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Abstract

We present the multicomponent functionalized free energies that characterize
the low-energy packings of amphiphilic molecules within a membrane through a
correspondence to connecting orbits within a reduced dynamical system. To each
connecting orbit we associate a manifold of low energy membrane-type configura-
tions parameterized by a large class of admissible interfaces. The normal coercivity
of the manifolds is established through criteria depending solely on the structure of
the associated connecting orbit. We present a class of examples that arise naturally
from geometric singular perturbation techniques, focusing on a model that char-
acterizes the stabilizing role of cholesterol-like glycolipids within phospholipid
membranes.

1. Introduction

Amphiphilic molecules play a fundamental role in the self-assembly of nanos-
tructured membranes. These include phospholipids, the building blocks of cellular
membranes, and synthetic polymers that are finding applications to drug delivery
compounds and as active materials for separator membranes in energy conversion
devises, [5,15,27]. The scalar functionalized Cahn-Hilliard free energy has been
proposed [14,16] as a model of the interaction of a single species of amphiphilic
molecule with a solvent, characterizing the density of the amphiphile through a
phase function u € H?(2) via the free energy

2
Frculu] :=/ %(szAu—W%u))Z—ef’ (UI%IVMIZ+U2W(M)> dr. (LD)

Q

Here W is a double well potential with two unequal depth minima at b_ < by
satisfying W(b_) = 0 > W(b4). The amphiphilic volume fraction is related
to the density u — b_ with the equilibrium state © = b_ corresponding to pure
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solvent. The strength of the lower order functionalization terms are characterized
by the value of p, generically selected as 1 or 2, and the values of 11 and ;. These
parameters encode the affinity of the charged elements of the amphiphilic molecule
for the solvent (called the solvent quality) and the aspect ratio of the amphiphilic
molecule, respectively, (see [2,5,10]).

Experimental investigations show that when single-species amphiphilic mate-
rials are dispersed in solvent and then allowed to self-assemble, in a process
called casting, they form a diverse array of molecular-width structures [12,21].
The associated bifurcation diagram depends subtly upon both the aspect ratio of
the amphiphilic molecule and the solvent quality. Molecules with aspect ratio near
unity form two-molecule thick bilayer membranes familiar from cellular biology.
Larger aspect ratio molecules form higher codimensional structures such as fil-
aments and micelles and complex networks with triple junctions and end-caps.
Within the casting experiments the genesis of this structural diversity has been
referred to as the onset of ‘morphological complexity’ [20]. Gradient flows of
the scalar FCH free energy provide an accurate representation of this bifurcation
structure, providing a mechanism for the onset of morphological complexity via
a transient passage through a pearling instability that leads bilayers to break into
filaments and other higher codimension morphologies [10]. The single species
bilayers supported by the scalar FCH free energy are always neutrally stable to
pearling bifurcations at leading order—opening the door for lower order terms,
including the system parameters 11 and 12 and the dynamic value of the bulk den-
sity of amphiphilic material to play a decisive role [23]. Indeed, previous work on
the scalar FCH has shown that the neutral modes of its bilayer interfaces are asso-
ciated either to motion of the underlying interface, termed meander, or to the short
wave-length modulations of their width associated to pearling [19]. In regimes in
which interfaces are stable to the pearling bifurcation, the interfacial motion has
been rigorously described through a normal velocity proportional to curvature, with
the proportionality constant depending upon the difference between the evolving
bulk density of amphiphilic materials away from the interface and the bilayer bulk-
density equilibrium value. Significantly this proportionality can be negative, which
is typical in casting experiments in which the bulk density is high, and leads to a
curve lengthening motion regularized by surface diffusion [6].

In biologically relevant settings, phospholipid membranes are robustly stable
to pearling bifurcations, which would generically be toxic to the living cell or to
the organelle enclosed by the membrane. Significantly phospholipid membranes
are never comprised of a single species. Generically significant amounts of choles-
terol or other glycolipids are blended into the phospholipid membranes. Indeed
all eukaryotic plasma membranes contain large amounts of cholesterol, often a
1-1 molar mixture of phospholipids and cholesterol [1]. While phospholipids are
classic amphiphilic materials with a charged head group and a hydrophobic tail,
cholesterol is a shorter, asymmetric molecule with a small, weakly charged head
and a hydrophobic body. Within a phospholipid membrane cholesterol typically
wedges itself in the void space between the amphiphilic phospholipid molecules,
see Fig. 1, where it significantly constrains the motion of the lipids.
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In this paper we introduce the multicomponent functionalized energy (MCF)
as a general framework for a system of n + 1 constituent species residing in a
domain © C R?, and provide a sharp characterization of the bilayer structures that
are robustly stable to pearling bifurcations. The characterization involves only the
spectrum of the linearization of the reduced dynamical system (1.5) that defines
the connecting profile. This framework contains the subfamily of two-component
singularly perturbed systems that describe strongly asymmetric two-component
mixtures. Previous work has exploited the asymmetry to provide explicit leading
order constructions of homoclinic connections [13]. In Theorems 3.5 and 3.9 we
show that the robust pearling stability condition corresponds to a natural geomet-
ric feature arising in the singular perturbation construction. We present a minimal
two component phospholipid-cholesterol bilayer (PCB) model arising from self-
consistent mean field reductions of molecular models [7], which captures essential
features of this ubiquitous system. In particular the PCB model encodes the length
imbalance between the cholesterol and phospholipid molecules, and the interdig-
itated packing that allows cholesterol to leverage an asymmetric influence on the
phospholipid tails [11]. We conjecture that these asymmetries afford a mechanism
allowing cholesterol type molecules to robustly stabilize phospholipid membranes.

1.1. The Multicomponent Functionalized Energy

The multicomponent functionalized (MCF) energy takes the form
2.2 2
Flu] = / 3 ‘D ¢“Au —F(u)| — &”P(u, Vu)dx, (1.2)
Q

withu € H%(2), D is an n x n, positive diagonal matrix, F : R” > R” is a smooth
vector field, and P : R" x R9*" » R represents the lower order functionalization
term. This model generalizes the multicomponent functionalized Cahn-Hilliard
free energy introduced in [26], replacing the gradient form of the vector field with
the more general function F whose non-gradient form plays a central role in the
generation of robust pearling stability.

The components {ui}?zl ofuand u,41 ;= 1—wuy — -+ — u, represent the
volume fractions of the n 4 1 constituent species. Each species is classified as either
amphiphilic or solvent. There can be more than one solvent phase, in which case they
are generally immiscible, [4]. The zeros {a;}"_, of F are associated to pure solvent
phases and act as rest-states for the system. The domains ; := {x € Q ‘ lu(x) —
a;| = O(e)} can have O (1) volume without generating leading order contributions
to the free energy. The dominant term in the multicomponent functionalized energy
encodes proximity to “good packings” of the molecules identified as solutions, or
approximate solutions, of the packing relation: D?¢>Au = F(u). The MCF energy
is typically coupled with a non-negative linear operator G, called the gradient, that
annihilates the constants. A canonical choice is G = —A. The result is the gradient
flow

5F
u=—Gur (1.3)

u(0) = uo,
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where the variational derivative is taken with respect to the L?(2) inner prod-
uct. When combined with appropriate boundary conditions, for example periodic
boundary conditions, the result is a flow which decreases the energy ¥ [u(z)] while
preserving the total mass of each constituent species. This work focuses on the prop-
erties of the energy, and constructions that lead to normally coercive low-energy
manifolds of F.

In Section 2 we characterize the properties of connecting orbits that arise as
the good packings that separate domains 2; and €2; with an O (e) width interface
comprised of amphiphilic molecules. We take the interface to be flat, and measure
normal distance in the scaled variable z(x) := dist(x, €2;)/¢, and drop the lower
order functionalization term P, so that the connecting profiles can be characterized
as minimizers of the codimension one reduced energy

F1[u] ;=/1‘Dza§u—F(u) “az, (1.4)
)

subject to the constraintu—¢;; € HZ2(R) where ¢ij :=aj+(a;—a;)(1—tanh(z))/2
satisfies ¢;; — a; as z — oo and ¢;; — a; as z — —oo. When they exist, the
absolute minimizers are the orbits of the 2n dimensional dynamical system

D*3?u—F(u) =0, (1.5)

which are heteroclinic (or homoclinic) to the zeros a; and a;. These orbits are
global minimizers of 77, yielding zero energy. Correspondingly, we call (1.5) the
freeway system and the associated heteroclinic or homoclinic orbits the freeway
connections. When the diagonal elements of D are strongly unequal, the freeway
system fits within the framework of geometric singular perturbation (GSP) theory.

The local minimizers of the reduced free energy, for which the quadratic residual
is not zero, also provide relevant connections between phases, especially when
freeway connections do not exist. They satisfy

(%2 - vL,F(u))T (P*02u — Fw) =0, (1.6)

subject the heteroclinic or homoclinic boundary conditions. Here T denotes L?
adjoint, see Section 1.2. This is a4n dimensional dynamical system, and its solutions
generically have non-zero reduced energy. We call this the toll-road system, and
the associated heteroclinic orbits the toll-road connections. Even when the matrix
D has the singularly perturbed structure, the toll-road system does not trivially fit
within the classical singularly perturbed framework. However we show that toll-
road connections are generically generated at saddle-node bifurcations of freeway
connections, and characterize the energy of the associated toll-road connection
in terms of the saddle-node bifurcation parameter. These results establish the GSP
theory as a powerful tool for the construction of MCF energies that support families
of robustly stable connections with prescribed composition.

