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ABSTRACT ARTICLE HISTORY

Over the past few months, the outbreak of Coronavirus disease Received 12 August 2020
(COVID-19) has been expanding over the world. A reliable and accu- Accepted 1 May 2021

rate dataset of the cases is vital for scientists to conduct related KEYWORDS

research and policy-makers to make better decisions. We collect Anomaly detection;

the United States COVID-19 daily reported data from four open Coronavirus; count time
sources: the New York Times, the COVID-19 Data Repository by Johns series; data comparison; data
Hopkins University, the COVID Tracking Project at the Atlantic, and integration; outlier correction
the USAFacts, then compare the similarities and differences among

them. To obtain reliable data for further analysis, we first examine the

cyclical pattern and the following anomalies, which frequently occur

in the reported cases: (1) the order dependencies violation, (2) the

point or period anomalies, and (3) the issue of reporting delay. To

address these detected issues, we propose the corresponding repair-

ing methods and procedures if corrections are necessary. In addition,

we integrate the COVID-19 reported cases with the county-level aux-

iliary information of the local features from official sources, such

as health infrastructure, demographic, socioeconomic, and environ-

mental information, which are also essential for understanding the

spread of the virus.

1. Introduction

Since the first infected case reported in December 2019, the outbreak of Coronavirus
disease (COVID-19) has unfolded across the globe. In the US, coronavirus has infected
more than five million people and killed over 160,000 people, as of the time of writing.
While essential public health, economic and social science research in measuring and mod-
eling COVID-19 and its effects is underway, reliable and accurate datasets are vital for
scientists to conduct related research and for governments to make better decisions [5].
Unfortunately, errors could occur in the data collection process, especially under such
a pandemic. In this work, we focus on data collection, comparison, data inconsistency
detection, and corresponding curating.
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Living through unprecedented times, governments must rely on timely, reliable data
to make decisions to mitigate harm and support their citizens. Every day, several vol-
unteer groups and organizations work very hard on collecting data on COVID-19 from
all the counties and states in the US. There are four primary sources, including (1) the
New York Times (NYT) [11], (2) the COVID Tracking Project at the Atlantic (Atlantic)
[16], (3) the data repository by the Center for Systems Science and Engineering (CSSE)
at Johns Hopkins University (JHU) [18], and (4) USAFacts [27]. Although these sources
usually obtain their confirmed infectious and death cases data from the government agen-
cies, the counts still vary due to the time of their collection as well as several other
issues. However, these differences can be critical for real-time analysis. In this work, we
first collect and compare the COVID-19 daily reported data from the above four open
resources.

We observe a 7-day cyclical pattern for daily new cases and new deaths at the state and
national level in the US. To test if the observed patterns are not accidental, we conduct a
seasonality hypothesis test at the county, state and national level for the infected and death
count time series from 15 March to 25 July 2020.

The COVID-19 data pose unique data quality challenges due to its spatiotemporal
nature, and the problem of delayed-reporting and under-reporting. In this paper, we pro-
vide some anomaly and outlier detection techniques in the context of time series. After
the anomaly detection, we explore various methods to repair the problematic data. To be
more specific, the entire data cleaning procedure has been divided into two categories:
(1) manual cleaning, and (2) automatic cleaning. On the one hand, manual cleaning has
very high accuracy; on the other hand, it is challenging to implement due to the high cost
in time and effort. In this paper, we propose some data repairing methods to address the
aforementioned issues. We summarize the background of these methods and give details
on the implementation of the repairing procedure for COVID-19 reported data with man-
ual and/or automatic cleaning methods. Although other researchers also mentioned some
similar data problems for COVID-19 in the literature, to the best of our knowledge, our
work is the first one that focuses on how to address these issues and repair the COVID-19
data.

Furthermore, it has been observed that the local characteristics, such as socioeconomic
inequity, may also contribute to the spread of epidemic [1,15]. For example, the intrinsic
local community characteristics might influence and shape the spread of COVID-19, such
as mobility, demographics, and socioeconomic status. The availability of census data thus
leads us to include all the epidemic data, control measures, and local information while
modeling the infections, deaths, and recoveries. To facilitate research in identifying the
significant factors that affect the disease spread pattern and predict future infections and
deaths, we also collect and combine local auxiliary information at the county level in the
US from reliable sources.

To help users better visualize the epidemic data, we developed multiple R shiny
apps embedded into a COVID-19 dashboard launched on 27 March 2020. Cur-
rently, we provide both infectious and death maps and time series of the US. More-
over, we provide a short-term (7-day) forecast [32] (updated daily) and a long-term
(4-month) projection [33] (updated weekly) of the COVID-19 infected and death
count at both the county level and state level. For public usage, a Github repository
(https://github.com/covid19-dashboard-us/cdcar) is established to provide daily updated
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and cleaned data. An R package cdcar isalso created for anomaly detection and repairing.
In summary, we expect the proposed methods to have the following scientific merits. (i)
Before choosing and integrating the data sources for analysis, it is important to understand
how the data were collected and preprocessed. Therefore, in this article, we first inves-
tigate the similarities and dissimilarities among multiple data sources. (ii) Noticing the
anomalies in the epidemic data, we develop several anomaly and outlier detection tech-
niques in the context of count time series. Meanwhile, we further discover the reasons
for these anomalies. (iii) After the anomaly detection, we introduce several methods to
repair the problematic data and the corresponding historical data. Then, we obtain our
database by integrating the cured data with many local characteristics. (iv) The proposed
methods and the data are built into an R package, which is publicly available through
GitHub.

The rest of the paper is organized as follows. Section 2 introduces the data related
to the study of COVID-19, including a detailed description of the epidemic data, pol-
icy data, demographic characteristics, healthcare infrastructure, socioeconomic status,
environmental factor and mobility data. Section 3 discusses the comparison of the epi-
demic data from different sources. Section 4 describes the cyclical pattern, types of
anomalies of the COVID-19 reported time series, and how to perform the anomaly
detection. Section 5 outlines methods for data repairing. Section 6 describes how to
implement the proposed data comparison, anomaly detection and repairing proce-
dure, and provide the details of the usage notes. Section 7 concludes the paper with a
discussion.

