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Abstract

In this paper, we theoretically and numerically verify that the discontinuous Galerkin
(DG) methods with central fluxes for linear hyperbolic equations on non-uniform meshes
have sub-optimal convergence properties when measured in the L2-norm for even degree
polynomial approximations. On uniform meshes, the optimal error estimates are pro-
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results. The theoretical findings are found to be sharp and consistent with numerical

results.
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1 Introduction

A fundamental form of energy transmission is wave propagation, which arises in many
fields of science, engineering and industry, such as petroleum engineering, geoscience,
telecommunication, and the defense industry (see [8, 12]). It is important for these
applications to study efficient and accurate numerical methods to solve wave propagation
problems. Experience reveals that energy-conserving numerical methods, which conserve
the discrete approximation of energy, are favorable, because they are able to maintain
the phase and shape of the waves more accurately, especially for long-time simulation.

Various numerical approximations of wave problems modeled by linear hyperbolic
systems can be found in the literature. Here, we will focus on the classical Runge-Kutta
DG method of Cockburn and Shu [6]. There are several approaches to obtain an optimal,
energy conserving DG method. Chung and Engquist [4] presented an optimal, energy
conserving DG method for the acoustic wave equation on staggered grids. Chou et al. [3]
proposed an optimal energy conserving DG using alternating fluxes for the second order
wave equation. More recently, Fu and Shu [9] developed an optimal energy conserving
DG method by introducing an auxiliary zero function.

As is well known, the simplest energy conserving DG method for hyperbolic equations
is the one using central fluxes. However, it has sub-optimal convergence of order k
measured in the L?-norm when piece-wise polynomials of an odd degree k are used; see,
e.g. [15]. When k is even, we usually observe higher convergence rates than kth order
for a general regular non-uniform meshes, such as random perturbation over an uniform
mesh, see section 4. In fact, many papers have mentioned that the optimal convergence
rates can be observed when even degree polynomials are used; see for example [1, 2, 15, 7].
In this paper, we provide a counter example to show that the scheme only has sub-optimal
error accuracy of order k for a regular non-uniform mesh, when k is even. We refer to
the work of Guzman and Riviere [11] in which they constructed a special mesh sequence

to produce the sup-optimal accuracy for the non-symmetric DG methods for elliptic



problems when k is odd. For uniform meshes, the classical DG scheme with the central
flux does have the optimal convergence rate k+ 1, observed in the numerical experiments
and proved theoretically under the condition that the number of cells in the mesh is odd
[1, 15]. In this paper, we provide a new proof which is available for arbitrary number of
cells and dimensions for linear hyperbolic equations. We have used the shifting technique
[13, 14] to construct the special local projection to obtain the optimal error estimate on
uniform meshes. We also numerically find the superconvergence phenomenon for the cell
averages and numerical fluxes.

The outline of the paper is as follows. In section 2, we review the DG scheme
for hyperbolic equations with central fluxes and give the error estimates for the semi-
discrete version in one dimension. We extend our analysis to multi-dimensions in section
3. In section 4, we give numerical examples to show the sub-optimal convergence for
non-uniform meshes and optimal convergence for uniform meshes in both one and two-
dimensional cases. Finally, we give concluding remarks in section 5. Some of the technical

proof of the lemmas and propositions is included in the Appendix A.

2 One dimensional problems

We consider the following one dimensional linear hyperbolic equation
u +u, =0, x€[0,1], t >0
(2.1)
U(ZL’,O) = UO(x)7 xr e [07 1]7
with periodic boundary condition. We first introduce the usual notations of the DG

method. For a given interval = [0, 1] and the index set Zy = {1,2,..., N}, the usual

DG mesh 7y is defined as:
0=z <ws <...<zyp1 =1 (2.2)

We denote



We also assume the mesh is regular, i.e., the ratio between the maximum and minimum
mesh sizes shall stay bounded during mesh refinements. That means there exists a

positive constant ¢ > 1, such that,
1 )
—hﬁh] SO’h, h:N, \V/] GZN. (24)
We define the approximation space as
Vi ={vp s (op)|r, € PR(L), 5 =1,..., N} (2.5)

Here P*(1;) denotes the set of all polynomials of degree at most k on I;. We first introduce
some standard Sobolev space notations. For any integer m > 0, W"™?(D) denote the
standard Sobolev spaces on the sub-domain D C 2 equipped with the norm || - ||;n,.0
and the semi-norm | - |, p. If p =2, we set W™P(D) = H™(D), and | - |;npp = | - |m.D

and we omit the index D, when D = Q.

The semi-discrete DG scheme is to seek u;, € V}, such that for all v, € V},,
((wn)t, vn); + aj(up,vp) =0, Vj € Zy, (2.6)
where
a;j(un, vn) = —(un, (Un)s); + Unvy 11 — dpvy |1, (2.7)

where (u,v); = ij uv dx, v‘|j+% and v+|j+% denote the left and right limits of v at the

point z; 1, respectively, and uy, are the numerical fluxes. Here, we consider the central
2

flux,
. T n
tp = {up}t = §(Uh + uy). (2.8)
For the central flux, we have,
N
Z aj(uh,uh) =0, VYu,e€V,. (29)
j=1



The initial datum wuy(x,0) = Pug is obtained by the standard L? projection,

(up — Pug,vs); =0, Vo, € PF(I;). (2.10)

Thus, we have,
luo — wn (-, 0) | < 2l (2.11)
Here and below, an unmarked norm || - || denotes the L? norm, and A < B denotes that

A can be bounded by B multiplied by a constant independent of the mesh size h. As

mentioned earlier, we have the following energy-conserving results [15].

