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Spatially Varying Coefficient Models with Sign
Preservation of the Coefficient Functions

Myungjin Kim, Li Wang , and Yuyu Zhou

This paper considers the estimation and inference of spatially varying coefficient
models, while preserving the sign of the coefficient functions. In practice, there are
various situations where coefficient functions are assumed to be in a certain subspace.
For example, they should be either nonnegative or nonpositive on a domain by their
nature. However, optimization on a global space of coefficient functions does not ensure
that estimates preserve meaningful features in their signs. In this paper, we propose sign-
preserved and efficient estimators of the coefficient functions using novel bivariate spline
estimators under their smoothness conditions. Our algorithm, based on the alternating
direction method of multipliers, yields estimated coefficient functions that are nonnega-
tive or nonpositive, consistent, and efficient. Simulation studies are conducted to address
the advantages of the sign preservation method for a specific situation, where coefficient
functions have sign constraints. Furthermore, we propose residual bootstrap-based con-
fidence intervals for sign preserving coefficient functions over the domain of interest
after adjusting the inherent bias of penalized smoothing spline techniques. Finally, we
evaluate our method in a case study using air temperature, land surface temperature, and
elevation in the USA.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Spatially varying coefficient models (SVCMs) have been widely used in spatial regres-
sion problems since they are quite flexible and interpretable with various local features
on a specific location. Various methods have been proposed to estimate the coefficients
in the SVCM. There are essentially two approaches: Bayesian approaches and frequentist
approaches. Examples of the former are the SVCM in the Bayesian (Gelfand et al. 2003;
Banerjee et al. 2014; Hamm et al. 2015; Finley and Banerjee 2020) and Bayesian spatiotem-
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poral SVCM (Bakar et al. (2015, 2016)). Examples of the latter include the geographically
weighted regression (GWR) proposed by Brunsdon et al. (1996), the local polynomial max-
imum likelihood method suggested by Sun et al. (2014), and the bivariate splines over the
triangulation approach of Mu et al. (2018).

Inmany applications, it has often been assumed that coefficient functions are nonnegative
over the domain of study by their nature. For example, there is a strong positive relationship
between the land surface temperature (LST) and the air temperature so that the LST is a valu-
able proxy for predicting the air temperature. Although impact differs through season/time
(strongest during late summer and fall while weakest during winter and early spring) (Muti-
ibwa et al. 2015) as well as other factors, such as land cover, sun exposure, and distance
from the coast (Flores and Lillo 2010), an increase in the LST is expected to be related to
the rise in air temperature. Also, the higher the elevation, the lower the air temperature is
likely to be since high altitudes have low pressure, which results in a decrease in the air
temperature.

While different estimation methods have been proposed for estimating SVCMs, due
to limitations in the estimation procedure, the coefficient functions are not guaranteed to
preserve their sign over the domain even though the true coefficient functions are positive
or negative over their entire domain. To tackle this problem, we aim to provide an efficient
estimationmethod for the class of SVCMswith sign preservation of the coefficient functions.
Some research has been conducted concerning a sign preservation smoothing method; for
example, Schumaker and Speleers (2010) for a condition for the non-negativity of the cubic
Clough–Tocher macroelement and Chan and Ong (2001) for the non-negativity of a cubic
Bézier triangular patch. These pure math methods are not suitable for an error based model.
Most importantly, their methods and conditions are only for a single bivariate function, not
for multiple bivariate functions in the SVCM, which can represent local features across
different locations in a model.

In this paper, we propose novel bivariate spline estimators of the spatially varying coef-
ficient functions that are neither complex, nor computationally intensive, under either non-
negative or nonpositive constraint of coefficient functions. The spline formulation has other
computational advantages as well. After finding the coefficients that minimize the penalized
least squared errors, the spline function can be evaluated easily and efficiently at any desired
location over the domain.

We conduct a simulation to address how the proposed sign preserving spline method
works in terms of accuracy and interpretation when the true coefficient functions are non-
negative. We also construct residual bootstrap-based confidence intervals for sign preser-
vation coefficient functions on some locations after reducing the inherent bias of penalized
smoothing spline methods.

The rest of the paper is organized as follows. Section 2 introduces details of the model
specification and the proposed estimation method. Section 3 describes algorithm and selec-
tion of tuning parameters. In Sect. 4, we report the finite sample performance of the method
using simulation studies. An application of estimating air temperature using land surface
temperature and elevation in theUSA is illustrated in Sect. 5. In addition,modified bootstrap-
based global and individual tests are conducted to verify whether sign preservation coeffi-
cient functions are spatially varying or not in the study area.



Spatially Varying Coefficient Models with Sign Preservation 369

2. MODEL AND ESTIMATION METHOD

2.1. SPATIALLY VARYING COEFFICIENT MODELS

Suppose that there are n randomly selected points, and let Si = (Si1, Si2)� be the i th
location, i = 1, . . . , n, which ranges over a domain �. Let Yi be the response of interest
and Xi = (Xi0, Xi1, . . . , Xip)

� with Xi0 ≡ 1 being features on a certain location. Assume
that {(Si ,Xi ,Yi )}ni=1 satisfies the following model (Brunsdon et al. 1996)

Yi = X�
i β0(Si ) + σ(Si )εi =

p∑

k=0

Xikβ0,k(Si ) + σ(Si )εi , i = 1, . . . , n, (1)

where β0,k(·) are unknown coefficients that vary across different locations, σ(·) is the
conditional standard deviation function, and εi are the random noises with E (εi ) = 0
and Var (εi ) = 1, and independent of Xi . Let β0(·) = (

β�
0,1(·),β�

0,2(·),β�
0,3(·)

)�
, where

β0,1(·) = (β0,1(·), . . . , β0,p1(·))�, β0,2(·) = (β0,p1+1(·), . . . , β0,p2(·))�, and β0,3(·) =
(β0,p2+1(·), . . . , β0,p(·))�, for 0 < p1 < p2 < p. Without loss of generality, we assume
that in model (1), the coefficient functions, β0,p1+1(·), …, β0,p2(·), are nonnegative, the
coefficient functions, β0,p2+1(·), . . . , β0,p(·), are nonpositive, and the rest of them are not
sign constrained. We are interested in estimating β0(·) = (β0,0(·), β0,1(·), . . . , β0,p(·))�
from the observations {(Si ,Xi ,Yi )}ni=1, while preserving their signs. We also would like to
make inferences for β0(·).