2. Data

We collect the epidemic data up to county level in the US along with control measures
and other local information, such as socioeconomic status, demographic characteris-
tics, healthcare infrastructure, and other essential factors to analyze the spatiotempo-
ral dynamic pattern of the spread of COVID-19. Our data covers about 3200 county-
equivalent areas from 50 US states and the District of Columbia. A live version of the data
analysis will be continually updated on our dashboard (https://covid19.stat.iastate.edu)
and our Github repository (https://github.com/covid19-dashboard-us/cdcar). The sources
and introductions for these data are detailed in Table 1.

2.1. Epidemic data

The daily counts of cases and deaths of COVID-19 are crucial for understanding how
this pandemic is spreading. Thanks to the contribution of the data science communities
across the world, multiple sources are providing the COVID-19 data with different pre-
cision and focus. In our article, we consider the reported cases from the following four
sources: the NYT [11], the Atlantic [16], the JHU [18], and the USAFacts [27]. To clean
the data, we first fetch data from the above four sources and compile them into the same
format for further comparison. Then, we use the algorithms discussed in Section 4 to detect
the anomalies in the data sources and choose the one with the least anomalies for further
repair.
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Table 1. Sources of datasets.

Data type Source
COVID-19 Related Time-series
Infections Data [11,16,18,27]
Fatality Data [11,16,18,27]
Recovery Data [16]
Dates of COVID-19 Related Policies
Declarations of State Emergency [13]
Shelter-in-place or Stay-at-home Order [9]
Mobility Data
Bureau of Transportation Statistics [17]

American Community Survey (ACS) Data

2010-2018 Demographic and Housing Estimates [22]

2005-2009 ACS 5-year Estimates [20]
2012 Economic Census [23]
2010 US Decennial Census [21]
Homeland Infrastructure Foundation-level Data [26]
USA Counties Database [25]
US Census Bureau Gazetteer Files [24]

2.2. Other factors

When analyzing the reported cases of COVID-19, many other factors may also contribute
to the temporal or spatial patterns; see the discussions in [29]. For example, local features,
like socioeconomic and demographic factors, can dramatically influence the course of the
epidemic, and thus, the spread of the disease could vary dramatically across different geo-
graphical regions. Therefore, these datasets are also supplemented with the population
information at the county level in our repository. We further classify these factors into
the following six groups.

2.2.1. Policy data

In a race to stunt the spread of COVID-19, federal, state and local governments have
issued various executive orders. Government declarations are used to identify the dates
that different jurisdictions implemented various social distancing policies (emergency dec-
larations, school closures, bans on large gatherings, limits on bars, restaurants and other
public places, the deployment of severe travel restrictions, and ‘stay-at-home’ or ‘shelter-
in-place’ orders). For example, former President Trump declared a state of emergency on
13 March 2020, to enhance the federal government response to confront COVID-19. Later
in the past spring, at least 316 million people in at least 42 states, the District of Columbia
and Puerto Rico were urged to stay home.

Since the late April 2020, all 50 states in the US began to reopen successively, due to the
immense pressures of the crippled economy and anxious public. A state is categorized as
‘reopening’ once its stay-at-home order lifts, or once reopening is permitted in at least one
primary sector (restaurants, retail stores, personal care businesses), or once reopening is
permitted in a combination of smaller sectors. We compiled the dates of executive orders
by checking national and state governmental websites, news articles, and press releases.

2.2.2. Demographic characteristics
In the demographic characteristics category, we consider the factors describing racial,
ethnic, sexual, and age structures. These variables are extracted from the 2010 Census
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[21], and 2010-2018 American Community Survey (ACS) Demographic and Housing
Estimates [22].

2.2.3. Healthcare infrastructure

We also incorporate several features related to the healthcare infrastructure at the county
level in the datasets, including the percent of persons under 65 years without health insur-
ance, the local government expenditures for health per capita, and total bed counts per
1000 population.

2.2.4. Socioeconomic status
We consider diverse socioeconomic factors in the county level datasets. All of these factors
collected from 2005-2009 ACS 5-year estimates [20].

2.2.5. Environmental factor
We also collect environmental factors that might affect the spread of epidemics signifi-
cantly, such as the urban rate and crime rate.

2.2.6. Mobility

Another category of factors in the literature that affects the spread of infectious diseases
significantly is the mobility; for example, movements of people from neighborhoods. We
collect the mobility data from the Bureau of Transportation Statistics.

2.3. Geographicinformation

The longitude and latitude of the geographic center for each county in the US are available
in Gazetteer Files [24].

3. Comparison of the epidemic data

In this subsection, we assess the similarities and differences of the reported infection and
death cases from the previously mentioned four sources. The data collection sources and
release times are indicated for each of the sources to help determine which factors may have
an effect on the outcome of the assessment. The NYT released daily data at the national,
state, and county levels at noon of the following day before July 8, 2020, after which the
release time changed to midnight. The Atlantic releases daily state-level data along with
testing, hospitalization, and recovery information, updated in the afternoon of the fol-
lowing day. Since March 7, 2021, the Atlantic has stopped the daily data updating. The
COVID-19 Data Repository by the CSSE at JHU provides both state and county-level data
daily. JHU released data at midnight on and before April 22 and then changed the release
time to the early morning of the following day. USAFacts collects the county-level data in
the evening and releases them in the early morning of the following day (by 9 a.m. PST)
[28]. Table 2 summarizes the differences among the four sources of data based on how the
data are collected and compiled.

Let K be the number of all available sources in the comparison. For the county level
comparison, K = 3 since the Atlantic does not provide county level data, while for the
state level, K = 4. Let T be the number of days observed, or the length of each time
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Table 2. A summary of the comparison among four sources.