In Section 3 we extend the zero-energy, flat-interface, freeway connections
generated by the GSP theory to low-energy, curved-interface functions in H?(£2)
through a dressing process, given in Definition3.2. This allows for the construc-
tion of a low-energy, freeway manifold parameterized by underlying “admissible
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interfaces”, given in Definition 3.1. The main analytical result, Theorem 3.5, charac-
terizes homoclinic freeway connections for which the associated freeway manifold
is normally coercive, independent of ¢ sufficiently small. The principal loss of coer-
civity in scalar systems arises through the onset of the pearling bifurcation which
triggers a high-frequency modulation of the bilayer width that can lead to its break-
up into structures with lower codimension [10]. Indeed, the pearling bifurcation can
be triggered dynamically by O (¢) changes in the bulk lipid density. Theorem 3.5
specifically rules out these classes of instability through a condition on the spec-
trum of the linearization, L of the homoclinic freeway connection about the freeway
system (1.5), see (3.10), that is readily verifiable within the GSP framework. There
is a significant literature that develops rigorous estimates on slow motion of gradi-
ent flow systems near low-energy manifolds, (see [25] and [3]). A key component
of this analysis is played by the uniform coercivity of the energy to perturbations
normal to the manifold, that allow the derivation of the asymptotic evolution of the
system projected onto the tangent plane of the manifold. In [17] these slow flow
results have been extended to recover leading order dynamics associated to the
slow flow, and we believe that the results of Theorem 3.5 will allow the interfacial
motion results in [6] to be extended rigorously to a wide class of gradient flows of
the MCF energy near the low-energy freeway manifolds constructed herein.

In Section 4 we examine the structure of the MCF energy in the neighborhood of
a saddle node bifurcation of freeway homoclinics within the GSP framework. At the
bifurcation point the kernel of L is not simple, rendering Theorem 3.5 inapplicable.
Modulo non-degeneracy assumptions Theorem4.2 shows that the freeway saddle
node bifurcation induces a toll-road homoclinic and characterizes its energy as
quadratic function of the distance of the bifurcation parameter past criticality. In
particular, we give an explicit example of a freeway saddle node bifurcation within
the PCB model, characterizing the energy of the toll-road homoclinic in terms of
the readily computable geometric features of the model.

The synergy between the MCF energy and the GSP theory is particularly for-
tuitous, as there is limited intuition for the relation between the structure of the
nonlinearity in higher-order, multicomponent models and the physical properties
of the constituent molecules. Rigorous derivation of higher-order free energies
from more fundamental models, such as the derivation of the Ohta—Kawasaki free
energy from the self-consistent mean field theory, have been performed; see [8,9]
for a general framework and [29,30] for models specific to surfactants. However
the analysis in such derivations is generically weakly nonlinear, and affords little
information on nonlinear interactions beyond those imposed in an ad-hoc manner,
generically through incompressibility arguments. The MCF energies constructed
from the GSP approach are strongly nonlinear and strongly asymmetric in their
nonlinear terms. This asymmetry plays an essential role in the analysis, rendering
the operator L strongly non-selfadjoint and sweeping its spectrum off of the positive
real axis and into the complex plane. This complexification is stabilizing as neutral
modes in the linearization of the MCH about a homoclinic freeway connection arise
from a balance between positive real spectrum of L against negative spectrum of
the surface diffusion operator.
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The phospholipid-cholesterol bilayer model presented in Section 2.3, is the min-
imal GSP based model that supports both a single-phase pearling-neutral phospho-
lipid bilayer, and a two-phase phospholipid-cholesterol bilayer thatis robustly stable
to pearling. It is tempting to find synergy between the generic, geometric nature of
these stability results and the generic presence of cholesterol within phospholipid
membranes. Cholesterol’s interdigitation between lipid molecules leads to a core
density peak and an outsized impact on lipid mobility that inhibits the lipid tail
compression required for the onset of pearling bifurcations [11]. It may be that
the genome has latched upon the generic, geometric, singular role of cholesterol
as a mechanism to prevent formation of micelles and other higher codimensional
defects within phospholipid membranes.

1.2. Notation

Consider a function f : R + X where X is a Banach space and s € R is a
parameter in f. We say that f is s-exponentially small in X if there exists v > 0
such that || fllx < e /% fors > 0 as s < | tends to zero.

We use ! to denote the transpose of a matrix or a vector in the usual Euclidean
inner product and  to denote the an adjoint operator or eigenfunction in the L?(£2)
inner product.

2. Connecting Orbits

In this section we establish the structure of the freeway and toll-road connection
problems and the existence of specific solutions in the context of the geometric
singular perturbation scaling.

2.1. Freeway and Toll-Road Connections

We assume that F : R” +— R” is smooth and has m + 1 zeros ag, ..., a,, for
which F(a;) = 0, and D is an n x n, non-negative diagonal matrix. Generically
the phase space is mapped onto species densities with the variable u; denoting the
volume fraction of species i, residing in

n
D= {u‘uizO,izl,...,n,Zu,-fl .

i=1

Zeros of F denote the solvent phases, and when modeling a mixture with a single
solvent it is generically taken as ag := (0, ...,0) with {u1, ..., u,} denoting n
amphiphilic phases. In low energy configurations these surfactants reside on thin
interfaces generically of codimension one or higher, that are O(¢) thin in one or
more directions (the co-dimensions). We focus on codimension one geometries,
and in this section fix the interface I'" to be a flat d — 1 dimensional hypersurface, so
that the minimization problem reduces at leading order to the system for ¥ given
in (1.4). The infimum is non-negative and if attained, then the minimizer is smooth
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and satisfies the associated Euler—Lagrange equation (1.6), which we call the toll-
road system. Setting G = D~2F, it is convenient to write the toll-road system as a
4n dimensional, first-order system,

“zzp»

. =Vv+Gu),

P @) (2.1)
VZ=q7

q; = VuG(u)tV,

where as a consequence v := u,; — G(u)’. A zero a of F is normally hyperbolic
if the linearization about the zero A := (a, 0, 0, 0)' € R* of (2.1) has no purely
imaginary eigenvalues.

Lemma 2.1. A zero a € R”" of F is normally hyperbolic (2.1) if and only if the
n X n matrix D_ZVuF(a) has no eigenvalues in the set R_ = (—o0, 0]. In this
case A = (a,0,0,0) has a 2n dimensional stable and 2n dimensional unstable
manifold within (2.1). The system (2.1) has a conserved quantity H : R* > R
given by

1
H(u, u.,v,v;) :=u, - v, — §|v|2 —v-D?F(u). (2.2)

In particular, homoclinic and heteroclinic solutions of (2.1) lie on the R*"~! dimen-
sional {H = 0} level set. Let a; and a; be two normally hyperbolic zeros of F and
® = ®;;(z; y) be a smooth k > 1 dimensional manifold of connections between
a; and aj. Then there exists a;j € Ry such that F1(®) = «;; for all connecting
orbits ® on the manifold.

Proof. Using the relation v = u,; — G(u)’ we take the dot product with u,

ulv,, —ulV,Gw)'v =0, (2.3)
and equivalently, since a scalar equals its own transpose, we have
d
= (ulv;) —ul v, — v'VyGuu, = 0. (2.4)
7\ 22
Substituting u;, = v + G(u) we find
d
—H(u, u;,v,v;) =0, (2.5)
dz

where H is as defined in (2.2).

Each of the zeros a of F satisfies H(a, 0, 0, 0) = 0, and since H is conserved
under the flow the orbits connecting these zeros reside on the 4n — 1 dimensional
level set {H = 0}. If a is a critical point of G then the linearization of the system
(2.1) about A := (a, 0, 0, 0)", takes the form U, = MU, where

0 Iyxn 0 0
VuG(a) 0 Inxcn 0

0 0 0 Iyxn

0 0 VuG@)'" 0

M= (2.6)
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We compute that A € 0(Vy(G(a))) if and only if the four values {:l:\/x, +/0* }
lie in o (M) up to algebraic multiplicity. In particular the isolated critical point a of
F is normally hyperbolic within the toll-road system if and only if D=2V, (F(a))
has no purely real, negative eigenvalues. If a is normally hyperbolic, the symmetry
of the spectrum of M guarantees that the stable and unstable manifolds of the 4n
dimensional system has equal dimension, hence they are both 2n dimensional.

To establish the uniformity of the energy over the manifold of connections, we
insert ®;; into (1.6) are rewrite it in the form

D320 — F(®;j) = ¥j(y), 2.7)
where the right-hand side, ‘IJ,- - lies in the kernel of the adjoint of
L := D?3? — VyF(®;)). (2.8)

Taking the partial of (2.7) with respect to y yields the relation
D Yy
L—L = %, (2.9)
dy dy
This implies that the right-hand side is L>(R) orthogonal to the kernel of L’ and

hence to lfll-j. In particular 9, H \il,-j = 0 and we may write \TJ,-j (¥) = o;j Wi (y)

L
where [|W;;(y)|2 = 1. The result follows since F1(®;;) = 1Wijll 2Ry = oij is
independent of y. O

We reinforce this dichotomy of zero-energy and non-zero energy connections
through the following definition:

Definition 2.2. If a manifold of connections ®;; has zero energy, «;; = 0, then the
constituent orbits satisfy the freeway sub-system (1.5). We call these orbits freeway
connections.

