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Abstract

We introduce a new model of repeated games in large populations with ran-
dom matching, overlapping generations, and limited records of past play. We
prove that steady-state equilibria exist under general conditions on records.
When the updating of a player’s record can depend on the actions of both play-
ers in a match, any strictly individually rational action can be supported in
steady-state equilibrium. When record updates can depend only on a player’s
own actions, fewer actions can be supported. Here we focus on the prisoner’s
dilemma and restrict attention to strict equilibria that are coordination-proof,
meaning that matched partners never play a Pareto-dominated Nash equilibrium
in the one-shot game induced by their records and expected continuation payoffs.
Such equilibria can support full cooperation if the stage game is either “strictly
supermodular and mild” or “strongly supermodular,” and otherwise permit no
cooperation at all. The presence of “supercooperator” records, where a player
cooperates against any opponent, is crucial for supporting any cooperation when
the stage game is “severe.”
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1 Introduction

In many settings of economic interest, individuals interact with different partners over
time, and bad behavior against one partner causes a negative response by other mem-
bers of society. Moreover, people often have fairly limited information about their
partners’ past behavior, and little to no information about the behavior of people with
whom their partners previously interacted. Yet, groups often maintain outcomes that
are more efficient than those consistent with myopic incentives.!

To study these situations, we introduce a new class of repeated games with random
matching with three key features. First, there is a continuum population, where indi-
viduals have geometrically distributed lifespans (with deaths balanced by a constant
inflow of new players). Second, all that players know about each partner’s past behav-
ior or social standing is the partner’s current record. Third, the time horizon is doubly
infinite (so there is no commonly known start date or notion of calendar time), and
we analyze steady states where the population distribution of records is constant over
time. Compared to standard repeated game models with a fixed finite set of players,
a commonly known start date, and a common notion of calendar time and/or a public
randomizing device, our model seems more appropriate for studying cooperation in
large decentralized societies. In addition, the combination of the continuum popula-
tion and steady state assumptions keeps the model tractable even in the presence of
recording or implementation errors, because individual agents do not learn about the
state of the system from their own observations. On the other hand, a new challenge
in our setting is managing the interaction of incentive conditions (which depend on
the steady-state shares of players with different records) and steady-state conditions
(which depend on equilibrium strategies).

Two fundamental questions about such an environment are “What sort of records is

!'Examples of such “community enforcement” or “indirect reciprocity” include Milgrom, North,
and Weingast (1990) and Greif (1993) on merchant coalitions; Klein and Leffler (1981), Resnick and
Zeckhauser (2002), and Dellarocas (2005) on seller reputation; Klein (1992) and Padilla and Pagano
(2000) on credit ratings; and Friedman and Resnick (2001) on online ratings.



a society likely to generate?” and “What sorts of records suffice to support cooperative
behavior?” Like most previous studies of record-keeping in community enforcement,
this paper focuses exclusively on the second of these questions, briefly discussing the
first in the conclusion. Our main finding is that in many settings records must con-
tain not only information about individuals’ past actions, but also information about
the context of these actions. However, such contextualizing information need not be
extremely detailed—it is enough to record how players’ immediate partners behaved
towards them.

The record-keeping systems we study can be viewed as idealizations of the types
of information that large societies need to support cooperation, but there are also
some real-world settings where they can be taken more literally. One example is the
online rating systems used by platforms like eBay, AirBnB, and Uber. There is strong
evidence that users’ ratings on these platforms determine their prospects for finding
future trading partners, even after controlling for unobserved heterogeneity (Cabral and
Hortasgu (2010), Luca (2016)). On some platforms (e.g., eBay, Amazon Marketplace)
users rate their current partner in the absence of any information about the current
partner’s past partners’ behavior, so the rating system cannot capture contextualizing
information—these are examples of what we will call first-order systems. On other
platforms (e.g., AirBnB), users can also look up the feedback that their current partner
left for their own past partners—a form of what we will call second-order information.
While many considerations influence a platform’s choice of rating system (Tadelis,
2016), our model highlights the ability to distinguish justified and unjustified deviations
from desired equilibrium behavior as a factor that favors systems capable of recording
second-order information.

In our model, a record system updates the players’ records based on their current
records and the actions they choose. These systems may be stochastic, due to either
recording errors or errors in implementing a player’s intended action. We prove that
steady states exist for record systems that are finite partitional, which means that for

any given record, there is a finite partition of the opponent’s record space such that



the update function does not vary with the opponent’s record within each partition
element. This condition is quite general; it is satisfied by all record systems we analyze
as well as those considered in prior work.

We then characterize the prospects for steady-state cooperation under different
types of record systems, including systems that record only a player’s own actions
(first-order records), as well as systems that also record contextualizing information
(second-order and interdependent records). To capture a simple form of robustness, we
consider only strict equilibria. For most of our results, we also require equilibria to be
coordination-proof, which means that a pair of matched players never play a Pareto-
dominated equilibrium in the “augmented” game induced by their current records
and their expected continuation payoffs. Restricting attention to coordination-proof
strategies rules out equilibria built on within-match miscoordination. Finally, we focus
on the double limit where players’ expected lifespans are long and there is little noise
in the record system. Taking this limit allows a clean analysis and gives society its best
shot at supporting cooperative outcomes; of course, if players are myopic or records
are extremely noise, only static Nash equilibrium outcomes can arise.

We begin by analyzing second-order records, where record updates depend on a
player’s own record and action as well as their partner’s action, but not their partner’s
record. In other words, a player’s second-order record depends only on their own
past actions and their past partners’ actions towards them. We show that second-
order records are rich enough to support the play of any action that Pareto-dominates
the pure-strategy minmax payoff (in the long-lifespans, low-noise double limit).> To
prove this, we consider strategies that assign players to good or bad standing based
on their records, and specify that good-standing players take the target action when
matched with each other, while players take a minmaxing action whenever at least

one player in the match has bad standing. With these strategies, second-order records

2The equilibrium we construct to prove this “minmax-threat” folk theorem is strict but may fail
to be coordination-proof. We also provide a “Nash-threat” folk theorem based on equilibria that are
both strict and coordination-proof.



can identify the standing of a good-standing player’s partner from their action. This
allows the threat of switching a good-standing player to bad standing to incentivize
the prescribed behavior among good-standing players; similarly, bad-standing players
can be incentivized by the promise of an eventual return to good standing.

We then turn to first-order records, where a player’s record is updated based only
on their own record and action (as in the eBay and Amazon Marketplace examples).
First-order record systems cannot support as many actions as second-order systems
can, because first-order records lack the contextualizing information required to dis-
tinguish justified deviations from the target equilibrium action from unjustified ones.
For example, in the prisoner’s dilemma (“PD”), if a player is penalized for defecting
against opponents who cooperate, they must be equally penalized for defecting against
opponents who defect. This impossibility of conditioning rewards and punishments on
the opponent’s action can preclude steady-state cooperation.

We first highlight a type of situation where the inability to distinguish justified from
unjustified deviations does not pose a major obstacle to supporting a target equilibrium
action a. This occurs when there exists an “unprofitable punishment” action b with
the properties that a player is made worse-off when their partner switches from a to b,
but unilaterally deviating to b is not profitable when the opponent is expected to play
a.? For example, in the PD, Defect is not an unprofitable punishment for Cooperate
because it violates the second condition: unilaterally deviating to Defect is profitable
when the opponent plays Cooperate. In settings where an unprofitable punishment
for action a does exist, strategies based on first-order records can support the play of
a by penalizing a player only if they take an action other than a or b. Intuitively,
the inability to distinguish justified and unjustified plays of b is not an obstacle to
supporting a, since no one has an incentive to unilaterally deviate to b.

Our positive results for second-order records and for first-order records with un-

3There is also an additional, more subtle requirement: there must exist a best response ¢ to b
such that b is a better response to ¢ than a is. We explain the role of this additional requirement in
Section 4.



profitable punishments raise the question of when an action without an unprofitable
punishment can be supported with first-order records. The remainder of our analy-
sis answers this question for the leading example of cooperation in the PD. That is,
we characterize the set of payoff parameters in the PD for which there exist strict,
coordination-proof equilibria in which the share of cooperation converges to 1 in the
long-lifespans, low-noise double limit. The characterization is fairly subtle: we find that
full limit cooperation is possible if either (i) the degree of strategic complementarity in
the PD stage game is sufficiently high, or (ii) the degree of complementarity is positive
and in addition the instantaneous gain from defection is sufficiently low; and that oth-
erwise the only strict, coordination-proof equilibrium is Always Defect. Interestingly,
cooperation in case (i) requires that a non-zero share of players have records at which
the equilibrium strategy prescribes cooperation if and only if their opponent is going to
cooperate, and also that a non-zero share of players have records at which cooperation
is prescribed even if the opponent is going to defect. The latter supercooperator records
prevent too many players from transiting to “bad” records where they always defect.
There is a small prior literature on record-keeping in community enforcement.
Without noise, Okuno-Fujiwara and Postlewaite (1995) established a folk theorem with
interdependent records (which are more permissive than our second-order records).*
Takahashi (2010) constructed efficient equilibria in the PD when players observe their
partner’s entire history of actions—all first-order information—but no higher-order in-
formation. That paper did not consider steady states, so it did not contend with the
interaction of incentive and steady-state conditions, and its conditions for efficient equi-
libria to exist are more permissive than ours. In Heller and Mohlin (2018), players are

completely patient and observe a finite sample of their current partner’s past actions.

4Sugden (1986) and Kandori (1992) proved related results. Antecedents include Rosenthal (1979)
and Rosenthal and Landau (1979), which focused on existence results and examples. Steady-state
equilibria in models with interdependent records also appear in the literature on fiat money (e.g.,
Kiyotaki and Wright (1993), Kocherlakota (1998)). A less closely related literature studies community
enforcement in finite populations without any information beyond the outcome of one’s own matches
(e.g., Kandori (1992), Ellison (1994), Deb, Sugaya, and Wolitzky (2020)). With so little information,
cooperation cannot be supported in a continuum population, or in a finite population that is large
compared to the discount factor.



This paper assumed that a small fraction of players are commitment types who always
Defect, so a partner’s past actions are a noisy signal of their likely current action, and

constructed an efficient mixed-strategy equilibrium in the PD.5

2 Framework

We consider a discrete-time random matching model with a constant unit mass of play-
ers, each of whom has a geometrically-distributed lifetime with continuation probability
v € (0,1) (with exits balanced by a steady inflow of new entrants of size 1 — ). The
time horizon is doubly infinite. When two players match, they play a finite, symmetric

game with action space A and payoff function v : A x A — R.

2.1 Record Systems

Every player carries a record, and when two players meet, each observes the other’s
record but no further information. Each player’s record is updated at the end of every
period in a “decentralized” way that depends only on their own action and record and

their current partner’s action and record.

Definition 1. A record system R is a pair (R, p) comprised of a countable set R

(the record set) and a function p : R?> x A? — A(R) (the update rule).

Note that the update rule is allowed to be stochastic. This can capture errors in
recording, as well as imperfect implementation of players’ intended actions.® We assume
all newborn players have the same record, which we denote by 0. (Our main results

extend to the case of a non-degenerate, exogenous distribution over initial records.)

SHeller and Mohlin (2018) also considered alternative information structures that are similar to
our second-order records, but do not yield a folk theorem. Dilmé (2016) considered a similar model.
Bhaskar and Thomas (2018) studied first-order information in a sequential-move game.

6Tn the imperfect implementation interpretation, the stage game payoffs are the expected payoffs
that result when players intend to take the given stage game actions, which we hold fixed as the noise
level varies.



An update rule thus specifies a probability distribution over records as a function
of a player’s record and action and their current partner’s record and action. We
sometimes refer to the general case where p is unrestricted as an interdependent record
system. An interdependent record system is finite-partitional if for each r € R there
exists a finite partition Um:l,..., M) R,, = R such that, whenever ', 7" € R,, for some
m, p(r,r’ a,a’) = p(r,r",a,a") for all a,a’ € A. Kandori (1992)’s “local information
processing” and Okuno-Fujiwara and Postlewaite (1995)’s “status levels” are examples
of finite-partitional interdependent record systems.

Many simple and realistic record systems fall into a more restricted class, where a

player’s record update does not depend directly on their opponent’s record.

Definition 2. A record system is second-order if the update rule can depend only
on a player’s own action and record and their partner’s action, i.e. p(r,r' a,a’) =

p(r,r” a,d’) for allr,r’' 7" € R, a,a’ € A.

With a second-order record system, a player’s record can be computed based only
on their own history of stage-game outcomes.

Finally, in some situations a player’s record depends only on their own actions.

Definition 3. A record system is first-order if the update rule can depend only on
a player’s own action and record, i.e. p(r,r',a,a’) = p(r,r" a,a") for all r,v', 7" € R,

a,a’,a’ € A.

Nowak and Sigmund (1998), Panchanathan and Boyd (2003), Takahashi (2010),
Bhaskar and Thomas (2018), and Heller and Mohlin (2018) also considered first-order
records.” We consider second-order records in Section 3 and first-order records in

Sections 4 and 5. Note that both of these types of record system are finite-partitional.

"To interpret noisy first-order records as resulting from implementation errors, the outcome of the
game must have a product structure in the sense of Fudenberg, Levine, and Maskin (1994), so that a
player’s record update does not depend on the opponent’s action.