Source NYT Atlantic JHU USAFacts
Infected & death* 1,23 1,2 1,23 1,23
Recovered 0 1,2 1,2,3** 0
Tested 0 1,2 1,2 0
Hospitalized 0 1,2 1,2 0
Islands*** 23 2 23 0
Unallocated™**** 3 0 3 3
Place of infection” np rp Unknown Unknown
Place of fatality rnr+pp Unknown Unknown Unknown
Probable infected*# y y y Unknown
Probable death y ikt y Unknown

Note: *: Country Level = 1, State Level = 2, County Level = 3. USAFacts only provides
county-level data for downloading. **: JHU pulls the number of people recovered data in
the state-level from the Atlantic. ***: Whether the source includes Puerto Rico, American
Samoa, Guam, Northern Mariana Islands, Virgin Islands. ****: Whether the dataset has
unallocated/unassigned information, which is useful to match state-level and county-
level data. #: How does the dataset assign the cases to a place. p indicates that the source
assigns the counts according to the place of infection/fatality. r + p indicates the source
assigns both the deaths occur in the specific location, and the residents’ deaths that occur
outside the location. Specifically, this is related to New York City death data, see details
in Section 3.r,r + p, p indicates multiple standards exist. unknown indicates the informa-
tion is not found. **: Whether the dataset includes both confirmed and probable cases
when probable data is available. y means yes. NYT releases daily live data for probable
and confirmed cases separately, but historical data is unavailable. ##: Colorado started
to report the number of deaths where COVID-19 is listed as a contributing cause on the
death certificates since May 16. This number is significantly lower than deaths among
infected. The Atlantic uses deaths where COVID-19 is listed on death certificates, while
the other three sources use deaths among infected. This unveils different definitions of
probable deaths applied by the four sources.

series. Let n be the number of counties or states. For source k, k = 1,..., K, let Yi(tk) be
the cumulative number of the reported cases of location i on day t, where i =1,...,n,
t=1,...,T. In the following, we define a dissimilarity measure to assess the difference
between two time series: Yl(-k) = {Yl-(tk)}Ll and ng/) = {Yi(tk/)}thl, forany1 < k # k' <K.
LetY; = K! Zle Y® | then the difference between ng) and ng/) is defined as

it 2

L o® &) v -
Y(k/)) . ?”Yz - Yi ”/YiT) Yir >0,
i )=

0, Yir =0,

Ak, k) = d(Y™®, (1)

where Y;7 is used to mitigate the variability of the currently observed counts. Equation (1)
provides a measurement that effectively detects the counties and states with the most
discrepancy between each pair of sources and is meaningful in the comparison between
different locations. In Figure 1, we present the county map for infected and death counts
collected from three data sources. In Figure 2, we present the state map for infected and
death counts collected from four data sources. Areas in dark shade in these two figures are
determined to be different between the corresponding pair of two sources. In the rest of
this section, we look further into the underlying reasons for dissimilarity at the county and
state levels.

We list the ten most dissimilar counties in a pairwise comparison of the three sources,
in terms of infection and death counts, in Tables 3 and 4, respectively. The specific rea-
sons for these dissimilarities vary over locations. For the state of New York, the difference
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Figure 1. County maps of the dissimilarity measure as of 25 July 2020. (a) Infection (NYT vs JHU), (b)
Death (NYT vs JHU), (c) Infection (NYT vs USAFacts), (d) Death (NYT vs USAFacts), (e) Infection (JHU vs
USAFacts) and (f) Death (JHU vs USAFacts).

between sources is caused by different geographical assignments. NYT and JHU combine
Kings, Queens, Bronx, and Richmond counties with New York City while USAFacts does
not use that combination. For the state of Utah, JHU combines counties to jurisdictions to
be consistent with the official state source, while NYT and USAFacts provide county-level
data. For Guam, NYT includes the data reported from USS Theodore Roosevelt, while
JHU and USAFacts do not. In Michigan, NYT considers federal and state prison inmates’
data when reporting at the county level, while the other two sources do not. For the state
of Alaska, NYT and JHU include non-resident cases while USAFacts does not. For some
states, such as Kentucky, Texas, Pennsylvania, Washington, Georgia and Tennessee, the offi-
cial county-level data is subject to frequent adjustments, which can lead to discrepancies
when one source corrects the errors while other sources do not. In summary, the county-
level dissimilarities between data sources are mostly caused by different geographical rules,
non-resident data, prison inmates data, and differed efforts in correcting the historical
data.

Next, we look into the state-level comparison. According to our measure, using data
up until 25 July 2020, states that show dissimilar infection data are illustrated in Figure 2.
Here, we list out a few examples about how the dissimilarities arise. On the one hand,
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Figure 2. State maps of the dissimilarity measure as of 25 July 2020. (a) Infection (NYT vs JHU), (b) Death
(NYT vs JHU), (c) Infection (NYT vs USAFacts), (d) Death (NYT vs USAFacts), (e) Infection (JHU vs USAFacts),
(f) Death (JHU vs USAFacts), (g) Infection (NYT vs Atlantic), (h) Death (NYT vs Atlantic), (i) Infection (JHU
vs Atlantic), (j) Death (JHU vs Atlantic), (k) Infection (USAFacts vs Atlantic) and (I) Death (USAFacts vs
Atlantic).
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Table 3. Top 10 counties with the largest value of the dissimilarity measure of
the infectious counts between pairs of sources (as of 25 July 2020).

NYT vs JHU NYT vs USAFacts JHU vs USAFacts
BristolBay, AK BristolBay, AK Lewis, ID
Dillingham, AK Dillingham, AK Dukes, MA
Lewis, ID Branch, MI Bronx, NY
Dukes, MA Jackson, MI Kings, NY
Branch, Ml Otero, NM New York, NY
Jackson, MI Bronx, NY Queens, NY
Lenawee, MI Kings, NY Richmond, NY
Otero, NM New York, NY Sterling, TX
Sterling, TX Queens, NY Emery, UT
Piute, UT Richmond, NY Piute, UT

Table 4. Top 10 counties with the largest value of dissimilarity measure of the
death counts between pairs of sources (as of 25 July 2020).

