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Background
The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) outbreak started in December 2019, and it
has expanded to impact nearly every corner of the world.
On New Year’s Eve of 2019, the World Health Organi-
zation (WHO) was informed of mysterious pneumonia
cases in Wuhan, China. On January 3, 2020, 44 cases
were reported to WHO, among whom 11 were severely ill.
By February 4, confirmed cases had been reported in 24
countries outside China. The US confirmed its first case
in Washington State on January 21—a man who returned
to the US from Wuhan. On January 30, the US Centers
for Disease Control and Prevention (CDC) confirmed the
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person-to-person spread of coronavirus in the US. On the
same day, the WHO declared the coronavirus outbreak as
a Public Health Emergency of International Concern.1

Many nonpharmaceutical interventions (NPIs) were im-
plemented to prevent the spread of COVID-19. For exam-
ple, Wuhan implemented screening measures for travelers
leaving the city at airports, railway stations, and other pas-
senger terminals, and eventually closed off Wuhan City on
January 22. The US started screening at twenty airports
at the end of January. On February 25, San Francisco
became the first US city to declare a state of emergency
over COVID-19, followed by the states of Washington and
Florida. On March 13, President Donald Trump declared
a national COVID-19 emergency, and sixteen states an-
nounced school closures by then. On March 19, Califor-
nia issued a “stay-at-home” order for all of its 40 million
residents, and within two weeks, the majority of the states
had taken similar actions. By the end of March, more than
91% of the world’s population lived in countries with re-
strictions for nonresident travelers from abroad.

Even with all the control measures taken in place, the
spread of COVID-19 is still dramatic. From February 7
to 14, 2020, both the total cases confirmed and deaths
worldwide almost doubled within one week. Meanwhile,
COVID-19 kept spreading globally, and over 50 countries
reported confirmed cases by the end of February. During
mid-March, COVID-19 presented in all 50 states in the US.
Starting fromMarch 26, the US led the world in COVID-19
cases. On May 28, the US COVID-19 death count passed
one hundred thousand, and then in the middle of June,

1The number of references is limited to twenty. Please refer to the background
and introduction section of [WWG+20] for the detailed references.
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the number of confirmed cases of COVID-19 hit two mil-
lion in the US. The confirmed and death cases kept increas-
ing rapidly in the following months. By the beginning of
September, the US surpassed six million confirmed cases
and hit seven million on September 25. On October 16,
the US surpassed eight million confirmed cases and 218
thousand deaths.

The effect of COVID-19 is profound. The World Bank
estimated that the coronavirus pandemic could push an
additional 16 million people into extreme poverty. On
April 14, 2020, the International Monetary Fund warned
that the world is facing its worst economic downturn as
coronavirus lockdowns continue to wreak havoc on the
global economy. Due to the immense pressure of the crip-
pled economy and an anxious public amid a pandemic,
the US started to loosen lockdown measures in late April
and backtracked after reopening for a few weeks and see-
ing a surge in cases. As the pandemic progresses, there
are broader interests from the public in answering ques-
tions such as how far the SARS-CoV-2 virus will spread,
how many lives it will eventually claim, how effective in-
tervention strategies will be, as well as whether and when
the pandemic will resurge.

Epidemic modeling is an essential scientific tool to an-
swer these questions by aiding people to understand the
pandemic data, make predictions, and help the medi-
cal professionals and decision-makers allocate resources
and design/evaluate intervention strategies to fight against
COVID-19. In this paper, we first discuss two main mod-
eling frameworks in epidemiology studies: mathematical
and statistical modeling. Next, we overview the difficulties
and challenges of forecasting COVID-19 under the enor-
mous uncertainty and introduce some forecasting meth-
ods. Borrowing the strength of mathematical and statis-
tical modeling, we propose a novel space-time epidemic
modeling framework to study the spatial-temporal pattern
in the spread of COVID-19. Based on this framework, we
provide both short-term and long-term forecasts of the in-
fected and death counts at the county level in the US. We
also discuss various new perspectives on how to select an
appropriate model for COVID-19 data analyses.