Theorem 2.1. Suppose uy, is the solution of DG scheme (2.6), then it satisfies

d 9
— = 0. 2.12
dt”uhH 0 (2.12)

Next we consider the error estimate, first we recall the following basic facts [5]. For

any function wy, € Vj,

(8) [l (wn)all S B lwnll,

(i0) [Jwnlle, S B2 Jwall, (2.13)

where I';, denotes the set of boundary points of all elements [;, and the norm ||wp||r, =
1

(Z?{:l((wh);%)z + ((wh);_%)2> ® . In order to obtain the optimal error estimate for the
case of uniform meshes, we need to use the shifting technique [13, 14] to construct a
special projection Py, which is defined as follows. For any given function w € L*®(2)
and each j,

/1 Piw(e)de = /1 w(z) dz, (2.14)

J J

Pu(Pfw;v); = Py(w;v); Yo € PR(I ), (2.15)

where E(w; v); is defined as

Py(w;v); = —(w,v,); +

). (2.16)



Note that the projection P} is a local projection, so we only consider the projection
defined on the reference interval [—1,1]. We have the following lemma to establish the

fact that the projection is well defined.

Lemma 2.1. When k is even, the projection Py defined by (2.14) on the interval [—1, 1]
exists and is unique for any L function w, and the projection is bounded in the L

norm, i.e.,
[1Prw|[ec < C(k)[[wlloo, (2.17)
where C(k) is a constant that only depends on k but is independent of w.

Proof. We provide the proof of this lemma in the appendix; see section A.1.

Remark 2.1. The projection Py is only well defined when k is even. In fact, when k is

odd, for example k = 1, we can take w; = x € P([—1,1]), which satisfies

/1 wy(z)dz =0, (2.18)

1

Py(wr;v) = — /_lwf(x)vx dp + 1) +2“”(_1> (v(1) —v(=1)) =0, WveP([-1,1)).

(2.19)

It means that there exists a nonzero function wy = Pyw, where w = 0. This implies that

Prw 1s not unique.

Remark 2.2. In fact, the projection P} has an equivalent definition as follows,

Titd Tivd 1
Prwvdr = wvdz, YveP' (1), (2.20)
x T._ 1

i—% i—%

LBy, ) + Pt ,)) = g(w(ays) +wle,_ ) (2.21)

N

As a direct corollary of lemma 2.1 and the locality of the projection, the standard

approximation theory [5] implies, for a smooth function w,
1
|Prw(z) — w(@)|| + k2 || Prw(z) — w(@)l|r, S P lw]lg (2:22)

We also have the following properties of the projection Py,

6



Lemma 2.2. Suppose that u = a**'. Let u; = Ppuly,. If hjoy = hj = hjy1 = h, then

we have the following relationship:

(x — R — (2 — h) = 2" —wy(2) = (x + BT —u(x+h), Voe .
(2.23)

where Pju|r; means that the projection of u is defined on the subinterval I;, and u;_(x—
h), wjy1(x + h) refer to the projection of uw on the element I,y and I;y respectively,

since x € I; implies (x — h) € I;_1 and (x4 h) € I;4;.

Proof. The proof of this lemma is by the same arguments as in [13, 14], so we omit it
here.

By this lemma, we also have the following superconvergence results.

Proposition 2.1. Given the index j, suppose that u is a (k + 1)th degree polynomial
fUTLCtiOTL m Pk+1([j_1 U[] U]j-l-l)' [f h'j—l = hj = hj+1 = h, we have

a;(Pru,vy) = aj(u,vy) Yo, € PH(I;), (2.24)
where a; is defined by (2.7).

Then we can state the main theorem of this paper.

Theorem 2.2. Suppose uy, is the numerical solution of the DG scheme (2.6) for equation
(2.1) with a smooth initial condition u(-,0) € H*2(Q), and u is the eract solution of

(2.1), then the approzimation uy, satisfies the following L* error estimate:
[u(-,T) = un(-, )| < h*, (2.25)

where k is the degree of the piecewise polynomials in the finite element spaces Vy,. Fur-

thermore, when k is even and the mesh is uniform, we have the optimal error estimate:
[u(-,T) = un(- T)|| S W (2.26)
Proof. Obviously, the exact solution u of (2.1) also satisfies

(u,vp) + aj(u,vp) =0, Yo, € V. (2.27)

7



Subtracting (2.6) from (2.27), we obtain the error equation
((w—up)e,vp)j + aj(u —up,vp) =0, Yo, € V), (2.28)
We denote
E=wup — P'u; n=u— Pu, (2.29)
where P* is some projection. From the error equation (2.28), and taking v, = £, we have

(&, €); +a;(6,8) = (e, €); + a; (0, €). (2.30)

For the nonuniform mesh case, the sub-optimal error estimate can be easily obtained by
using the standard L? projection P. We take P* as the standard L? projection P, then

we have,
= Pul| + h2Ju = Pullr, < B [ullg. (2.31)

For the left-hand side of (2.30), we can use (2.9) to obtain

1d ., al
5%“5“ == Z{n}j-‘r%[g]j-l—%
j=1

< W€l (2.32)

where the last inequality is from (2.31) and (ii) of (2.13). Thus, by using Gronwall’s

inequality and (2.11), we have,
€l < A*lullisr- (2.33)

The triangle inequality implies our designed results for the general non-uniform mesh
case.