NYT vs JHU NYT vs USAFacts JHU vs USAFacts
Crawford, IN Glenn, CA Glenn, CA
McLean, KY Crawford, IN Hamilton, NY
Branch, Ml Bronx, NY Bronx, NY
Oswego, NY Cortland, NY Cortland, NY
Delaware, NY Kings, NY Lewis, NY
Seneca, NY Lewis, NY Queens, NY
Tompkins, NY Schoharie, NY Richmond, NY
Davison, SD Seneca, NY Schoharie, NY
Hopkins, TX Tompkins, NY Seneca, NY
Teton, WY Davison, SD Kings, NY

different responses to the change of probable cases reporting mechanisms in infections
and/or deaths lead to discrepancies in the reported cases between the four sources. For
instance, Wyoming started to include probable cases in their infected cases reporting dur-
ing the week of April 6th. Each of the four sources responded to the change at different
dates, as indicated by the jumps in data shown in Figure 3, with NYT being the first source
to respond to the change; see Figure 3(e). Similarly, Michigan started reporting probable
cases and deaths after April 5. This resulted in higher infection counts in the Atlantic for
the following 3 months, probably due to a correction for probable cases; see Figure 3(a,b).
As demonstrated in the time series plots of Indiana in Figure 3(c,d), inclusion or exclusion
of probable cases also caused differences in reported cases of both infections and deaths
among the four sources. Another difference among sources is caused by whether cases are
reported according to the residence or the place of infection/death. For example, when
reporting the death cases of New York, the Atlantic uses New York State reported deaths,
while the other three sources use New York City reported deaths, which also reports deaths
of residents that occur outside New York City. Starting August 6, NYT switched to report-
ing deaths by residence to make New York State death data consistent with the other states,
which led to discontinuity on August 6. To summarize, the state-level dissimilarities are
mainly caused by different report mechanisms to probable cases and varied choices of the
geographical assignment.

Based on these examples, it is safe to conclude that the differences in reported cases do
not indicate the inferiority or superiority of the source per se. No matter which source we
use, we need to be clear and careful about the processing behind it. Generally speaking,
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Figure 3. Examples of infection and death time series up until 25 July 2020. (a) Michigan infection, (b)
Michigan death, (c) Indiana infection, (d) Indiana death, (e) Wyoming infection and (f) New York death.

despite the geographical rules, USAFacts tends to be more conservative because it reports
confirmed counts instead of the sum of confirmed and probable counts in several states,
and NYT tends to report higher county-level counts by including non-resident data and
prison inmates data.

4. COVID-19 time series: features and anomaly detection
4.1. A 7-day cycle in infection and death cases

We observe a 7-day cycle in (i) reported COVID-19 new cases, and in (ii) reported
COVID-19 new deaths at the national and state level. To rigorously test the 7-day cycle, we
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conduct the hypothesis test using the R package seastests (function isSeasonal)
[12]. By default, it implements the “‘WO-test’, an overall seasonality test scheme proposed
in [35]. Given a set of various seasonality tests, the WO-test first conducts a recur-
sive feature elimination algorithm in conditional random forests to identify the most
informative candidate tests. Then the p-values from the selected tests are used again as
predictors to grow a single conditional inference tree. The candidate tests may include
a variety of seasonality tests tailored to particular manifestations, such as the modi-
fied QS test, the Friedman test, the Kruskal-Wallis test, the periodogram test, and the
Welch test.

We first conduct seasonality tests on the time series of national confirmed cases and
deaths. Both time series show a 7-day seasonal behavior with p-values less than 10~ from
a variety of tests, including the QS test, the Friedman test, and the Kruskal-Wallis test.
Then, we compare the different tests on state-level infected cases and deaths. The results
are summarized in Table 5, where we use a checkmark to signify a significant test result
at significance level of 0.05. For the infected cases, all the tests suggest a significant 7-day
cyclical pattern in 22 states. Meanwhile, we observe 27 states for which all the tests suggest
a significant 7-day cyclical pattern on the death time series.

The cyclical pattern is less evident at the county level. After applying the Friedman test
to more than 3000 counties, 701 counties show the 7-day cyclical pattern in infected cases
with p-value smaller than 0.05. For the deaths, only 200 counties exhibit a cyclical behavior
with p-value smaller than 0.05.

The stacked column bar plots in Figure 4 show the day on which the most infec-
tion/death cases are reported for each week in each state. From Figure 4(a), we can observe
that in the states, such as Connecticut, Missouri Oklahoma, and Washington, Tuesdays
usually report the most infections. States such as Illinois and Wisconsin, report more
infection cases on Fridays. For death cases, many states reach their peak on Tuesdays; see
Figure 4(b) for more details.

The stacked column bar plots in Figure 5 illustrate the day on which the highest
infection/death cases are reported for each week from 15 March to July 25, 2020. From
Figure 5(a), one can see that in the early stage of the pandemic (before April), Tuesdays
usually had the highest number of infections. As seen in Figure 5(b), Sundays and Mon-
days typically reported a smaller number of death counts than the other days. Meanwhile,
the peaks often occurred on either Tuesdays or Wednesdays. In time series analysis, for a
short-term forecast, a few approaches can be considered to remove the weekly cycle: sim-
ple differencing (Y; — Y;_7); 7-day moving average; using dummy variables control for
day-to-day variation; harmonic function (series of sine/cosine functions).