2.2. Freeway Homoclinic Connections in Singularly Perturbed Systems

Establishing the existence of connections in n-dimensional dynamical systems
of the general form (1.5) is nontrivial. However, when the eigenvalues of the matrix
D exhibit a wide range of magnitudes, controlled by a small parameter 0 < § <
1, then the associated dynamical system may have orbits that can be rigorously
constructed via geometric singular perturbation theory by gluing together solutions
of the so-called slow and fast sub-systems of reduced dimension. In [13], theory
was developed that provides for the existence and spectral analysis of homoclinic
connections in a general class of two-component, singularly perturbed vector fields
for the case in which the vector field is strongly non-symmetric. The homoclinic
connection problem is equivalent to the freeway system (1.5) with n = 2, and
D = diag(1, §), where 0 < § < 1, and the vector field F takes the form

Coy _ (FriQuis 8) + $Fia(ur, uz; 8)
F(u; §) = ( Fa (1. ur: 8) . (2.10)
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The component functions F;; obey mild regularity assumptions [13]. The resulting
model can be written as a first order dynamical system in the form (1.6), which in
the fast spatial variable ¢ := z/8 takes the form

(u1)e =8 pi1,

=46F ;8 F ,u2;0),
(P1)¢ 11(u1; 8) + Fia(uy, u2; 8) @.11)
(u2); = pa2,

(p2)¢ = Fa(uy, uz; 6).
We require that the following structural assumptions hold:

Assumption 2.3. The point a = (0, 0) is an isolated, hyperbolic zero of (1.5).
The component functions satisfy Fip(u1, 0; §) = 0 and Fa(u1, 0; §) = O for every
u1 € R. There exists an open set V C R, such that the planar system (u2);r —
Fa(s, ua; 0) = 0admits asymmetric solution uz 5 (¢; s) thatis homoclinictous = 0
forevery s € V.

Remark 2.4. The parameter § is taken asymptotically small in the GSP theory,
however in the context of the MCF energy it denotes the ratio of lengths of the
component molecules, and is not vanishingly small. Correspondingly we take &
sufficiently small to apply the GSP theory, but then consider it to be a fixed parameter
in the subsequent analysis of the MCF energy. In particular the upper bound &g, on
the value of admissible ¢ will depend upon the fixed value of §. In effect the GSP
theory applies in the regime ¢ < § < 1, as is consistent with applications.

From these assumptions, it directly follows that the origin of (2.11) is a hyperbolic
equilibrium. Moreover, we see that the manifold Mg := {ur = pp = 0} isinvariant
under the flow of (2.11). The flow on My, which we call the reduced slow flow, is
given to leading order in § in the slow variables by

(1)zz = Fr1(uy; 0). (2.12)

From the assumptions, the point (u1, p1) = (0, 0) is a hyperbolic equilibrium
of (2.12) and the associated (slow) stable and unstable manifolds Wj*(0,0) C
My are one-dimensional, and equal to the other’s reflection about the u-axis;
see Fig. 2. Defining uj ((z; s) as the unique positive solution to (2.12) satisfying
uﬁ’s (0; ) = s and lim,_, o uﬁ’s (z; s) = 0, we see that the one-dimensional (slow)
stable manifold of the origin “W5(0,0) C Mo for u; > 0 is given by the orbit of
uﬁ’S. Moreover, both the stable and unstable manifolds, ‘W;"*(0, 0), lie on the level
set {(u1, p1) : 3p7 + Jo ' Fui(@n; 0) dity = 0}.

Conversely, in the fast scaling (2.11), we see that to leading order in §, u1 = s
is constant,

¢ R R
p1(¢) = po +/0 Fia(s, u2(¢); 0)dg,

while u; obeys the so-called reduced fast flow

(u2)¢; — Fa(s, u2;0) =0. (2.13)
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p1

7, W3 (0, 0)

uj

Ta W3 ((0, 0)

Fig. 2. A schematic representation of the reduced slow flow on M. The slow stable and
unstable manifolds WE‘S(O, 0) are indicated in blue, the take-off and touchdown curves T,
and T4 are indicated in green. The jump through the fast field at a transversal intersection of
W0, 0) and T, for uy = sy is indicated in red

The manifold M is exactly the set of trivial equilibria of (2.13); by the requirements
of Assumption 2.3, these trivial equilibria are hyperbolic. Moreover, there exists an
open subset M; C Mo, My := {uz = po =0, u; € V}, such that the reduced fast
flow connects (s, p1.0,0,0) € M;j to (s, p1.4,0,0) € My through the symmetric
fast homoclinic orbit us 5 (¢; s). In this reduced limit, the jump in u;’s derivative
satisfies

AP(S) = pra — pro = AFH(S, Ua (¢ 9); 0) de.

This suggests the definition of a pair of curves on My, called the “take-off”
and “touchdown” curves, for which Ap transports the orbit first away from, and
then back to Mp in a symmetric fashion. The take-off curve is given by T, :=
{ p1 = —%Ap(ul)}, while the touchdown curve Ty is given by its reflection about
the u-axis; see Fig. 2.

A homoclinic orbit of the GSP scaling of the 4-dimensional freeway problem
lies in the transversal (first) intersection of the 2-dimensional stable and unstable
manifolds of the origin (0, 0, 0, 0). The scale separation present in the system
allows us to decompose this intersection into a first slow segment that follows
WE(0,0) C Mo closely, then makes a fast excursion away from My, but O(8)
close to uy 4 (¢, s4) for some s, and then touches down again near My to closely
follow W$(0,0) C My back to the origin (0, 0, 0, 0). In the singular limit, this
concatenation procedure provides a homoclinic orbit precisely when the take-off
curve T, intersects the slow unstable manifold ‘W (0, 0); see Fig. 2. When this
intersection is nongenerate, transversality arguments imply that the singular orbit
persists for sufficiently small 0 < § < 1; for the full analysis, see [13].

We define the function p : V — R

K} 1 2
p(s) = /OFu(m;mdﬁl —g%ﬂz(s,uz,h(;;s);mdc) NCAT
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One can deduce that if the take-off curve T, and the slow unstable manifold
Wi (0, 0) intersect transversally at u; = s, then the function p has a nonde-
generate root at s = s,. However, p also vanishes when T, intersects the slow
stable manifold W5 (0, 0), which does not lead to a meaningful geometric con-
struction when W (0, 0) N “W35(0,0) = #. To exclude these spurious roots, we
employ the explicit characterisation of ‘W (0, 0) by the solution uj (, and introduce

.. duf |
the condition that sgn ud]"’ 2(0; s4) = sgn %Ap(s*).

The following is a reformulation of [13, Theorem 2.1]:

Theorem 2.5. Assumen = 2, D = diag(l, §), that F takes the form (2.10), and that
the conditions of Assumption?2.3 hold. Fix § > O sufficiently small. Let N denote
the number of nondegenerate roots of p, defined in (2.14), that lie in the set V, and
that obey the condition

S

dl‘s (5 S*)/FD(S*, u2 4 (g5 84); 0)dg > 0. (2.15)
z R

du

Here, ”3; (z; 8) is the unique positive solution to (2.12) satisfying u]Y O;5) ==
and “?,s (z;8) = 0as z — oo. Then there are N symmetric, positive, one-circuit
solutions to (1.5) that are homoclinic to a = (0, 0). In particular, for each root
s« the associated homoclinic connection (u1,x(z), u2,x(z)), translated to be even
about 7 = 0, has the following spatial structure:

1. for0 <z <3, Uy 5(z) = 54 and us (z) = uz n(z/8; s+) to leading order in
(S,’

2. for\/g <z, u1x(2) = u?‘x (z; 8%) to leading order in 8, while uy .(z) is §-
exponentially small.

Remark 2.6. The result from [13] encompasses a larger class of systems, in particu-
lar the zero a may lie on the boundary of the domain of definition of the vector field
F. This necessitates additional technical assumptions on F, see [13, Assumptions
(A1-4)].

2.3. A Minimal Phospholipid-Cholesterol Model

The singularly perturbed framework presented in Section 2.2 encompasses a
model of a phospholipid-cholesterol bilayer (PCB) membrane. This is a minimal
form of the self-consistent mean field reductions of a blend of phospholipid, choles-
terol, and solvent, [7]. In the absence of cholesterol the PCB energy supports a
pearling neutral bilayer membrane which becomes robustly stable when optimally
loaded with cholesterol. The PCB model takes the form

/ _ L 2.2

where f is a smooth, positive, non-increasing function. The slow component,
u1, denotes the volume fraction of phospholipid while the fast component, u»,
denotes that of cholesterol. The take-off curve T,—which is derived within the
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self-consistent mean field reduction—is smooth and specified below. The scalar
potential W is precisely the smooth double-well from (1.1) with minimaatb_ =0
and by = 1 satisfying W(0) = 0 > W(1). In particular W’(u;) has a unique
transverse zero u1 = u1 max that lies in (0, 1), so that the slow stable and unstable
manifolds “W}*((0, 0)) coincide for u; > 0, leading to the existence of a fully
slow homoclinic orbit on My. Moreover, since f is positive everywhere, the fast
subsystem (2.13) admits a homoclinic orbit for every value of u; = s, hence we
may take V = R in Assumption 2.3.

The homoclinic orbit u2 j in the fast system (2.13) has the explicit expression

sech?(¢/2), (2.17)

uz p(¢;8) =

3
2f(s)

allowing us to evaluate the integral

2
Ap(s) = f Fro(ur, uz n(¢;5);0)dg = —W/ u%,h d¢ = —2T5(s).
* * (2.18)
Since Fy1(uy; 0) = W’ (u1) and W(0) = O the firstintegral in (2.14) takes the values
W (s). Moreover, the portion of the unstable slow manifold in the first quadrant can
be given as the graph {(s, w,(s)) | s € (0, u)}, where w,(s) := 2W(s). We
calculate that

1 1
ppcB(s) = W(s) — ETO(S)Z = 5 (@u(s) = To(s)) (@u(s) + To(s)) . (2.19)

As established in Section 2.2, the zeros of ppcp correspond to the crossings of the
take-off curve with the graph of the unstable slow manifold. We choose the take-off
curve to have a transverse intersection with the unstable manifold at the phospho-
lipid density u| = s, corresponding to a bilayer membrane fully interdigitated with
cholesterol. The cholesterol density is modulated by adjusting the value of f(sy),
see (2.17). For the slow subsystem, the slow stable and unstable manifolds of the
origin WS(0, 0) coincide, so that condition (2.15) is automatically satisfied—that
is, every root of p(s) is a valid candidate for the construction outlined in Section 2.2.
In Fig. 3, the dynamics on My and a corresponding pulse are shown for a specific
choice of Tj,.