2.2 Strategies, States, and Steady States

In principle, each player can condition their play on the entire sequence of outcomes and
past opponent records that they have observed. However, this information is payoftf-
irrelevant in a continuum population steady state: the only payoff-relevant information
available to a player is their own record and their current partner’s record.

Thus, all strategies that condition only on payoff-relevant variables are pairwise-
public, meaning that they condition only on information that is public knowledge be-
tween the two partners, namely their records. We restrict attention to such strategies.
We write a pairwise-public pure strategy as a function s : R x R — A, with the
convention that the first coordinate is the player’s own record and the second coordi-
nate is the partner’s record, and similarly write a pairwise-public mixed strategy as a
function 0 : R x R — A(A). We also assume that all players use the same strategy.
Note that every strict, steady-state equilibrium in a symmetric, continuum-population
model is pairwise-public and symmetric, so these restrictions are without loss for strict
equilibria.

The state p € A(R) of the system is the share of players with each possible record.
To operationalize random matching in a continuum population, we specify that, when
the current state is u, the distribution of matches is given by p x . That is, for each
(r,r") € R* with r # 1/, the fraction of matches between players with record r and r’
is 24,.4t,,, while the fraction of matches between two players with record r is p?.

Given a record system R and a pairwise-public strategy o, denote the distribution
over next-period records of a player with record » who meets a player with record r’
by ¢,,.(0) = >, > o, r)alo(r’,r)[d]p(r,7',a,a’) € A(R).Recalling that newborn
players have record 0, the state update map f, : A(R) — A(R) is then given by

Fo)0] = 1=+ 9> piyattyn sy ()]0,

Fo()lr] =7 Yttty g (0)[r] for v # 0.



A steady state under o is a state p such that f,(u) = p.
Theorem 1.

(i) Under any finite-partitional record system (and hence any first-order or second-

order record system) and any pairwise-public strategy, a steady state exists.

(ii) For record systems that are not finite-partitional, a steady state may fail to ezist.

The proof is in Appendix A.1. (All other omitted proofs can also be found in either
the Appendix (A) or the Online Appendix (OA).) Intuitively, the combination of the
finite domain of the record-update function (due to finiteness of the stage game and
the finite-partition property) and geometrically distributed lifetimes imply that almost
all players’ records lie in a finite subset of the record set. This lets us find a set M
that contains all feasible distributions over records and resembles a finite-dimensional
set—in particular, M is compact in the sup norm. We then show that f maps M to
itself and is continuous in the sup norm so, since M is also convex, we can appeal to a
fixed point theorem.® When instead the record-update function does not have a finite
domain, the update map can shift weight to the upper tail of the record distribution in
such a way that no steady state exists. The proof shows that this is the case if whenever
players with records r and 7’ meet, both of their records update to max{r,r’'} + 1.

Note that Theorem 1 does not assert that the steady state for a given strategy is
unique, and it is easy to construct examples where it is not.? Intuitively, this multi-

plicity corresponds to different initial conditions at time ¢ = —oo.

8Fudenberg and He (2018) used a similar proof technique. In that paper players do not observe
each other’s records, so the finite-partition property is automatically satisfied.

9For instance, suppose that R = {0, 1,2}, the action set is singleton, and newborn players have
record 0. When matched with a player with record 0 or 1, the record of a player with record 0 or 1
increases by 1 with probability € and remains constant with probability 1 — e, but it increases by 1
with probability 1 when the player is matched with a player with record 2. When a player’s record
reaches 2, it remains 2 for the remainder of their lifetime. Depending on the parameters v and e,
there can be between one and three steady states in this example.



2.3 Steady-State Equilibria

We focus on steady states that derive from equilibrium play. Given a record system

R, strategy o, and state p, define the flow payoff of a player with record r as
(o, 1) = Z,urlu(a(r, ), a(r',r)).

Denote the probability that a player with record r today has record r’ in ¢ periods if

they are still alive by ¢'.(c, uu)['].1° The continuation value of a player with record r is

Vilo, ) = (1= D 2" D (oo, m)[r"]) (o (o, )

,r./

Note that we have normalized continuation payoffs by (1 — ) to express them in
per-period terms.

Each player’s objective is to maximize their expected undiscounted lifetime payoff.
Thus, a pair (o, u) is an equilibrium if p is a steady state under o and, for each own

record 7, opponent’s record 7', and action a such that o(r,r’)[a] > 0, we have

_ ~ / / ! ! ~ ! 1’ P
0 € argmax | (1= 3)u(@,o(",1) +7 30 Dol nlalolr, o' a,a) " Wor(o,10)|

An equilibrium is strict if the argmax is unique for all pairs of records (r,7’), so each
player has a strict preference for following the equilibrium strategy. As noted earlier,
every strict equilibrium is pairwise-public, pure, and symmetric. To distinguish equi-

libria (o, 1) from Nash equilibria of the stage game, we call the latter static equilibria.
Corollary 1. Under any finite-partitional record system, an equilibrium ezists.

Proof. Fix a symmetric static equilibrium o, and let ¢ recommend a* at every record

pair (r,7’). Then (o, ) is an equilibrium for any steady state p. [

10This is defined recursively by ¢L (o, u)[r'] = Y My @y (0)[r'] and for ¢ > 1, oy (o, p)[r'] =
S (87 o )[r"]) (S (o, ) []).

10



Strict equilibria need not exist without additional assumptions; one sufficient con-

dition is that the stage game has a strict and symmetric Nash equilibrium.

Corollary 2. Under any finite-partitional record system, a strict equilibrium exists if

the stage game has a strict and symmetric Nash equilibrium.

The proof of Corollary 2 is identical to that of Corollary 1, except a* is taken to

be a strict and symmetric static equilibrium.

2.4 Coordination-Proofness

Coordination-proofness captures the idea that equilibria that rely on “miscoordination”
within a match will break down if matched partners manage to coordinate successfully.
For a fixed equilibrium (o, u), denote the expected continuation payoff of a player
with record r who plays action a against an opponent with record " who plays a’ by
V,f’lﬁ/ = p(r,r,a,d")[r"|V,n. The augmented payoff function i : Rx Rx AxA — R
is defined by 4,.,(a, a’) == (1—7)u(a, a')+7V$‘f’. The augmented game between players

with records 7 and 7’ is the static game with action set A x A and payoff functions .,/

and ’LALT/,T.

Since (o, p1) is an equilibrium, the prescribed stage-game strategy profile (o (r, '), o(1’, 7))

is a Nash equilibrium in the augmented game between players with records r and 7’ for
any (r,r’') € R%. We say that the equilibrium is coordination-proof if (o(r,7’), o (', 7))

is never Pareto-dominated by another augmented-game Nash equilibrium.

Definition 4. An equilibrium (o, i) is coordination-proof if, for any records r,r’
and any Nash equilibrium (o, ) in the augmented game between players with records

roand r', if U (o, &) > Uy (o (r, 1), 0(17, 7)) then Gy (o, @) < U (o (r' 1), 0(r,7")).

The logic is that, if (o(r,r’),o(r’,r)) were Pareto-dominated by some augmented-
game Nash equilibrium (a, ), players with records r and 7’ would benefit from reaching

a self-enforcing agreement to play («, ') when matched together, breaking the equilib-

11



rium.!! A sufficient condition for the existence of a coordination-proof equilibrium is
that the stage game admits a symmetric Nash equilibrium that is not Pareto-dominated
by another (possibly asymmetric) Nash equilibrium (proof in OA.1). This condition is

satisfied in many games, including the PD.

Corollary 3. Under any finite-partitional record system, a coordination-proof equilib-
rium exists if the stage game has a symmetric Nash equilibrium that is not Pareto-

dominated by another Nash equilibrium.

2.5 Canonical Records

For our positive results, we focus on canonical record systems. These track either the
sequence of actions (for first-order records) or stage-game outcomes (for second-order
records) in a player’s history, and allow for possible misrecording in any period.

Let n = |A]. With second-order records, a noise matriz ¢ is a n? x n? matrix with
diagonal elements equal to 0 and non-negative off-diagonal elements, where €, 4y (a,a) 1
the probability that outcome (a,a’) is mis-recorded as (a,a’) # (a,a’). The canonical

second-order record set is the set of finite sequences of pairs of actions, [J;, (A %
t

=1

!/

A)t. Given a second-order canonical record r = [] "

(ar,al) and an outcome (a,a’),

(r, (a,a’)) is the canonical record formed by concatenating r and (a,a’).

Definition 5. A second-order record system is canonical if the record set R is canon-

t

ical and there exists a noise matriz € such that, for every record r =[] _,

(ar,al) and

action pair (a,a’), we have
plria,d)=[1— Y cawma | @d)+ D ow @ (@d)).
(a,a")#(a,a’) (a,a’")#(a,a’)

Similarly, in a canonical first-order record systems, records are sequences of actions

and each action a has probability ¢, ; of being recorded as action a.

1 Coordination-proofness is somewhat reminiscent of renegotiation-proofness in fixed-partner re-
peated games as studied by Farrell and Maskin (1989) and others, but it is simpler since each pair of
partners plays a single one-shot game.

12



In general, the set of equilibria depends on both the amount of noise in the system
and the players’ expected lifetimes. We focus on the case where there is little or no
noise, and players live a long time. We thus consider the double limit (v,e) — (1,0),
where ¢ is the noise matrix in a canonical record system, and ¢ — 0 means that every

entry in the matrix ¢ converges to 0.

Definition 6. Let u%(vy,¢) denote the supremum of the share of players taking action a
over all equilibria for parameters (7y,€). Action a is limit-supported if lim ., o), 1,0) i*(7,€) =

1.

3 Second-Order Records: Folk Theorems

Our next result shows that a wide range of actions can be limit-supported with second-
order records. Because second-order records allow a player’s record update to depend
on both players’ actions, we can construct strategies that punish opportunistic actions
but avoid punishing players who punish others when they are supposed to. For example,
in the prisoner’s dilemma our strategies count Defect vs. Cooperate as a “bad” outcome,
but not Defect vs. Defect, a distinction that cannot be made using first-order records.

Denote the pure-strategy minmax payoff by u = min, max, u(a, a’).
Theorem 2. Fiz an action a. With canonical second-order records:
(i) If u(a,a) > u, then a can be limit-supported by strict equilibria.

(i) If u(a,a) > u(b,b) for some strict and symmetric static equilibrium (b,b) that is
not Pareto-dominated by another static equilibrium, then a can be limit-supported

by strict, coordination-proof equilibria.

Theorem 2(i) is a minmax-threat folk theorem. The construction relies on “cyclic”
strategies of the following form: Let b € argmin, max, u(a,a’) be a minmax action.
Players begin in good standing. A player in good standing plays a when matched with
a fellow good-standing players and plays b against bad-standing players, while a player

13



in bad standing always plays b. When a good-standing player’s outcome is recorded as
anything other than (a,a) or (b,b), the player enters bad standing. A player remains
in bad standing until they accumulate M (b,b) profiles for some fixed M € N, at
which point they return to good standing. We show that, when (v,¢) ~ (1,0), M can
be chosen to be high enough so that the punishment of M periods of (b,b) is severe
enough to deter deviations from the prescribed strategy, but also low enough that the
steady-state share of players in good standing is high.

This equilibrium may not be coordination-proof. For example, suppose there is a
symmetric static equilibrium (¢, ¢) such that u(c, ¢) is significantly greater than u(a, a).
Then a pair of bad-standing players may benefit from reaching a self-enforcing agree-
ment to play (c,c) rather than (b,b), even though this delays their return to good
standing by one period.

Theorem 2(ii) presents a condition under which an action a can be limit-supported
by strict, coordination-proof equilibria. It gives a Nash-threat folk theorem, where the
“threat point” equilibrium (b, b) is required to be strict, symmetric, and not Pareto-
dominated by another static equilibrium. For example, in the prisoner’s dilemma, tak-
ing a = C' and b = D implies that C'ooperate is limit-supported by strict, coordination-
proof equilibria.

The proof of part (ii) uses grim trigger strategies of the following form. A player
whose outcome has never been recorded as anything other than (a,a) or (b,b) is in
good standing, and all other players are in bad standing. Players in good standing
play a against fellow good-standing players and play b against bad-standing players,
while bad-standing players always play b. Such strategies can support cooperation in
the iterated limit where first noise becomes small (¢ — 0) and then players become
long-lived (v — 1). To handle the general limit, we modify these strategies with
an adaptation of the threading technique used in papers such as Ellison (1994) and
Takahashi (2010).'2 In particular, for a given N € N, a pair of matched players

12WWe will use this threading technique in many of our results. In unpublished earlier work Clark,
Fudenberg, and Wolitzky (2019a,b) we consider simpler strategies that deliver similar but less clean
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condition their play only on the the recordings of each other’s outcomes in periods
which preceded the current period by a multiple of N. Thus, within each thread, the
effective continuation probability is 4V rather than . By altering N, we are able to
control the effective continuation probability, and can essentially replicate the iterated
limit where first noise becomes small and then players become long-lived.
Okuno-Fujiwara and Postlewaite (1995)’s Theorem 1 showed that with a form of
interdependent records (termed “status”), any actions that Pareto-dominate the pure-
strategy minmax payoffs can be supported without noise. Their proof uses grim trigger
strategies, so it not robust to noise. Theorem 2 shows that their theorem’s conclusion
does not require interdependent records and also extends to settings with overlapping

generations and noise.