4.2. Anomaly detection

In addition to the exciting findings aforementioned in the raw data comparison, we observe
two major types of anomalies in the data: (I) order dependencies violation, and (II) point
anomalies. Examples of these two issues are illustrated in Figure 6. Before conducting any
analysis of the epidemic data, one might need to account for these issues. In this section, we
use the epidemic data from NYT as an illustration, but all four data sources exhibit similar
issues.
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Table 5. The detection of the 7-day cycle on the state-level times series using different tests, including
the modified QS test (QS), the Friedman test (Fried), the Kruskal-Wallis test (KW), the Welch test (Welch),

and the WO-test (WO) ('4/" indicates that the p-value is less than 0.05).
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o
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4.2.1. Order dependencies violation

Order dependency (OD) is widely used in the relational database. In this project, we incor-
porate this concept into the anomaly detection and data repairing process of cumulative



JOURNAL OF APPLIED STATISTICS .

[l Sunday M Monday B Tuesday Bl Wednesday [l Thursday || Friday Saturday

U

e R RN e e o R R R e e
cO0gal <] SCE05 o =8926L£0LE cCEDo cclcwnct
BB Eg Eos8 s8R 2820080858085 0%000 005 40oEDDEE
o0 EL ST O—= T == 3 RLR7) Q. = =y O~ ==LEE=50
oL EF =523 =0 £ ¥§5535clcEp=082 2230 SO0>ofQc ISES X
< z88Eag e 3 2§S£8=35°53320¢ 2°8Rdet Tgis
8 % o =2 22755 O £2£3¢8 £8=
S 8 g 0 2= dugs s
° =
% P
a
(@
Il Sunday M Monday M Tuesday Bl Wednesday ] Thursday || Friday Saturday
| | | L |
\ | {1 ‘
| « ‘ AEENR
R e e g2 e Ry P e S PO 3 E P e oP SRR E08EES52S2
c O go.2 o - - (<% = =0 0L f=ft— c c 0.t
G2 eE S EE o CE852880809359880E 0xI505695858 25525552
81582085528 °=S8 SE2=2352448558832%G8 £L22w8w g~ E2 886
o X=0c3S TE ¥g3T gl o [ SO>0 c OSES >
< “Z838e88 ° $8 S§S£8=29753%295 x £3Q£5 >Tg%ss
509 Ss G“ET O E£9oESS T8
8 % @ Iz2 ©5 SE=E 3 =
© © % 22 0_0:80’) =
o . 3
k7]
a

(b)

Figure 4. The 100% stacked column bar plot of the number of weeks that reaches the weekly maximum
of the infection or death counts across days of the week in different states. (a) Infection and (b) Death.

time series. To be more specific, the OD for the cumulative time series can be defined as
follows: for any two time points, t; and f,, if t; < 5, then Y, < Y}, where Y; represents
the cumulative infection/death count on day ¢. Obviously, the time series in Figure 6(a)
violates the OD.

4.2.2. Point anomalies

A point anomaly refers to the situation where there is 1 day of an abrupt increase in the
cumulative or daily new time series. This can also be considered as a violation of speed
constraints. The anomaly can be caused by a number of factors, including (1) the result of
a large batch of tests was released and (2) the change of reporting standard, such as some
states starting to report probable cases from a specific date. For example, the anomaly in
Figure 6(c) is due to New Jersey reporting 1854 probable deaths that may date back to
earlier in the outbreak. The anomaly in Figure 6(d) might be related to the reported cases
in the Texas Department of Criminal Justice (TDCJ). On May 31, 2020, at least 82 of the
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Figure 5. The 100% stacked column bar plot of the number of states that reaches the weekly maximum
of the infection or death counts across days of the week in different weeks. (a) Infection and (b) Death.

active cases in the county were TDCJ-related. To detect this type of anomaly, we exam the

increasing speed of the time series. Specifically, if the time series Yy, satisfies some speed
constraint (SC), then,

(Y11 —Yy)

(Y, = Yi)/(t2 =) <SGy and - 8 P

< 8C;,

where SC; and SC, are two predetermined thresholds.
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Figure 6. An illustration of different types of anomalies. (a) Order dependency; (b) weekend/holiday
delay-reported issue; (c) single point anomaly; (d) two-point anomalies.

4.3. Change points in time series

Sometimes, we may experience a pattern change in the time series, which can be referred
to as the period when the increasing speed is significantly different from the previ-
ous period. We apply the function segmented in R package segmented [10] to
detect the change points. This function implements the segmented models in which
the relationship between response and covariate(s) is modeled as piecewise linear seg-
ments connected at some joint points (or change points). Once a change point is
detected, we will provide a warning message to let the user decide whether any repair is
necessary.

For simplicity, we consider a segmented relationship between the response and the
time. Let u; = E(Y}), and the variable (time) ¢; is modeled by g(u;) = Biti + B2(ti — @)+
where g(-) is the link function, (t; — ¢)+ = (t; — $)I(t; > ¢), and I(-) is the indicator
function. Here, B illustrates the slope of left line segment and 8, represents the difference-
in-slopes. The main idea lies in testing whether |8;| > 0. If a break-point does not exist,
the difference-in-slopes parameter has to be zero. Table 6 presents the states in which
change points are detected in daily new infections and deaths, and the dates of the change
points are identified. Figure 7 visualizes the identified change points together with the
time series of daily new infections and deaths. Based on the change point analysis, most
of the changes occurred in June and July with sudden increases in incident cases and
death.
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Figure 7. Time series plots of the states with change points identified, where the small circle represents
the daily observed value, and the big circle indicates the change point detected, and the segment shows
the linear regression line before and after the change point. (a) New infection cases in California; (b) new
infection cases in Florida; (c) new infection cases in Missouri; (d) new infection cases in Nevada; (e) new
deaths in South Caroling; (f) new deaths in Texas.

5. Data repairing

Once raw data is collected, we start with the OD violation detection and repairing. Next,
we check for the point anomalies, and let the user decide whether to repair it. Last, we
investigate the weekly cycles and pattern changes in the time series. In this section, we
propose several data repairing methods to handle the issues mentioned in Section 4. To
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Table 6. A list states with change-point identified in the daily
new infected cases and deaths.