Epidemic Modeling:
Mathematical and Statistical Perspectives
Epidemic modeling has three main aims [DG99]: (1)
to understand better the mechanisms by which diseases
spread; (2) to identify which factors contribute to the
spread of the epidemic, and therefore how we may con-
trol it; (3) to predict the future course of the epidemic.
Although there are many epidemic modeling methods,
mathematical and statistical models have played impor-
tant roles in COVID-19 studies. As illustrated in Figure 1,

Figure 1. Mathematical and statistical perspectives on
epidemic modeling.

mathematical and statistical approaches are complemen-
tary, but their starting points are different, and the corre-
sponding models tend to incorporate different details.

As mentioned above, the fundamental concept of in-
fectious disease epidemiology is investigating how the
diseases spread. Mathematical models are undeniably
useful in understanding the dynamics of infectious dis-
ease spread (e.g., when the peak will occur and whether
resurgence will happen) and the effects of control mea-
sures [KR08]. An essential type of mathematical model is
the class of mechanistic models such as the Susceptible-
Infectious-Removed (SIR) compartmental model or the
Susceptible-Exposed-Infectious-Recovered model (SEIR)
as illustrated in Figure 2; see details in [BCCF19,LBHU16].
Mechanisticmodelsmake explicit hypotheses about the bi-
ological mechanisms that drive the dynamics of infection,
and they function well if the aim is to evaluate the effec-
tiveness of hypothetical NPIs in controlling disease spread
[LC16].

Figure 2. An illustration of SIR and SEIR models.

In the literature, statistical modeling has given the sci-
entific field many successes in analyzing data and getting
information about the mechanisms producing the data.
Statistical modeling is a powerful tool for extracting in-
formation about the disease spread in epidemic studies
[HHOW20]. Statistics starts with data, and statistical mod-
eling allows data to speak for themselves. There are two
cultures in statistical modeling [Bre01]: the data modeling
culture and the algorithmicmodeling culture. The first one
assumes that the data are generated by a given stochastic
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data model, and it is usually designed for inference about
the relationships between variables whilst also catering to
prediction. Algorithmic models treat the data mechanism
as unknown and are usually designed to make the most
accurate predictions possible.

When analyzing the spread of infectious diseases, other
factors, such as demographic characteristics, socioeco-
nomic status, and control policies, may also be responsible
for temporal or spatial patterns. For example, the spread of
the disease varies considerably across different geographi-
cal regions. Local area-features, like socioeconomic factors
and demographic conditions, can dramatically influence
the course of the epidemic. These data are usually sup-
plemented with the population information at the county
level. Moreover, the capacity of the health care system and
control measures, such as government-mandated social
distancing, also have a significant impact on the spread of
the epidemic. Regression is a widely used statistical model-
ingmethod in epidemic studies because it produces a com-
bination of the variables with weights indicating the im-
pact of the variable [Jew03]. It can help determine which
factors matter most, which can be ignored, and how those
factors interact with each other. The benefit of regression
analysis is that it can be used to understand different pat-
terns in data. These insights may often be very valuable in
understanding which factors contribute to the spread of
COVID-19.

Predicting the spread speed and severity of COVID-19
is crucial to resourcemanagement, developing strategies to
deal with the epidemic, and ultimately assisting in preven-
tion efforts. Mathematical models are able to mimic the
way disease spreads and can be used to project or simulate
future transmission scenarios under various assumptions.
Statistical models are more oriented towards predictions
[HHOW20]. In fact, predictions are at the heart of sta-
tistical modeling. For example, time series analysis, one
commonly used statistical forecasting approach, works by
taking a series of historical observations and extrapolating
the patterns into the future. Machine learning makes pre-
dictions based on known properties learned from the train-
ing data. However, purely statistical models only describe
the observed data and give little information about the
mechanism since they do not account for how transmis-
sion occurs. Therefore, they are generally not well suited
for long-term predictions, and a few weeks is usually close
to being the ultimate prediction limit. Another advantage
of statistical modeling is its ability to quantify uncertainty
in the prediction, especially at an early phase of an epi-
demic with limited data. For example, statistical models
can provide a prediction interval to understand the uncer-
tainty surrounding the forecast [BD16]. See more discus-
sion in the following section.