3. Normal Coercivity of Homoclinic Freeway Manifolds

In this section we extend the freeway connections, generating the freeway man-
ifold of low energy solutions associated to a wide class of admissible interfaces.
We identify conditions which guarantee the normal coercivity of homoclinic free-
way manifolds, and relate the stability conditions back to the construction of the
homoclinic freeway connections within the GSP context.
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3.1. Freeway Manifolds
We consider a codimension one interface I" given by the local parameterization

x = y(s) +ezv(s),

withy : S ¢ R > I' ¢ € and v(s) the outward normal to I" at y(s). The
pair (s, z) forms a local coordinate system, for which s = s(x) parameterizes
location on I and z = z(x) is the e-scaled signed distance to I'. The line segments
{y(s) +tv(s) | |t] < €}ses are called the whiskers of length £ of T'.

Definition 3.1. For any K, £ > 0 the family Gk  of admissible interfaces is com-
prised of closed (compact and without boundary), oriented d — 1 dimensional
manifolds I" embedded in €2 ¢ R¢, which are far from self-intersection and posses
a smooth second fundamental form. More precisely, 2¢K < 1, the W*>°(S) norm
of the principal curvatures of I' is bounded by K, the whiskers of length 2¢ do
not intersect each-other nor the boundary of €2, and the surface area, |I'|, of I" is
bounded by K. We call the set 'y := {x | |z(x)| < 2¢/¢e}, the reach of T'.

For an admissible I" the change of variables x — (s, z) is a C* diffeomorphism of
I"2¢, see section 6 of [19] . To each class Gk ¢ we associate a symmetric, compactly
supported C* function & that is monotone on R and takes values 1 on [—¢, £] and
is 0 on R\[—2¢, 2¢].

Definition 3.2. For each function u which tends at an exponential rate to constant
values u — uy as z — £oo, we define its I'-dressing as the Lz(Q) function

ur (x) := u(z)£(ze) + £ (28)sign(2).
where £ := 1 — £.

We will denote both the I'-dressing and the original L2(R) function by u where
doing so does not introduce confusion. The function £(ez(x)) lies in H4(Q), even
though the distance function z is not smooth outside the set I"y,.

Definition 3.3. To each freeway connection u, of the subsystem (1.5) and admis-
sible family of interfaces Gk ¢ we associate the corresponding freeway manifold

Mg () := {u,r | T € Gk ¢}, (3.1

comprised of the dressings u, € L*($2) of the admissible interfaces by u,. We
will drop the * subscript on u,  where doing so does not generate ambiguity.

On the reach of I the (s, z) coordinate system induces a representation of the
Cartesian Laplacian (denoted A, to avoid ambiguity) in the form

e Ay = 32 + ek (5, 2)d; + &2 Ay + &32Dy 2, (3.2)

where k (s, z) = H(s)+ O(ez) is an extension of the mean curvature H (s) of I, Ag
is the Laplace—Beltrami operator associated to I, and Dy » is a second order operator
in V, with coefficients whose W*° norm is bounded by K, see Proposition 6.6 of
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[19]. The eigenfunctions of Ay are given by {6 j}?ozo with eigenvalues {—/3]2-}?020
which satisfy 0 = By < 1 < B2, ..., see [24].
For functions supported in I'5¢, the L2 inner product takes the inner form

2¢/e

tgi= [ [ 1) a6 (3.3)
—2¢/e JS

where J is the Jacobian of the change of coordinate map from x to (z,s). In

particular J (s, z) = Jo(s)J (s, 2) whe~re Jo is the square root of the determinant of

the first fundamental form of I" and J admits the expansion

d—1 d
Js.o=e[](0—etk) =) () K;(s), (3.4)
i=1 j=0
where ki, ..., ky_ are the principal curvatures of I', while Ko = 1 and fori =
1,...d—1,K; = K;(s) are (—1)" times the sum of the all products of i curvatures

of I'. From the condition 2¢K < 1 for interfacial admissibility we deduce that

- 3d71
27D < J < €5 (3.5)
and hence after a scaling by &, the inner product
2/e
(£, 8)2.1 2=/ /f(z, s) - (s, 2)Jo(s) ds dz, (3.6)
—2¢/e JS

induces a norm equivalent to the usual L? norm on I'y,. The Laplace—Beltrami
eigenmodes are orthonormal in the inner product

(o, B)s == /Sa(S)ﬁ(S)Jo(S)dS- (3.7)

Proposition 3.4. Let u, be a freeway connection between two zeros a_ and a4 of
F. The freeway manifold associated to w, lies in H*(). If the functionalization
term within the multicomponent functionalized energy (1.2) satisfies P(ay, 0) = 0,
then

P(s; ) := A{ P(uy, v(s)d,uy) dz (3.8)
is finite, and the dressings u = ur € Mk ¢(uy) have leading order energy
Flul = & DOl 7o) /S |H(s)[* Jo(s) ds
+eP ! /S P(s; T) Jo(s)ds + O(e*, eP+?), (3.9)

where H denotes the mean curvature and v the outer normal of T".

The proof of this result is a direct modification of prior results, see [14, eqn (3.3)
and Proposition 4.1], and is omitted.
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3.2. Normal Coercivity

In the sequel we assume that ag = 0 is a hyperbolic zero of the vector field F,
and that u, is a freeway connection homoclinic to ag. Without loss of generality we
may set the functionalization term P equal to zero as it lower order in ¢ and does
not impact the e-uniform coercivity bounds we seek in (3.20), see also Remark 3.6.
We let L denote the linearization of the freeway system (1.5) about u,.

L := D?3? — VyF(u,). (3.10)

We fix K,¢ > 0, choose I' € Gk ¢, and let u, r denote the dressing of I by
the homoclinic freeway connection u,. For notational simplicity we drop the *
subscript on u, r in the remainder of this section.

Our goal is to derive estimates on lower bounds of the spectrum of the second
variational derivative of # at ur, given by the operator

82 F ;
L=L@r) = @) =Li+R,  Li=LL (3.11)

where we have introduced

L£:=e’D*A,—VyF(ur), R:=—V2F(ur)- (82D2Aur - F(ur)) . (3.12)
We establish the uniform coercivity of the factored operator L, the remainder term
R is an asymptotically weak multiplier operator that is significant when addressing
neutrally stable bilayers, but has minor impact on our analysis here. Indeed, outside
the reach of I', ur is a spatially constant zero of F, and hence R is identically zero
there. Within the reach, combining the inner expansion (3.2) of the Laplacian with
the fact that u, satisfies the freeway system (1.5), we see that R reduces to

R = —ek (s, 2)V2F(ur) - D*d,ur + 0(e?), (3.13)

where « is the curvature of I'. We deduce that

IRl < Ce (3.14)

for some positive constant C depending only upon K, £ and the smoothness of u,.
In addition within the reach of I" the operator £ admits the exact expansion

£=D? (af ¥ eic(s, 2)0, + e2A4 + e3zDS,2) — VuF(ur). (3.15)
This motivates the introduction of
Lino =L +&2D?A,, (3.16)
and the inner decomposition of £ as

L:=Lino+eLin, (3.17)
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where Lin 1 = D% (k (s, 2)d; + szDs,z). On the complement of the reach of I'
the operator £ is an e-exponentially small perturbation of the constant-coefficient
operator

Louwo = e>D*A — VyF(a). (3.18)

While £ £ from (3.11) is self-adjoint, its factor L is not, indeed the spectrum of
LT L is precisely the singular values of £. The spectrum of £ £ is clearly real and
non-negative. We define the space of meander modes which closely approximate
an N-dimensional subspace of the tangent plane of Mg ¢(u,),

Xy = {E@oV1()0;()|j=1,....N}, (3.19)

where the translational eigenfunction ¥; = d,u, € ker(L). We also introduce X j\,
which is the adjoint space obtained by replacing yr; with the adjoint eigenfunction
w;r . We show that for N sufficiently large that 82,312\/ is O(1), then the operator IL
is coercive on (X ITV)L, uniformly in ¢, if the spectrum of D721 as an operator on
L?(R) has no strictly positive real spectrum.

Theorem 3.5. Let a9 = 0 be a normally hyperbolic zero of F and let v, be a
solution of the freeway system (1.5) which is homoclinic to ag, and let Mg ¢ be
the associated freeway manifold. Let the operators L = L(u,) and . = L(ur) be
as given in (3.10) and (3.11) respectively. Ifop(D_zL) N Ry = {0} with a simple
kernel spanned by 0,u, then for the product LK sufficiently small and for any fixed
yo > 0, there exists €o, i > 0 such that for all ¢ € (0, g9) and allT" € Gk ¢

Ly, V) 2y = 1 (4 1AVIE g + V122 0)) (3.20)

forallv e (Xj\,)l where N = N(¢) is chosen to satisfy yo < ,3]2\,82 < 2.