Infection Death
State Change Point State Change Point
California 2020-06-10 South Carolina 2020-07-13
Florida 2020-06-07 Texas 2020-07-01
Missouri 2020-06-23
Nevada 2020-06-09

resolve these issues, we focus on the daily new infected/death cases instead of the cumu-
lative infected/death cases. In the following, we let Z; = Y; — Y;_ be the increase at time
point £.

5.1. Anomaly repairing

First of all, the daily reported infected/death count could be considered as a count
time series by nature. Therefore, when repairing a count time series, we need to take
into account that the observations are nonnegative integers, and we should utilize the
dependence structure among observations. Furthermore, in the study of the infectious
disease, the population is usually assigned to compartments such as Susceptible (S),
Infectious (I), or Recovered (R), and people may progress between compartments. There-
fore, different compartments are usually considered as an entire system and are studied
together; see for example, the SIR models [3,6,14]. Third, the spread of the disease also
has a spatial pattern. In general, once a point anomaly is detected, we let A = {t € 7 :
Z; is identified as a point anomaly}. For ¢ € .4, the user can decide whether a correction is
necessary. If so, the user can choose from the following methods to obtain a more reliable
value, Zy, to replace the point anomaly Z;.

5.1.1. Time series model for count data
One of the conventional methods to deal with these challenges is the generalized linear
model (GLM), which models the observations conditionally on past information. In this
project, we consider both Poisson and Negative Binomial as the conditional distribution.
The second important class for analyzing count time series is the integer autoregressive
moving average models, and a comprehensive review is given by [36]. The state-space is
another type of count time series models. Comparing with the GLM, it allows a more flex-
ible data generating process. However, it requires a more complicated model specification.
Due to the explicit formulation, the GLM-based models yield a more convenient way to
make predictions. Thus, in this project, we focus on the GLM-based method.

To repair the dataset, we model the conditional mean p; = E(Z;|Z;—_1, 44—1) in the
following form:

P q
vi=Bo+ Y Bk + Y o
k=1 =1

where v; = log (14y).
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For this type of data repairing, we use the R package tscount [7], which con-
ducts a model estimation by the quasi-conditional maximum likelihood method (function
tsglm).

5.1.2. Combined linear and exponential predictors
The second method we consider is similar to the combined linear and exponential
predictors models proposed in [2], which assembles the following three different models.

(1) An individual county-/state-level exponential predictor: model (2) uses a series of
separate predictors for each county to capture the reported exponential growth of
COVID-19 infected and death counts, and we assume

log {E(Z:|t)} = Bo + Bit, (2)

where the parameters 8y and f; are the coefficients in the generalized linear model
(GLM) using glm function in R with a log link function.

(2) Anindividual county-/state-level linear predictor: model (3) fits a linear version of the
separate county predictors; specifically, we assume that

E(Zi|t) = Bo + put. 3)

(3) An individual county-/state-level exponential epidemic predictor: model (4) uses a
series of disease related factors to capture the reported exponential growth of COVID-
19 infectious and death counts. We assume that

log {E(Z;|Z;-1)} = Bo + P1log (Z;—1 + 1). (4)

5.1.3. Spatio-temporal epidemic model

Based on the idea of the SIR models, this paper [34] proposes the discrete-time spatial
epidemic model, which combines the susceptible state, infectious state, and removed state
together. In the following, we denote I, Dy, and R the cumulative number of cases in
infected, death and recovered states, respectively, in county i observed on day ¢. Let ul{ "
uft, uft be the conditional mean value of daily new positive cases, deaths and recovery
cases, respectively, which can be modeled via a link function g as follows:

g(uty) = By, (lony, laty) + B1,(lon;, lat;) log (Ii—1),
g(ub) = B, (lon;, lat;) + B} (lon;, lat;) log (I;y—1),
iy = Boy + Bllit—1.

In practice, one can use the bivariate spline over triangulation to approximate the
spatially varying coefficient functions, So;(lon;, lat;) and B;;(lon;, lat;). The triangulation
can be obtained through various software packages; see for example, the Matlab code
DistMesh, and the R package Triangulation [31]. Based on a triangulation, the
bivariate spline basis can be generated via the R package BPST [30]. The entire estima-
tion procedure is completed using a quasi-likelihood approach via the penalized spline
approximation and an iteratively reweighted least-squares technique; see details in [34].
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5.2. Outlier correction

The consequences of outliers may result in reduced forecast accuracy due to (1) bias in
the estimates of model parameters and (2) a carry-over effect of the outlier on the predic-
tion. Consequently, the reported data (i.e. infection, death, and recovery) should undergo a
preprocessing step to lessen the impact of inaccurate data or anomalies. Therefore, outlier
detection and correction are vital for time series analysis based on the reported COVID-19
data.

A simple solution to lessen the impact of an outlier is to replace the outlier with a more
typical value before generating the forecasts. This process is often referred to as ‘Outlier
Correction’. Traditionally, an outlier usually occurs due to measurement variability, data
entry, or experimental error. Once an outlier is detected, especially for the ones resulted
from the experimental error, we sometimes exclude them from the dataset. However, the
outliers in COVID-19 epidemic data typically occur for specific reasons, such as the release
of a large batch of tests and the change of reporting standards. Simply excluding extreme
values solely due to their extremeness can distort the data analysis. Therefore, the out-
lier correction procedure should be different from the traditional ones. In this subsection,
we describe an automated procedure for ‘correcting’ the history before forecasting. For a
count time series {Zt}thl, we assume that M outliers, {Z; }%I:l, have been detected, then
we implement Algorithm 1 for the repairing procedure. Figure 8 illustrates some examples
of the outlier correction.

Data: Count time series with outliers.
Result: Count time series with outliers repaired.

Step 0. Sort the M outliers based on the time, i.e. t) < t; < --- < fp.

for m <— 1 to M do

Step 1. Implement the data repairing methods discussed in Section 5.1 to
obtain a reasonable estimate Zm of the observed data point Z;, .