For the case of uniform meshes, when £ is even, we take P* as P} which is defined
in (2.14). Let u} be the Taylor expansion polynomial of order k + 1 of u over D; =
(zj_3,2;,3), Le, wl(x) = S u(x;)(x — ;)% © € D;. Let 7 denote the remainder

term, i.e., 77 = u — u}. Recalling the Bramble-Hilbert lemma in [5], we have
- 3
||7°1]L||L°°(Dj) N hte |U|k+2,Dj- (2.34)

8



Thus, using Proposition 2.1, we have

a’j(nvg) - a’j(uff' - Pitujlvg) + aj(ri - P;Ti,g)

= a;(r;, — Pyri, €).
By using the property of the projection (2.17) and (2.34), and the inverse inequality in
(2.13) for &, we have

> ai(m.€) S hFFfullisa + [1€]1% (2.35)

J

Therefore, form (2.30), (2.22) and the stability result (2.1), we have

1d

5 g €I S 2 s + NIE1 (2.36)

This together with the approximation results (2.22) and the initial datum (2.11), implies

the desired error estimate (2.26). O

We summarize the theoretical findings and numerical findings in Table 2.1.

Table 2.1. Summarization of the L? error accuracy for the 1D case.

mesh kis odd | k is even

. uniform (k + 1)th
Numerically non-uniform kth kth

. uniform (k + 1)th
Theoretically onuntform kth T

From Table 2.1, we can see that our theoretical findings are sharp and consistent
with the numerical results. We emphasize that when £ is even, in order to produce
the sub-optimal accuracy, we have designed a special regular mesh sequence which is

motivated by [11], see section 4.

3 Multi-dimensional problems

In this section, we consider the semidiscrete DG method with central fluxes for mul-

tidimensional linear hyperbolic equations. Without loss of generality, we only study the

9



two dimensional problem; all the arguments we present in our analysis depends on the
tensor product structure of the mesh and the finite element space and can be easily ex-
tended to the more general cases d > 2. Hence, we consider the following two-dimensional

problem
w+uy +uy, =0, (z,y,t) € Qx (0,7,
(3.1)
u(z,y,0) = uo(x,y), (z,y) € Q.

again with periodic boundary conditions. Without loss of generality, we assume ) =

[0, 1]%. We use the regular Cartesian mesh, {Ki,j =[x J;= [xi__,:cH%] X [yj_%,ijr%]},

=

i=1,....,N,, j =1,...,N,. We denote h’ = Tipl — Ti1, hi = Yje1 — y;_1 and
h = max; ;(hi, hl). Let Wy, := {v € L*(Q) : v|k,, € Q¥(K;;), Vi,j}, where Q"(K; ;)
denotes the space of tensor-product polynomials of degrees at most k in each variable
defined on K ;.

The semidiscrete DG scheme with central fluxes is as follows. We seek u;, € W), such

that for all test functions v € W), and all 7, j,

I

(up)v dzdy :/ (upvy + upvy) dedy

i, Ki
Yird 1 B .
—/ i (uh(xi+%,y)v(x,-+;,y) —uh(xi_%,y)v(xj_;,y)) dy
y],% 2 2
its /o _ 5
—/ ’ (uh(fv,yj+%)v(x,yj+%) —uh(fv,yj_%)v(x,yj_%ﬁ dr (3.2)
mi*%
=1 b j(un, v), (3.3)
where
) un(w o y) Fun(e ) un(w, g 1)+ un(@, Y7 )
uh(xH%,y) = 5 ) Uh(xayj-i-%) = 2
(3.4)

For the initial data, we take uy,(0) = Pug, where P is the L? projection into W}, and we

have [5]

o — Pugl| S ¥ ||uol|p1- (3.5)

10



We also have

Nx Ny

SN bij(unun) =0, Vu, € W (3.6)

i=1 j=1

Thus we have the following energy conservative property

Proposition 3.1. The numerical solution of (3.2) satisfies

1d

3.1 A priori error estimates

Let us now state our main result as a theorem, whose proof will be provided in the

next subsection.

Theorem 3.1. Suppose uy, is the numerical solution of the DG scheme (3.2) for equation
(3.1) with a smooth initial condition u(x,y,0) € H***(Q), and u is the exact solution of

(3.1), then the approzimation uy, satisfies the following L* error estimate:
lu(z,y, T) — un(a,y. T)|| S b, (3.8)

where k is the degree of the piecewise tensor-product polynomials in the finite element
spaces Wy,. Furthermore, when k is even and the mesh is uniform, we have the optimal

error estimate,
||u(x,y,T) _uh(xvva)H 5 hk+1’ (39>

Remark 3.1. We note that the finite element space Vi, = {v € L*(Q) : v|k,, €
P*(K;;), Vi,j}, where P*(K; ;) denotes the space of polynomials of degrees at most k
defined on K, ;, can also be taken as the approximation space. But it only has the sub-
optimal accuracy of order k in the numerical examples, see section 4. Thus, here we only

consider the tensor product space.

11



By the same arguments as in the one dimensional problem, we also have the error
equation
/ (u —wp)wdedy — b j(u—up,v) =0, YveW,, Vi,j. (3.10)
Ki,j

3.2 Proof of the error estimates

We divide the proof of Theorem 3.1 into several steps. First, for non-uniform meshes,
the proof of the sub-optimal error estimate is straightforward. We just need to use the
standard L? projection and follow the standard error estimates of DG methods which is
the same as in the one dimensional case. Thus next we only consider the uniform mesh
case. In order to prove the optimal error estimate when k is even, we need to construct
the special local projection II7. In addition, the optimal approximation properties of ITj
are derived. The superconvergence results of the special projections would be given in

the subsection 3.2.2. Finally, we finish the proof of Theorem 3.1 in subsection 3.2.3.
3.2.1 The special projection II}

Since our finite element space consists of piecewise QF polynomials, we use the ten-
sor product technique to construct the 2D projection. We define II} as the following
projection into W). For each K ;,

/ Gw(z, y)v(z,y) dedy = / w(z,y)v(r,y)dedy, Vv e QY (K;;). (3.11a)

Ki; Ki;