4 First-Order Records: Unprofitable Punishments

Now we turn to first-order record systems, where a player’s record depends only on
their own past play. Such records cannot support as many actions as second-order
records can, and the folk theorem fails for strict equilibrium. The key obstacle is
that first-order records cannot distinguish “justified” deviations from the target action
profile from “unjustified” ones. For example, in the PD, if players are penalized for
playing Defect against Cooperate (an off-path, opportunistic deviation), they must be
equally penalized for playing Defect against Defect (a justified punishment that must
sometimes occur on-path if defection is to be deterred). As we will see, this obstacle
precludes cooperation in some games.

This section shows that this obstacle does not arise when the target action profile
(a, a) has the property that there exists a punishing action b and a strict best response
¢ to b such that u(a,a) > u(c,b) (so that facing b is indeed a punishment), u(a,a) >
u(b, a) (so that deviating from a to b is unprofitable for a player whose opponent plays

a), and u(b, c¢) > u(a,c) (so a player prefers to carry out the punishment b rather than

results without using threads.
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playing the target action, when the opponent best-responds to b). We say that in this
case b is an unprofitable punishment for a. Intuitively, when an unprofitable punishment
b exists for action a, the threat of switching to b can motivate one’s opponents to play
a, but a player is not tempted to unilaterally deviate to b against opponents who play
a. This enables first-order records to support the play of (a,a) by penalizing players
only for taking actions other than a or b. In contrast, when the only punishing action b
is a tempting deviation against a (as in the PD, where the punishing action D is always
tempting), players must be penalized for playing b, and the record system’s inability

to distinguish justified and unjustified plays of b becomes a real obstacle.
Theorem 3. Fiz an action a. With canonical first-order records:

(i) If there exists an unprofitable punishment b for a and there is a strict and sym-

metric static equilibrium (d,d), then a can be limit-supported by strict equilibria.

(11) If there exists an action b such that (b, b) is a strict static equilibrium and u(a, a) >

max{u(b,a),u(b,b)}, then a can be limit-supported by strict equilibria.

The proof, which is in OA.2, is similar to the proof of Theorem 2(ii), except now
a player transitions to bad standing whenever their action is recorded as anything
other than a or b (rather than transitioning whenever their action profile is recorded
as anything other than (a,a) or (b,b)).'?

Note that the condition in Theorem 3(ii) applies when b = ¢ = d in the definition of
an unprofitable punishment, in which case (a, a) can be supported by Nash reversion to
(b, b). For example, suppose the stage game is a PD with an exit option E. In this game,
when either player plays E, both players receive the same payoff, which is less than
the cooperative payoff w(C,C) but more than the “sucker’s payoft” u(C, D), and not
more than the non-cooperative payoff u(D, D). Here both (E, F) and (D, D) are static

13 Another difference is that the equilibria used to prove Theorem 3 may not be coordination-proof.
This is because there may be some static best response to a, e, such that (a,e) is a Nash equilibrium
in the augmented game between a good-standing and bad-standing player that Pareto-dominates the
prescribed action profile (b, ¢).
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equilibria, but F is not a profitable deviation against C', unlike D. Thus, Theorem 3
implies that cooperation can be limit-supported by Nash reversion to (E, E).'

This example is closely related to a debate regarding the role of punishment in the
evolution of human cooperation. The difficulty in distingushing a warranted punish-
ment from an unwarranted deviation is one factor that has led Boyd et al. (2003),
Gintis et al. (2003), and Bowles and Gintis (2011) (among others) to argue that the
enforcement of human cooperation cannot be explained without appealing to social
preferences. Others (e.g., Baumard (2010), Guala (2012)) argued that human cooper-
ation is better explained by simply avoiding deviators, rather than actively punishing
them. The fact that cooperation in the PD is always limit-supported with second-order
records, but (as we will see) is limit-supported with first-order records only for certain
parameters, supports the argument that the inability to distinguish justified and un-
justified plays of Defect is a serious obstacle to cooperation in the PD. However, this
obstacle evaporates when a simple exit option is added to the game, consistent with
the position of Baumard and Guala.

Another important example of unprofitable punishment arises when players can
observably reduce their own utility by any amount while taking a stage-game action.
In this case, whenever 0 < u(b,a) — u(a,a) < u(b,c) — u(a,c), the action “play b and

7 1S an

burn some amount of utility in between u(b,a) — u(a,a) and u(b, c) — u(a, c)
unprofitable punishment. That is, whenever the gain from playing b rather than a is
greater when the opponent plays ¢ as opposed to a, there exists an appropriate amount

of utility that can be sacrificed to make playing b unattractive.

5 First-Order Records: Cooperation in the PD

For games without unprofitable punishments, characterizing which actions can be limit-

supported with first-order records is much more challenging. In this section, we resolve

4 Technically, for E to satisfy the definition of an unprofitable punishment, we need to specify that
u(C, E) is strictly less than u(E, E). If instead u(C, E) = u(E, E), the same proof applies, but the
constructed equilibria are no longer strict.
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this question for the leading case of cooperation in the PD: we characterize the set of
payoff parameters for which Cooperate can be limit-supported by strict, coordination-
proof strategies. We will use the standard normalization of the PD payoffs, where the

payoff to mutual cooperation is 1 and the payoff to joint defection is 0:

C D
C 1,1 —l,1+g¢
D[1+g,—1] 0,0

Figure 1: The Prisoner’s Dilemma

We first introduce some preliminary concepts in Sections 5.1 and 5.2. We then

present our main characterization result in Section 5.3.

5.1 Defectors, Supercooperators, Preciprocators

We begin with some terminology for different types of records.
Definition 7. Given a pure-strateqy equilibrium (s, u), record r is a
e defector if s(r,r") = D for all r'.
e supercooperator if s(r,r’") = C for all r'.

e preciprocator if s(r,r') = s(r',r) for all ', and moreover there exist r',r" such

that s(r,r") = C and s(r,r") = D.

Defectors play D against all partners, while supercooperators play C' against all
partners, even those who will play D against them. In contrast, preciprocators exhibit
a form of anticipatory reciprocation: they play C with partners whom they expect to
play C', but play D with partners whom they expect to play D.

The PD is strictly supermodular if g < [, so the benefit of defecting is greater when
the opponent defects, and conversely it is strictly submodular when g > [. A leading
example of the PD is reciprocal gift-giving, where each player can pay a cost ¢ > 0 to

give their partner a benefit b > c. In this case, a player receives the same static gain
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from playing D instead of C' regardless of their opponent’s play, so g = [, and the game
is neither strictly supermodular nor strictly submodular. Bertrand competition (with
two price levels H > L) is supermodular whenever L > H/2 (the condition for the
game to be a prisoner’s dilemma), and Cournot competition (with two quantity levels)

is submodular whenever marginal revenue is decreasing in the opponent’s quantity.
Lemma 1. Fix any first-order record system. In any strict equilibrium:
1. If g > 1 then every record is a defector or a supercooperator.

2. If g <l then every record is a defector, a supercooperator, or a preciprocator.

Proof. Fix a strict equilibrium. With first-order records, each player’s continuation
payoff depends only on their current record and action, so the optimal action in each
match depends only on their record and the action prescribed by their opponent’s
record.

1. Suppose that g > [. When two players with the same record r meet, by symmetry
(an implication of strictness) they play either (C,C) or (D, D). In the former case, C
is the strict best response to C'. Since the current-period gain from playing D instead
of C' is weakly smaller when the opponent plays D, this means C' is also the strict best
response to D, so record r is a supercooperator. In the latter case, D is the strict best
response to D, and hence is also the strict best response to C, so record r is a defector.

2. When g < [, if D is strictly optimal against C, then D is also strictly optimal

against D, so every record is either a defector, a supercooperator, or a preciprocator.

Theorem 4. Fix any first-order record system. If g > 1, the unique strict equilibrium

is Always Defect: s(r,r’) = D for all r,7’ € R.*

15The conclusion of Theorem 4 extends to all (possibly non-strict) pure-strategy equilibria whenever
g > 1. Takahashi (2010) and Heller and Mohlin (2018) obtained the same conclusion (as well as
converse results) in related models.
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Proof. By Lemma 1, if ¢ > [ then the distribution of opposing actions faced by any

player is independent of their record. So D is always optimal. [ |

An intuition for Theorem 4 is that a player’s continuation payoff decreases by the
same amount whenever they play D, so they are willing to play D against opponents
who play D while playing C' against opponents who play C' iff g < [.

Theorem 4 confirms that strictly individually rational actions are not always limit-
supportable by strict equilibria with first-order records, in contrast to the situation
with second-order records. The rest of this section analyzes for what parameters g and
[ cooperation is limit-supportable by strict, coordination-proof equilibria with first-
order records. Such parameters must of course satisfy g < [: that is, the PD must be

strictly supermodular.

5.2 Coordination-Proofness in the PD

We note some simple consequences of coordination-proofness in the supermodular PD.

Lemma 2. Fiz any first-order record system. In any strict, coordination-proof equilib-

rium in the supermodular PD, whenever two preciprocators meet, they play (C,C).

Proof. By definition, preciprocators play C against opponents who play C' and play D
against those who play D. Hence, the augmented game between any two preciprocators
is a coordination game, with Nash equilibria (C, C') and (D, D). Since playing D always
gives a short-run gain, the fact that preciprocators play C against C' implies that
cooperating leads to higher continuation payoffs. Therefore, the (C,C) equilibrium
yields both higher stage-game payoffs and higher continuation payoffs than the (D, D)
equilibrium. That is, the (D, D) augmented-game equilibrium is Pareto-dominated by
the (C,C) augmented-game equilibrium, so coordination-proofness dictates that any

pair of matched preciprocators must play (C, C) rather than (D, D). [ |

Coordination-proofness thus implies that every preciprocator plays C' when matched

with another preciprocator or a supercooperator, and plays D when matched with a
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defector. In particular, all preciprocators play C' against the same set of opposing
records. Hence, a strict, coordination proof equilibrium is completely characterized
by a description of which records are preciprocators, which are supercooperators, and
which are defectors. Denote the total population shares of these records by u”, u1°,
and P respectively. We will use the term cooperator for all players who are either
preciprocators or supercooperators (i.e., anyone who is not a defector), and we denote

the population share of cooperators by u¢ = puf + p% =1 — pP.

5.3 When is Cooperation Limit-Supported?

We now present necessary and sufficient conditions for cooperation to be limit-supported
in strict, coordination-proof equilibria with first-order records. Our sufficient condi-
tions require canonical records with ¢ — 0, while our necessary conditions apply for

any ‘“noisy” first-order record system.

Definition 8. A first-order record system is moisy if for each record r there exist

qc(r),qp(r) € A(R) and ec(r) € (0,1/2], ep(r) € [0,1/2] such that

p(r,C) = (1 —ec(r))qe(r) +ec(r)ap(r), and

p(r, D) = ep(r)ge(r) + (1 = ep(r))gn(r).

Here qo(r) represents the distribution over records after “a recording of C is fed into
the record system,” gp(r) represents the distribution over records after “a recording
of D is fed into the record system,” and the €’s represent noise. The key feature of
this definition is that perfect recording of actions is ruled out by the assumption that
ec(r) > 0.

We say that the prisoner’s dilemma is mild if g < 1 and severe otherwise, and that

the game is strongly supermodular if | > g + ¢°.

Theorem 5.
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Figure 2: Limit efficiency obtains in the blue region. In the red region, the only strict,
coordination-proof equilibrium is Always Defect.

(i) With any noisy first-order record system, if g > 1 and | < g+ ¢* (i.e., the
prisoner’s dilemma is severe and not strongly supermodular), the only strict,

coordination-proof equilibrium is Always Defect.

(ii) With canonical first-order records, if either g <1 orl > g+ g2, cooperation can

be limit-supported by strict, coordination-proof equilibria.

Figure 2 displays the conclusions of Theorem 5. Note that as g increases from just
below 1 to just above 1, the critical value of [ above which cooperation is possible
jumps from 1 to 2.

We now discuss the intuition for the necessary and sufficient conditions in Theorem

5. The proofs are contained in A.3.

5.3.1 Necessary Conditions

Broadly speaking, a small value of g makes supporting cooperation easier by reducing
a preciprocator’s temptation to deviate to D against an opponent who is expected to
play C, while a large value of | makes supporting cooperation easier by reducing a

preciprocator’s temptation to deviate to C' against an opponent who is expected to
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play D. The specific necessary condition g < 1 or [ > g + ¢ comes from combining
two inequalities: p° < 1/(1 + g) and pf + p®( — g) > g. Note that the latter
inequality requires that 4 > 0 when g > 1: in a severe prisoner’s dilemma, there must
be a positive share of supercooperators in any strict, coordination-proof equilibrium
with any cooperation at all. The next lemma shows that combining these inequalities
delivers the necessary condition g < 1 or [ > g+ ¢%. After the lemma’s short proof, we

explain why the inequalities hold.

Lemma 3. If g > 1 and | < g+ ¢°, it is not possible to satisfy both u° < 1/(1 + g)
and pf + p3(l—g) > g.