2.2. BIVARIATE SPLINE BASIS APPROXIMATION ON TRIANGULATION

Suppose a domain � = ∪N
i=1Ti can be partitioned to N triangles, T1, . . . , TN . Denote

a triangulation of � by � := {T1, . . . , TN }. For any given triangle T ∈ �, we can write
T :=< v1, v2, v3 >, where vi := (v1i , v2i )

�, i = 1, 2, 3, are three vertices of T . For
any fixed location s ∈ �, let b1, b2, and b3 be the barycentric coordinates of point s,
which ensures that s = b1v1 + b2v2 + b3v3 with b1 + b2 + b3 = 1. Then, for s ∈ �,

we can define the Bernstein basis polynomials of degree d ≥ 1 relative to a triangle T as
Bd
i jk(s) = d!/(i ! j !k!)bi1b j

2b
k
3, i + j + k = d, s ∈ T .

Let Pd(T ) denote the space of all polynomials of degree less than or equal to d on T ∈ �.
Then, any polynomialP(s) ∈ Pd(T ) can be uniquely represented by

∑
i+ j+k=d γi jk Bd

i jk(s)
for s ∈ T and spline coefficient {γi jk, i + j + k = d}; see Lai and Schumaker (2007) for
more details. Let Cr (�) be the space of the r th continuously differentiable functions over
�. For smooth piecewise polynomials across intersection (either a shared edge or vertex)
between a pair of triangles in �, we introduce the spline space of degree d and smoothness
r over � in the following:

Sd,r (�) = {P(·) ∈ C
r (�) : P|T (·) ∈ Pd(T ), T ∈ �}, (2)

where P|T (·) is the polynomial piece of spline P(·) restricted on a triangle T .
Let M be an index set of the basis functions on triangulation � with N number of

triangles, and denote |M| as the cardinality of M, then, |M| = N (d + 1)(d + 2)/2. For
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notational convenience in the rest of paper, we use {Bd
i jk(s), i + j + k = d} = {Bm(s),m ∈

M} and {γi jk, i+ j+k = d} = {γm,m ∈ M} from now on. Then, denote {Bm(s),m ∈ M}
as a set of bivariateBernstein basis polynomials forSd,r (�) in (2). Then,we can approximate
the bivariate functions β0(·) ∈ Sd,r (�) by B(s)�γ , where B(s) = {Bm(s),m ∈ M}� and
γ = {γm,m ∈ M}�. To ensure the global smoothness constraint in (2), we introduce the
matrixH associated with smoothness requirement on the spline coefficients γ across shared
edges or vertices of triangles, to be more specific, we require that Hγ = 0; see Section S.2
in Supplementary Materials for an example of H.

2.3. PENALIZED CONSTRAINED LEAST SQUARES METHOD

In a typical spatial analysis, data are often sparsely distributed in some regions. Appro-
priate penalization on spatially varying coefficient functions can help tackle such sparsity
issues by borrowing features from other points. In this section, we introduce the penalized
least squares method with smoothness and inequality constraints for sign preservation.

For a bivariate function β(·), we define its energy functional as follows:

E(β) =
∫

�

{
(D2

s1β(s))2 + 2(Ds1Ds2β(s))2 + (D2
s2β(s))2

}
ds,

where Dv
s j β(s) is the vth-order derivative in the direction s j at any point s = (s1, s2)�. Next,

let S+
d,r (�k) = Sd,r (�k) ∩ {P(·) : 0 < P(·) < ∞} and S

−
d,r (�k) = Sd,r (�k) ∩ {P(·) :

−∞ < P(·) < 0}. Further, we denote

Jd,r (�k) =

⎧
⎪⎪⎨

⎪⎪⎩

Sd,r (�k), if k = 0, . . . , p1,

S
+
d,r (�k), if k = p1 + 1, . . . , p2,

S
−
d,r (�k), if k = p2 + 1, . . . , p.

To estimate the coefficient functions in model (1) under the sign preservation constraint
as described in Sect. 2.1, we solve the following constrained minimization problem:

min
β0,k (·)∈Jd,r (�k),k=0,...,p

n∑

i=1

{
Yi −

p∑

k=0

Xikβ0,k (Si )

}2

+ 1

2

p∑

k=0

λkE(β0,k), (3)

where λk are the penalty parameters and can be selected based on some criteria; see Sect. 3.2
for how to select λk . Since the coefficient functions β0,k(·)’s, k = 0, . . . , p, are intrinsically
infinite dimensional, dimension reduction is necessary. Different approaches can be applied
to reduce the dimensionality, and here, we consider the bivariate spline approximation
technique discussed in Sect. 2.2. Suppose thatY = (Y1, . . . ,Yn)� and Z = (Z1, . . . ,Zn)

�,
where Zi = Xi ⊗ B(Si ) and Xi = (1, Xi1, . . . , Xip)

�. In addition, let D� = � ⊗ P,
and � = diag(λ0, . . . , λp), where P is the block diagonal penalty matrix ensuring that
E(Bγ ) = γ �Pγ ; see Section B.2.2 in Supplementary Materials of Yu et al. (2020) for an
example of penalty matrix P.
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To reflect the smoothness conditions in (2), the minimization problem in (3) is changed
into the following constrained minimization problem:

min
γ

‖Y − Zγ ‖2 + γ �D�γ , subject to Hγ k = 0, k = 0, . . . , p,

γ k > 0, k = p1 + 1, . . . , p2, and γ k < 0, k = p2 + 1, . . . , p,

where H is a matrix associated with smoothness condition.
Note that we have both equality and inequality constraints in the above optimization

problem. To simplify the problem, we first reparametrize the spline coefficient by γ k =
Q2γ