In summary, mathematical models are usually con-
structed in a more principle-driven manner, while statis-
tical models are more data-driven. Although both math-
ematical and statistical models can be used to study the
effect of NPIs and make predictions, the implementation
details are different, and an understanding of the corre-
sponding limitations is crucial. For maximal effective-
ness, researchers working to advance epidemic modeling
will need to appreciate and exploit the complementary
strengths of mathematical and statistical models.

Forecasting COVID-19
under Enormous Uncertainty
Several quantities are of interest in COVID-19 forecast-
ing, such as the timing of and incidence in the peak
week, cumulative incidence, and weekly incidence. The
policy/decision-makers are also interested in evaluating
outbreak size and duration, and employing the epidemic
curve to identify the mode of transmission of the disease
and measure its prevalence of the disease.

Forecasting goals can also be classified as long-term or
short-term forecasts. Long-term disease forecasts can pre-
dict COVID-19 peak or severity, while short-term forecasts
can be used to guide resource allocation in the short term
by local agencies or to anticipate the case burden by hos-
pitals in the coming week; see [ABD+20]. The projection
can be made at different resolution levels, for example, na-
tional, regional, or local. National-level or state-level long-
term forecasts are of interest to policymakers regulating in-
tervention strategies and deciding how much funding to
allocate for resources. Prediction models with a finer res-
olution are needed to assess the local risk of COVID-19.
Knowing more about the vulnerable communities and the
reasons for those communities that are more likely to be
infected are crucial for the policy and decision-makers to
assist in prevention efforts [ABD+20,WWG+20].
Challenges of forecasting COVID-19. The difficulty de-
pends on the forecasting target. The short-term forecast is
relatively easy since we observe a clear time series trend.
Moreover, there is less uncertainty about what is observed.
By capturing underlying intricate patterns and relation-
ships, many statistical methods can be used for short-term
forecasts, such as time series analysis and machine learn-
ing methods. The long-term forecast is much more dif-
ficult than many people think. There are three contribut-
ing factors that may affect the accuracy of forecasts [HA18]:
(1) how well we understand the factors that contribute to
the forecasting target; (2) how much high-quality data are
available; (3) whether the outcome of forecasts can affect
the spread of COVID-19.

Firstly, the accuracy of the forecast is constrained by
what we know about the disease. With an emerging
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new disease such as COVID-19, many biologic features of
transmission are hard to measure and remain unknown.
More work is necessary to better understand the risk fac-
tors for severe illness or complications, for example, age,
race/ethnicity, gender, and medical conditions. Com-
pared to the meteorologic forecasting method often used
in weather forecasting, epidemic forecasting is still at an
early stage of development, and the human component
makes it particularly challenging [MFG+16].

Secondly, we don’t have a wholly accurate picture of
how widespread COVID-19 is. In forecasting, we have to
deal with incomplete and inaccurate data. The number
of confirmed cases might be vastly underreported due to
the limited availability of testing. Moreover, the size of
underreported cases varies enormously by countries or re-
gions. COVID-19 hospitalizations and deaths data might
be more reliable; however, the official numbers of people
who have died of COVID-19 are not consistent with the
number of observed fatal cases on the front lines. There
might be a lag in reporting in some cases due to delays and
possible breakdowns in logging positive tests and making
them public. The lack of reliable data sources becomes a
severe problem for forecasting the dynamic course of the
crisis and where resources are most urgently needed.

Lastly, the forecast may influence NPIs and human so-
cial behavior because the latter are likely to be based on
the outcome of the forecast. The changes in human social
behavior can further affect the transmission dynamics and
shape the future of an epidemic; see Figure 3. Thus, to ac-
curately forecast an emerging epidemic, we need to foresee
individuals’ behavior, potential changes in the pathogen,
as well as their interactions as they relate to the transmis-
sion dynamics.

Figure 3. COVID-19 forecast.

Figure 4. National total fatal cases forecast. (Source with full
name for each group: https://www.cdc.gov
/coronavirus/2019-ncov/covid-data/forecasting
-us.html.)