Mw(ey )+ w(zy’ ) wzy " )Fw@y’ )

I 2 “p(r)dr = [, 2 —2 o(x)dx, Vo(r) e PFYI)
(3.11D)
i)
)

sz(ac;rl,?J/)JrH;*#ﬂ(ffi+ 1,?;) +1,y +u}(a: 1,y)

/), e dy = fJ 3 p(y)dy, Yeo(y) € P1(J
(3.11c




Again, since the projection is local, we only consider the projection defined on the
reference cell [—1, 1] x[—1, 1]. We establish the existence and uniqueness of the projection

when k£ is even in the following lemma

Lemma 3.1. When k is even, the projection 11} defined by (3.11) on the cell [—1,1] x
[—1, 1] ezists and is unique for any L™ function w, and the projection is bounded in the

L> norm, i.e.
Mwl[e < C(k)[[wlls, (3.12)
where C(k) is a constant that only depends on k but is independent of w.

Proof. The proof of this lemma is given in the Appendix; see section A.2.
Since the projection is a k-th degree polynomial preserving local projection, standard

approximation theory [5] implies, for a smooth function w,
o = T g S B ol e, (3.13)

For the two dimensional space, for any wy, € W}, the following inequalities hold,

1/2

lonll,  lwnllse S A7 llwnll, (3.14)

10sonll S B lwnll,  lewnllzzor,) S B S
where 0K; ; is the boundary of cell K ;.

Remark 3.2. By similar arguments as in the one dimensional problem, we note that

the projection 11} is not well defined when k is odd.
3.2.2 Properties of the projection II}

By the similar arguments in the one dimensional case, we have the following lemma:
Lemma 3.2. Assume that u = 2**" or y**1. Let u;; = ulg, . If hit = hl = hitt =
he and hi~' = hj = hi*' = h,, then ¥(z,y) € K;;, we have following relationship:

w(@ = ho,y) = uim1(T = hoyy) = u(@,y) — uij(@,y) = u(@ + ha) = Uip1,(2 + ha, y)

=u(z,y+ hy) —uij(x,y+ hy) =u(x,y — hy) —wj—1(z,y — hy). (3.15)

13



Similar to the one dimensional case, we also have the following superconvergence

result.

Proposition 3.2. For a given index (i, ), suppose that u is a (k+1)th degree polynomial
fUTLCtiOTL m ]P)k—i—l(Di,j), where Di,j = i1 U Ki+17j U Ki,j U Ki,j—l U Ki,j—i—l- ]f hi,_l =

hl = hit' and hi™' = hj, = hi*!, then we have

bi; (5w, v) = b j(u,v) Yo € QF(K;), (3.16)
where b; ;(-,-) is defined by (3.3).
Proof. We provide the proof of this Proposition in the Appendix; see section A.3.
3.2.3 Proof of Theorem 3.1

Let
E=up —Iu; n=u-—Iju. (3.17)
From (3.10), we obtain

J,

Take v = £ € W), for the left hand side of (3.18), we use (3.6) to obtain

(v dxdy —b; (€, v) = / (mev dxdy — b; j(n,v), Vv € @k(Ki,j)- (3.18)

i, Ki

1d
> [ @sdudy - biy(6.9) = 5 I (3.19)
iyj ]

For each element K; ;, we consider the Taylor expansion of u around (z;,y;):
u = Tu+ Ru, (3.20)

where
k+1 1

u(xs, yj
Tu=Y > ! ou( “y])(:c—xi)l_m(y—yj)m,

— <= (I —m)lm! o'~ y™

k+2

Ru=(k+2))

m=0

(:L’ o xi)k“‘m(y _ yj)m /1(1 8k+2u(xf, y]s) e
0

(k+2—m)m! 7 Qakr2-mpym

14



with @§ = z; + s(z — 2;), y§ = y; + s(y — y;). Clearly, Tu € P¥"'(D; ;). By the linearity

of the projection, and from (3.16), we then get

bi;(n,v) = b; j(Tu — I} Tu,v) + b; j;(Ru — 11} Ru, v)

= b; j(Ru — 11} Ru, v). (3.21)
Again recalling the Bramble-Hilbert lemma in [5] , we have
||RUHL0<>(DZ.J) < Chk+1|u|Hk+2(Di’j). (322)

Thus, this together with the standard approximate proposition of the projection (3.13),

and the inverse inequality in (3.14) for £, we have

> bii(0,€) S PPl + (€)1 (3.23)
1,7

From (3.19), (3.23) and (3.18), we have

1d
5 77 1€ S P ulliye + €N (3.24)

This together with the approximation results (3.13) and the initial discretization (3.5),
implies the desired error estimate (3.9).

To end this section, we summarize our theoretical findings and numerical findings for
the 2D problem in Table 3.1. Again our theoretical proof is sharp and consistent with
the numerical results.

Table 3.1. Summarization of the L? error accuracy for the 2D case.

mesh kis odd | k is even
Numerically uniform kth et D

Q*-space non-uniform : kth)
. uniform k + 1)th

Theoretically T —. kth T

P*-space | Numerically /Theoretically | uniform /nonuniform kth kth

15



4 Numerical examples

In this section, we present some numerical examples to verify our theoretical findings.
In our numerical experiments, we present the E,, F4, and Ey errors, respectively. They

are defined by

E2 :||u—uh|| (41)

4

1 N 1 2 2 . .
<> (|, (u—wup)dx ) ,  for one dimension,
. (% 06 (= w) da) 1 "

Ny N, 3 : :
\ (ﬁNy > 22:1(K1h; fKi,j (u — up) d:cdy)2> ,  for two dimensions.