Proof. Suppose that p® < 1/(1 + g). Then u? + p%(l — g) is bounded above by
either 1, which corresponds to u” =1 and p® =0, or 1/(1 + g), which corresponds to
uf = g/(1+g) and p® = 1/(1+g). Hence, if u+p%(1—g) > g > 1, then i/(1+g) > g,
which requires [ > g + ¢°. [ |

To derive the inequality u° < 1/(1 + g), note that a defector’s flow payoff equals
w® (1 + g), as defectors receive payoff 1 4+ g when matched with supercooperators, and
otherwise receive payoff 0. This flow payoff must be less than 1, since otherwise it would
be optimal for newborn players to play D for their entire lives instead of following the
equilibrium strategy.

The inequality puf + u®(l — g) > g is established by Lemma 9 in A.3.2.1. As this
inequality is a key point where incentive conditions and steady-state conditions come
together to determine the scope of cooperation, we here provide a derivation for the
special case where there is a “best” record r* = argmax, V,. and r* is a preciprocator
record. Since every preciprocator has an expected flow payoff of 4 and the probability

that a preciprocator is recorded as playing C'is (1 — ec)u® + epu®, we have

Vie = (1 =) +9((1 —e0)u® + epp”)VE +(eon + (1 — ep)u”)V,2,

where V¢ and V2 denote the expected continuation payoffs of record r* players who
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are recorded as playing C' and D, respectively. The incentive constraint for a record r*
player to play C against an opponent who plays C'is (1—v)(1)+7y(1—ec) V.S +yec V.2 >
(1 =71 +9) +7epV,¢ +7(1 —ep)V;?, or (1 —ec —ep)(VE = V2)/(1—7) > g. By

the accounting identity above, this simplifies to

Ve (Ve =V ) > g
ecp® + (1 —ep)pP (M - /)=

Now note that in a steady state the expected lifetime payoff of a newborn player equals
the average flow payoff in the population in a given period: Vy = pufpu® + p(u —
uPl) + pPus(1 + g). Since Vi« > Vg and V- > V¢ the incentive constraint implies

(1 —E&ECc — 8D),uD
ecpn® + (1 —ep)pu

(" + 11— g)) > g,

which itself implies pu’ + (1 — g) > g.

The necessary conditions for cooperation in Theorem 5(i) hold for any noisy first-
order record system. The reason for assuming noise is that the proof analyzes incentives
at cooperator records where there is a positive probability of being recorded as playing
D in a given period. Without noise, there can be fully cooperative equilibria even
when g > 1 and | < g + ¢°. For example, for some parameters grim trigger strategies,

together with the steady state where no one has ever defected, form an equilibrium.

5.3.2 Sufficient Conditions

We use different types of strategies to support cooperation when g < 1 and when
g>1and [ > g+ ¢g* The strategies used in the g < 1 case are threaded grim trigger
strategies, similar to those used to prove Theorem 2(ii) and Theorem 3, as well as
Proposition 1 in Takahashi (2010).

When g > 1, we have seen that cooperation requires supercooperator records:
in particular, grim trigger strategies cannot support cooperation. Consider instead

strategies that take the following form for some J, K: Within each thread, players
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begin life as defectors, become preciprocators once they have been recorded as playing
D J times, transition to being supercooperators once they have been recorded as
playing D an additional K times; and finally permanently transition to being defectors
once they have been recorded as playing D once more. Two features of the resulting
equilibria are particularly notable.

First, players’ incentives to cooperate are provided solely by the threat of entering
defector status once the number of times they have been recorded as playing D (their
“score”) reaches J+ K + 1, at which point preciprocator opponents switch from playing
C to D against them. (In contrast, when a player switches from preciprocator to
supercooperator status, their opponents’ behavior is unaffected.) Since the survival
probability + is less than 1, this threat looms larger the closer a player’s score is
to J + K + 1. Hence, players with higher scores are willing to incur greater costs to
prevent their scores from increasing further. Our construction exploits this observation
by finding a critical score J 4+ K such that players with score J 4+ K are willing to play
C at a cost of [, while players with scores less than K are willing to play C at a cost
of g but not at a cost of [. That is, players with score J + K supercooperate, while
those with scores from J to J + K — 1 preciprocate.

Second, the feature that players with score J + K supercooperate rather than
preciprocate may at first seem to work against cooperation, because defectors obtain
higher payoffs against supercooperators than cooperators do. However, the presence of
supercooperators increases the steady-state share of preciprocators, via the following
mechanism: Since players with score J 4+ K supercooperate, their scores increase more
slowly than if they preciprocated. Therefore, fewer players survive to enter defector
status, which reduces the steady-state share of defectors. Finally, when there are
fewer defectors, preciprocators defect less often, and hence their scores increase more
slowly, which increases the steady-state share of preciprocators. In sum, the presence of
supercooperators reduces the steady-state share of defectors and increases the steady-

state share of preciprocators, which enables steady-state cooperation.!®

160strom (1990) found that giving norm violators opportunities to resume cooperation before facing
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6 Discussion

This paper introduces a new model of repeated social interactions, where players in-
teract with a sequence of anonymous and random opponents, and their information
about their opponents’ past play consists of noisy “records.” We study steady-state
equilibria in a large population with geometrically distributed lifetimes, focusing on
situations where there is little noise and lifetimes are long.

We find that any strictly individually rational outcome can be supported with
second-order records, while with first-order records an outcome can be supported if it
has a corresponding unprofitable punishment. In the prisoner’s dilemma, cooperation
can be supported if and only if stage-game payoffs are either strictly supermodular and
mild or strongly supermodular. The strength of the short-term coordination motive and
the temptation to cheat thus determine the prospects for robust long-term cooperation.

We conclude by discussing some possible extensions and alternative models.

First-order records beyond the PD. Characterizing limit-supportable actions with
first-order information in the absence of unprofitable punishments is a challenging
problem. We solved this problem for the special case of cooperation in the PD, under
equilibrium strictness and coordination-proofness. In an earlier version of this paper
(Clark, Fudenberg, and Wolitzky, 2019a) we solved this problem for general stage games
under a restriction to trigger strategies, where records are partitioned into two classes,
one of which is absorbing. We found that such strategies can limit-support the play of
an action a if and only if there exists a punishing action b that satisfies a generalized
version of the definition of being an unprofitable punishment, where the requirement
that u(b,a) > u(a,a) is relaxed to u(b,a) — u(a,a) < min{u(b,c) — u(a,c),u(a,a) —
u(c,b)}. Extending this analysis beyond trigger strategies is a possible direction for
future work, as is analyzing non-strict or non-coordination-proof strategies.

Simpler strategies. It is also interesting to consider simpler types of strategies.

harsher punishments helps sustain cooperation by preventing excessively fast breakdowns following
occasional violations. The mild punishment of transitioning to supercooperator status serves a broadly
similar role in our model.
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In Clark, Fudenberg, and Wolitzky (2020), we analyzed the performance of “tolerant”
grim trigger strategies without threading in the PD. 7 We found that when g < /(1+1)
such strategies can limit-support any cooperation share between g and [/(1 + 1), and
that otherwise they cannot limit-support any positive cooperation share.

Also, in earlier work (Clark, Fudenberg, and Wolitzky (2019a,b)), we considered
strategies that condition only on the number of times a player was recorded as taking
each action, and not the time sequence of these actions (as in the threading strategies
used here). Such strategies yielded very similar but slightly more complicated and less
general results.

Sequential moves. In any strict equilibrium with first or second-order records, if
players can “jump the gun” by taking their action before the opponent has a chance
to respond, then only static equilibrium behavior can be supported.'® However, our
simultaneous-move specification applies not only when actions are literally simultane-
ous, but also whenever both players must choose their actions before fully observing
their opponent’s action. This seems like a natural reduced-form model for the typical
case where cooperation unfolds gradually within each match.’

Multiple populations. It is easy to adapt our model to settings with multiple popu-
lations of players. Here efficient outcomes can always be fully supported in situations
with one-sided incentive problems.?® For example, suppose a population of player 1’s
and a population of player 2’s repeatedly play a product choice game, where only
player 1 faces binding moral hazard at the efficient action profile (and player 2 wants
to match player 1’s action). The efficient outcome can always be supported with the

following trigger strategies (with K chosen appropriately as a function of v and €): in

"Tolerant grim strategies (Fudenberg, Rand, and Dreber (2012)) wait to punish until the opponent
has defected several times.

8To see why, note that by jumping the gun a player can obtain stage-game payoff
max, u(s(r,r’),s(r’,r)) when matched with an opponent with record 7/, by taking action
s(arg max, u(s(r,r'),s(r’,7)), ). This implies that all players must receive the same payoff when
matched with each possible opponent.

19Tf records are interdependent rather than second order, the strategies used to prove Theorem 2
remain equilibria for any possible move order.

20Proposition 4 of Kandori (1992) is a similar result in a fixed-population model without noise.
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each match, both partners play C' if player 1’s score is less than K, and both play D

if player 1’s score is greater than K.

Endogenous record systems. This paper has considered how features of an exoge-

nously given record system determine the range of equilibrium outcomes. A natural

next step is to endogenize the record system, for example by letting players strategically

report their observations, either to a central database or directly to other individual

players. Intuitively, first-order information is relatively easy to extract, since if a player

is asked to report only their partner’s behavior, they have no reason to lie as this infor-

mation does not affect their own future record. Whether and how society can obtain

higher-order information is an interesting question for future study.?!
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Appendix

A.1 Proof of Theorem 1

We first prove Theorem 1(i).
Without loss, relabel records so that two players with different ages can never share
the same record. Let R(t) be the set of feasible records for an age-t player, and fix a

pairwise-public strategy o. The proof relies on the following lemma.

Lemma 4. If records are finite-partitional, there exists a family of finite subsets of R,

{L(t, n)}teN,n>0; such that

1. L(t,n) C R(t) for allt € N,n >0,

2. For any p € A(R), > cpo. fe()r] = (1 =n)(1 =) for alln >0, and

8. Forany p € A(R) andt >0, if 30 cp 1 = (1—n)(1 — )yt for alln > 0,
then > e fo()[r) = (1 =n)(1 — )" for alln > 0.

Proof. We construct the {L(t,n)} by iteratively defining subfamilies of subsets of R
that satisfy the necessary properties. First, take L(0,n) = {0} for all » > 0. Conditions
1 and 2 are satisfied since R(0) = {0} and f,(u)[0] =1 — ~ for every p € A(R).

Fix some t and take the subfamily of subsets corresponding to t — 1, that is
{L(t — 1,n)}y>0. For every n > 0, consider the set of records L(t — 1,7/2). Let
A € (0,1) be such that A > (1 —n)/(1 —n/2). For any record r € L(t — 1,n/2),
opposing record class R,,, and action profile (a,a’) € A?, we can identify a finite set
of “successor records” S(r,m,a,a’) such that a record r player who plays a against
an opponent in class R,, playing o’ moves to a record in S(r,m,a,a’) with proba-
bility greater than A, ie. 3 icgpmaany P17 a,d)[r"] > A for all 7' € Ry,. Let
Lt,n) = Uert-1.a/2 Uneqr,. iy Uaaryeaz S(rym,a,a’). Note that L(t,n) is fi-
nite and does not depend on u. By construction, the probability that a surviving

player with record in L(t — 1,7/2) has a next-period record in L(t,n) exceeds A. For
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any p € A(R), it then follows that > ;0 ke = (1 —1/2)(1 — )yt implies
> e o] = M1 =n/2)(1 =)y > (1 =n)(1 = )" ]

The next corollary is an immediate consequence of Properties 2 and 3 of Lemma 4.

Corollary 4. For every p € A(R) andn >0, we have 3./, fE(w)r] > 1 —n)(1—
Y for all t' > t, where fY denotes the '™ iterate of the update map f..

Fix a family {L(t,n) }ten >0, satisfying the three properties in Lemma 4 and define
M, a subset of A(R), by

M = Z”’"_ (1 — )" and Z g, > (1 =n) 1=y VteN,n>0

reR(t) reL(t,n)

Note that M is convex and, by Corollary 4, must contain every steady-state distri-

bution p. The next lemma uses Corollary 4 to show that M is non-empty.

Lemma 5. There exists i € A(R) satisfying >, cpoy by = (L=7)7" and 37 1y He =
(1 —n)(1 —=~)y" for every t € N, > 0.

Proof. Consider an arbitrary u € A(R). Set u° = u, and, for every non-zero i € N, set
p' = fo(u=1). Since R is countable, a standard diagonalization argument implies that
there exists some fi € [0, 1]% and some subsequence { }jen such that lim; ,uij = [,
for all r € R.

For a given t € N, Corollary 4 implies that >- ., > (1 =n)(1 —~)y" for all
n > 0 and all sufficiently high 7 € N, so

> == -y)7" (1)

reL(t,n)
Moreover, for eacht € N, - p 1’ = (1—y)~! forall j € N, so > rer B < (T=7)7"
Since (1) holds for all € (0, 1), this implies that )
with (1) implies that i € M. [

rery e = (1 —7)~*, which together
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The following three claims imply that f, has a fixed point in M ,?? which completes
the proof of parts 1 and 2 of Theorem 1.

Claim 1. M is compact in the sup norm topology.
Claim 2. f, maps M to itself.
Claim 3. f, is continuous in the sup norm topology.