∗
k based on the following QR decomposition: H� = QR = (Q1 Q2)

(R1
R2

)
, where Q is

an orthogonal matrix, R is an upper triangle matrix, Q1 represents the first r = rank(H)

columns of Q, and R2 is a matrix of zeros. Then, it ensures that Hγ k = 0, k = 0, . . . , p.
Let B∗(Si ) = Q�

2 B(Si ) and Z∗ = (Z∗
1, . . . ,Z

∗
n)

�, where Z∗
i = Xi ⊗ B∗(Si ). Denote

D∗
� = � ⊗ Q�

2 PQ2. Then, the constraint optimization problem reduces to an penalized
problem only with inequality constraints:

min
γ ∗ ‖Y − Z∗γ ∗‖2 + γ ∗�D∗

�γ ∗,

subject to Q2γ
∗
k > 0, k = p1 + 1, . . . , p2, and Q2γ

∗
k < 0, k = p2 + 1, . . . , p. (4)

Then, we estimate β0,k(s) by β̂k(s) = B(s)�γ̂ k = ∑
m∈M Bm(s)γ̂km , where γ̂ k =

{γ̂km,m ∈ M}� = Q2γ̂
∗
k , and γ̂ ∗

k is the minimizer of (4), for k = 0, . . . , p.

3. IMPLEMENTATION

3.1. QUADRATIC PROGRAMMING WITH INEQUALITY CONSTRAINTS

The optimization problem in (4) is the quadratic programmingwith inequality conditions.
Themain idea is based on the alternating directionmethod ofmultipliers (ADMM)algorithm
(Boyd et al. 2011; Nishihara et al. 2015; Stellato et al. 2020a). Let W = Z∗�Z∗ + D∗

λ,
A = I ⊗ Q2, and ξ = −Z�Y. Then, (4) can be converted to the following constrained
minimization problem:

min
γ ∗

1

2
γ ∗�Wγ ∗ + ξ�γ ∗, Aγ ∗ ∈ C, (5)

where C = {
x ∈ R(p+1)|M| : x	 ∈ C	, 	 = 1, . . . , (p + 1)|M|}, and

C	 =

⎧
⎪⎪⎨

⎪⎪⎩

−∞ < x	 < ∞, 	 = 1, . . . , (p1 + 1)|M|,
0 < x	 < ∞, 	 = (p1 + 1)|M| + 1, . . . , (p2 + 1)|M|,
−∞ < x	 < 0, 	 = (p2 + 1)|M| + 1, . . . , (p + 1)|M|.
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Using a decision variable γ ∗
D, and auxiliary variables γ̃ ∗ and γ̃ ∗

D, the problem in (5) can
be re-expressed as:

min
(γ̃ ∗,γ̃ ∗

D)

1

2
γ̃ ∗�Wγ̃ ∗ + ξ�γ̃ ∗ + I1(γ̃ ∗, γ̃ ∗

D) + I2(γ̃ ∗
D), such that (γ̃ ∗, γ̃ ∗

D) = (γ ∗, γ ∗
D),

(6)

where

I1(γ̃ ∗, γ̃ ∗
D) =

{
0, if Aγ̃ ∗ = γ̃ ∗

D

∞, otherwise
, and I2(γ̃ ∗

D) =
{
0, if γ̃ ∗

D ∈ C
∞, otherwise

.

To solve the problem (6), we consider an iteration of the ADMM, in which we update
the variables γ̃ ∗(k+1) and γ̃

∗(k+1)
D by solving the following problem:

(
γ̃ ∗(k+1), γ̃

∗(k+1)
D

)

= argmin
{(γ̃ ∗,γ̃ ∗

D):Aγ̃ ∗=γ̃ ∗
D}

1

2
γ̃ ∗�Wγ̃ ∗ + ξ�γ̃ ∗ + σ

2

∥∥∥γ̃ ∗ − γ ∗(k) + σ−1ζ (k)
∥∥∥
2

2

+ ρ

2

∥∥∥γ̃ ∗
D − γ

∗(k)
D + ρ−1φ(k)

∥∥∥
2

2
, (7)

γ ∗(k+1) = αγ̃ ∗(k+1) + (1 − α)γ ∗(k) + σ−1ζ (k), (8)

γ
∗(k+1)
D = �

{
αγ̃

∗(k+1)
D + (1 − α)γ

∗(k)
D + ρ−1φ(k)

}
, (9)

ζ (k+1) = ζ (k) + σ
{
αγ̃ ∗(k+1) + (1 − α)γ ∗(k) − γ ∗(k+1)

}
, (10)

φ(k+1) = φ(k) + ρ
{
αγ̃

∗(k+1)
D + (1 − α)γ

∗(k)
D − γ

∗(k+1)
D

}
, (11)

where �(·) is the Euclidean projection onto C, ζ (k) and φ(k) are related to the dual variables
of the constraints γ̃ ∗ = γ ∗ and γ̃ ∗

D = γ ∗
D.

All updates related to (7)–(11) can be done via Algorithm 1. Note that an update of
ζ (k+1) in (10) can be disregarded due to (8) and (10). The details of termination and tuning
parameters are discussed in Remarks 1 and 2. The solve_osqp function in the osqp R
package (Stellato et al. 2020b) is used to implement Algorithm 1.