Step 2. if |Z,, — Z;,| > & then

(i) Manually investigate the causes and the problematic period caused by
the point anomaly Z; , denoted as A,,.

(ii) Distribute the residual, Z;  — /Z\tm, proportional to the value of the time
series within the problematic period

Zf = Zi+ (Zi, — Zo,)2t) Y Zis t € Am
teAp,

end
end
Algorithm 1: The outlier repairing algorithm.

6. Technical validation and usage notes

The entire detection and repairing procedure is illustrated in Figure 9. First of all, we
obtained the data from all of the four data sources, and used the dissimilarity measure
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Figure 8. Point anomaly repairing. (a) New death count with one point anomaly; (b) new infected count
with two individual point anomalies; (c) point anomalies repairing on the cumulative death count time
series; (d) the first point anomaly repairing on the cumulative infected count time series; (€) the second
point anomaly repairing on the cumulative infected count time series.

proposed in the above to compare them. We visualize and check the difference at the state
level among different data sources based on the comparison results. For the county-level
data, we calculate the measure and report the top 10 counties, which are the most different
pairwisely. Then, all the data are processed with all types of anomaly detection discussed
in Section 4.2. Once an anomaly has been detected, a warning will be given automatically
by R package cdcar. We handle different types of anomalies depending on the circum-
stances. For example, if an order dependency violation is detected, we will repair that point
using our data repairing algorithms proposed in Section 5.1. If a point anomaly is detected,
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Figure 9. Data curation flowchart.

we first manually check possible legitimate reasons based on news and social media. If cor-
rection is necessary, we will repair the point anomalies using the proposed algorithm, see
Algorithm 1.

The integrated data are openly available to assist researchers to investigate the spread

of COVID-19 in the US. We will continue to provide the cleaned data as the pandemic
progresses. Despite the fact we try our best in the data curation, there are two issues with-
out a perfect solution now, which require attention from the users when they try to draw
conclusive statements using the data.

(1)

)

Probable versus Confirmed Cases. Excluding the population with symptoms but not
confirmed by tests leads to the under-reported issue of infectious counts. On 5 April
2020, the Council of State and Territorial Epidemiologists released an interim [4]
related to the COVID-19 reporting. It requires the local or state public health author-
ity to submit a report of a condition to the Centers for Disease Control and Prevention
(CDC) within 24 h, and CDC should publish data for both ‘Confirmed’ and ‘Probable’
cases in the CDC Print Criteria. Before the interim was released, most of the states pri-
marily reported confirmed cases. For the states and counties which started to report
probable cases, thereafter, the count of the cases would incur an unavoidable jump
after including the probable cases.

Antibody Test versus Virus Test. In general, there are two types of tests on infection;
one is an antibody test, and the other is a virus test (also referred to as the PCR test).
Unfortunately, in many datasets, the type of reported tests is not specified. Those tested
positive for the virus are infected at the moment and suggested to be quarantined
to avoid infecting others. Meanwhile, those tested positive on an antibody test must
have been exposed to the virus, but there is no indication of whether they are still
infectious or recovered [19]. In addition, antibody tests are known to be much less
accurate. Mixing these two tests makes positive cases uninterpretable. Some states and
counties have started to separate antibody tests from virus tests [8], while states such
as Pennsylvania, Texas, Georgia, and Vermont did not specify the type of tests.
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We will continue to keep close track of the data sources we depend on and update our
datasets regularly. We strongly encourage users of our datasets to contact us if there is any
anomaly or error. You can reach us either by submitting a request on the Github repository
(https://github.com/covid19-dashboard-us/cdcar) or emailing the corresponding author.

7. Conclusion and discussion

The COVID-19 pandemic is generating enormous amounts of data. Open-access data with
high quality are critical for the COVID-19 scientific research and response efforts. This
paper compares and integrates different data sources and provides a semiotic-based frame-
work for understanding the reported cases’ data quality and the techniques for anomaly
detection and anomaly repairing.

Correcting the history for severe outliers or anomalies will often improve the forecast;
however, if the outlier is not genuinely severe, corrections might make the history smoother
than it actually was, which will change the forecasts and narrow the confidence inter-
vals. If the correction was not necessary, it might lead to poor forecasts and unrealistic
confidence intervals. We suggest using a high threshold for anomaly detection. In addi-
tion, the detected outliers should ideally be individually reviewed by the forecaster, and
the reasons for the outliers should be investigated to determine whether a correction is
appropriate.

For public usage, all code regarding the proposed anomaly detection and repairing algo-
rithms is built-in R package cdcar. The package and the cleaned data that are regularly
updated can be found in the Github repository (https://github.com/covid19-dashboard-us/
cdcar).

Some aspects of our data comparison and curation methods are constrained by the offi-
cial information released, and we will continuously investigate them. First of all, some data
are not retrievable at the county level, such as the recovery data and the face mask data.
Second, the data reporting protocols are not consistent, especially for recoveries. Third,
although we discover the cyclical pattern in the epidemic data, the related reason still needs
to be examined. Fourth, the unassigned issue and under-reported issue might be some
other important problems under the pandemic without detailed discussion. In the future,
we plan to overcome the data sharing barrier and extend our US COVID-19 database to a
worldwide database.
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Appendix. Data records

A.1 Epidemic data

Using the algorithm discussed in Section 5, we aggregate the reported COVID-19 infected, death,
and recovered cases from 22 January 2020 from (1) the NYT [11], (2) the Atlantic [16], (3) the
COVID-19 Data Repository from the JHU [18], and (4) the USAFacts [27]. These daily updated
epidemic datasets are available on Github repository https://github.com/covid19-dashboard-us/
cdcar.

In the state level epidemic data, we include the following variables. Among those variables, the
variable State can be used as the key for data merge.

(1) State—Name of state. There are 48 mainland US states and the District of Columbia.