2

Ey = %Z(uj-i-% - {Uh}j+;)2> - (4.3)

Example 4.1. We consider the linear hyperbolic equation with periodic boundary con-
dition:

u +u, =0, (z,t) €[0,27] x (0,7),
u(z,0) = exp(sin(z)), (4.4)
u(0,t) = u(2m,t).

The exact solution to this problem is
u(z,t) = exp(sin(z — t)). (4.5)

We use two kinds of non-uniform meshes. The first one is the non-uniform mesh with 30%

random perturbation from N uniform cells on [0, 27|, and the other mesh is constructed

as follows. Let :Ej+% = jh for j =0,..., N where h = % and :’i’N+% = 1, then we define

the nodes of our mesh as follows

N
::,%2‘7_ _'_th’ j:17...’\\5J.

NI

where |m] denotes the maximal integer no more than m. Here the parameter o satisfies
—1 < a < 1. For example, if a = 0 then the resulting mesh is uniform.
We set the number of subintervals, N = 2 x 10,7 = 0,...,9, in our experiments. We

use the DG scheme (2.6) with central fluxes using P* polynomials with & = 0,2,4. The

16



initial datum is obtained by the standard L? projection. To reduce the time discretization
error, the seventh-order strong stability-preserving Runge-Kutta method [10] with the
time step At = 0.01h is used. The errors and corresponding convergence rates for the
special nonuniform mesh with o = 0.1, the uniform mesh, and random perturbation mesh
are separately listed in the Tables 4.1-4.3. Since the convergence rates have oscillations,
especially for F4 and Ey, we have used the least square method to fit the convergence
orders of the errors, denoted by “LS order” in the tables. We can find that E5 only
has k-th order accuracy, but E4 and Ef have (k + 1)-th order convergence for k = 2,4,
when the parameter of mesh a = 0.1. For the uniform mesh, i.e., &« = 0, we observe the
(k + 1)-th optimal convergence rates. We can also find the convergence rates of the L?
errors to be around k + % for the randomly perturbed meshes.

In two dimensions, we consider the following problem.

Example 4.2. We solve the following linear hyperbolic equation with periodic boundary

condition:
u +uy +u, =0, (x,y,t) €0,27)? x (0,7T), (4.6)
u(x,y,0) = sin(z +y). ’
The exact solution to this problem is
u(z,y,t) = sin(z +y — 2t). (4.7)

In each dimension, we apply the same partition as in the one-dimensional case. We choose
the parameters o = 0.3 (see Fig 4.1). The tensor product space Q¥ or the piecewise kth
polynomial P* is taken as the approximation space. We test the DG scheme with the
central flux, and take the terminal time 7' = 1. When Q” elements are used and k = 0, 2,
for the special nonuniform mesh with o = 0.3, the sub-optimal kth convergence rates
can be observed which are listed in Table 4.4. For the uniform mesh, i.e., a = 0, the
scheme has (k + 1)th optimal convergence orders, see Table 4.5. However, for P* finite
element space, it only has kth suboptimal convergence rates no matter whether £ is even

or odd, see Table 4.6.
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Table 4.1. The errors and corresponding convergence rates for the DG with k£ =0,2,4
in 1D. The terminal time 7" = 1 and the parameter of the mesh o = 0.1.

N E, Rate E4 Rate Ey Rate
10 5.14E-01 - 1.23E-01 - 1.15E-01 -
20 2.75E-01 0.90 | 7.32E-02 0.75 | 3.20E-02 1.85
40 2.02E-01 0.44 | 6.98E-02 0.07 | 7.66E-03 2.06
80 1.82E-01 0.15 | 7.01E-02 -0.01 | 5.75E-03 0.41
k=0 160 1.77E-01 0.04 | 7.03E-02 -0.00 | 6.45E-03 -0.16
320 1.75E-01 0.01 | 7.03E-02 -0.00 | 6.68E-03 -0.05
640 1.75E-01 0.00 | 7.03E-02 -0.00 | 6.75E-03 -0.01
1280 1.75E-01 0.00 | 7.04E-02 -0.00 | 6.76E-03 -0.00
2560 1.75E-01 0.00 | 7.04E-02 -0.00 | 6.77E-03 -0.00
5120 1.75E-01 0.00 | 7.04E-02 -0.00 | 6.77E-03 -0.00
LS order 0.12 0.05 0.32
10 9.30E-03 - 1.09E-03 - 2.07E-03 —
20 7.82E-04 3.57 | 8.21E-05 3.73 | 2.20E-04 3.23
40 1.33E-04 2.55 | 9.77E-06 3.07 | 2.10E-05 3.39
80 2.00E-05 2.73 | 9.26E-07 3.40 | 2.19E-06 3.26
160 4.21E-06 2.25 | 1.21E-07 2.94 | 2.36E-07 3.22
k=2 320 9.99E-07 2.07 | 2.10E-08 2.52 | 1.48E-08 4.00
640 2.46E-07 2.02 | 1.98E-09 3.41 | 3.35E-09 2.14
1280 6.13E-08 2.01 | 3.37TE-10 2.55 | 8.36E-11 5.32
2560 1.53E-08 2.00 | 4.64E-12 6.18 | 7.30E-11  0.20
5120 3.83E-09 2.00 | 1.14E-12 2.03 | 8.80E-12 3.05
LS order 2.28 3.27 3.17
10 1.21E-04 - 2.18E-06 - 1.61E-05 —
20 1.62E-06 6.22 | 6.45E-08 5.08 | 6.56E-07 4.62
40 9.60E-08 4.08 | 2.82E-09 4.51 | 1.41E-08 5.53
80 5.28E-09 4.19 | 1.50E-10 4.24 | 4.13E-10 5.10
160 3.22E-10 4.04 | 1.72E-12 6.44 | 1.64E-11 4.65
k=4 320 1.99E-11 4.02 | 8.17E-14 4.40 | 2.34E-13 6.13
640 1.24E-12 4.00 | 3.41E-16 7.90 | 1.81E-14 3.69
1280 7.75E-14 4.00 | 3.18E-17 3.42 | 4.93E-16 5.19
2560 4.85E-15 4.00 | 1.27E-18 4.64 | 1.59E-17 4.95
5120 3.03E-16 4.00 | 5.35E-20 4.57 | 4.69E-19 5.08
LS order 4.16 5.14 5.00