Remark 1. ForAlgorithm1,weconsider the following termination criteria:‖r (k)
prime‖∞ ≤

εprime and ‖r (k)
dual‖∞ ≤ εdual, where

r (k)
prime = Aγ ∗(k) − γ

∗(k)
D , r (k)

dual = Wγ ∗(k) + ξ + A�φ(k),

εprime = εabs + εrel max{‖Aγ ∗(k)‖∞, ‖γ ∗(k)
D ‖∞},

εdual = εabs + εrel max{‖Wγ ∗(k)‖∞, ‖A�φ(k)‖∞, ‖ξ‖∞}.

In our numerical studies, the absolute tolerance εabs and relative tolerance εrel are set to be
10−6 and 10−6.



Spatially Varying Coefficient Models with Sign Preservation 373

Step 1. Initialize variables γ (0), γ
(0)
D , φ(0) and tuning parameters α ∈ (0, 2), ρ > 0, σ > 0.

Step 2. Based on information, updateW, A, and ξ .
Step 3. Set j = 0.

while (γ ∗, γ ∗
D, φ) does not converge do

(i) Find (γ̃ ∗( j+1), υ( j+1)) by solving the following KKT matrix

(
W + σ I A�

A −ρ−1I

) (
γ̃ ∗( j+1)

υ( j+1)

)
=

(
σγ ∗( j) − ξ

γ
∗( j)
D − ρ−1φ( j)

)

(ii) Update γ̃
∗( j+1)
D = γ

∗( j)
D + ρ−1(υ( j+1) − φ( j)).

(iii) Set γ ∗( j+1) = αγ̃ ∗( j+1) + (1 − α)γ ∗( j).

(iv) Obtain γ
∗( j+1)
D = �

{
αγ̃

∗( j)
D + (1 − α)γ

∗( j)
D + ρ−1φ( j)

}
, where �(·) is the Euclidean

projection onto C.
(v) Update φ( j+1) = φ( j) + ρ

{
αγ̃

∗( j+1)
D + (1 − α)γ

∗( j)
D − γ

∗( j+1)
D

}
.

(vi) Set j = j + 1.
end

Algorithm 1: A sign preserving optimization algorithm.

Remark 2. The ADMM algorithm has additional parameters α, σ , and α. The selection
of these parameters is important for the number of iterations required to converge, and it
is an open research area (Nishihara et al. 2015; Ghadimi et al. 2015; Giselsson and Boyd
2016). Algorithm 1 becomes a simple ADMM without an over-relaxation step in the case
that α = 1. However, the relaxation parameter α in the range from 1.5 to 1.8 has been
shown to reduce the number of iteration for the convergence (Eckstein 1994; Eckstein and
Ferris 1998; Ghadimi et al. 2015). If step size ρ is assumed to become fixed after a finite
number of iterations, the fixed-ρ theory applied (Boyd et al. 2011). However, to improve the
convergence in practice, various types of an adaptive scheme for varying step size parameters
through each iteration are considered (He et al. 2000; Wang and Liao 2001; Stellato et al.
2020a). The small value of σ is commonly considered to speed up the convergence with
numerical stability (Stellato et al. 2020a). Throughout simulation and case study in this
paper, we choose the regularization parameter σ = 10−6, the relaxation parameter α = 1.6,
and follow the adaptive scheme to update the step size automatically ρ suggested by Stellato
et al. (2020a).

3.2. SMOOTHNESS PARAMETERS AND TRIANGULATION SELECTION

Given the parameters related to theADMMalgorithm in Sect. 3.1, the above optimization
procedure also requires the choice of roughness penalty parameters λ = (λ0, . . . , λp)

�to
balance between accuracy of fitting and smoothness of bivariate functions β0,k(s), k =
0, . . . , p. For roughness parameters,we use the generalized cross-validation (GCV)measure
defined as

GCV(λ) = n‖Y − S(λ)Y‖2
tr {I − S(λ)}2 , (12)

where S(λ) = Z∗W−1Z∗�.
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For a triangulation, we consider a well-balanced triangulation concerning the shape and
size of triangles inside the triangulation. Lai and Schumaker (2007) suggested an optimal
triangulation in terms of themaxmin angle criterion to generate such triangulation.An exam-
ple of the maxmin angle method is discussed in Section S.1 of Supplementary Materials.
The Delaunay triangulation algorithm is used to implement the maxmin angle method. In
both the simulation studies and application analysis below, we use the TriMesh function
within Triangulation R package (Wang and Lai 2019) to create triangulations.

According to Lai and Schumaker (2007), for a given smoothness r ≥ 1, degree d ≥ 3r+2
ensures that the bivariate spline achieves the optimal estimation power asymptotically; for
example, d = 5 and r = 1. However, too high degree and smoothness would lead to
unnecessary computational burden since many parameters need to be estimated. Thus, if
it is not necessary to increase the smoothness, we suggest using r = 1 and d = 3, which
usually provide enough accuracy for smooth functions in practice, or higher up to d = 5 for
the best approximation power. For all numerical studies in this paper, we consider a degree
up to d = 3 to reduce the computational cost.

3.3. POINTWISE CONFIDENCE INTERVALS FOR THE VARYING COEFFICIENT

FUNCTIONS

Note that in general estimation procedures, confidence regions provide more information
than a single estimate can.With the sign-preserved smoothing, however, building confidence
intervals for the coefficient functions is a challenging problem, and the existing literature
is rather limited and narrow in scope. In this section, we propose a wild bootstrap method
to construct the pointwise confidence intervals (PCIs) for the coefficient functions; see
Algorithm 2.

Due to the spline estimator’s inherent bias problem, the coverage probabilities of the
confidence intervals of the coefficient functions often fall below the nominal level at some
locations. Instead of directly applying the penalized estimator to residual bootstrap in Algo-
rithm 2, we consider λ∗ = ζλ, ζ ∈ (0, 1) in order to reduce the effect of the penalty
parameter. The values of ζ ranged from 0.1 to 0.2 are suggested by Dai (2017) to choose
balanced performance in terms of both better coverage probability and smoothness of PCIs
through locations. We suggest taking ζ = 0.1 in both simulation and application.