Furthermore, the forecast of COVID-19 is amid a signifi-
cant amount of uncertainty. There are at least four sources
of uncertainty. Firstly, there is uncertainty due to the lack
of knowledge of the biological features of transmission.
Most medical parameters are unknown or enormously un-
certain; for example, due to mutation of the virus, some
parameters might change during the development of the
disease. It may take years to understand the complexity
of the spread of SARS-CoV-2 fully. Secondly, the afore-
mentioned missing or incomplete data is another source
of uncertainty in model forecasting. Thirdly, health-policy
support for COVID-19 requires some knowledge of social
patterns not only under physical distancing policies but
also in various reopening scenarios. Last but not least, the
source of uncertainty may also come from the measure-
ment error, modeling procedure, and the sampling error.

As mentioned above, there are many types of factors
potentially influencing the evolution of an epidemic. A
single point prediction is usually not enough, and the un-
certainty of that prediction must also be estimated, espe-
cially when a forecast is made at an early phase of an epi-
demic with sparse data. Furthermore, accurate quantifica-
tion of the uncertainty is essential when determining how
much emphasis to put on them, for instance, when mak-
ing policy decisions. Measuring uncertainty is usually an
integral part of statistical models, where the uncertainty
of the prediction is generally presented as prediction in-
tervals around a prediction; see an example of projection
band for the national-level or state-level COVID-19 death
count in the next four months by a team from the Institute
for Health Metrics and Evaluation (IHME) [M+20]. There
are also many useful uncertainty analysis techniques for
mathematical models, such as sensitivity analysis, separate
simulations, and many others.
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How can we forecast COVID-19? The rise of COVID-19
has triggered novel forecasting methods. Since the be-
ginning of the pandemic, several models have been re-
leased, including works from the IHME, the Los Alamos
National Laboratory, the Massachusetts Institute of Tech-
nology, and Iowa State University. Instead of relying on
just a single forecast, the CDCworks with partners to bring
together several forecasts for COVID-19 infected and death
counts in one place; see Figure 4. These forecasts have been
developed independently from different teams and shared
publicly. The complete set of forecasts is referred to as the
ensemble and individual forecasts within it as ensemble
members. Collecting and combining forecasts of cumula-
tive deaths for US jurisdictions in standardized, probabilis-
tic formats one to four weeks ahead [R+20] generates real-
time, publicly available ensemble forecasts. The ensemble
forecast is constructed as an equally-weighted average of
forecasts from all eligible models. Ensemble forecasts are
provided by Nicholas Reich and coworkers at the ReichLab
(https://viz.covid19forecasthub.org/).

In Table 1, we summarize the teams who are forecast-
ing the spread of COVID-19 and the methods they are
using. Many teams start with SIR and SEIR models and
develop new models to analyze COVID-19 data. For in-
stance, FRED is open-source software for modeling infec-
tious diseases. The COVID-19 Simulator uses a validated
compartment model to simulate the trajectory of COVID-
19 at the state level in the US. Statistical tools and ma-
chine learningmethods are also considered by some teams.
For example, Columbia-UNC considers the forecast of
COVID-19 in the survival data analysis framework; and
DDS utilizes time series analysis to predict the spread of
COVID-19. Several other teams develop hybrid methods
by combiningmathematicalmodels and statisticalmodels.
In Google-HSPH, the authors consider the standard SEIR
model and use their end-to-end modeling framework to
infer meaningful estimates for undocumented cases. ISU-
STEM [WWG+20] incorporates the underlyingmechanism
of disease spread in mathematical models and nonpara-
metric statistical tools to study the spatiotemporal struc-
ture and the effects of covariates as well as future predic-
tion and uncertainty quantification.

Spatiotemporal Epidemic Models
It is well known that the S(E)IR models with random
mixing assumptions can overestimate the health service
needed by not taking into account the behavioral change
and government-mandated action. Spatiotemporal mod-
els are able to bring in more information to the epi-
demic study [LBHU16]. Borrowing the mechanistic rules
from the compartment models, we develop a class of
new epidemicmodels based on the flexible nonparametric

Figure 5. An illustration of the infection model based on SIR.