Proof of Claim 1. Since M is a metric space under the sup norm topology, it suffices
to show that M is sequentially compact. Consider a sequence {u'};ey of uf € M. A
similar argument to the proof of Lemma 5 shows that there exists some i € M and
some subsequence {p% } jen such that lim;_, w? = fi, for all v € R.

Here we show that lim; . pu = fi. For a given n > 0, there is a finite subset
of records L(n/2) C R such that > ;. p, > 1 —mn/2 for every p € M. Thus,
i — f,| < n/2 for all v ¢ L(n/2) for all j € N. Now let J € N be such that
i — i,| < n/2 for all r € L(n/2) whenever j > .J. Then sup,.p |’ — fi,| < 7 for all
7> J. [ |

Proof of Claim 2. For any u € M, Properties 2 and 3 of Lemma 4 imply that >rer(my Jo()[r] =
(1 = n)(1 =)y for all ¢ € N;p > 0. Furthermore, fo(u)[0] = 1 —~, and for
all t > 0, 'YZTER(t_l) My = ZreR(t) fo(p)lr], so ZreR(t_1) p, = (1 =)y gives
Yrer Jo()lr] = (L =)7" n

Proof of Claim 3. Consider a sequence {u'},  of p' € M with lim,; ,o ' = o € M.
We will show that lim; . fo (1) = fo(12).

For any n > 0, there is a finite subset of records L(n/4) C Rsuch that 3° ;4 #, >
1—mn/4 for every u € M. By Claim 2, f,(u) € M for every y € M. The combination of
these facts means that it suffices to show that lim; .. f,(u')[r] = f,(ji1)[r] for all 7 € R
to establish lim; o, fo(1') = f,(ft). Additionally, since f,(u)[0] = 1 — ~ is constant

across p € A(R), we need only consider the case where r # 0.

22This follows from Corollary 17.56 (page 583) of Aliprantis and Border (2006), and noting that
every normed space is a locally convex Hausdorff space.

33



For this case,

L =~ > (")),

(r',r"")ER?
and

fA@r =~ Y Rt 7).

(r',r"")ER?
Because }, 1, e > 1 —n/4 for every p € M, v € (0,1), and 0 < o(r',r")[r] < 1

for all ', " € R, it follows that

o] = L@ <y D (ostin = fuwfip) (") 1]

(v ") L n/ 12
oyl Y (e = i) (r )]
(v, L )2

< Z |/1/fq/,u1in// - /71/7,/,1]7‘//
(r',r"")E€L(n/4)?

1
o'

Since lim;_,o t* = [i, there exists some I € N such that D Ve L) 4)? |\ il — [ | <
n/2 for all i > I, which gives | f, (u*)[r] — f,(@)[r]| < n for all i > I. We thus conclude
that lim; . fo (/ﬂ)[?”] = Jo (/1) [T] u

We now prove Theorem 1(ii) by showing that no steady state exists when vy > 1/2
for the interdependent record system with R = N and p(r, ') = max{r,’'} + 1. To see
this, suppose toward a contradiction that u is a steady state. Let r* be the smallest
record r such that >, p,, <2—1/v, and let p, = >° . p, < 2—1/7. Note that
1, > 0, as a player’s record is no less than their age, so for any record threshold there
is a positive measure of players whose records exceed the threshold.

Note that every surviving player with record r > r* retains a record higher than
r*, and at least fraction p, of the surviving players with record r» < r* obtain a record

higher than 7* (since this is the fraction of players with record r < r* that match with
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a player with record r > r*). Hence,

STF = v+ (=) > p,
where the second inequality comes from 0 < p, < 2 —1/7. But in a steady state,

S>> o f(u)[r] = u,, a contradiction.

r=r*

A.2 Proof of Theorem 2

A.2.1 Proof of Theorem 2(i)

Let M be a positive integer such that (u(a,a) — u(b,b))M > max,{max{u(a’,a) —
u(a,a),u(a’,b) — u(b,b)}}. We show that, with this choice of M, action a can be
limit-supported by the cyclic strategies defined in Section 3, which we denote by o*.23

Let €@, = Z(&,d/);é(a,a),(b,b) €(a,a),(a,a) De the probability that the stage-game out-
come is recorded as something other than (a,a) or (b,b) when the actual outcome is
(a,a), Epp = 2(67&,)7&(@761)7(,)71)) Ebp),(a,a') be the probability that the outcome is recorded
as something other than (a,a) or (b,b) when the actual outcome is (b,b), and @) =
> (@i £(bp) Ebb),@a) Pe the probability that the outcome is recorded as something other
than (b,b) when the actual outcome is (b, b).

Consider a steady state u(v,e) for parameters (v,¢). Let u%(v,€) be the cor-
responding share of good-standing players. Similarly, for ¢ € {0,..,M — 1}, let
uPi(v,€) be the share of bad-standing players who have accumulated i (b,b) profiles
since last entering bad standing. We show that the unique limit point of any se-
quence of steady-state shares (u%(v,e), u? (v, ¢), ..., uBM-1(~,¢€)) as (v,¢) — (1,0) is
(1€, o, .., @Pr-1) = (1,0,...,0). This implies that lim(, o) 1.0 #%(7,€) = 1, so the
share of good-standing players converges to 1 in the (v,e) — (1,0) limit. Consequently,

the population share of action a also converges to 1.

ZNote that the strategy o* does not depend on (v, ¢).
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Let (2%, P, ..., iPv-1) be a limit point of a sequence of steady-state shares as
(7,€) = (1,0). The inflow into By, the first phase of bad-standing, is v(1 — &) — (1 —
E(aa) — Ep) ) 1E(7,€)) (v, €), which is the share of good-standing players that move
into bad-standing in a given period. The outflow from By is the sum of (1 —~)uP0 (v, ¢),
the share of players in phase By who die in a given period, and (1 — &))" (7, €),
the share of players in phase By who move into phase B; in a given period. Thus, in a
“( “(

Y, e’ (v.e) = (1 = vépp) )1 (v, €).

Taking the limit of this equation as (v,g) — (1,0) gives a0 = 0. Likewise, equating

steady state, Y(1 — Epp) — (1 — Eaa) — Ebp) ) 4

the inflow and outflows of phase B; for 0 < i < M gives y(1 — &pp))pP (7, 6) =
(1 — &) 1P (7, €), and taking the limit of this equation as (y,£) — (1,0) shows that
pB = pPi-1. Combining this with 150 = 0 gives % = 0 for all i € {0,,..., M — 1}.
Since the good-standing population share and bad-standing population shares always
sum to 1, it follows that 1% = 1.

We now show that (¢*, (7, €)) is a strict equilibrium when ~ is sufficiently close
to 1 and ¢ is sufficiently close to 0. For 0 < ¢ < M — 1, the value functions in the

bad-standing phase B; and the subsequent bad-standing phase B, satisfy
VBi = (1 — ")/)U,(b, b) + ’}/é(bﬁ)VBi -+ ")/(1 — é(bjb))VB”l. (2)

Similarly the value functions in the final bad-standing phase Bj;_; and the good-

standing phase G are linked by
VBVt = (1 — y)u(b, b) + 12 VM + (1 — ) VO, (3)

Combining lim, 01,00 #€ (7, €) = 1 with V¢ = u%(v,2)%u(a, a) + (1 — u(v,£)?)u(b, b)
shows that lim(, o) 1,0 V¥ = u(a, a). Taking the limits of these equations as (v,¢) —
(1,0) gives lim(, o)1,0) VP = lim(, o)1,0) VY = u(a, a) for all i € {0, ..., M — 1}.

A player in bad-standing phase ¢ where 0 < i < M — 1 strictly prefers to play b
against b when (1 —)u(b,b) +ve4n VP + (1 — E4p) VP > (1 —y)u(d,b) + (1 —
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s(a/yb%(b,b))VBi + 75((1/71,)7(1,71))1/3”1 holds for a’ # b. Manipulating this gives (1 — &pp) —
() b))V (VI = VB /(1 — ~) > u(a’,b) — u(b,b). Equation 2 can be rewritten as

e LA G B A T(A))

-~ 1 — ey
s0 we obtain lim, ¢)—1,0) (1 = Ep) — (@ b)) )Y (VI =VE) /(1—7) = u(a, a) —u(b,b).
Since maxy u(a’,b) < u(a,a), it follows that the incentives of players in bad-standing
phase 7 are satisfied for (v, ¢) sufficiently close to (1,0).

An almost identical argument shows that the incentives of players in bad-standing
phase M — 1 are satisfied for (v, ¢) sufficiently close to (1,0). Thus, all that remains
is to show that the incentives of players in good-standing are satisfied in the limit. A
good-standing player has strict incentives to play a against a when (1—+)u(a, a)+~(1—
@)V @)V > (1=7)u(d, @) +Y(Ew a) (@) FE(@.a).00)VE + V(1 =€ ) (a0) —
E(aa), b))V holds for @’ # a. Manipulating this gives (1 — &0 — E(a'.a),(aa) —
o), b0)V(VE = VB /(1 —7) > u(d,a) — u(a,a). Similarly, a good-standing player
has strict incentives to play b against b when (1—~)u(b, b)+~(1—Z@p)VE+1E0n V0 >
(1= )u(d,b) + (@ ) @a) + E@p),m0)VE +7(L =@ p),(aa) — E@ ), b.p)) V0 holds for
a’ # b. Manipulating this gives (1 =25 —€(a’.a) (a,a) — E(ar.a),0.0)) Y (VE =V E) /(1 —7) >
u(a’,b) —u(b,b). Combining Equations 2 and 3 gives

. <7(1*§(b,b)) M

1=7€(1,b) ) G
—u(b,b)).

g G _ y/Boy _
1_7(‘/ V) =~y

It follows that lim(775)_>(170)(1 — E(a,a) — E(a'sa),(asa) — €(a/7a)7(b,b))7(vG - VBO)/(l —7) =

lim 5.6 (1.0) (1= E) = E(@t.a).(a.0) — E(@..0))V(VE =V /(1=7) = M (u(a, a) —u(b, b)).
Since M (u(a,a) — u(b,b)) > maxy{max{u(a’,a) — u(a,a),u(a’,b) — u(b,b)}}, good-

standing players’ incentives are satisfied for (v, ¢) sufficiently close to (1,0).
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A.2.2 Proof of Theorem 2(ii)

We show that a can be limit-supported by the threaded grim trigger strategies discussed

in Section 3, and then show that the constructed equilibria are coordination-proof.

A.2.2.1 Proof that a is Limit-Supported by Strict Equilibria

Let 0 <y <% < 1 be such that

y a) (@, ) — u(b, b)}

- { u(zy, 2) — ula, N
—— > max 4 max , max
11—~ (zra2) u(a,a) —u(b,b) " (z1,22) u(a,a) — u(b,b)

(4)

for all v € [y,7]. Consider the grim-trigger strategy described in Section 3, and let
1 denote the share of good-standing players in a steady state. We will show that for
all § > 0, there is an € > 0 such that, whenever v € [7,7] and €z, 4,) (21,25 < € for
all (w1, 29), (7, 25) € A2, this strategy induces strict equilibria satisfying & > 1 — 4.
Thus, this strategy can be combined with the threading technique described in the text
to limit-support a as (v,¢) — (1,0).

First we establish that for all § > 0, there is an > 0 such that, whenever v € [v,7]
and €z, a0),(! 2y), < E for all (21, 25), (2], 22) € A?, the steady states induced by this
strategy satisfy 4 > 1 — 6. Note that the inflow into good standing is simply 1 — ,
the share of newborn players. The outflow from good standing is the sum of (1 —~)u®,
the share of good-standing players who die in a given period, and y(&q,q) uC + Ewpy (1 —
pu))pC, the share of good-standing players whose outcome is recorded as something

other than (a,a) or (b,b) in a given period. In a steady state, these inflows and outflows

must be equal, and setting the corresponding expressions equal to each other gives

G L -~ 1 —v
- _ _ > a _ )
1=+ 7Caap® +Epp(1 —p%) = 1 =7+ ymax{Ea), Ep}

0

The claim then follows since lim. o inf e, 5 /(1 —7)/(1 — v +ymax{&q.q),Epp}) = 1.
We establish that for all § > 0, there is an € > 0 such that, whenever v € [y,7]

and €z, o), (e).ay), < € for all (z1,22), (27, 22) € A?, the incentives of good-standing
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players are satisfied. (Since (b,b) is a strict static equilibrium, the incentives of the
bad-standing players are always satisfied.) The value function of good-standing players,
V& equals the average flow payoff in the population in a given period (since newborn
players are in good standing), so V¢ = u%(uSu(a, a)+(1—pu)u(b, b))+ (1 —pu)u(b, b).
In contrast, the value function of bad-standing players, V', equals the expected flow
payoff of bad-standing players, so V2 = u(b, b).

