

wIvx dx, ∀v ∈ Pk([−1, 1]),

which means that

wI = wkLk(x), (A.4)
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where wk is a constant, and Lk(x) is the standard k-th degree Legendre polynomial on

the interval [−1, 1]. By (A.3) and the fact that k is even, we obtain wk ≡ 0. This finished

the proof of uniqueness. For the proof of the bound (2.17), the arguments are the same

as in [13, 14], hence we omit them here.

A.2 Proof of Lemma 3.1

Proof. When k = 0, the Lemma obviously holds true. For k ≥ 2, assume that u ≡ 0.

From (3.11a), we have Π⋆
hu⊥Qk−1([−1, 1]2), thus we have the following expression of

Π⋆
hu,

Π⋆
hu =

k−1∑

m=0

αk,mLk(x)Lm(y) +

k−1∑

m=0

αm,kLm(x)Lk(y) + αk,kLk(x)Lk(y). (A.5)

From (3.11b), we take ϕ(x) = Lm(x), m = 0, 1, . . . , k − 1, to obtain

αm,k = 0, m = 0, . . . , k − 1. (A.6)

By the same arguments, we have

αk,m = 0, m = 0, . . . , k − 1. (A.7)

Thus Π⋆
hu = αk,kLk(x)Lk(y). Finally, by (3.11d) and the fact that k is even, we have

αk,k = 0. That means Π⋆
hu ≡ 0. We have now finished the proof of uniqueness, hence

also existence. By the same arguments as the proof of Lemma 2.1 in [14], we can obtain

(3.12).

A.3 Proof of Proposition 3.2

Proof. If u ∈ Qk, then Π⋆
hu = u implies (3.16) holds true. Thus we only need to prove the

cases u = xk+1 or yk+1. We will just show the details of the proof for one case; namely

bi,j(Π
⋆
hu, v) = bi,j(u, v), ∀v ∈ Qk(Ki,j), is true when u = xk+1. We denote Πe = Π⋆

hu−u.

By the definition of bi,j(·, ·), we have

bi,j(Πe, v) =

∫

Ki,j

Πevx +Πevy dxdy
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−

∫

Jj

Πe(x
+
i+ 1

2

, y) + Πe(x
−

i+ 1

2

, y)

2
v(x−

i+ 1

2

, y)−
Πe(x

+
i− 1

2

, y) + Πe(x
−

i− 1

2

, y)

2
v(x+

i− 1

2

, y) dy

−

∫

Ii

Πe(x, y
+
j+ 1

2

) + Πe(x, y
−

j+ 1

2

)

2
v(x, y−

j+ 1

2

)−
Πe(x, y

+
j− 1

2

) + Πe(x, y
−

j− 1

2

)

2
v(x, y+

j− 1

2

) dx.

(A.8)

We first have (Π⋆
hu − u)y = 0 due to the special form of u. Since vx is a polynomial of

degree at most k − 1 in x, thus from (3.11a), we have

∫

Ki,j

Πevx dxdy = 0, (A.9)

and since Πe is continuous corresponding to the variable y, after applying integration by

parts, we obtain

∫

Ki,j

Πevy dxdy

−

∫

Ii

Πe(x, y
+
j+ 1

2

) + Πe(x, y
−

j+ 1

2

)

2
v(x, y−

j+ 1

2

)−
Πe(x, y

+
j− 1

2

) + Πe(x, y
−

j− 1

2

)

2
v(x, y+

j− 1

2

) dx

= −

∫

Ki,j

(Πe)yv dxdy = 0. (A.10)

From Lemma 3.2, we have

Πe(x
+
i+ 1

2

, y) + Πe(x
−

i+ 1

2

, y) =u(xi+ 1

2

, y)− u(xi− 1

2

, y) + Π⋆
hu(x

+
i− 1

2

)− u(xi+ 1

2

, y)

+ Π⋆
hu(x

−

i+ 1

2

, y)− u(xi+ 1

2

, y)

=Π⋆
hu(x

+
i− 1

2

) + Π⋆
hu(x

−

i+ 1

2

, y)− u(xi− 1

2

, y)− u(xi+ 1

2

, y)

=0. (A.11)

The last equality is from (3.11d). By the same arguments,

Πe(x
+
i− 1

2

, y) + Πe(x
−

i− 1

2

, y) = 0. (A.12)

From (A.9)-(A.12), we have bi,j(Πe, v) = 0.
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