techniques to reconstruct the spatiotemporal dynamics of
the disease transmission. Below, we introduce a novel spa-
tiotemporal epidemicmodel (STEM) tomodel and predict
the spread and severity of COVID-19 at the area level. For
a simple illustration, we describe the STEM-based on the
parsimonious SIR models, but it can be extended to the
SEIR models with an “exposed” compartment for infected
but not infectious individuals.
Modeling the number of incident cases. As illustrated
in Figure 2, the SIR model consists of three compart-
ments: susceptible individuals, infectious individuals, and
removed (and immune) or deceased individuals. Let 𝑆(𝑡),
𝐼(𝑡), and 𝑅(𝑡) represent the number of individuals in each
compartment at time 𝑡. Traditional SIR models [KM27]
capture the dynamical mechanism of the disease spread
under the assumption that the rates of people getting in-
fected are proportional to the number of infectious people
and susceptible people in a given population, specifically,
𝑑𝑆(𝑡)/𝑑𝑡 = −𝛽𝐼(𝑡)𝑆(𝑡). Between 𝐼(𝑡) and 𝑅(𝑡), the transi-
tion rate is assumed to be proportional to the number of
infectious individuals, which is 𝛾𝐼(𝑡). We refer to this type
of models as the SIR model with bilinear incidence rates; see
Figure 5.

However, this assumption may not necessarily hold in
reality. For example, given the strict social distancing and
self-quarantine policies, the number of effective contacts
between infectious individuals and susceptible individu-
als may decrease at a high infection level. Then, the inci-
dence rate will be lower than a linear rate. Therefore, in our
study, we consider a more general SIR model introduced
by [LHL87] with two additional parameters 𝛼1 and 𝛼2. We
refer to this type of models as the SIR model with nonlinear
incidence rates. Let 𝑌𝑡 be the new cases at 𝑡, and let 𝑁 be the
total population. In mathematics, this system is typically
solved by ordinary differential equations. From a statisti-
cal point of view, we can treat this system as a generalized
linear regression problem and solve it using the maximum
likelihood approach.
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Group Category Spatial Covariates Unreported Control
Scale Included Cases Measure

Columbia University (Columbia)  Hybrid N,S,C
Columbia University and University of North Carolina at Chapel
Hill (Columbia-UNC) 

Statistical N,S

COVID-19 Simulator (Covid19Sim)  Mathematical N,S
COVIDhub - Ensemble (Ensemble)  Hybrid N,S,C
Discrete Dynamical System (DDS)  Statistical N,S
Framework for Reconstructing Epidemiological Dynamics (FRED)


Agent-based N,S,C

Georgia Institute of Technology (GT-DeepCOVID)  Machine Learning N,S
Google and Harvard School of Public Health (Google-HSPH)  Hybrid N,S,C
Institute for Health Metrics and Evaluation (IHME)  Statistical N,S
Iowa State Univeristy (ISU)  Hybrid N,S,C
Johns Hopkins University Applied Physics Lab (JHU-APL)  Mathematical N,S,C
Los Alamos National Lab (LANL)  Statistical N,S,C
Massachusetts Institute of Technology, Laboratory of Computa-
tional Physiology (MIT-LCP) 

Machine Learning N,S,C

Massachusetts Institute of Technology, Operations Research Center
(MIT-ORC) 

Mathematical N,S

Northeastern University, Modeling of Biological and Socio-
technical System Lab (MOBS) 

Hybrid N,S

Oliver Wyman  Mathematical N,S,C
Rensselaer Polytechnic Institute and University of Washington
(RPI-UW) 

Mathematical N,S

Texas Tech University, Hussain Lab (TTU)  Hybrid N,S
University of California, Los Angeles (UCLA)  Hybrid N,S,C
University of California Merced MESA Lab (UCM)  Mathematical N,S
University of Michigan (UM)  Hybrid N,S
University of South California (USC)  Hybrid N,S,C
University of Texas COVID-19 Modeling Consortium (UT)  Mathematical N,S
Youyang Gu (YYG)  Hybrid N,S

Note. Spatial Scale: Prediction is available at National (N), State (S), and County (C) level. (Source: https://www.cdc
.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html.)
Table 1. A subset of COVID-19 models used in the CDC’s ensemble forecast.