When facing an opponent playing a, the expected payoff of a good-standing player
from playing a is (1 —y)u(a, a) +v(1 — E(a,a))VE + E(a,a)V? while their expected payoff
from playing = # a is (1 = y)u(z,a) + Y(E@a)@a) + E@a.on)VE + (1 = ) @a) —
E(wa),bp))VE. Thus, a good-standing player strictly prefers to play a rather than any
x # a precisely when
u(x,a) —u(a,a)

y
— > max = .
L—7 " wta (1= &0 — E@a)(aa) — E(ma) b)) UC (u(a, a) —u(b, b))

As e — 0, the right-hand side of this inequality converges to max, ., (u(z, a)—u(a, a))/(u(a, a)—
u(c,b)), uniformly over v € [y,7]. By the inequality in (4), we conclude that a good-
standing player strictly prefers to match a with a instead of playing some x # a for
sufficiently small noise when ~y € [y, 7].

When facing an opponent playing b, the expected payoff of a good-standing player
from playing bis (1—7)u(b, b)+~v(1—& @) VE+E@pp VE while their expected payoff from
playing o # bis (1—7)u(w, 0) +7(ew.b),(00) €(.0),6:6)VE (L =€), (0:0) = E (@), 6:0) V-
Thus a good-standing player strictly prefers to play a rather than any x # b precisely

when

Y U(.Z', b) — U(b, b)
—— > max - e :
1—7 e#b (1 = E@bp) = E(@b)(aa) — E@b),(b,0) ) U (u(a, a) — u(b, b))
Ase — 0, the right-hand side of this inequality converges to max,,(u(x, b)—u(b, b))/ (u(a, a)—
u(c, b)), uniformly over v € [v,7]. By the inequality in (4), we conclude that a good-

standing player strictly prefers to match b with b instead of playing some x # b for
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sufficiently small noise when v € [v,7].

A.2.2.2 Proof of Coordination-Proofness

We first argue that in every match between bad-standing players, there is no Nash
equilibrium in the augmented game that Pareto-dominates (b,b). Note that the out-
come of the current match does not affect a bad-standing player’s continuation value.
Thus, any Nash equilibrium in the augmented game between two bad-standing players
must also be a static equilibrium in the stage game. Since there is no static equilibrium
that Pareto-dominates (b, b), it follows that two bad-standing players playing (b, b) is
coordination-proof.

Now we show that in any match involving a good-standing player, there is no
Nash equilibrium in the augmented game that Pareto-dominates the action profile
the players are supposed to play. A very similar argument to that showing that a
good-standing player strictly prefers to play a against a for sufficiently small noise
when v € [7,7%] shows that no good-standing player would ever prefer an action profile
other than (a,a) or (b,b) be played in one of their matches. Thus, in any match
involving a good-standing player, we need only consider whether (a, a) or (b, b) are Nash
equilibria in the augmented game and whether one of these profiles Pareto-dominates
the other. When two good-standing players match, both (a,a) and (b,b) are Nash
equilibria in the augmented game, but (b,b) does not Pareto-dominate (a,a). Indeed,
if (b,b) did Pareto-dominate (a, a), this would imply that the value functions for these
good-standing players would be no higher than w(b,b), which is not possible given
that u(a,a) > u(b,b). Thus, the prescribed play between two good-standing players is
coordination-proof. Moreover, in any match involving a bad-standing player, all Nash
equilibria in the augmented game require the bad-standing player to play a static best-
response to the action of their opponent. Because u(a,a) > wu(b,b) and (b,b) is not
Pareto-dominated by any static equilibrium, (a,a) is not a static equilibrium, so (b, b)

is coordination-proof when a good-standing player matches a bad-standing player.
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A.3 Proof of Theorem 5

Section A.3.1 derives the incentive constraints that must be satisfied in any strict
equilibrium with noisy first-order records, and Section A.3.2 proves Theorem 5(i) (nec-
essary conditions for cooperation). The main step is proving Lemma 9, which shows
that u” + p®(l — g) > g in any strict, coordination-proof equilibrium with u > 0.
Section A.3.3 proves Theorem 5(ii) (sufficient conditions for cooperation). This part
of the proof is split into three parts: Section A.3.3.1 shows that threaded grim trig-
ger strategies can limit-support cooperation when g < 1; Section A.3.3.2 shows that
threaded “defector—preciprocator—supercooperator—defector” strategies can limit-
support cooperation when [ > ¢ + ¢?; and Section A.3.3.3 shows that each class of

equilibria is coordination-proof.

A.3.1 Incentive Constraints with Noisy Records

Throughout, (C|C), denotes the condition that C' is the best response to C for a
player with record r, (C|D), denotes the condition that C' is the best response to D,
and (D|D), the condition that D is the best response to D.

Let V¢ denote the expected continuation payoff when a recording of C'is fed into
the record system for a record r player. That is, V¢ = Erigotr)[Vir], where Eprgn )
indicates the expectation when 7’ is distributed according to go(r). Similarly, let
VP = Eyqp(ry[Vir] denote the expected continuation payoff when a recording of D is
fed into the record system. Let 7, denote the expected flow payoff to a record r player
under the equilibrium strategy, and let p? denote the probability that a recording of
D will be fed into the record system for a record k player. Note that p? > 0 for all r
since e¢(r) > 0 and ep(r) < 1.

Given a noisy record system and an equilibrium, define the normalized reward for

playing C' rather than D for a record r player by

1 —ec(r) —ep(r) v c
W, = D e VT+1_7(VT Vi) -
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Lemma 6. For any noisy record system,

The (C|C), constraint is W, > g.

The (D|C), constraint is W, < g.

The (C|D), constraint is W, > 1.

The (D|D), constraint is W, <.

Proof. Consider a player with record r. We derive the (C|C'), constraint; the other
constraints can be similarly derived. When a record r player plays C', their expected
continuation payoff is (1 — ec(r))V.¢ + ec(r)V,P, since a recording of C' is fed into the
record system with probability 1 — ex(r) and a recording of D is fed into the record
system with probability ec(r). Similarly, when the player plays D, their expected
continuation payoff is ep(r)V.¢ + (1 — ep(r))V,P. Thus, the (C|C), constraint is 1 —
Y11 —ec(r)VE +rec(r)V,? > (1= 7)(L+9) +vep(r)V, + (1 —ep(r))V,”, which

is equivalent to

(1 —ec(r) —ep(r)) (V2 =V > g

L=y
Note that V, = (1 =), +v(1 —p?)V.C +vpPV,P. Manipulating this gives V¢ — VP =

(1 =y)m, — Vi, +4V.E9)/(ypP). Substituting this into the above inequality gives the
desired form of the (C|C), constraint. [

The strategies we use to prove part (ii) of the theorem depend on a player’s record
only through their age and their “score”, which is the number of times they have
been recorded as playing D. For such scoring strategies, we slightly abuse notation
in writing V,, for the continuation payoff of a player with score £.2* The incentive

constraints take a simpler form with such strategies: For all k£ we have e¢(k) = e¢,

24Recall that V. is defined as the continuation value of a player with record r. Under scoring
strategies, two players with different records that share the same score have the same continuation
value, so we can index V by k rather than r.

42



ep(k) =ep, V, = Vi, and V;P =V, ;. The normalized reward thus simplifies to

l—ec—c¢
Wy, = —— 2 (1, — V).
Py

Lemma 7. For scoring strategies, Lemma 6 holds with Wy, = (1—ec—ep) (71— Vi) /pP.

A.3.2 Proof of Theorem 5(i)

Theorem 5(i) follows from the following two lemmas.

Lemma 8. For any first-order record system, in any strict equilibrium, u° < 1/(1+g).

Lemma 9. For any noisy first-order record system, in any strict, coordination-proof

equilibrium with u© > 0, pu* + p% (1 — g) > g.

Lemma 8 says that there cannot be too many supercooperators. It holds because
new players with record 0 have the option of always playing D, so in any strict equi-
librium with € > 0, it must be that u°(1 + g) < V5 < 1, which gives p° < 1/(1 + g)

Conversely, Lemma 9 implies that cooperation requires a positive share of superco-
operators when g > 1, and moreover that the required share grows when ¢ and [ are
increased by the same amount. It is proved in the next subsection.

Theorem 5(i) follows from Lemmas 8 and 9 since, by Lemma 3, it is impossible to

satisfy both u% < 1/(1+ g) and u” + u®(l — g) > g when g > 1 and [ < g + ¢°.

A.3.2.1 Necessary Conditions for Cooperation and Proof of Lemma 9

Let V = sup, V, and let {r,},ey be a sequence of records such that lim, . V,, = V.
Note that V' < oo and, since Vj (the expected lifetime payoff of a newborn player)
equals p? 1% + p® (u€ — pPl) + P (14 g) (the average flow payoff in the population),
we have V' > Vo = ufu® + p¥(u€ — uPl) + pPus(1 + g).

Lemma 10. If u¢ > 0, there is no sequence of defector records {1, }nen such that
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Proof. Suppose otherwise. Since V, = (1 —v)m, + v(1 — pP)V.E + 4pPVP and 7,, =

1 (1 + g) for all 7, we have V,,, = (1 —y)p”(1 + g) + v(1 — p2 )V, + vp2 VP for all

rn. This implies

Vew <151 g) + T2 (1= p) mas{VE = Vi, 0} + P max{V,? — V.0,
-7 -7
Since lim, oo V;,, = V, lim, oo max{V,¥ — V;,., 0} = lim, o max{V,” — V, 0} = 0.
It further follows that V = lim, .o V,, < (1 4+ g), so V, < p(1 + g) for all 7.
However, note that every player can secure an expected flow payoff of 1%(1 + g) every
period by always defecting, so it must be that V, > u°(1 + g) for all r. It follows that

V; = 1% (1 + g) for all r, and since the value function is constant across records, every

record must be a defector record, so u¢ = 0. |

Lemma 11. If u© > 0, there is some record r' that is a preciprocator or a supercoop-

erator and satisfies
!‘)/
Vi — S(Vf — Vi) 2 5P+ pS (u€ = pPl) + P (1 + g).

Proof. First, consider the case where V' = pufu® + 5 (u — pP1) + p” (1 + g). Then
there must be some record r’ such that V,» = pufu® + p°(u® — pP1) + pPp®(1+ g). By
Lemma, 10, such a 7’ cannot be a defector record and so must be either a preciprocator
or a supercooperator. Additionally, V.¢ <V so Vi — (v/(1 = y))(VS = V) > uPuC +
(€ = pPl) + pPps (1 + g).

Now consider the case where V' > pfu® + pu®(u® — pPl) + pPus(1 + g). For any
sequence of records {r, }ney such that lim,_,o V;., =V, lim,,_,oc max{V,¢ — V,., 0} = 0,
so there is some sufficiently high n such that V,, — (v/(1 —7))(V,¢ = V;,.) > pP'u® +
(1€ — pPl) + pPps(1 + g). Additionally, by Lemma 10, for sufficiently high n, the

record r,, must be either a preciprocator or a supercooperator. [ |

Proof of Lemma 9. First, take the case where ' is a preciprocator. Then by Lemma
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6, we must have

1—50(T/) —€D(7“/) ( Y C )
Tyt Vi ir’ Vi > 9.
pg 1—’}/( )

When m = p© and Vi —y(Vi§ = Vi) /(1 =) = p"p + p¥(u€ = pPl) + 5”1 (1 + g),
this implies
(1 —ec(r') —ep(r))u”

p W+l —g) >g

Note that pZ) > (1—ep(r’))u since a preciprocator plays D whenever they are matched
with a defector and this leads to a recording of D being fed into the record system with
probability 1 —ep(r’). This gives (1—ec(r') —ep(r')uP/pE < 1, s0 uf +pS(I—g) > g
must hold.

Now take the case where 7’ is a supercooperator. By Lemma 6, 7, — V- + (v/(1 —
PDIVE = Vi) > 0. When ms = u€ — uPland Vi — (/(1 = 1))(VE = Vi) = uPuC +
S (u — pPl) + pPp®(1 + g), this implies that

pe = Pl = (" p 4 (1 = P + P+ g)) = pP (1" + (1= g) = 1) > 0.
This requires u”” + p5(1 — g) > I, which implies u” + (1 — g) > g, since [ > g. |

A.3.3 Proof of Theorem 5(ii)

A.3.3.1 Limit-Supporting C' when g < 1

Let 0 <y <7¥ < 1/2 be such that

y
<
g<1 < (5)

for all v € [7,7]. Consider the grim trigger strategy, and let (v, e) denote the steady
state share of cooperators, i.e. those players who have not been recorded as playing

D, for parameters (v,e). (As we will see, there is a unique steady state when noise
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is sufficiently small.) We will show that for all § > 0, there is an € > 0 such that,

whenever v € [v,7] and e¢,ep < E, this strategy induces strict equilibria satisfying

uC(7,€) > 1 —4. Thus, this strategy can be combined with threading to limit-support
C as (v,e) — (1,0).

First, we establish that for all § > 0, there is an € > 0 such that whenever v € [v,7]
and ec,ep < E, the steady states induced by this strategy satisfies u¢ > 1 — . Note
that the inflow into cooperator status is 1 — v, the share of newborn players. The
outflow from cooperator status is the sum of (1 —~)u“, the share of cooperators who
die in a given period, and y(ecu® + (1 — ep)(1 — u®))u”, the share of cooperators
who are recorded as playing D in a given period. In a steady state, these inflows and

outflows must be equal, so

L=y = (1 =y +3(eon® + (1 — p)(1 — )€

This expression has a unique solution u € [0, 1] when ¢ and ep are sufficiently small,

given by

1—rep—/(1—7ep)? —4y(1 —ec —ep)(1 —7)
) = 2v(1 —ec —¢ep) ‘

Note that p®(v,¢) is continuous for v € [y,7] and sufficiently small e¢,ep, and

uC(7,0) =1 for all v < 1/2. It follows that there is an € > 0 such that u%(y,e) > 1—46

for all v € [y,7] and e¢,ep < E.