Remark 3.6. The coercivity extends to any O (¢) regular perturbation of L. Specif-
ically the functionalization terms ¢”P in ¥ add an O(e?) regular perturbation to
L that does not impact the coercivity. Neither the functionalization terms nor per-
turbations to the form of u, will impact the coercivity, and specifically they cannot
induce the pearling bifurcations to which the freeway manifolds of the scalar FCH
are susceptible.

Proof. From (3.11) and the bound (3.14) on R,
(Lv, V) 129y = (Lav, V) 12y — CellVIaq)- (3.21)

The operator I admits distinct formulations when acting on functions supported
in I'y¢ and on those supported in €2 \ I'z,. We decompose v € Xﬁ as

Vv=v_+ v, =E@E)V+E(D)V, (3.22)
and writing IL; = £ £, we expand the left-hand side of (3.20) as

(Lav. V) 20y = 1LV 1) + 2(LV- LV ) 2y + 1Lv4 120, (323)
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denoting the summands on the right-hand side as the inner, mixed, and outer bilinear
terms respectively, we estimate them individually.

Inner bilinear term From the inner formulation, (3.17), of I. we focus on the leader-
order operator (IL1);,.0 = .E;fn’OL,- 1.0, and consider it as acting on functions defined
on the abstract set Soo := S x R formed from the unbounded whiskers. This is not
a subset of €2 as the whiskers of length greater than 2¢ generically intersect. We
first establish the coercivity of the operator L;, ¢ in the L2(Soo) norm, defined as

1172 =/R/S|f|2Jo(s)dsdz. (3.24)

As observed in (3.5), for admissible interfaces I' € Gk ¢ there exists ¢ > 0 such
that

g2 2 2
Z ”f”LZ(Soo) = ”f”Lz(rz@) = C8||f||L2(SOO)v (325)
forall f € L?(I'y¢). We also introduce function space H?(Sso) with norm given by
IE12 0« = <|82f|2 F et A + |f|2) Jo(s) dsdz. (3.26)
H*(So0) RJs \ ¢
For functions supported in 'y, the inner expression for £2A given in (3.2) affords

the estimates

&
s,y = 1Ay, + 12y, < colflas,) (3.27)

Lemma 3.7. There exist puo > 0 such that for all ¢ € (0, &9) and allT' € Gk ¢
1Linof 1725, = 0 Ifl7ps.) (3.28)
forallf € (X\)* N H*(Sx)

Proof. We decompose
f =41l (3.29)

where !l the component of f that lies in the L?(Sso)-tangent plane to X n; more
precisely,

=3 "cigEvi@0;(), ¢ = EEV1D0;) g, (330)

J=0

Step 1: Control of £ in H*(Swo). Since the {Qj};’.zo are orthonormal in L2(S) and
|52ﬂ12.| <2y forall j =0,...,n, we have the estimate

n
e L DI (3.31)
Jj=0

From the assumption f L&, in L? (£2) and the inner product representation (3.3),
we derive

0=¢lf. 6010025, + {1 EVI@OOT D —0) L . (3D

o0
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which allows us to rewrite the expression for ¢; in (3.30) as

cj= —<f$(f —e)/e, ¢19j> (3.33)

L2(Sx)

We carry out the z integral 0; and express the remainder in the inner product (3.7)
as

¢ =(f@.0;) . (3.34)
where we have introduced
f(s) := —/R(f YDET — &) /e dz. (3.35)
Using Holder’s inequality, we bound
Ifl2) < eI = villesy)ifl2sy) < Celfllzs,).  (3:36)

For the last estimate we employed the second identify in (3.4) together with the fact
that the higher order curvatures K ; are uniformly bounded and and vy converges
to zero exponentially in |z| so that lz|%y is uniformly bounded in L2(R) for
k = 0,...,d — 1. The functions {0;(s)} are orthonormal in the inner product
(3.7), so Plancherel’s identity implies

n
Yot < Iflfag < C2IRITg (3.37)
j=0

for a different constant C. In particular, from (3.25) and (3.31) it follows that

1M 25y < Cellfll 2,y < Ce'21f N 2(ry)- (3.38)

Step 2: L*(Soo)-coercivity of Linoon (XL’S)J-. The spaces X s and X}LV‘S are the
analogues of X and X /TV in L?(Sso) obtained by dropping the £ cut-off in (3.19).
We establish the coercivity

1 -Linof 2500y = MM 2 s, (3.39)
for f+ e (X }Lv,s)l’ through the equivalent estimate

1L o s < Mgtz (3.40)

for all g+ € (XjV,S)J_' Since X;f\,’s is comprised of eigenspaces of L;rnyo it follows
that the condition g L va g follows if and only if f = Li;.log 1 X;rv,s' In the

remainder of step 2 we drop the L superscript on f and g, bounding f € H?(Soo)
where f solves
Linof =g, (3.41)

subjecttog € (X }L\, S)J-. We decompose g and f into their inner Fourier components
via the decomposition

g=> g;(2)0;(s). (3.42)

j=0
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where the inner coefficients are given via formula
g;(2) :=(g,0j)s, (3.43)
using the inner product from 3.7. This yields the uncoupled sub-problems
(L — D*?Ht; = g;.

Since u, is a homoclinic and defined on all R, the operators have natural exten-
sion to LZ(R). We replace &2 ,32 with k and define the family of operators {Lj }x>o0,

where Ly := (L — D2k). For each h € L2(R) we form the function
G(k) = IL "hll 2 gy

By the spectral assumption of Theorem3.5, the operator L = L has a simple
eigenvalue at 0, which is removed by the projection off of 1/f;r , while for all £ > 0,
L is invertible from LQ(R) in H2(R). For j =0,...,N(e), corresponding to
k = 82;3/2. € [0, yol, we have g; € {w;f}L Consequently, for k € [0, yo] we
considerh e[ker(L, )]L {1//1 }L sothat G isdefined, finite at k = 0 and continuous
in k on [0, yp]. Since [0, yp] is compact, G is uniformly bounded on this set for
each h. From the uniform boundedness principal we conclude that the operators
{Lk_l}ke[o,m] are uniformly norm bounded from {(y1}+ ¢ L2(R) to H2(R). For
k > yo we consider h € Lz(R), and observe that G is finite for each k, continuous
in k, and converges to zero as k — +o00. For each h € L2(R), we deduce that
SUPy,, G (k) < 00, and from the uniform boundedness principal we conclude that
the operators {L,:1 }k>y, are uniformly norm bounded from L?*(R) to H2(R). These
bounds are independent of ¢ € (0, gg) as the operators are independent of ¢. Since

~1
in,0 8 = 29 L, zﬁzg,,

and since the Laplace-Beltrami eigenmodes are orthonormal in the L%(Soo) inner
product, we deduce the existence of M > 0 such that (3.40) holds, and hence
(3.39) follows. Since E(ZB)I//IT and 1” are e-exponentially close, the coercivity in
X ﬁ follows with an e —exponentially small modification to M~! > 0.

Step 3: Coercivity of Lino on X ,%, in L*(Q2). The decomposition (3.29) provides
the lower bound

|
1 Linof 1725,y = 5 1Linof s,y = ILinof Mo ) (344)

By the coercivity of L, o in Step 2, the first positive term hasa H 2(Sso) lower bound
while the negative term can be bounded by H?(Seo)-norm of fl. More precisely,

M—l
1 Linof 1725,y = —— 18 155,y = I IZngs,, ) (3.45)
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On the other hand, a second application of (3.29) yields

which, combined with the previous inequality, implies
M—l
1Linof Iz2s.,) = 5 Ifl7s,) = CIE I ) (3.47)

for a different constant C. The coercivity Lemma follows from (3.38) by replacing
the H%(Swo) bound of £+ with the L?(S«) bound of f. o

To derive a lower bound on the inner bilinear form we account for the lower order
terms. Since the support of v_ lies in 'y, we may apply the decomposition (3.17),
obtaining

1LV 1220y = 1 (Lin0 + £ Lin DV- 122 (3.48)

Expanding the quadratic form, and applying Young’s inequality to the sign-
undeterminate term,

1LV-1132 ) = ||Lm oV=172.) = &1 Lin1V-117 - (3.49)
Since the support of v_ lies inside I"yy its L?(R) and L?(Ss) norms satisfy the
e-equivalency of (3.27). Applying the L?-coercivity of Lemma 3.7, we arrive at the

lower bound

&
—||Lln V- 1220y = F1Linov-I3as ) = o IV-lEps.

Ko
= 22 (Iv-1aq) + le Av_an(Q)).

In addition, in light of the definition (3.17) of Ly 1,

(3.50)

V

6211 Lin 1 V=117 2y < 2670w (1) 102V~ 17 2 gy + 2Mle2l 700 (167 Ds 2V 172
< 2K (19— 172, + 2(KO*[6* Dy 2V~ 72 g

< eCE + (KODIV-I7p s

< C@ + (KO (V- + 12 AV- 1120, ) -
(3.51)
Here we used the Gargliardo—Nirenberg embedding inequality and the e-equivalence
of the Hz(Q) and Hz(Soo) norms. Combining (3.49)—(3.51) and taking € and K¢
sufficiently small yields the inner coercivity

1£v- 132y = 52 (V=132 + 1678V 12 ) ) - (3.52)

Outer bilinear term: Recalling the leading order, constant coefficient outer form
Lout,0 of L, given in (3.18), we define the outer operator (IL1) gy 0 := Lim oLout,0-
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Lemma 3.8. Forany f € H2%(Q), there exist o > 0 such that
(L1)ouof s £) 120y = HolflI72 g (3.53)

Proof. By assumption a = 0 is a normally hyperbolic zero of F, in particular from
Lemma?2.1 we know that o (D 2V, F (0)) has no eigenvalues in (—oo, 0]. Form the
form of (IL1) gy, 0 We have ker((ILq) oy,0) = ker(Lout,0), and since 2 is a rectangular
box subject to periodic boundary conditions, the kernel of Loy, is comprised of
functions of the form ¢**U, where U € R? is a constant vector. This function lies
in the kernel only if

—&2|k|>D*U — V4F(0)U = 0,
or equivalently,
—&%k|? € o (D2V4F(0)).