5 Concluding remarks

In this paper, we have studied the error estimates of the DG methods for linear
hyperbolic equations with central fluxes when the degree of piecewise polynomial is

even. Numerically, we provide a counter example to show that the scheme only has the
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Table 4.2. The errors and corresponding convergence rates for the DG with k£ =0,2,4
using the uniform mesh in 1D. The terminal time T = 1.

N E, Rate E4 Rate Ey Rate
10 4.82E-01 - 1.07E-01 - 1.22E-01 -
20 2.16E-01 1.16 | 3.06E-02 1.80 | 3.53E-02 1.79
40 1.03E-01 1.07 | 7.91E-03 1.95 | 9.16E-03 1.95
80 5.09E-02 1.02 | 1.99E-03 1.99 | 2.31E-03 1.99
160 2.54E-02 1.01 | 4.99E-04 2.00 | 5.79E-04 2.00
320 1.27E-02 1.00 | 1.25E-04 2.00 | 1.45E-04 2.00
640 6.34E-03 1.00 | 3.12E-05 2.00 | 3.62E-05 2.00
1280 3.17TE-03 1.00 | 7.81E-06 2.00 | 9.06E-06 2.00
2560 1.58E-03 1.00 | 1.95E-06 2.00 | 2.27E-06 2.00
5120 7.92E-04 1.00 | 4.88E-07 2.00 | 5.66E-07 2.00
LS order 1.02 1.98 1.98
10 9.11E-03 - 1.27E-03 - 2.50E-03 —
20 5.47E-04 4.06 | 1.78E-05 6.15 | 8.32E-05 4.91
40 6.12E-05 3.16 | 5.25E-07 5.08 | 3.13E-06 4.73
80 7.52E-06 3.03 | 1.23E-08 5.42 | 3.41E-07 3.20
160 9.32E-07 3.01 | 3.29E-10 5.22 | 2.44E-08 3.81
k=2 320 1.16E-07 3.00 | 1.45E-11 4.50 | 3.58E-10 6.09
640 1.45E-08 3.00 | 1.84E-13 6.31 | 1.27E-10 1.50
1280 1.82E-09 3.00 | 1.08E-14 4.08 | 5.42E-12 4.55
2560 2.27TE-10 3.00 | 4.23E-16 4.68 | 1.35E-13 5.32
5120 2.84E-11 3.00 | 6.77E-18 5.97 | 2.95E-14 2.20
LS order 3.08 5.18 4.04
10 1.18E-04 - 1.56E-06 - 2.03E-05 —
20 1.03E-06 6.84 | 2.28E-08 6.09 | 3.13E-07 6.02
40 2.76E-08 5.22 | 1.27E-10 7.49 | 5.78E-09 5.76
80 8.11E-10 5.09 | 1.83E-12 6.11 | 8.19E-11 6.14
160 2.49E-11 5.03 | 4.99E-15 8.52 | 1.94E-12 5.40
k=4 320 7.78E-13 5.00 | 2.19E-17 7.83 | 2.71E-14 6.16
640 2.43E-14 5.00 | 1.71E-19 7.00 | 3.79E-16 6.16
1280 7.59E-16 5.00 | 5.35E-21 5.00 | 2.06E-18 7.53
2560 2.37TE-17 5.00 | 2.05E-23 8.03 | 1.20E-19 4.10
5120 7.41E-19 5.00 | 6.25E-26 8.35 | 1.50E-21 6.32
LS order 5.14 7.15 5.98

sub-optimal convergence rates for a particular regular non-uniform mesh sequence. The-
oretically, we show that the scheme does have the optimal accuracy for uniform meshes
in both one and multi-dimensional problems. Our proof does not have the constraint on

the number of cells in the mesh. In numerical experiments, we have also observed that
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Table 4.3. The errors and corresponding convergence rates for the DG with k£ =0,2,4

using random perturbation mesh in 1D. The terminal time 7" = 1.