Nowwe considermultiple areas. For area 𝑖, let 𝑌𝑖𝑡 be the
number of new cases, and let 𝐼𝑖𝑡, 𝐷𝑖𝑡, 𝑅𝑖𝑡, and 𝑆 𝑖𝑡 be the
number of accumulated active infectious cases, accumu-
lated death cases, accumulated recovered cases, and sus-
ceptible population at time 𝑡, respectively. Let 𝑁 𝑖 be total
population for the 𝑖th area, and denote 𝑍𝑖𝑡 = log(𝑆 𝑖𝑡/𝑁 𝑖).
Note that the data observed are heterogeneous and time-
varying. A simple “global” model cannot explain the re-
lationships well due to the local features, referred to as
spatial nonstationarity. To address such nonstationarity
or variability, we need to have sufficiently flexible models
to reflect the spatially varying structure within the data. We
assume that the determinants of the daily new cases of a
particular area can be explained not only by the features
of that area but also by the characteristics of the surround-
ing areas. We use deterministic smooth surface functions
in our models to describe the variations and connections
among values at different locations. Let 𝑋𝑖1, … , 𝑋𝑖𝑝 be a
set of covariates of area 𝑖, such as socioeconomic factors,
health service resources, and demographic conditions as
illustrated in Figure 6.

Figure 6. An illustration of the infection model with endemic
components.

Let 𝐴𝑖𝑗𝑡 be the 𝑗th dummy variable of actions or mea-
sures taken for area 𝑖 at time 𝑡 and further denote 𝐔𝑖 =
(Lon𝑖, Lat𝑖) be the GPS coordinates of the geographic cen-
ter of area 𝑖. With the rich data released every day, we
can consider the nonparametric method to model the
covariates and coefficient functions. The nonparametric
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Figure 7. An illustration of the evolution of the spatiotemporal
model.

structure offers flexibility in assessing the dynamics of the
spread at different time points and locations and avoid
model misspecification. We assume that the conditional
mean value of daily new incident cases 𝜇I𝑖𝑡 in an area can
be modeled as follows:

log(𝜇I𝑖𝑡) =𝛽I𝑡(𝐔𝑖) + 𝛼I1𝑡(𝐔𝑖) log(𝐼𝑖,𝑡−1) + 𝛼I2𝑡𝑍𝑖,𝑡−1

+
𝑝
∑
𝑗=1

𝜃I𝑗𝑡𝐴𝑖𝑗,𝑡−𝑟 +
𝑞
∑
𝑘=1

𝑓I𝑘𝑡(𝑋𝑖𝑘), (1)

where the 𝜃I𝑗𝑡’s and 𝛼I2𝑡 are unknown constant coefficients.
The bivariate surface functions, 𝛽I𝑡(⋅) and 𝛼I1𝑡(⋅), are un-
known coefficient functions, which are used to describe
the variations and connections among different locations
𝐔𝑖. The univariate functions, 𝑓I𝑘𝑡(⋅), 𝑘 = 1, … , 𝑞, are used
to describe the effect of explanatory variables on the new
cases, and the parameter 𝑟 in the 𝐴𝑖𝑗,𝑡−𝑟’s denotes a small
delay time allowing for the control measure to be effective
(here we take 𝑟 = 7). For model identifiability, we assume
E(𝑓I𝑘𝑡) = 0, 𝑘 = 1, … , 𝑞. See Figure 7 for an evolution of the
modeling process.

In model (1), exp{𝛽I𝑡(𝐔𝑖)} represents the transmission
rate, and 𝛼I1𝑡(𝐔𝑖) and 𝛼I2𝑡 are the mixing parameters of the
contact process at location 𝐔𝑖 and time point 𝑡. By in-
cluding spatially varying coefficients, the determinants of
the daily new cases of a certain area involve both the fea-
tures of this area and the characteristics of its surrounding
areas. The above-proposed epidemic model incorporates
the nonlinear incidence rates and represents a much wider
range of dynamical behavior than the models with bilin-
ear incidence rates [LHL87]. These dynamical behaviors
are determinedmainly by 𝛽I𝑡(⋅) and 𝛼I1𝑡(⋅). When 𝛼I1𝑡(⋅) and
𝛼I2𝑡 are both 1, it corresponds to the standard assumption
of homogeneous mixing in [DJDH95].
Modeling the number of fatal and recovered cases. One
obstacle in the fitting of the model (1) is the lack of di-
rect observations for the number of active cases (𝐼𝑖𝑡). In-
stead, the most commonly reported number is the count

Figure 8. An illustration of the death model and recovery
model. 𝑌D

𝑡 is the number of new fatal cases and 𝑌R
𝑡 is the

number of new recovered cases.