However this is precisely the condition precluded by the assumption that a = 0 is
normally hyperbolic, thus we deduce that (Il )4, o has no kernel and is invertible.
However we can make a stronger statement. The spectrum of (1) o is discrete,
but lies on the curves of essential spectrum defined as the finite family of dispersion
relations A = A (k) for which the d x d matrix

M(k, %) := —&2|k|* D* — V4F(0) — A

has a kernel, see chapter 3 of [22]. The assumption of normal hyperbolicity implies
that none of the dispersion relation curves pass through the origin. Indeed, rescaling
k € RY, the dispersion relation curves can be made independent of &, and tend to
—o00 as |k| — oo. This implies that the curves lie a finite distance o > 0 to
the origin, which is wholly independent of e. Since (IL1)qyo is self-adjoint and
non-negative, this spectral bound provides the coercivity estimate (3.53). O

We expand the outer bilinear term as

1Ly 122 = / | Low0V+ + (VaF(0) — VyFur) v4[’dy,  (3.54)
Q
which from Young’s inequality, enjoys the lower bound

1
1LV 172y = 5 1LowoV+ 72y = 21 (VaF(©) = VaF @) vilI72qg). (3:55)
Since the support of v lies in Q2 \ I'¢, we have the bound

2]l (VuF(0) — VuF(U)) V4172 gy < 21 VuF(0) = VuF@ )17 g1y V-4 172 -

(3.56)
The homoclinic connection u,, converges to O with an exponential rate as z goes to
infinity and the function F is smooth, so the L°°-norm of the difference on 2\ I'z¢
is e-exponential small. This establishes the bound

Ko - 0
1LV 122y = 5 IV+IT2 i) — Ce IVl gy = IV Ga ) BST)
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Here the constant C depends only on F and the decay rates of u, in z.

Mixed bilinear terms The support of v v_ is contained in the overlap region 24\ I'y.
On this set the difference VyF(ur) — V4F(0) is e-exponentially small, and we use
the outer expansion of £ to obtain

(Lv_, £V+>L2(Q) = (Lout,OV—a LOul,OV"r)LZ(Q)

» (3.58)
—Ce e (<|V7|, |-£V+|)L2(Q) + (|1 Lv—|, |V+|)L2(Q)) :

Applying Holder’s inequality, the negative term on the right hand side can be
bounded by

Ce™/% (V=122 g+ ¥4 122 g + 1LV gy + 1 LV4 1220 ) - (B:59)

Since v_ = £(ez)v(x), its support is contained with I'2¢ and we may use the inner
expression for the Laplacian to obtain a lower bound on the first term on the right-
hand side of (3.58). Moreover & is slowly varying in x and independent of s. With
these observations we obtain the expansion

2AV_ =E 2 AV + 26E'0,v + %€V + &2k €y, (3.60)

with a similar expansion for v with & replaced with £. Since £ and its derivatives
are uniformly bounded, independent of ¢, we obtain

(Lout,va s Lout,0V+>L2(Q)

> (6 Low0¥: ELowoV) 20y — €& (182 AVIZ2 0 + 10:¥122 1y + V120 )

(3.61)

The first term on the right-hand side of (3.61) is positive since the product £ is

non-negative. Using the e-equivalence of L%(£2) and L%(Sso) norms from (3.25),
and standard embedding inequalities, we obtain

10V 2y < EN:VXeranr 22, ) < CelVlips,).  (3.62)
Finally, from the H 2_norm g-equivalence given in (3.27) we deduce

(Lowo¥-» Low0¥+) 200y = —Ce (12AVI22g) + IVID2q)) . (B.63)

Combining the lower bounds on the inner, (3.52), outer (3.57), and mixed (3.63)
bilinear forms, with the decomposition (3.23) and inequality (3.21), we obtain the
existence of fi > 0, independent of & for which

(Lv, V)12() = VIl — Celle® AV (3.64)

(€2)

From the form of L, elliptic regularity theory affords the existence of y > 0,
independent of ¢ > 0, such that

(L + )V, V) 20 = 162 AV T2,
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for all v .e H?(R2). Then for any ¢ € (0, 1) we may interpolate

(Lv, V)12 = HIL+ 1)V, ¥) 2y + (1= Do = 17) V1172
— Ce(1 —n)|le?Av|3,

()’
> (1 = C(1 = 08) 2 V]2, + (it — 1+ 1) V]2 -

} (3.65)

The choice t := % yields the estimate (3.20) with

m

=— >0, 3.66
’ 204+ p+y) (3.66)
independent of ¢. O

3.3. Normal Coercivity of Singular Homoclinic Freeway Manifolds

The results of Section?2.2 provide constructive conditions for the existence of
homoclinic freeway connections in the freeway system (1.5) with F as in (2.10).
Section 3.1 constructs the corresponding freeway manifold, which from Proposi-
tion 3.4 is comprised of low energy functions. Theorem 3.5 of Section 3.2 equates
the normal coercivity of the associated freeway manifold to a spectral condition on
the linearization (3.10) of the one-dimensional freeway system at the underlying
homoclinic freeway connection, u,. For the singularly perturbed systems of Sec-
tion 2.2, the spectral problem has been been analyzed in detail [13]. In particular the
stability hypothesis of Theorem 3.5 can be related to simple geometric conditions
arising in the construction of the slow-fast homoclinic freeway connections.

Assume the framework of Section 2.2 and that the function p, defined in (2.14),
has a simple root s, > 0. Let u, be the associated slow-fast homoclinic freeway
connection. Then, under the assumption that

/R Fra(ss, 12 1(¢: 50); 0) dg % 0, (3.67)

[13, Corollary 5.10 and eq. (5.16)] imply that the kernel of L, and hence that
of D2L, is simple and spanned by the translational eigenmode 9.u,. To apply
Theorem 3.5 it remains to verify that ap(D_zL) has no strictly positive elements.
To this end it is convenient to consider the point spectrum of the operator pencil
D~2(@L — ) for » € C. For any k € ap(D_2 (L — 1)) there exists a solution
¥ € L2(R) to the eigenvalue problem

A+k 0
Lw=< 0 k+82k>1ﬂ. (3.68)

This eigenvalue problem has precisely the same structure as that in [13, eq (3.2)],
modulo the replacement of ‘A’ by ‘A + &’ in the first component and ‘A’ by the
asymptotically close value ‘A 4 82k in the second component. All the assumptions
of [13] hold for this extended problem, as do each of the steps of the subsequent
analysis. Indeed, the set-up of this situation has similarities to the stability analysis
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of homoclinic stripes in singularly perturbed reaction-diffusion systems conducted
in [28] with the exception that the case k > 0 was not considered therein. It fol-
lows from the prior analysis that there exists an extended analytic Evans function
D(A, k, 6) whose roots coincide with the point spectrum of the operator pencil
D~2(L — 1), including multiplicity. Moreover, there exists an analytic fast trans-
mission function ¢, and a meromorphic slow transmission function #; 4 such that
the extended Evans function admits the slow-fast decomposition

DOk, 8) = 4815+ (1 + 8%k, 8) 154 (A, k, 8)\/8,,1F2(0, 0:8) + A + 82k

JF{1058) + 4 + k; (3.69)

see [13, eq. (4.4)]. This Evans function decomposition, which follows from the
strong structural similarity between the eigenvalue problem (3.68) and the stability
problem studied in [13], allows us to prove the following Theorem:

Theorem 3.9. Suppose that the vector field F(u; §) is as given in (2.10), the assump-
tions of Section 2.2 hold, and s, is a simple root of p given in (2.14). Let u, be the
associated freeway homoclinic connection to a = 0. Suppose that, in addition,

o' (sx) >0, (3.70)

/R Fia(ss, ua.p (23 $2); 0) d¢ <0, 371

where up (5 uy) is as defined in Assumption 2.3. Then, the set o), (D_zL) NR4
consists of precisely one simple eigenvalue at the origin.

Proof. The assumption (3.71), together with the fact that s, is a simple root of p,
guarantees the simplicity of the eigenvalue at zero. Hence, it is sufficient to show
that the Evans function D(0, k, §) (3.69) has no zeroes for k > 0 and § sufficiently
small. By [13, Lemma 4.3], the roots of the fast transmission function ¢, (1, §) are
to leading order in § given by the eigenvalues of the fast Sturm-Liouville operator
Ly = 8? — 0y, Fo (54, up (£ 54)). Since L ¢ is the linearization of (2.13) at the
planar homoclinic u» 5, it has a kernel associated to the translational invariance
of the planar system. This kernel is isolated and simple by the Sturm separation
theorem. Hence, by the inverse function theorem, ¢ f,+(62k, 8) # 0 for sufficiently
small §.