(2) XYYYY.MM.DD-Cumulative infection or death cases related to the date of YYYY.MM.DD.
YYYY, MM, and DD represent year, month and day, respectively. It starts from X2020.01.22.
For example, the variable X2020.01.22 is either infection or death cases in a certain state (State)
on 01/22/2020.

For county-level data, two more county-specific variables are included. As the key of this table,
variable ID can be used for future data merge.

(1) ID-County-level Federal Information Processing System (FIPS) code, which uniquely identi-
fies the geographic area. The number has five digits, of which the first two are the FIPS code of
the state to which the county belongs.

(2) County-Name of county matched with ID. There are about 3200 counties and county-
equivalents (e.g. independent cities, parishes, boroughs) in the US.

(3) State-Name of state matched with ID. There are 50 states and the District of Columbia in the
US.

(4) XYYYY.MM.DD-Cumulative infection or death cases related to the date of YYYY.MM.DD.
YYYY, MM, and DD represent year, month and day, respectively. It starts from X2020.01.22.
For example, the variable X2020.01.22 is either infection or death cases in a certain (County)
on 01/22/2020.
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A.2 Otherfactors
A.2.1 Policy data

We release two datasets for the ‘stay-at-home/shelter-in-place’ order and the declaration of ‘state
of emergency’ from (1) Business Insider [13], (2) New York Times [9], and additional local
news.

(1) ID-County-level Federal Information Processing System (FIPS) code, which uniquely identi-
fies the geographic area. The number has five digits, of which the first two are the FIPS code of
the state to which the county belongs.

(2) County-Name of county matched with ID. There are about 3200 counties and county-
equivalents (e.g. independent cities, parishes, boroughs) in the US.

(3) State-Name of state matched with ID. There are 50 states and the District of Columbia in the
Us.

(4) XYYYY.MM.DD-Indicators for whether the policy is in effect on the date of YYYY.MM.DD,
1 indicates the policy is in effect, 0 otherwise. YYYY, MM, and DD represent year, month and
day, respectively. It starts from X2020.01.22. For example, the variable X2020.01.22 represents
whether the policy is in effect in a certain (County) on 01/22/2020.

A.2.2 Demographic characteristics

In the demographic characteristics category, we consider the factors describing racial, ethnic, sexual,
and age structures. Specifically, we include the following six variables. Among these six variables,
AA_PCT and HL_PCT are obtained from the 2010 Census [21]. The other four variables are
extracted from the 2010-2018 American Community Survey (ACS) Demographic and Housing
Estimates [22].

(1) AA_PCT-The percent of the population who identify as African American;

(2) HL_PCT-The percent of the population who identify as Hispanic or Latino;

(3) OId_PCT-The percent of aged people (age > 65 years);

(4) Sex_ratio—The ratio of male over female;

(5) PD_log-The logarithm of the population density per square mile of land area; Pop_log-The
logarithm of local population;

(6) Mortality-The 5-year (1998-2002) average mortality rate, measured by the total counts of
deaths per 100, 000 population in a county.

A.2.3 Healthcare infrastructure

We incorporated three features related to the healthcare infrastructure at the county level in the
datasets. Among these variables, NHIC_PCT is available in the USA Counties Database [25], EHPC
is obtained from Economic Census 2012 [23], and TBed is compiled from Homeland Infrastructure
Foundation-level Data [26].

(1) NHIC_PCT-the percent of persons under 65 years without health insurance;
(2) EHPC-the local government expenditures for health per capita;
(3) TBed-total bed counts per 1000 population.

A.2.4 Socioeconomic status

We consider diverse socioeconomic factors in the county level datasets. All of these factors col-
lected from 2005-2009 ACS 5-year estimates [20]. We also calculate the Gini coefficient based on
the household income data from the 2005-2009 ACS [20] to measure the income inequality.

(1) Affluence-Social affluence generated by factor analysis from HighIncome, HighEducation,
WCEmployment and MedHU;



JOURNAL OF APPLIED STATISTICS 27

(2) HIncome_PCT-The percent of families with annual incomes higher than $75,000;

(3) HEducation_PCT-The percent of the population aged 25 years or older with a bachelor’s
degree or higher;

(4) MedHU-The median value of owner-occupied housing units;

(5) Disadvantage-Concentrated disadvantage obtained by factor analysis from HHD_PAI_PCT,
HHD_F_PCT and Unemployment_PCT;

(6) HHD_PAI_PCT-The percent of the households with public assistance income;

(7) HHD_F_PCT-The percent of households with female householders and no husband present;

(8) Unemployment_PCT-Civilian labor force unemployment rate;

(9) Gini-The Gini coefficient, a measure for income inequality and wealth distribution in eco-
nomics.

A.2.5 Environmental factor
We also collect some environmental factors that might affect the spread of epidemics significantly,
such as the urban rate and crime rate.

(1) UrbanRate-Urban rate [21];

(2) ViolentCrime-The total number of violent crimes per 1000 population [25];

(3) PropertyCrime-The total number of property crimes per 1000 population [25];

(4) ResidStability-The percent of the population residence in the same house for one year and
over [21].

A.2.6 Mobility

The mobility data are collected from the US Department of Transportation, Bureau of Transporta-
tion Statistics. It describes the daily number of trips within each county, which are produced from
an anonymized national panel of mobile device data from multiple sources. Trips are defined as
movements that include a stay of longer than 10 min at an anonymized location away from home.

(1) Number of trips X-XX-Number of trips by residents greater than X miles and shorter than
XX miles. There are 10 different trip ranges: ‘< 1’ ‘1-3’, ‘3-5’, °5-10’, ‘10-25’, 25-50" ‘50-100’,
100-250’, 250-500’, and ‘>500’.

(2) Population Stay at Home-Number of residents staying at home, that is, persons who make no
trips with a trip end more than one mile away from home.

A.3 Geographic information

The longitude and latitude of the geographic center for each county in the US are available in
Gazetteer Files [24].
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