of total confirmed cases (𝐶𝑖𝑡) and fatal cases (𝐷𝑖𝑡). Some
public health organizations also release information on re-
covered cases (𝑅𝑖𝑡). Note that 𝐼𝑖𝑡 = 𝐶𝑖𝑡 − 𝑅𝑖𝑡 − 𝐷𝑖𝑡, so we
can obtain the information of 𝐼𝑖𝑡 from the data of reported
cases. We propose to model 𝐷𝑖𝑡, 𝑅𝑖𝑡, and 𝑌𝑖𝑡 alternatively
in a system. As illustrated in Figure 8, there are two out-
comes for infected patients: recovery or death. According
to theCDC (https://www.cdc.gov/coronavirus/2019
-ncov/hcp/planning-scenarios.html/), the median
number of days from symptom onset to death is around
13 ∼ 17 days. Therefore, to model the death count, we
borrow the information of the previous active cases 𝐼𝑖,𝑡−𝛿,
where 𝛿 (here 𝛿 = 14) is the time delay between illness
and death; see Figure 8. We can also introduce the covari-
ates of local features to the model to improve the accuracy.
For modeling the number of recovery cases, ideally, if suf-
ficient data for recovered cases can be collected from each
area, a similar model can be fitted to explain the growth of
the recovered cases.

Although there have been regional, national, and global
data on confirmed cases and deaths, not much has been
officially reported on recovery. Furthermore, for the states
that regularly update the number of recovered patients, the
counts can seldom be mapped to counties. Due to the lack
of data, we are no longer able to use all the explanatory
variables discussed above to model daily new recovered
cases; see Figure 9. Instead, we mimic the relationship be-
tween the number of recovered and active cases from some
compartmental models in epidemiology [SR13].

Therefore, we assume that the conditional mean value
of daily fatal cases (𝜇D𝑖𝑡) and recovery (𝜇R𝑖𝑡) in an area can
be modeled as follows:

log(𝜇D𝑖𝑡) =𝛽D𝑡 (𝐔𝑖) + 𝛼D𝑡 (𝐔𝑖) log(𝐼𝑖,𝑡−𝛿)

+
𝑝
∑
𝑗=1

𝜃D𝑗𝑡𝐴𝑖𝑗,𝑡−𝑟′ +
𝑞
∑
𝑘=1

𝑓D𝑘𝑡(𝑋𝑖𝑘), (2)

𝜇R𝑖𝑡 =𝜈R𝑡 𝐼𝑖,𝑡−𝛿′ , (3)
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where the 𝜃D𝑗𝑡 ’s and 𝜈R𝑡 are unknown constant coefficients,
𝛽D𝑡 (⋅) and 𝛼D𝑡 (⋅) are unknown bivariate coefficient func-
tions, 𝑓D𝑘𝑡(⋅), 𝑘 = 1, … , 𝑞, are univariate functions to be esti-
mated, and 𝛿 and 𝛿′ are the time delay between illness and
death or recovery. For model identifiability, we assume
E(𝑓D𝑘𝑡) = 0, 𝑘 = 1, … , 𝑞. The recovery rate 𝜈R𝑡 enables us to
make reasonable predictions for future recovered patients
counts and provide researchers with the foresight of when
the epidemic will end.

Figure 9. An illustration of the death model with endemic
components.

The above equations (1), (2), and (3) together form our
STEM, which is based on the foundation of epidemicmod-
eling, but it is able to provide a rich characterization of dif-
ferent types of covariates of local features. Moreover, it ac-
counts for both spatiotemporal nonstationarity and area-
level local features simultaneously. It also offers more flex-
ibility in assessing the dynamics of the spread at different
times and locations than various parametric models in the
literature.