By [13, Theorem4.4], we can express the slow transmission function zs 4 (A, k, &)
to leading order in § as

ts+ (A, k,0) = —

2 / /
BG4k [BLo+b B0 AO 00
Agk)y | B_(A+k) B_(A) B2(n)
(3.72)
where A;(L) = 1/F’”(O; 8) + A > 0 (cf. [13, eq. (3.8)]) and B_(1), B’ (1) are as

defined in [13, Theorem 4.4]. By [13, Lemma 5.9], for A = 0, we can write

t5,4+(0,0,0) = —c; p'(5) /RFlz(s*, u2, 1 (55 54); 0) dg, (3.73)
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with ¢ > 0, using [13, eq. (2.9)]. From [13, Lemma 5.6] we know that B_(A) # 0
for all A > 0 if and only if y, > 0, where

sgn yx = —sgn /Flz(s*, uz,n (85 845 0)dg; (3.74)
R
see [13, Lemma 2.2]. We employ a Priifer transformation [13, eq. (5.5)] to write
B! (A +k)
————— =tan O(A + k), 3.75
B Gtk an (A +k) (3.75)

where 6 : R — R. From the statement of [13, Lemma 5.4] we deduce the strict
monotonicity of 6, and conclude

B (k) BL(0)

< (3.76)
B_(k) B_(0)
forall £ > 0. Combining (3.73) with the assumptions (3.70) and (3.71) implies that
A5(0)
———15.+(2,0,0) > 0, 3.77
B0 s+ ( ) (3.77)

which can be taken together with (3.76) to conclude that factor within the square
brackets in (3.72) is negative, while the prefactor B_ (A + k) is finite and never zero.
We deduce that #; (0, k,0) > O for all & > 0. The non-vanishing of the Evans
function (3.69) for A = 0 now follows from [13, Corollary 4.2]. |

Corollary 3.10. Suppose that the assumptions of Theorems 3.5 and 3.9 are met.
Then, there exists 8o, Go>0 for which each § € (0, §9) and each K, £ > 0 satisfying
Kt < Goyieldaney > 0 and a u > 0 such that the freeway homoclinic connection
u, of (1.5) corresponding to the system presented in (2.10) generates a normally
coercive manifold Mg ¢(uy), satisfying (3.20) with coercivity constant | for all
L=Lrwithl € g](,g.

The PCB system presented in Section2.3 prescribes a take-off curve and an
unstable slow manifold, as depicted in Fig. 3. When the take-off curve crosses
the unstable manifold from above, as it does at u| = s, then p'(s,) > 0 and
Corollary 3.10 holds. In particular the freeway manifold generated by u,, is normally
coercive in the sense of Theorem3.5.

4. Freeway to Toll-Road Bifurcations

Minimizers of the reduced free energy (1.4) solve the toll-road system (1.6). In
this section we consider bifurcations within the freeway system (1.5) that induce
changes in solution type within the larger toll-road system. We insert a parameter, (1,
within the vector field F = F(-; u). When written as pair of second order systems,
the toll-road system (2.1) has the equivalent formulation

D?u,, = F(u; u) + v, (4.1a)
D?v,. = VyF(u; w)'v. (4.1b)
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The freeway solutions satisfy (4.1) with v = 0.

In this section, we assume that for 4 > 0 the toll-road system (4.1) admits
a one-parameter pair of freeway connections (u+ (), 0)' between the fixed zeros
a; and a; of F. Moreover, we assume that the two branches merge at u = 0
through a saddle-node bifurcation, with uy (0) = u_(0) := ug. We shift the origin
(u, v) = (ug+u, v) and expand (4.1) around the connection (ug, 0) at the saddle-
node bifurcation p = 0. This results in the formulation

f, <':> + R, v; 1) =0, 4.2)

where we have introduced
i _ (L1 .y _ _ (F(u +u; n) — F(ug; 0) — VyF(uo; 0)u
b= (0 L*) Rlw v = ( [VaF(uo +u: 1) — VuF(ug; 0)'] v )
4.3)
As before L, defined in (3.10), is the linearization of (1.5) at ug with & = 0. The

nonlinear remainder term R(u, v; ) (4.3) can be expanded for small (u, v)’ and
small p, yielding

R(u, v; 1)

2
_ (W”MF + 5 (VaP) @ w) + (3, VuF) ““) +0 ('l +1ul)?)

(4.4)

(VZF)(u, v) + (3, VuF") uv

where we assume for simplicity that F(u; w) depends linearly on w, i.e. BﬁF(u; n) =
0.
We assume that the saddle-node bifurcation at © = 0 is non-degenerate. Due

to translational invariance | := d;uy € ker(L) and the saddle-node bifurcation
yields another central direction. Specifically
ker(L) = {0, Y1}, 4.5)
with
_ 1 _ — 4.6
Yo = i 2f (0 (n) —u_(w)). (4.6)

From the structure of I and the Fredholm alternative we deduce that

wos ()@ e

where Yo and Y| are even and odd, respectively, about z = 0. We introduce
ker (LT) = [wg, 1”], with wg and 1” also even resp. odd about z = 0. The

spectral projections onto v ; and 1/f;f are given by

"
M,m and nj_u: M
(Wj ¥r;) (Wi, ¥j)

with complementary projections m j=1—1TI; and ﬁ; =1 - l'[;.

Mju= w}”, j=0orl, (4.8)
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4.1. Normal form Expansion

We perform a normal form expansion in (4.2). We write the perturbative term

(u, v)! in the form
u\ (o D(p Yo, )
(v) =7 < 0 ) * (\P(p V0. u)) ’ @9

where the nonlinear functions ®, W are expanded as

Ppvo. ) =1 Por+ D P I (Yo, Yo, - o) + O (0 + V)
2<p+q=<N
(4.10)
for small p and w; here, @, is a g-linear map. ¥ is expanded analogously.

Remark 4.1. While the translational invariance of (1.6) introduces a central direc-
tion through the z-derivative of ug, the same translational invariance precludes
Y1 = 9;up from playing a direct role in the normal form expansion (4.9). This is
a direct consequence of [18, Theorem 3.19], see also [31, Theorem 3.3]. Hence,
(4.9) does not contain a linear term of the form p (1, 0)?, nor do the nonlinear
functions ® and W explicitly depend on p v;.

Substitution of the normal form expansion (4.9) in (4.2) yields at O (u)

f, <$°‘> - <8/6F> , @.11)
01 F=F(u:0)

which by the definition of L (4.3)is equivalent to
L®g; = 0,F(up; 0) + Yo, (4.12a)
L W = 0. (4.12b)

We see that Vg € ker(LT); hence, the solvability condition of (4.12a) yields

o L~'Ti}0,F Yo )
= - + + , 4.13
<\I’01> ( Mo F a1 | Boi 0 (4.13)
F=F(ug;0)

with g1 and Bp; yet to be determined. Next, we consider the equation at 0 (u?)

F(VZF) (@01, Po1) + (3, VuF) o1

(o) = )
L = . 4.14
(%z (VaEN)(@o1, Wor) + (8, VaF)Wo1 ) p_gy-0) 19

The solvability condition for the equation for W, stipulates that
—(V2F(ug; 0" (L™ fi}9, F(ug; 0), 11}, F(up; 0))
—a1 (V2F(ug; 0)") (o, T, F(ug; 0))

—Bo1 (V2 (ug; 0)") (1, T3, F(uo; 0))
— (3, VuF(ug; 0))I1{3,F(ug; 0) L ker(L), (4.15)
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from which it follows that Bp; = 0 and
20 Lyt Ny 20w MV (T —1 7 . ¥
ao1 Mo (VyF(ug; 0)") (Yo, ¥) = Mo ((VUF(UO, 0)")(L™ 0, F(ug; 0), ¥)
+0, VuF(uo; 0) 'y} ) . (4.16)

The equation at O (p?),

i <q>20> _ (%(vl%F)(x/fo, 1//0)) , 4.17)
W 0 F=F(uy;0)

being of the same qualitative form as (4.11), can be solved to obtain

@0\ _ (LTG5 (V2F) (o, vo) (Wo) (wl) 418
<\D20)_<—HS%(V3F)(¢0,IPO) R ALY A

However, the equation at O (pu),

i <‘1>11> _ <<VEF><wo, @o1) + (aﬂqu)wo)
Wi (VaF") (o, Wor) F—F(up:0)

yields, as solvability condition for Wy,

(4.19)

(V2F(uo: 0)") (W0, Wor) = —(V2F(up: 0)") (Yo, M8, F(up: 0)) L ker(L),
(4.20)
which is in general not satisfied. At the next order, we encounter a similar situation
at O(p3 ), where the equation

- (D3 (VZF) (Y0, P20) + L(VIF) (o, Yo, wo)>
i —(Vu 6 Vu 4.21
(%0) ( (VaF") (o, Wao) F=F(uy:0) @20

yields, as solvability condition for W3,
(VaF(uo; 0)") (o, W20)

1
= —(VaF(ug; 0)") (o, ng(vﬁF(uo; 0) (Yo, ¥o)) L ker(L), (4.22)

which is also in general not satisfied. Furthermore, the equations at O(pu?) and
O (p* ) explicitly depend on W11, the term that yielded the problematic solvability
condition (4.20).