N E, Rate E4 Rate Ey Rate
10 6.99E-01 - 2.30E-01 - 1.48E-01 -
20 9.78E-01 -0.48 | 4.30E-01 -0.90 | 1.82E-01 -0.30
40 3.06E-01 1.68 | 1.16E-01 1.89 | 4.26E-02 2.10
80 2.90E-01 0.08 | 1.12E-01 0.05 | 2.54E-02 0.75
k=0 160 1.63E-01 0.83 | 6.49E-02 0.79 | 1.48E-02 0.78
320 1.74E-01 -0.10 | 6.99E-02 -0.11 | 1.39E-02 0.09
640 8.47TE-02 1.04 | 3.37E-02 1.05 | 5.15E-03 1.43
1280 6.77TE-02 0.32 | 2.69E-02 0.33 | 2.96E-03 0.80
2560 5.35E-02 0.34 | 2.14E-02 0.33 | 2.08E-03 0.51
5120 2.71E-02 0.98 | 1.08E-02 0.98 | 1.01E-03 1.04
LS order 0.53 0.52 0.83
10 2.73E-02 - 1.89E-03 - 6.94E-03 —
20 7.18E-03 1.93 | 1.72E-04 3.46 | 4.07E-04 4.09
40 1.06E-03 2.78 | 1.46E-05 3.55 | 3.14E-05 3.70
80 1.10E-04 3.24 | 4.44E-06 1.72 | 7.56E-06 2.05
9 160 3.27TE-05 1.75 | 4.76E-07 3.22 | 8.11E-07 3.22
320 4.21E-06 296 | 7.29E-08 2.71 | 1.16E-07 2.81
640 1.00E-06 2.07 | 1.07TE-08 2.77 | 1.67TE-08 2.80
1280 8.97TE-08 3.48 | 1.52E-09 2.81 | 2.12E-09 2.98
2560 3.12E-08 1.52 | 1.99E-10 2.93 | 2.52E-10 3.07
5120 6.36E-09 2.29 | 2.80E-11 2.83 | 3.52E-11 2.84
LS order 2.51 2.83 2.98
10 2.28E-04 - 7.01E-06 - 3.73E-05 —
20 7.81E-06 4.87 | 3.74E-07 4.23 | 1.92E-06 4.28
40 2.72E-07 4.84 | 6.81E-09 5.78 | 3.37E-08 5.83
80 1.53E-08 4.15 | 3.41E-10 4.32 | 1.71E-09 4.31
160 1.57E-09 3.29 | 1.34E-11 4.66 | 6.94E-11 4.62
k=4 320 7.00E-11 4.48 | 3.46E-13 5.28 | 1.38E-12 5.65
640 5.60E-12  3.65 | 1.43E-14 4.59 | 5.33E-14 4.70
1280 7.04E-14 6.31 | 4.29E-16 5.06 | 1.57E-15 5.09
2560 1.88E-15 5.23 | 1.70E-17 4.66 | 5.10E-17 4.94
5120 1.48E-16 3.66 | 5.87TE-19 4.85 | 1.67TE-18 4.93
LS order 4.46 4.85 4.95

the superconvergence results for the errors of the cell averages and numerical fluxes. The

theoretical proof of these superconvergence results would be interesting and challenging

for our future work.
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Table 4.4. The errors and corresponding convergence rates for the DG with £ = 0,2 in

2D. The terminal time T = 1 and the parameter of the mesh o = 0.3.

N x N Es Rate E4 Rate
4 x4 3.67E400 - 3.56E-01 —
8 x 8 2.11E400 0.80 | 2.34E-01 0.60
ol 16x16 | 1.74E400 0.28 | 2.82E-01 -0.27
Q 32 x32 | 1.67TE400 0.06 | 3.02E-01 -0.10
64 x 64 | 1.66E400 0.01 | 3.07TE-01 -0.02
128 x 128 | 1.65E4+00 0.00 | 3.08E-01 -0.01
LS order 0.20 -0.01
5x%x5 1.43E-01 - 4.08E-03 -
9x%x9 4.28E-02 1.74 | 1.64E-03 1.32
17 x 17 1.24E-02 1.78 | 3.06E-04 2.42
Q% | 33x33 3.33E-03 1.90 | 2.11E-05 3.85
65 x 65 8.67E-04 1.94 | 3.12E-06 2.76
129 x 129 | 2.21E-04 1.97 | 6.57E-07 2.25
LS order 1.99 2.85

Table 4.5. The errors and corresponding convergence rates for the DG with £ = 0,2

using the uniform mesh in 2D. The terminal time T = 1.

N x N FEs Rate Ey4 Rate
4 x4 3.65E+00 - 4.07E-01 —
8% 8 1.63E+00 1.17 | 1.34E-01 1.61
0 16 x 16 7.43E-01 1.13 | 3.56E-02 1.91
Q 32 x 32 3.60E-01 1.04 | 9.04E-03 1.98
64 x 64 1.79E-01 1.01 | 2.27E-03 1.99
128 x 128 | 8.91E-02 1.00 | 5.68E-04 2.00
LS order 1.07 1.92
4 x4 1.99E-01 - 8.35E-03 —
8 x 8 1.27E-02 3.97 | 797E-05 6.71
16 x 16 1.21E-03 3.39 | 3.31E-06 4.59
Q%] 32x32 1.51E-04 2,99 | 1.85E-07 4.16
64 x 64 1.88E-05 3.01 | 1.87E-09 6.63
128 x 128 | 2.34E-06 3.01 | 1.17E-10 4.00
LS order 3.23 5.16

A Appendix: Proof of a few technical lemmas and

Propositions.

In this appendix, we provide the proof of some of the technical lemmas and proposi-

tions in the error estimates.
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Table 4.6. The errors and corresponding convergence rates for the DG with £ = 0,2

using random perturbation mesh in 2D. The terminal time 7" = 1.

Table 4.7. The errors and corresponding convergence rates for the DG with using P*
finite element space in 2D. The terminal time 7" = 1 and the parameter of the mesh

a=0.

N x N Es Rate E4 Rate
4 x4 3.76E+00 - 3.80E-01 —
8 x 8 1.78E4+00 1.08 | 1.55E-01 1.30
ol 16x16 | 1.23E400 0.53 | 1.56E-01 -0.01
Q 32 x 32 8.83E-01 0.48 | 1.31E-01 0.25
64 x 64 7.06E-01 0.33 | 1.07E-01 0.30
128 x 128 | 5.63E-01  0.32 | 8.85E-02 0.28
LS order 0.52 0.35
4 x4 4.62E-01 - 1.17E-02 —
8 x 8 3.22E-02 3.84 | 1.31E-03 3.15
16 x 16 1.04E-02 1.64 | 1.98E-04 2.73
Q? 32 x 32 2.06E-03 2.33 | 2.23E-05 3.15
64 x 64 3.34E-04 2.63 | 2.93E-06 2.93
128 x 128 | 3.56E-05 3.23 | 441E-07 2.74
LS order 2.58 2.91