4. SIMULATION

In this section, we conduct simulations to evaluate the performance of the proposed
methodology, the spatially varying coefficient models with sign preservation (SVCM-SP).
On a horseshoe domain � in [−1, 3.5] × [−1, 1] rectangle, we consider two bivariate
functions, β0,0(s) and β0,1(s); see Fig. 2. Note that β0,0(s) is modified from a test function
(Wood et al. 2008) as described in Section S.3 of Supplementary Materials and β0,1(s)
is defined as π(s21 + s22 )/10 so that their values are all positive across the domain �. We
consider the following model: for any i = 1, . . . , n,

Yi = β0,0(Si ) + β0,1(Si )Xi + εi , β0,k(·) ∈ R+, k = 0, 1,
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Step 1. Using the sample {(Yi ,Xi ,Si )}ni=1, fit the model and obtain the estimators of the coefficient

functions β̂k (·), k = 0, . . . , p. Calculate the following residuals ε̂i = Yi − X�
i β̂(Si ), i = 1, . . . , n.

Step 2. Generate the bootstrap residual
{
ε∗
i

}n
i=1 from the empirical distribution of the residuals ε̂i in Step

1, and set Y ∗
i = X�

i β̂(Si ) + ε∗
i , i = 1, . . . , n.

Step 3. Using the bootstrap sample {(Y ∗
i ,Xi , Si )}ni=1, refit the SVCM-SP, and obtain the bootstrap

estimators, β̂∗
k (·), for k = 0, . . . , p.

Step 4. Repeat Steps 2 and 3 B times and obtain a set of bootstrap estimates {β̂∗(b)
k (·)}Bb=1. For a given

location s ∈ � and 0 < α < 1, estimate q∗
α/2(s) and q

∗
1−α/2(s) from the bootstrap samples, where

q∗
α/2(s) and q

∗
1−α/2(s) are the α/2th and (1 − α/2)th quantiles of the bootstrap distribution of

n1/2{β̂∗
k (s) − β̂k (s)}, respectively.

Step 5. An asymptotic 100(1 − α)% bootstrap PCI is given by

{
β̂k (s) − n−1/2q∗

1−α/2(s), β̂k (s) − n−1/2q∗
α/2(s)

}
, s ∈ �.

Algorithm 2: Algorithm for constructing bootstrap based 100(1 − α)% PCIs.

where Xi ∼ Unif(0, 1), and εi ∼ N (0, 1).
For theSVCMandSVCM-SP,we consider the bivariate spline basis functionswith degree

d = 2 and 3 and smoothness r = 1. The roughness parameters λ0 and λ1 are selected by the
GCVmeasure in (12). To investigate the effect of different triangulations,�1 (40 vertices, 38
triangles),�2 (71 vertices, 86 triangles), and�3 (90 vertices, 112 triangles) are considered as
shown in Fig. 1. For the accuracy of the estimators of the true coefficient functions, we report
the approximated mean integrated squared error (AMISE), which is calculated as follows:
for k = 0, 1, AMISE = N−1

s
∑Ns

i=1

{
β̂k(si ) − β0,k(si )

}2
,where si ∈ � and i = 1, . . . , Ns .

The AMISEs of the SVCM and SVCM-SP estimators for β0,0(·) and β0,1(·) are calculated,
and their averages over 500 simulations are given by Table 1. In general, as triangulation
gets finer, the performance becomes better. However, when the triangulation is fine enough,
further refining the triangulation does not significantly improve the result but increases the
computation burden. Larger sample size and higher degree provide better accuracy based on
the AMISE for both SVCM and SVCM-SP. Through all scenarios, SVCM-SP shows better
results.

Also, we check whether the SVCM-SP and SVCM estimators are nonnegative. The
average proportion of negative values for β̂0(·) and β̂1(·) according to the SVCM and
SVCM-SP are given by Table 1. We can see that the proportion of negative values for β̂1(·)
based on the SVCM method is between 0.12 and 0.15 for scenarios while that based on
the SVCM-SP method is zero. Thus, the SVCM is not able to preserve the non-negativity,
while estimates of bivariate functions using the SVCM-SP method are nonnegative. As
discussed in Sect. 1, the SVCM does not have any non-negativity preservation constraints
when solving the optimization problem so that the estimators of β0,0(·) and β0,1(·)may have
negative values, even though the true values are not. In contrast, the SVCM-SP is guaranteed
to be nonnegative among all the simulation scenarios under the sign preservation constraints.
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(d)

Figure 1. Triangulations considered in the simulation study and application, where the red circle in a represents
the location selected to evaluate the 95% bootstrap PCIs; d triangulation used in modeling the Ta in the application
(Color figure online).

Table 1. Results of the AMISE and proportion of negative values of β̂0(·) and β̂1(·), tenfold cross-validation
MSPEs and the median computational time (in seconds) of estimation through 500 simulation iterations
for the SVCM-SP and SVCM methods

Triangulation d SVCM-SP SVCM
n = 1000 n = 2000 n = 1000 n = 2000
β0,0 β0,1 β0,0 β0,1 β0,0 β0,1 β0,0 β0,1

AMISE �1 2 0.043 0.059 0.026 0.033 0.050 0.087 0.030 0.047
3 0.037 0.059 0.021 0.033 0.044 0.086 0.025 0.047

�2 2 0.044 0.059 0.027 0.034 0.052 0.087 0.031 0.050
3 0.036 0.060 0.021 0.033 0.043 0.085 0.024 0.046

�3 2 0.040 0.059 0.023 0.033 0.047 0.087 0.027 0.047
3 0.036 0.060 0.021 0.033 0.042 0.085 0.024 0.046

Proportion of negative values �1 2 0.000 0.000 0.000 0.000 0.004 0.148 0.002 0.125
3 0.000 0.000 0.000 0.000 0.004 0.150 0.002 0.131