To resolve these issues, we assume a resonance for the problematic equations
at O(pw) and O(p3) [18]. We take p, g € Z=0, p+q > 1,such that ppu = pPud;
likewise, we assume that there exist r, s € Zso, ¥ + s > 1, such that ,o3 = p"us.
From these assumptions, it follows that

1 1
p=u3, p=pu2 or p=u, (4.23)

where we ruled out p = X with k > 1, by standard arguments. The choice p = u%
yields the same insolvable equation at O (u) = O (p3) while the choice p = /ﬁ
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yields a transverse bifurcation with persistence of the freeway solutions for ;£ > 0.
Hence, the only relevant scaling choice to be investigated is p = .
To simplify notation, we rewrite the normal form expansion (4.9), (4.10) and

set N
u i (btr
(v> - 21: M ( q’?) + oM. (4.24)
1=

Substitution of the normal form expansion (4.24) in (4.2) yields at O (1)

o (o _ (8,F
L (@) = < S > : (4.25)
1 F=F(ug;0)

which is equivalent to (4.11); hence, we obtain

CI)llr L_lﬁgauF « (Vo w (V1

F=F(u(;0)
with &{ and BI" to be determined at the next order. At 0 (1?), we find

i (cpg) _ ((aﬂqu)cpgr + H(VIF)(@Y, oY)

\I-’g (BMVUFT)\[J}Y + (V&FT)(Q)”, \I_,ir) ; 4.27)

>F=F(u0;0)

the solvability condition for WY yields 8" = 0 and

¥ Mo (V2F (ug; 0) ") (o, T3, F(ug; 0)) = —To(d, VaF(uo; 0)") 1158, F(uo; 0)
—To(V2F(up; 0)") (L1, F(up; 0), 11§8,F(uo; 0)), (4.28)

which fully determines CI>‘1r (4.26). Furthermore, we obtain

(3)= (31) (o5 awvamsts seimoran) )
vy 0 1) \@H ™" [@u VaFO WY + (VGFD) (@ WD) ) g0

+a¥f (‘%0) + B (‘%‘) : (4.29)
with o and BY to be determined at the next order. This expansion allows us to
formulate the following Theorem:

Theorem 4.2. Let 0 < § < 1 be sufficiently small. Assume that there exists 1o > 0
such that the freeway system (1.5) admits a pair of orbit families uy (i) connecting
the same zeros a; and a; for all 0 < [ < o, assume that this pair of orbit
families coincides and terminates at uy(0) = u_(0) = ug through a saddle-node
bifurcation; assume that this saddle-node bifurcation is nondegenerate. Denote the
linearization of (1.5) at ug by L (3.10). Then, there exists an open neighbourhood
U of u = 0 such that for all u € U, there exists a minimizer uy (1) of the reduced
free energy F1 (1.4), with energy value
2 . 2
Filwe(o) = 2 DO IOT 2 05, @a0)
(V- Yo)

with Vo as in (4.6), and where 1//6f is the unique element of ker(L") that is even as
a function of z.
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Proof. The local existence of uy(w) for small p is an immediate consequence
of the normal form expansion in Section 4.1. The reduced free energy (1.4) can
be written in terms of the norm induced by the Lz(R) -inner product as ¥[u] =

2 || D%u., —F(u; p)||? = 3 ||V||2 by (4.1a). The leading order expansion of v given
in (4.26) yields the energy value to leading order in w. O

Remark 4.3. The existence of homoclinic orbits in (1.5) as presented in [13] is a
consequence of the transversal intersection of manifolds, which is directly equiva-
1§nt to the invertibility of L (3.10) (up to translation). This implies invertibility of
L (4.3), and ensures the unique local embedding of solutions of (1.5) in the phase
space of (4.1). The toll-road branch uy, that intersects the freeway homoclinic fam-
ilies uy at u = 0, exists precisely because the invertibility of L fails at u = 0,
introducing a nontrivial (even) kernel element v, which is the basis for the normal
form expansion in Section 4.1.

4.2. Toll-Road Connections in the PCB Model

The bifurcation analysis of Section 4 allows the construction of low-energy toll-
road connections. This is relevant to situations in which mass constraints prevent the
formation of freeway connections. For the PCB model of Section 2.3, the results
of Theorem 4.2 can be applied by extending the take-off curve to depend upon
the bifurcation parameter w, that is To(s) = To(s; p). In particular we make the
following assumptions:

Assumption 4.4. Let T, (s) = To(s; ) depend on a parameter u, and let ppcg =
ppcB(s; 1) accordingly be as in (2.19). There exists sy € (0, #1,max) for which
PpCB (ssn; 0) = pl/’CB (ssn; 0) = 0 and

pPCB
(ssn; 0) < 0.

pPCB (Ssn; 0)———
These assumptions guarantee the local existence of a pair of families of homoclinic

orbits in the freeway system (1.5) that terminates in a nondegenerate saddle-node
bifurcation when & = 0. For the PCB model (2.16), we find that

2
9, Fpcp (up; 0) = < 3./ sn, ')”(%)n 2 du 2 (13 O)> 431

where ug, = (usn, 1, usn,z)t is the (degenerate) homoclinic orbit at the saddle-node
bifurcation. Using Theorem 2.5, we can obtain an explicit expression for i as
definedin (4.6), as follows. From Assumption 4.4, it follows that the pair of solutions

s+ (1) to ppc(s; 1) = 0 can be expanded as s+ (i) = sen = /151 + O(1), with

ﬁ 3%PCB \/_ TO ()To

w

—”73@)(:3 - \/ o (wrr — T/2 —T. TV .
\/m (s:11)=(55n30) % ( ° ’ 0) (lY;M)Z(?E;g)Z)

S1 =
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Moreover, writing i(z) := ui (23 Ssn) (for the definition of u] > see Theorem 2.5),
we see that there exists a shift z; < 0 such that “;.1 (z55+(w) = a(z+ Jmwz +
O(1)); a direct calculation shows that z; = s1/i’(0). Hence, the saddle-node
eigenvector ¥ has, by Theorem 2.5, the leading order structure

(1~ 2/5: 5w)) 10 <2< V5,

Yo = t
(7', 0) if V3 <z,

(4.33)

where ¥ has been scaled by s; compared to its original definition (4.6). We now
use (4.33) to calculate

(9, F(uo; 0), vo) = /f (t4sn, 1)usn2 o (usnl 0) (Y0); dz

T,
= _gf (Ssn)a_(ssn§ O)/“Z,h(§§ Ssn)2d§ + 0(5), (4.34)
“w R

aT,
—2—2(s55n; 0) + O(8) (4.35)
ou

by (2.17). Furthermore, we know that wg is the unique even element of ker L,
therefore it solves the system

[3? - W//(usn,])
1 2 ’ . S (usn,1) t
35 W) (To(usn,l, 0)+ 27 T, 1 0)) 2, 2} (v),
+ f a2 (V) =0, (4.360)
2
%f(usn,l)zTo(usn,H 0)usn2 (1/’(;)1 + [8283 -1+ 2f(usn,l)usn.2] (Wg)z
=0. (4.36b)

This system can be significantly simplified using the scale separated structure of
the underlying homoclinic ug, as given in Theorem 2.5. In particular, outside the
symmetric interval [ := (—«/5 , \/3), system (4.36) reduces to

[af . W”(uan)] (1//3)1 —o, (4.37a)
(wg; )2 =0, (4.37b)

up to §-exponentially small terms. We note that (1//3 ) | must be a multiple of #'(z),

and fix (W(J)r )1 = i/zO)LA‘/ (z) = (Yo); without loss of generality. Inside /¢, we
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rescale ¢ = z/8 and find that

[32 — 82W" (sen)
f'(ssn)
f (Ssn)
+ 82 f sz (& ss0)? (v) =0, (4.380)

+= f(ssn)2 (T (Ssn; 0) + 2——To(Ssn; 0)) u2 5 (¢ Ssn)z] (wg)l

) Tols: O 53 50) (),
+ [ag — 1+ 2 (ssn. Dua (¢ ssn)] (¢§)2 =0. (4.38b)
From (4.38b), we infer that (wg )2 scales with 1/4. For the first component (wg ) v
this yields 8? (K/fg )] = 0(8) from which we conclude (wg )1 = 1 by continuity.
Rescaling the second component (&g )2 =4 (wg )2, it obeys
[02 = 14+ 2 Gsuan(i s | (9), = —%f(ssn)zTassn; )2, 4 (¢ Son)-

(4.39)
Using (2.17), we can reduce (4.39) to

[02 = 14 35eeh®@/2) | (95), = =/ () Tolss 0) sech®(c/2), (4.40)
which can be solved explicitly, yielding

(#9), = = F (sa)Tolsin; 0) sech®¢/2) (1 = (¢/2)tanh (£/2)) . (441)
To summarize, we have found to leading order in § that

o [(1 — 1 f(5sn) To (55n: 0) sech?(£ /2) (1 — (¢ /2)tanh (£/2)))" if 0 < z < /3,
0 =

( /20) A/(Z) O) lf\/g <z
(4.42)
This allows us to calculate
T2 _ , (4 2m?
Il /(wo) &5 + (1) = £ f (5 Tols3: 0) ( at ) + o
(4.43)

and

o) — i 1 o
oo = [ o () 0+ 5 [ @i ()0 @

_ o 1 A 2 3 f ( Sn) .
=2 [ gt + 5 i 0

/R sech*(¢/2) (1 — (¢ /2)tanh (¢ /2)) dg

I F/(ssn)
= \/2W ) dit +3——-To(sen; 0 4.45
W (sem) Uy di+ 3y oGm0 (445
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to leading order in §. Using the results obtained so far, we calculate the value of
the reduced free energy of the toll-road branch in the PCB model:

2

L
Filue ()] = 55 |7 ) + 0 6. (4:46)
with
0T, ?
0 2 f (ssn) To (Ssn; O)W(Ssrﬁ 0) 4 272
F1 (ssn) = I o — ) 3 + a5 ) (4.47)
Wooy JoV2W @) die + 3 T To(ssn; 0)

For a PCB model with a prescribed take-off curve, embedding the take-off curve in
a larger familty T, (s, n) which has a saddle-node bifurcation at . = 0 and reverts
to the original take-off curve at u = ., provides for the existence of a toll-road
connection with cholesterol mass scaled by f(ss,) with energy given by (4.46)
with & = . This relates the distance of the take-off curve to the unstable slow
manifold to the existence and energy of an associated toll-road connection.
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