N x N Es Rate E4 Rate
4 x4 1.51E+00 — 7.53E-02 —
8 X 8 6.88E-01 1.13 | 2.12E-02 1.83
P' | 16 x 16 3.30E-01 1.06 | 5.77E-03 1.88
32 x 32 1.63E-01  1.02 | 1.48E-03 1.96
64 x 64 8.11E-02 1.01 | 3.72E-04 1.99
128 x 128 | 4.05E-02 1.00 | 9.32E-05 2.00
4 x4 3.81E-01 — 7.83E-03 —
8 X 8 6.31E-02 2.59 | 1.82E-03 2.11
P2 16 x 16 2.01E-02 1.65 | 7.97E-05 4.51
32 x 32 5.31E-03 1.92 | 5.06E-06 3.98
64 x 64 1.34E-03  1.98 | 3.29E-07 3.94
128 x 128 | 3.37E-04  2.00 | 2.04E-08 4.01
4 x4 2.63E-01 1.93 | 1.30E-03 -
8 X 8 7.84E-03 5.07 | T47E-05 4.12
p3 16 x 16 3.83E-04 4.35 | 3.63E-07 7.68
32 x 32 3.39E-05 3.50 | 2.74E-08 3.73
64 x 64 3.70E-06 3.19 | 4.84E-10 5.82
128 x 128 | 4.46E-07 3.05 | 1.94E-11 4.64
256 x 256 | 5.56E-08 3.01 | 9.59E-13 4.34
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Fig. 4.1. Example of non-uniform two dimensional mesh with h = ?—;r and a = 0.3

A.1 Proof of Lemma 2.1

Proof. Note that the procedure to find Pfw € P*([—1,1]) is to solve a linear system, so
the existence and uniqueness are equivalent. Thus, we only prove the uniqueness of the
projection Py. We set w;(z) = Pw(z) with w(z) = 0 and would like to prove w;(z) = 0.

By the definition of the projection Pyw(x), then

Puturi) = = [ oo+ LU ) —ucn) <0, wo e P10,
(A1)
/1 wydr = 0. (A.2)

If £ = 0, the lemma obviously holds. If £ > 2, we take v = z in (A.1), we have

1

0= /th(wf;.r) = / wrdr + (wr(—=1) + w;(1))

-1

= (wr(=1) +wi(1)), (A.3)

here we have used (A.2). Thus in (A.1), we have

1

0= Py(wy;v) = —/ wv, dz, Yo € PF([—1,1]),

-1
which means that

wy = wiLi(z), (A.4)
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where wy, is a constant, and Ly (x) is the standard k-th degree Legendre polynomial on
the interval [—1, 1]. By (A.3) and the fact that k is even, we obtain wy, = 0. This finished
the proof of uniqueness. For the proof of the bound (2.17), the arguments are the same

as in [13, 14], hence we omit them here. O

A.2 Proof of Lemma 3.1

Proof. When k = 0, the Lemma obviously holds true. For k > 2, assume that u = 0.

From (3.11a), we have IT;ulQF*([—1,1]?), thus we have the following expression of

[T} u,
k-1 k—1
Mhu = apmLi(@) Lin(y) + > i Lin (2) Lie(y) + i Lie(2) Li (1) (A.5)
m=0 m=0

From (3.11b), we take ¢(x) = L,,(z), m =0,1,...,k — 1, to obtain

k=0, m=0,...,k—1 (A.6)
By the same arguments, we have

agm =0, m=0,...,k—1. (A.7)

Thus Iju = agxLig(x)Li(y). Finally, by (3.11d) and the fact that k is even, we have
o = 0. That means IIju = 0. We have now finished the proof of uniqueness, hence

also existence. By the same arguments as the proof of Lemma 2.1 in [14], we can obtain

(3.12). 0

A.3 Proof of Proposition 3.2

Proof. 1If u € QF, then IT}u = u implies (3.16) holds true. Thus we only need to prove the

k+ k+1

cases u = x" ! or y**1. We will just show the details of the proof for one case; namely
bi (1w, v) = b; j(u,v), Yo € Q%(K,;), is true when u = 2F1. We denote 11, = IIju —u.
By the definition of b; (-, ), we have
b (I, v) = / v, + v, dedy
K

,J
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— _ 2 + d
He(l’>y—-i_ l)+H6(x Y 1) He(zay+_1)+ﬂe(x>y__l)
- AF v,y 1) — I 2 y(x,y’ 1) dx
I 2 A 2 i3

(A.8)
We first have (II}u — wu), = 0 due to the special form of u. Since v, is a polynomial of
degree at most k£ — 1 in x, thus from (3.11a), we have
/ [Mev, dedy = 0, (A.9)
Kij
and since 11, is continuous corresponding to the variable y, after applying integration by
parts, we obtain

/ II.v, dxdy
K

0,7

+ — + -
- / He(xayj_i_%) + He(xvyj+%)v(x _ ) B He(xayj_%> + He(xay-_%)v(x 4 )dx
. 2 it 2 i3
= —/ (ILe)yv dxdy = 0. (A.10)
K,

%)

From Lemma 3.2, we have

Me(a), 1, y) + ez, 1 y) =u(@is,y) — wlz_,y) + Mulz” ) —u(z,1,y)
2 2 2
+ qu(z;rpy) - u(xi—i-%a y)
2
=Mu(@ ) + Wu(r, 1) — u(z_s,y) — wlwi1,y)

=0. (A.11)
The last equality is from (3.11d). By the same arguments,

Mo(afyo0) + (o4 y) =0, (A.12)

3 2 3

From (A.9)-(A.12), we have b; ;(II.,v) = 0. O
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