Now we establish that for all § > 0, there is an € > 0 such that whenever v €

[v,7] and ec,ep < E, the incentives of preciprocators are satisfied. (The incentives

of defectors are clearly satisfied.) We will use the facts that the value function of
preciprocators, V¢, equals the average flow payoff in the population in a given period,
(1€ (v,¢€))?, and that the value function of defectors is V2 = 0.

When facing an opponent playing C, the expected payoff for a preciprocator from

playing C'is 1 — v+ (1 —e¢) (1% (7, €))? while their expected payoff from playing D is
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(1—=~)(1+g)+~ep(u€(7,¢))? Thus, a preciprocator strictly prefers to play C against

an opponent playing C if and only if 1 — v + (1 — e¢)(u%(7,¢))* > (1 — ) (1 + g) +

vep(p€(v,€))?, which simplifies to

g > 9

L—v " (I—ec—ep)(p(v,e))?*

When facing an opponent playing D, the expected payoff to C' for a preciprocator

is —(1 — ) + (1 — ec)(u(7y,€))? while their expected payoff from playing D is

vep(u€(v,€))?. Thus, a preciprocator strictly prefers to play D against an opponent

playing D if and only if —(1 — )l + v(1 — ec)(u (7, ¢€))?

< vep(u©(v,¢))?, which
simplifies to
y [

=7 " (=cc—en)iC(, 0

Combining these incentive conditions shows that all the incentives of a preciprocator

are satisfied if and only if

l
g v <

(I—cc—ep) (1,02 17 (I—ec—ep)(l(7,9)

As e — 0, the left-most expression and right-most expression in this inequality converge
to g and [, respectively, uniformly over v € [y,7]. By inequality (5), we conclude that

the incentives of a preciprocator are satisfied for sufficiently small noise when 7 € [, 7].

A.3.3.2 Limit-Supporting C' when [ > g + ¢°

We use the class of strategies of the form “D;PgS1D.,” where J, K € N. These
strategies specify that a player is a defector until they have been recorded as playing
D J times. Subsequently, the player is a preciprocator until they have been recorded
as playing D K more times, and then a supercooperator until they are recorded as
playing D once more, after which they permanently become a defector. Throughout,
we let pP' be the share of players who have been recorded as playing D fewer than

J times (and are thus defectors), u” be the share of preciprocators (those with score
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J <k < J+ K), u° be the share of supercooperators (those with score k = J + K),
and p?? be the share of defectors with a score k > J + K. We also let u¢ = pu? + p°
be the total share of cooperators and u” = uPt + pu”? = 1 — ;€ be the total share
of defectors. We will show that for all 6 > 0, there are 0 <y <5 < 1 and € > 0
such that when v € [7,7] and e¢, ep < E, this strategy class gives equilibria satisfying
¢ > 1—4. Thus, these strategies can be combined with threading to limit-support C'
as (v,¢) = (1,0).

The following lemma characterizes precisely which population shares and parame-
ters are consistent with an equilibrium using a D;PgS1 D, strategy. The statement
of the lemma involves the functions « : (0,1) x (0,1) — (0,1) and 5 : (0,1) x (0,1) X
[0,1] — (0,1), defined by

a(77¢) = %7
5(7557,”[)) _ 7(60 + (1 —&c — 5D):uD)

1=y +ro+ (1 —ec—ep)pP)
Lemma 12. There is a D;jPyS1 Dy equilibrium with shares pP*, pt, u®, and pP? if

and only if the following conditions hold:

1. Feasibility: pPt =1 —a(y,1—ep)’,
p =a(y,1—ep)’(1 - B(v,e u")c),
1 =a(y,1—ep)’Blv,e, u”) (1 — alv,2c0)),

1P = a(y,1—ep)’ By, e, n”) (v, 0).

2. Incentives:

(L —ec —ep)u” i u”? P_ s
ClC)y l _ <
( ’ )J €C+(1_5C_5D)HD 1_MD1 +MD1(1_MD1)(:U 1% g) g,

Y1 —ec —ep)((1 —aly,ec))uPl + aly,ec)(u” — 1))
L=v+7(c+ (L —cc—ep)u?)

(1 —&Cc — 5D)

e

<,

(D|D)jyr-1:

(CID)ssx (if 1 >0): L (0" = pg —uPl) > 1.
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The proof of Lemma 12 is in OA.3.1. The feasibility constraints come from cal-
culating the relevant steady-state shares for the strategy D;PyxS1Ds. The (C|C),
incentive constraint comes from solving V; and using Lemma 7. The (C|D),;x and
(D|D)jyk—1 constraints are derived by relating the value functions of adjacent records.

Since [ > g + ¢2, it can be shown that, for all sufficiently small § > 0, there are
u? m® > 0 satisfying 7” + 7% = 1 -0, 1° > (g/1)(1 = 9), and z¥’ — @%g — 5l > 0. Fix
such a § and the corresponding 7, 7°. There is some sufficiently small n € (0,4/2)
such that the above inequalities hold when 7", 77°, and § are respectively replaced with
any p”, 1°, and § satisfying |u” — 7", |u® — 7% < n and |0 — 0] < 2.

The following lemma, whose proof is in OA.3.2, shows that there is an interval of
7 such that J and K can be tailored to obtain shares p”t, i, and p® within 7 of 4,
7”, and 1%, respectively, when noise is sufficiently small. (Consequently, the share "
must be within 27 of §.) Moreover, the v interval can be taken so that the incentives

of supercooperators are satisfied.

Lemma 13. There are 0 < v <75 < 1 and € > 0 such that, for all v € [y,7] and
ec,ep < E, there are steady states with shares satisfying |u? — 0|, |uf —u®|, |u® — 1| <

n, and are such that the (C|D) ik constraint in Lemma 12 is satisfied.

The left-hand side of the (C|C); constraint in Lemma 12 converges uniformly to
1 /(1 —pP)las e — 0 for all v € [v,7], |uP =6, |u" —@"|, |p® — 7% < n. Because
(7° —n)/(1 —§ +n)l > g, this means that & can be chosen to be sufficiently small
such that all these steady states satisfy the (C|C'); constraint in Lemma 12 for all v €
[v,7] and ¢, ep < & This is similarly true for the (D|D) k1 constraint in Lemma
12, because the left-hand side of the corresponding inequality converges uniformly to
P /(1 =y +ypP)l <lase— 0 forall y € [y,7], [Pt =6, |u” = 7", [p* — 7% <.

Thus there are 0 < 7 <7 < 1 and € > 0 such that equilibria with shares ul,
satisfying |u” — 7%, |u® — | < (and thus p > 1 — 26) exist whenever v € [y,7]

and e¢,ep < E.
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A.3.3.3 Proof of Coordination-Proofness

We show that the grim trigger equilibria analyzed in A.3.3.1 and the D;PgS| D,
equilibria analyzed in A.3.3.2 are coordination-proof. In any such equilibrium, (C,C')
is played in every match where neither player has a defector record. By a similar
argument to the proof of Lemma 2, the play in these matches is coordination-proof.
Thus, we need only consider play in matches with a defector. Note that in equilibria
generated by either grim trigger or D;PyS; D, strategies, the expected continuation
value of a defector is weakly higher from playing D than from playing C. Since D
is strictly dominant in the stage game, it follows that D is strictly dominant in the
augmented game for any defector. Thus, the prescribed action profile (D, D) in a match
involving a preciprocator and a defector is the only equilibrium in the corresponding
augmented game. Likewise, the prescribed action profile (C, D) in a match involving a
supercooperator and a defector is the only equilibrium in the corresponding augmented

game. We conclude that play in all matches is coordination-proof.
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OA.1 Proof of Corollary 3

Corollary 3. Under any finite-partitional record system, a coordination-proof equilib-
rium exists if the stage game has a symmetric Nash equilibrium that is not Pareto-

dominated by another Nash equilibrium.

Fix such a symmetric static equilibrium «*, and let o recommend o* at every record
pair (r,7"). Then (o, ) is an equilibrium for any steady state p. Moreover, note that
Uy (a,a’) = (1 —y)u(a,ad’) + yu(a*, o), for any r, 7', a,a’. Thus, (o, ) is a (possibly
mixed) augmented-game Nash equilibrium if and only if it is a Nash equilibrium of
the stage game. Since (a*, a*) is not Pareto-dominated by another static equilibrium,

there is no augmented-game Nash equilibrium (o, ) satisfying (u(«, o), u(c/, )) >

*This paper was previously distributed with the title “Steady-State Equilibria in Anonymous
Repeated Games.” It replaces our earlier papers “Steady-State Equilibria in Anonymous Repeated
Games, I: Trigger Strategies in General Stage Games,” “Steady-State Equilibria in Anonymous Re-
peated Games, II: Coordination-Proof Strategies in the Prisoner’s Dilemma,” and “Robust Coop-
eration with First-Order Information.” We thank Nageeb Ali, V Bhaskar, Glenn Ellison, Sander
Heinsalu, Yuval Heller, Takuo Sugaya, Satoru Takahashi, and Caroline Thomas for helpful comments
and conversations, and NSF grants SES 1643517 and 1555071 and Sloan Foundation grant 2017-9633
for finanical support.



(u(a*, a®),u(a*, a*)), and hence there is no augmented-game Nash equilibrium («, o)
satisfying (t, (o, '), Gy (), @) > (G (F, *), G (0, a*)) for any r,7’. That is,

(o, p) is coordination-proof.

OA.2 Proof of Theorem 3

Theorem 3. Fix an action a. With canonical first-order records:

(i) If there exists an unprofitable punishment b for a and there is a strict and sym-

metric static equilibrium (d,d), then a can be limit-supported by strict equilibria.

(ii) If there exists an action b such that (b, b) is a strict static equilibrium and u(a,a) >

max{u(b,a),u(b,b)}, then a can be limit-supported by strict equilibria.

Let 0 <y <7% <1 be such that

A {max u(r, ) — () | ulee) —ulbo }

1—7 = u(a,a) —u(c,b) = wu(a,a) —u(c,b) (6)

for all v € [7,7]. Consider the strategy described in Section 4, and let pu& denote the
share of good-standing players in a steady state. We will show that for all 6 > 0, there
is an € > 0 such that, whenever v € [1, 7] and €, ., < € for all x,2" € A, this strategy
induces strict equilibria satisfying 4¢ > 1 — 6. Thus, this strategy can be combined
with threading to limit-support a as (v,e) — (1,0).

First, we establish that for all 6 > 0, there is an € > 0 such that, whenever
v € [7,7] and €,4/, < E for all x,2" € A, the steady states induced by this strategy
satisfies u& > 1 — 6. Note that the inflow into good standing is 1 — 7, the share of
newborn players. The outflow from good standing is the sum of (1 — ~)u®, the share
of good-standing players who die in a given period, and v(Z,u% + &,(1 — u))u®, the

share of good-standing players who are recorded as playing an action other than a or

b in a given period. In a steady state, these inflows and outflows must be equal, and



setting the corresponding expressions equal to each other gives

G 1—7 1 —x
L=+l + &1 = p)) = 1= +ymax{Z, &}

I

The claim then follows since lim._,q inf,c(, 5(1 — ) /(1 — v + ymax{&,, &}) = 1.

Now we establish that, for all § > 0, there is an € > 0 such that, whenever vy € [v,7]
and e, ,,< € for all x,2’ € A, the incentives of good-standing players states are
satisfied. (Since c is a strict best-response to b and (d, d) is a strict static equilibrium,
the incentives of bad-standing players are always satisfied.) We will use the facts that
the value function of good-standing players, V¢, equals the average flow payoff in the
population in a given period, so u%(u“u(a,a) + (1 — uu(b, ¢)) + (1 — u%) (uulc, b) +
(1—p%)u(d,d)), and that the value function of bad-standing players is V2 = uSu(c, b)+
(1 — u%)u(d, d).

When facing an opponent playing a, the expected payoff of a good-standing player
from playing a is (1 —v)u(a,a) +y(1 —&,)VE + &,V while their expected payoff from
playing b is (1 —y)u(b,a) +v(1 —&,)VE +&VE. Thus, a good-standing player strictly

prefers to play a rather than b precisely when
(1 —7)(u(a,a) — u(b, b)) > y(E, — &)(VE = V).

As ¢ — 0, the right-hand side of this inequality converges to 0, uniformly over v €
[v,7]. As u(a,a) > u(b,b), we conclude that a good-standing player strictly prefers
to match a with a instead of playing b for sufficiently small noise when v € [,7].
Moreover, the expected payoff of a good-standing player from playing action = & {a, b}
is (1—y)u(z,a) +v(epa+€ep)VE +7(1 — €40 —€,5)VE. Thus, a good-standing player

strictly prefers to play a rather than any x ¢ {a,b} precisely when

Yo ex u(z,a) — ula,a)
1= " agfab) (1 — 84 — 20 — €2p) (1 (ula, a) — u(c, b)) + (1 — p) (u(b, ¢) — u(d,d))

As ¢ — 0, the right-hand side of this inequality converges to max,g(qp(u(z,a) —
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u(a,a))/(u(a,a) — u(c, b)), uniformly over v € [y,7]. By inequality (6), we conclude
that a good-standing player strictly prefers to match a with a instead of playing some
x & {a,b} for sufficiently small noise when v € [,7].