�2 2 0.000 0.000 0.000 0.000 0.004 0.148 0.002 0.131
3 0.000 0.000 0.000 0.000 0.004 0.151 0.002 0.132

�3 2 0.000 0.000 0.000 0.000 0.004 0.151 0.002 0.132
3 0.000 0.000 0.000 0.000 0.004 0.151 0.002 0.132

MSPE �1 2 1.042 1.027 1.044 1.028
3 1.035 1.021 1.037 1.022

�2 2 1.041 1.026 1.043 1.027
3 1.034 1.020 1.035 1.021

�3 2 1.037 1.023 1.039 1.024
3 1.033 1.020 1.035 1.021

Time �1 2 1.64 10.84 1.39 9.19
3 17.78 38.02 8.40 27.79

�2 2 6.36 14.78 3.43 12.13
3 53.91 85.30 16.47 50.84

�3 2 9.98 20.55 4.31 15.56
3 101.24 132.29 23.44 68.33
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(a) β0,0 )b(eurT, β0,1, True

(c) ̂β0 (d)PS-MCVS, ̂β1, SVCM-SP

(e) ̂β0 (f)MCVS, ̂β1, SVCM

Figure 2. Surfaces of the true coefficient functions and their SVCM and SVCM-SP estimates based on triangu-
lation �1, degree d = 2 and sample size n = 2000. Note that the surface colored in gray is zero, indicating values
below this are negative .

Figure 2 shows that the surfaces of estimates based on SVCM and SVCM-SP have a similar
pattern all across the domain. Especially for β̂1(·) on the left arms of the horse domain, most
values based on the SVCMmethod in Fig. 2f are negative, which is physically impossible in
β0,1(·) in our simulation setup. However, the SVCM-SP method produces all nonnegative
estimates across the domain �.

Next, to investigate the predictive ability for the response and computing speed of two
methods, we list the results of the tenfold cross-validation mean squared prediction error
(MSPE) and a median computational time of 500 simulations for estimation in Table 1. In
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Figure 3. Contour plots of the true coefficient functions β0,k (·), k = 0, 1, lengths of 95% PCIs and binary maps
for inclusion–exclusion of the truth from 95% PCIs based on triangulation �1, degree d = 2 and sample size
n = 2000 .

this simulation, the SVCM-SP and the SVCM provide quite similar MSPEs. For computing
time, it is reported based on a personal computer with Intel(R) Core(TM) i7-1065G7 CPU
@ 1.30GHz and 8.00GB RAM. A higher degree and a finer triangulation lead to heavier
computing burden compared to a lower degree and a rough triangulation. We also observe
that, as n increases, the SVCM-SP and SVCM show an almost linear complexity of the
sample size, although the SVCM-SP requiresmore computational time for the same situation
due to solving inequality constraints.

Lastly, we investigate the coverage probabilities of the proposed bootstrap PCIs described
in Sect. 3.3. We select six locations from the domain and build the 95% PCIs for β0,k(Si ),
k = 0, 1. See the locations of these selected points S1–S6 on Fig. 1a. Based on a total of



Spatially Varying Coefficient Models with Sign Preservation 379

Table 2. Coverage probabilities of the 95% bootstrap confidence intervals of β0,0(Si ) and β0,1(Si ), i =
1, 2, . . . , 6

Coefficient n Triangulation d S1 S2 S3 S4 S5 S6

β0,0(Si ) 1000 �1 2 0.954 0.908 0.944 0.948 0.958 0.894
3 0.966 0.946 0.962 0.982 0.968 0.966

�2 2 0.954 0.900 0.920 0.968 0.958 0.970
3 0.960 0.956 0.972 0.984 0.962 0.972

2000 �1 2 0.970 0.954 0.950 0.892 0.958 0.868
3 0.982 0.986 0.980 0.986 0.986 0.972

�2 2 0.964 0.960 0.938 0.976 0.958 0.944
3 0.986 0.986 0.990 0.994 0.988 0.976

β0,1(Si ) 1000 �1 2 0.918 0.920 0.944 0.944 0.966 0.960
3 0.900 0.868 0.970 0.956 0.966 0.950

�2 2 0.904 0.860 0.956 0.946 0.968 0.952
3 0.896 0.846 0.972 0.958 0.958 0.952

2000 �1 2 0.924 0.940 0.964 0.940 0.960 0.950
3 0.930 0.896 0.974 0.940 0.958 0.944

�2 2 0.914 0.882 0.980 0.944 0.958 0.950
3 0.928 0.882 0.970 0.950 0.962 0.954

100 bootstrap samples, we calculate the percentage of replications that the proposed PCIs
cover the true value of β0,k(Si ). The results of the coverage percentage on each selected
point are given in Table 2. Although a little under-coverage is observed on some points
(e.g., S2 for β0,1(·) and n = 1, 000), the PCIs achieve the specific coverage probability in
general. Figure 3a, b displays the contour plot of the true coefficient functions. For a typical
replication, Fig. 3c–f provides maps of the length of the 95% PCIs, and binary maps for
inclusion–exclusion of the truth based on the corresponding 95% PCIs. Longer PCIs are
observed primarily on the upper arm of the right side for β0,0(s), as well as on the upper
and lower arms of the right side for β0,1(s). This is because the values of true coefficient
functions are relatively larger compared to those in other locations.

5. AN APPLICATION TO THE AIR TEMPERATURE STUDY

This section illustrates the application of the proposedmethod to estimate air temperature
using land surface temperature (LST) and elevation (Elevation).

High-spatial-resolution gridded air temperature (Ta) is essential to the study of urban
climate such as urban heat islands and their impacts on building energy use (Li et al. 2019).
However, current gridded air temperature data are limited and cannot capture the variation
of urban air temperature due to the high heterogeneity in urban areas. Statistical models
are used to estimate or interpolate gridded Ta at weather stations (Li et al. 2018b). LST
is a useful auxiliary dataset in the estimation or interpolation. In this study, we test our
method using a dataset of the seamless 1km resolution daily LST (Li et al. 2018a) and air
temperature at weather stations in the USA.