We now handle the incentives of a good-standing player to play b against an op-
ponent who plays c¢. When facing an opponent playing c, the expected payoff of a
good-standing player from playing a is (1 — y)u(a,c) + y(1 — &,)VY + £,VP while
their expected payoff from playing b is (1 — y)u(b,c) + (1 — &)VC + & V5. Thus, a
good-standing player strictly prefers to play b rather than a precisely when

(1= )(u(b,¢) = ula,c)) > (& — &) (VE = VF).

As e — 0, the right-hand side of this inequality converges to 0, uniformly over € [y, 7].
As u(b, ¢) > u(a,c), we conclude that a good-standing player strictly prefers to play b
rather than a against an opponent playing c for sufficiently small noise when 7 € [, 7].
Moreover, the expected payoff of a good-standing player from playing action = ¢ {a, b}
is (1 —y)u(z,¢) +7(cpa+Exp)VE+7(1 — €40 — €2)VE. Thus, a good-standing player
strictly prefers to play b rather than any x ¢ {a, b} precisely when

Yo max u(z,c) —u(b,c) '
1= " egfab) (1 — & — €r0 — €2) (1 (u(a, a) — u(c, b)) + (1 — p)(u(b, ¢) — u(d, d))

As ¢ — 0, the right-hand side of this inequality converges to maxgg(qp(u(z,c) —
u(b, ¢))/(u(a, a) —u(c,b)), uniformly over v € [y,7]. By Inequality 6, we conclude that
a good-standing player strictly prefers to play b rather than some = ¢ {a,b} against

an opponent playing c for sufficiently small noise when vy € [7,7] .



OA.3 Proofs of Lemmas for Theorem 5(ii)

OA.3.1 Proof of Lemma 12

Lemma 12. There is a D;jPyxS1 Do equilibrium with shares uPv, pu*, u°, and pP? if

and only if the following conditions hold:

1. Feasibility: pPt =1 —a(y,1—ep)’,
p =a(y,1—ep)’(1 - B(v,e 1)),
1 = a(y,1—ep)’Blv,e, u?) (1 — alv,2c0)),

1P = a(y,1—ep)’ By, e, nP) X aly,e0).

2. Incentives:

(1 —ec —ep)u” ( I (P2 P s >
O O . l+ B >q
(C1C), ec+ (1 —ec—ep)uP \1—pu pJDl(l_#Dl)(:u ) g

(DID)yupe_, - 1= =)= aly,c0))u?l +aly, ) (u” — p°9))
JHK—1" L=+ (e + (1 —20 —ep)iP)

. 1 —ec—e¢p)
C|D s W P_Sq—uPl) > 1.
(CID)yir (if ) [ (u” = pg — p"l)

<,

We will derive the feasibility conditions and then derive the incentive conditions.

The other feasibility conditions of Lemma 12 follow from the following lemma.

Lemma OA 1. In a D;PyS, Dy steady state with total share of defectors u®,

p

a(y,1—eP)*(1 - a(y,1 —&P)) if0<k<J—-1
e = aly,1 =eP) By, e, k) F(1 = B(y,e. ")) if J<k<J+K—1-

\Oé(’%l_gD)J/B(f%g?/LD)K(]'_a(7?50)) ka: J+ K




To see why Lemma OA 1 implies the feasibility conditions of Lemma 12, note that

J-1
=Y a(y,1—ep)f(1—a(y,1—ep)) = 1 —al(y,1 —ep)’,
Sk
:uP - Oé(r% 1 - €D>J6(77 &, :uD)k(l - B(’%g?MD)) = a(f%l - €D>J(]‘ - ﬁ(*%gj :uD)K)?

k=J

1 =gk = (v, 1—ep)’Bly,e, 1”)5 (1 — a(y,ec)),

which also gives uP? =1 — puPr — uf — u¥ = a(y,1 —ep)’ By, &, uP)¥aly,ec).

Proof of Lemma OA 1. The inflow into score 0 is 1 — ~, while the outflow from score

0is (1 =y +~v(1 —ep))p. Setting these equal gives

L=y
l—y+7(l—-ep

Ko = ):1_0[(771_5D)'

Additionally, for every 0 < k < J, both score k and score k—1 are defectors. Thus, the
inflow into score k is y(1—ep)py_q, while the outflow from score k is (1—y+7v(1—ep)) -

Setting these equal gives

(1 —ep)
I—y+79(1—-¢p

= >uk_1 =a(y,1 —ep)y_;-

Combining these facts gives i, = a(vy,1 —ep)*(1 —a(y,1 —¢ep)) for 0 <k < J — 1.
Since record J—1 is a defector and record J is a preciprocator, the inflow into record

Jisy(1—ep)p;_, while the outflow from record J is (1—y+7(ec+(1—ec—ep)uP)) ;.

Setting these equal and using the fact that u; ; = a(y,1 —ep)’ (1 — a(y,1 —¢p))

gives

(1 —ep)
1—v+7(ec+ (1 —ec—ep)u?

py=a(y,1—ep)’ (1= a(y,1-¢p))
1_

1 —v+v(c+(1—cec—ep)u?

= a(y,1—ep)’ (1= B(y,e,u")).

= a(77 1- SD)



Additionally, for every J < k < J+ K, both record k and record k—1 are preciprocators.
Thus, the inflow into record k is y(ec + (1 — ec — ep) ) 1, while the outflow from

record k is (1 — v+ y(ec + (1 — ec — ep)u?)) 1y Setting these equal gives

")

~ Aec+ (1 —ec—ep)u
M

- — :B 767 b —1-
1=y + 7o + (1 = 20 — ep)P) 51 (& 17 )

Combining these facts gives u, = a(y,1 —ep)’B(v, e, uP)*(1 — B(v,¢&, uP)) for J <
E<J+K-1

Since record J 4+ K — 1 is a preciprocator and record J + K is a supercooperator,
the inflow into record J + K is y(ec + (1 — ec — ep)uP)p s jc_1, while the outflow
is (1 — 7 +7ec))pg. Setting these equal and using the fact that p;,  ; = a(y,1—
en)’ By, e, 1) (1 = B(v,€, 1)), we have

s+ (1 —ec —ep)u”)
1 —v+rec
)K 1_7

L —v+rec

=a(y,1—¢ep)’B(v,e,1")* (1 - a(y,20)).

ty g =o(y,1—ep) B(v.e, )11 = B(v.e,17))

=a(y,1—¢ep)’B(y,e, u”

Now we establish the incentive conditions in Lemma 12. We first handle the incen-
tives of the score J preciprocator to play C' against an opponent playing C. (When
this incentive condition is satisfied, all other preciprocators play C' against an opponent
playing C.) Since V; equals the average payoff in the population of players with score

greater than J, we have

g I c_ D p
V) = — uPl 1+ g).
I e +1_MD1(M 1 )+1_MD1M( +9)

Since the flow payoff to a preciprocator is ¢, Lemma 7 along with the fact that

ka =ecc+(l—ec—e¢p) uP for any preciprocator implies that a score .J preciprocator



plays C against C' iff

l-ec—éep c o p c_ D p
- - —pl) = ———5-p7 (1 > g.
Ty (1~ T~ T =i = i) 2
Since
P S Dy
¢ H c K c D H s
H _1_,uD11u _1_ND1<M —p l)_l—,uDlu (1+g)

ANG p? P s
= l _
It (1—uD1 +MD1(1_MD1)(M ug)>,

it follows that the (C|C), constraint is equivalent to

(1—ec —ep)p” p i
D 5l T 5 D (1w —ug)) > g
ect(l—ec—ep)p? \1—pP  pPr(1—pP)

To handle the incentives of a score J + K supercooperator, note that

Viik = (1 - 7)(:“0 - ,uDl) + 7(1 - 5C>VK +vecVitk41-

Combining this with the fact that V, = p®(1 + g) for all k > K + J gives

View = (1 — alv,e0)) (1€ — 1Pl + alv,ec)p’ (1 + g). (OA 1)

Thus, we have

’y(l —E&c _gD)(

’7(1_50_5D)( P
1=~

S D
_ — 1P,
e W T )

Viek = Vigrs1) =

from which the (C|D) 1k constraint in Lemma 12 immediately follows.
Finally, we show that a record J + K — 1 preciprocator prefers to play D against
an opponent playing D. (This implies that all other preciprocators play D against an



opponent playing D.) Note that

Vieko1=1=Np"+y(1—ec—(1—ec—ep)pu”) Vi1 +7(ec+ (1 —ec —ep)”)Viik,
SO

(1 —ec —ep)
l=y+7(c+ (1 —ec—ep)uP)

’7(1 —&c _gD)(

1—7 (MC—VHK)-

VJ+K—1 - VJ+K) =

Combining this with the expression for V;, x in Equation OA 1 gives

(1 —ec —ep)((1 — aly,e0)pPl + aly,e0) (n” — 1%g))
l—y+v(ec+ (1 —ec—ep)u?)

7(1 —E&C _€D)<

1 Viek 1=Viik) =
-

I

which implies the form of the (D|D) k1 constraint in Lemma 12.

OA.3.2 Proof of Lemma 13

Lemma 13. There are 0 < v <75 < 1 and € > 0 such that, for all v € [y,7] and

ec,ep < E, there are steady states with shares satisfying |u? — 0|, |uf —u®|, |u® — | <

n, and y(1 —ec —ep)(@" —n— (5% +n)g — (6 +2n)1) /(1 — v+ yec) > L.

Let J(v,0) = [In(1 — §)/In(y)] be the smallest integer greater than In(1—4)/In(y).

Let K(v,6) = [(In(y/09) — ") — In(709)) /In(B(7,0,6))]. Let 5 € ((1+6)/2,1) be
such that

7O — (- 8) < 2,
‘ij(ﬁyé)(l - 5(77 Oa 5)K(W76)) - ﬁp‘ < ga

7,0 K(7,0) n <OA 2)
70D (1= 8(3,0,0+2(1 = 7)) | < 2

S =0 = (@ 4 mg = 0+ 2)) > 1

To see that such a ¥ exists, note that lim,,_,; 77" = 1—§ and lim.,_,; 5(7, 0,§)K(9) =
1—nf/(1 = 9), so lim,,; v/ (1 — B(,0,0)K09) = @P. Additionally, since fif’ —

9



n— (@ +n)g — (0 +2n) > 0, the left-hand side of the fourth inequality approaches
infinity as v — 1. The argument for the third inequality is a little more involved. Let
K'(7,6) = [(In(/0) —7@F) — In(v/09))/In(B(7,0,6 + 2(1 — 7))|. It can be shown
that lim._,; K(v,8)/K'(v,6) = 1. Moreover, lim,_,; 3(7,0,8 + 2(1 — 7)) =1 —
a’ /(1-96), so it follows that lim,_; B(7, 0, +2(1—~))X0% = lim, ., (B(7, 0,5 +2(1 —
7)) K 0K )/K(0) = 1 — P /(1 — §). Combining this with lim, ;7709 =1 -4
gives lim,_,; v/(%) (1 —B(7,0,0 +2(1 — 7))K(7’6)> =nb.

Let J = J(7,0) and K = K(7,0). There exists some y € ((1+ 0)/2,7) such that
J—1<1In(1-0)/In(y) < J for all y € [y,7]. Moreover, continuity, combined with the

inequalities in (OA 2), implies that this v can be chosen along with some & > 0 such

that

(OA 3)

’04(% 1—ep)’ (1 — B (7,60 +2(1 - v))K> — "

7(1 —E&Cc — 5D) (—P
1—v+rec

| n

3
a(y,1—ep)’ (1= B(y,&,6)%) —EP’ < g
’ n

3

—n— (@ +n)g— 0+ 2n)) > 1,

for all v € [7,7] and e¢,ep <E.
Since 1P < a(v,e¢) and a(y,ec) — 0 as e¢ — 0 uniformly over v € [,7], we
can take  to be such that P> < min{n/3, (1 —+)/2} for all v € [v,7] and e¢,ep <E.

Moreover, as J — 1 < In(1 — )/ In(y) < J, it follows that 47 € [y(1 — d),1 — ] for all

v € [v,7]. Because a(y,1 —ep) < and a(y,1 —ep) — v as ep — 0 uniformly over

v € [7,7], we can take £ to be such that pPr=1—aly,1—¢ep)’ €[5, +3(1 —)/2]
for all v € [7,7] and ec,ep < & Thus, u” € [6,0 + 2(1 — )] for all v € [7,7] and
ec,ep < E. As ((v,e,uP) is increasing in p, the first three inequalities in (OA 3)
imply that, for all v € [y,7] and e¢,ep < &, there are feasible steady states with
\uPr — 6|, |uf — wf|, uP? < n/3. Additionally, since 7° = 1 —§ — ¥ and p® =
1 — pPr — pu? — P2 it follows that all such steady states must have |p° — ° < 7.
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Finally, note that these facts, along with the fourth inequality in (OA 3), imply that

the (C|D) 4k constraint in Lemma 12 is satisfied.
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