The dataset contains the maximum Ta as the response variable, observed from the 6,969
weather stations, Si , on August 07, 2010. Two covariates include the standardized LST
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Figure 4. Scatter plots of Ta, LST, Elevation, the fitted Ta, residuals, and tenfold CV MSPEs of the SVCM-SP,
SVCM, GWR .

and Elevation at the stations. As we discussed in Sect. 1, assuming that nonnegative
and nonpositive constraints for β0,1(·) and β0,2(·), respectively, we consider the following
model:

Tai = β0,0(Si ) + β0,1(Si )LSTi + β0,2(Si )Elevationi + εi , (13)

where Si is the i th weather station, i = 1, . . . , 6969, and β0,0(·) ∈ R, β0,1(·) ∈ R+,
β0,2(·) ∈ R− are the coefficient functions for LST and Elevation. Based on the value,
we classify the Ta into seven groups: (1) less than 15, (2) 15–20, (3) 20–25, (4) 25–30, (5)
30–35, (6) 35–40, and (7) greater than 40. These groups are illustrated in Fig. 4a. Similarly,
Fig. 4b, c illustrates the values of LST and Elevation.

For the SVCM and the SVCM-SP, we apply the bivariate spline smoothing method over
triangulation. We consider degree 3 and smoothness 1. Figure 1d displays the triangulation
adopted, which contains 255 triangles and 161 vertices. For the GWR, the Gaussian kernel is
considered and the cross-validation bandwidth is selected by the function gwr.sel of spgwr
R package (Bivand et al. 2020). The function gwr in the same R package is used to fit the
GWR model.
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Histograms inFigureS.4 ofSupplementaryMaterials clearly show thedifference between
the SVCM and the SVCM-SP. Based on the SVCM, β̂1(s) has negative values as low
as −4.02, while the SVCM-SP completely satisfies the nonnegative property. Also, the
estimator β̂2(s) in the SVCM ranges from −10.21 to 10.25, while in the SVCM-SP, it
ranges from −7.56 to a small negative value close to zero. We see that the SVCM-SP
estimators β̂1(s) and β̂2(s), with sign preservation, behave much better than the SVCM.
Thus, the proposed SVCM-SP method give a sensible picture of LST and Elevation,
which implies that Ta increases with LST and decreases with Elevation on the domain
of interest, even though the amount of their effects are different through locations. Scatter
plots of the fitted Ta and residual values based on three methods are presented in Fig. 4d–i.
From these plots, we see that the fitted values and residuals do not seem to show a big
difference between the three methods. To compare the prediction performance of different
methods, we report the tenfold cross-validation (CV)mean squared prediction error (MSPE)
for different methods: the GWR (2.64), SVCM (2.37), and SVCM-SP (2.45). It is clear that
the SVCM and SVCM-SP provide better performance in the tenfold CV MSPE than the
GWR; see Fig. 4j for the MSPE of each fold based on three methods.

The estimates for the coefficient functions, and the upper and lower bounds of the 95%
PCIs for the coefficient functions of the SVCM-SP are given in Fig. 5. From Fig. 5e, we
see that the effect of LST is the largest in California. From Fig. 5f, we see that in Mountain
states (Colorado, Wyoming, Utah, NewMexico, Nevada, Idaho, Arizona, Montana) as well
as Oregon, and Washington, Elevation has a significant negative effect on Ta. From
Fig. 5d, we also notice that, for the northeastern region and the west coast of the USA, the
intercept term is smaller than that in other states.

One interesting statistical question is whether some coefficients are really spatially vary-
ing or not over a domain on a subspace with sign constraints. To answer this question, we
propose a bootstrap-based global test for spatial stationarity of coefficient functions, which
can be conducted by comparing the residual sum of squares (RSS) from both parametric
and nonparametric fittings according to reduced and full models, respectively. The null
hypothesis for a global test with sign constraints is as follows:

H0 : β0,k(s) = β0,k, 0 ≤ k ≤ 2, β0,0(·) ∈ R, β0,1(·) ∈ R+, β0,2(·) ∈ R−. (14)

The corresponding test statistic is given by Tn = (RSS0 −RSS1)/RSS1, where RSS0 =
∑n

i=1

{
Yi − ∑2

k=0 Xik β̂k

}2
, and RSS1 = ∑n

i=1

{
Yi − ∑2

k=0 Xik β̂k(Si )
}2

are the residual
sum of squares under H0 and under the model (13), respectively.

The null hypothesis (14) is rejected for large values of the test statistic Tn . Since the
distribution of the error in the model is less straightforward, bootstrap is a possible method
to test the hypothesis in (14) for the non-stationarity of coefficient functions. Algorithm
3 describes a nonparametric bootstrap procedure modified based on Cai et al. (2000) to
calculate the p value of the above global test. The corresponding p value based on Tn is
less than 0.05 in this application. Thus, at a significance level of 0.05, there is no significant
evidence to conclude that at least one of the coefficients in the model (13) is not spatially
varying through the USA.
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15 20 25 30 35 0.0 0.5 1.0 1.5 2.0 −10 −8 −6 −4 −2

20 25 30 35 0.5 1.0 1.5 2.0 2.5 −6 −5 −4 −3 −2 −1

20 25 30 35 40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 −6 −4 −2 0

(a) ̂β0(·), SVCM-SP Lower (b) ̂β1(·), SVCM-SP Lower (c) ̂β2(·), SVCM-SP Lower

(d) ̂β0(·), SVCM-SP (e) ̂β1(·), SVCM-SP (f) ̂β2(·), SVCM-SP

(g) ̂β0(·), SVCM-SP Upper (h) ̂β1(·), SVCM-SP Upper (i) ̂β2(·), SVCM-SP Upper

20 25 30 35 −1 0 1 2 −8 −6 −4 −2 0 2 4

(j) β0(·) (k)MCVS, β1(·) (l)MCVS, β2(·), SVCM

Figure 5. SVCM-SP and SVCM estimates for the coefficient functions, and the upper and lower bounds of the
95% confidence intervals for the coefficient functions in the application.

Step 1. Based on the data {(Si ,Xi , Yi )}ni=1, calculate the residuals ε̂i = Yi − ∑p
k=0 Xik β̂k (Si ),

i = 1, . . . , n, from the model (13) and obtain the centered residuals ε̂i − ε̂, where ε̂ = 1
n

∑n
i=1 ε̂i ;

Step 2. From the empirical distribution of the centered residuals ε̂i − ε̂ defined in Step 1, generate the
bootstrap residuals {ε∗

i }ni=1, and set Y
∗
i = ∑p

k=0 Xik β̂k + ε∗
i ;

Step 3. Using the bootstrap sample {(Si ,Xi , Y
∗
i )}ni=1, evaluate the bootstrap test statistic T

∗
n ;

Step 4. Repeat Steps 2 and 3 B times and obtain a set of a bootstrap test statistic {T ∗
nb}Bb=1. Then, the

corresponding p value is estimated by p̂ = ∑B
b=1 I (T

∗
nb ≥ Tn)/B, where I (·) is the indicator function,

Algorithm 3: Algorithm of global test for the spatial stationarity of coefficient func-
tions.
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However, a significant p value of the above global test does not indicatewhich coefficients
vary through a station. Thus, a natural subsequent test is an individual stationarity test for
each particular coefficient function. Related hypotheses are as follows:

H0k : β0,k(s) = β0,k, v.s. H1k : β0,k(s) �= β0,k, for k = 0, 1, 2, (15)

where β0,0(·) ∈ R, β0,1(·) ∈ R+ and β0,2(·) ∈ R−. To conduct a hypothesis test, the test
statistics are defined by Tnk = (RSS0k −RSS1)/RSS1, k = 0, 1, 2, where the residual sum
of squares under H0k , k = 0, 1, 2, and H1 in (15) are

RSS0k =
n∑

i=1

⎧
⎨

⎩Yi −
∑

k′ �=k

Xik β̂k′(Si ) − Xik β̂k

⎫
⎬

⎭

2

, RSS1 =
n∑

i=1

{
Yi −

2∑

k′=0

Xik′ β̂k′(Si )

}2

.

Algorithm 4 provides how to estimate the p value of the individual hypothesis test for
k = 0, 1, 2. At a significance level of 0.05, for k = 0, 1, 2, we reject the null hypotheses H0k

in (15) and conclude that all the coefficient functions with sign preservation in the model
(13) are spatially varying through weather stations in the USA.

Step 1. Based on the data {(Si ,Xi , Yi )}ni=1, calculate the residuals ε̂i = Yi − ∑2
k′=0 Xik′ β̂k′ (Si ),

i = 1, . . . , n, from the model (13) and obtain the centered residuals ε̂i − ε̂, where ε̂ = n−1 ∑n
i=1 ε̂i ;

Step 2. From the empirical distribution of the centered residuals ε̂i − ε̂ defined in Step 1, generate the
bootstrap residuals {ε∗

i }ni=1, and set Y
∗
i,k = Xik β̂k + ∑

k′ �=k Xik′ β̂k′ (Si ) + ε∗
i for k = 0, 1, 2;

Step 3. Using the bootstrap sample {(Si ,Xi , Y
∗
i,k )}ni=1, evaluate the bootstrap test statistic T

∗
n,k for

k = 0, 1, 2;

Step 4. Repeat Steps 2 and 3 B times and obtain sets of a bootstrap test statistic {T ∗
nbk }B,2

b=1,k=0, and the

corresponding p values for kth individual tests are estimated by p̂k = ∑B
b=1 I (T

∗
nbk ≥ Tnk )/B, for

k = 0, 1, 2, where I (·) is the indicator function.

Algorithm 4: Algorithm of individual tests for the spatial stationarity.

6. CONCLUSION AND DISCUSSION

In this paper, we propose a class of nonparametric regression models with sign-preserved
spatially varying coefficient functions. The SVCM-SP method is applicable for studies
where coefficient functions in a model have sign constraints, and their solutions should be
in a specific subspace for the appropriate direction of the sign for functions. The proposed
penalized bivariate spline method on the triangulation technique for coefficient functions
is flexible and efficient. It allows different degrees and smoothness on an irregular domain
with a complex boundary.
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Furthermore, other approaches to estimate the coefficient function under some constraint
could be more fully explored. For example, Bayesian methods with a log-Gaussian or
transformation of prior may also achieve the sign preservation of coefficient functions. Note
that Bayesian methods require an appropriate choice of the prior distribution of coefficients.
Prior beliefs could be controversial due to subjective selection, which cannot be easily
determined using a mechanical way. In practice, if prior is based on poor knowledge or
experience, the Bayesian approach could generate misleading results. Compared to the
hierarchical structure of Bayesian methods, our method provides an easier formulation
to implement based on penalized ordinary least squares, and thus more computationally
efficient. It is interesting to have a thorough comparison of our proposed method with the
Bayesian approaches in future work.

This study opens several avenues for future research. First, our methods can be applied
to spatiotemporal data analysis. For example, in the air temperature study, we can inves-
tigate the spatiotemporal dynamics of air temperature using land surface temperature and
elevation. The method with sign preservation would be more appropriate in terms of both
interpretation and accuracy for the case. Second, as inference for the coefficient function
with the sign-preserved smoothing is challenging, we suggest making an inference about
coefficient functions based on bootstrap procedure, which might impose a heavy computa-
tional burden. It is interesting to develop asymptotic properties of sign-preserved coefficient
functions to build a more efficient inference procedure.
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