We refer the interested readers to [WWG+20] for the de-
tails about how to fit the STEM. Furthermore, the STEM ap-
proach enables one to examine the effect of county-level
predictors on the spread of COVID-19. In this analysis,
we consider the integrated data from 3,104 counties from
the 48 mainland US states and the District of Columbia.
The epidemic component of the data contains infected,
death, and recovered cases from January 21 to September
3, 2020. Our analysis shows that, after controlling for
social-economic factors, the percent of persons under 65
years without health insurance has a significant impact on
the COVID-19 breakout in the community. We can ob-
serve a significant positive relationship between the non-
healthy-coverage rate and the infection rate of COVID-19.
An under-covered population is much easier to be infected
with the virus. Meanwhile, the population density is often
considered to have a linear relationship with COVID-19

Figure 10. An illustration of prediction band.

infection cases in most studies and news reports. Our re-
sults are consistent with the intuition. The local healthcare
expenditure has a similar impact on COVID-19 infections.

STEM-based Prediction
Based on the STEM, we propose an ℎ-step ahead predic-
tion method. The basic idea is that we alternatively up-
date the daily incidence and the total number of cases in
each compartment using the proposed STEMmethod. The
computation algorithms are given in [WWG+20]. Specifi-
cally, we start with an initial estimation of models (1) and
(2). Based on the current number of infected and suscep-
tible people, we can predict the number of new incidence
cases, death, and recovery the next day. Then, we update
the number of susceptible, dead, recovered, and infectious
people. Repeating these steps for ℎ times, we can obtain
our ℎ-step ahead prediction.

To evaluate the projection uncertainty, we use the boot-
strap method to establish the prediction band. As illus-
trated in Figure 10, the prediction uncertainty comes from
two parts: the estimation variation and the variance from
bootstrap paths. In the first part, we generate a bootstrap
sample from our estimated model at time points up to 𝑡.
Based on this sample, we obtain the bootstrap estimator.
After repeating for 𝐵 times, say 1000 times, we could ob-
tain the bias-corrected estimator. In the second part of
the bootstrap, we simulate an ℎ-step ahead path based
on the bootstrap estimators. The daily incidences follow
from Poisson distribution. After the first two steps, we
have 𝐵 paths. By leaving 𝛼𝐵 paths out, we can obtain the
100(1 − 𝛼)% prediction band.

Using themethods proposed in [WWG+20], we provide
the long-term forecast for both the infection and death
count, and this forecast can help us predict the timing of
the outbreak peak and the number of health resources re-
quired at the peak. Given the lack of reliable recovered
data, we treated the daily recovery rate as another variable
and considered the values from 0.05 to 0.15. To better
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Figure 11. The number of observed and predicted cumulative
fatal cases in Orange County, California.

illustrate our research findings, we launched a COVID-
19 dashboard (https://covid19.stat.iastate.edu/)
with multiple R shiny apps embedded. The main map
provides the county, state, and national level 7-day fore-
cast together with the related risk analysis. In the Long-
term Project tab of our dashboard, we illustrate a long-
term forecast of COVID-19 infected and death count up
to the county level. Figure 11 shows the reported cumula-
tive fatal cases of COVID-19 and the corresponding one-
month-ahead prediction for Orange County, California.
The forecast for other states or counties can be found on
our dashboard, which is updated constantly. The perfor-
mance of the proposed forecasting methods is evaluated
in [WWG+20].

Conclusions and Discussion
Epidemic modeling holds the key to understanding the
course of the epidemic. This paper selectively overviews
two main epidemic modeling approaches: mathematical
and statistical modeling. Besides, we discuss the chal-
lenges of forecasting COVID-19 and discuss some forecast-
ing methods. We also present a novel spatiotemporal epi-
demic model to quantify the accuracy of forecasts and un-
certainty in forecasts.

Nowadays, the number of epidemic models is over-
whelming, so how to choose the most appropriate model
becomes an essential question, especially under such a
pandemic. Unfortunately, there is no one model to work
for all the problems, and the model selection can be very
complicated, as illustrated in Figure 12. We would like to
close this paper with some discussions on how to choose
the right model.
Mathematical models or statistical models? The two
modeling approaches are complementary but with differ-
ent starting points and implementation details. The choice
of a model is intimately tied to the specific research goal.

Figure 12. Model selection.

The two approaches can go hand in hand in epidemicmod-
eling formaximum effectiveness. In COVID-19 studies, we
have seen a growing number of hybrid methods combin-
ing characteristics of traditional mathematical and statisti-
cal models.
A more complex or simpler model? One crucial factor
that can significantly affect the accuracy of predictions is
the complexity of the model to describe the epidemic. It
is reasonable to choosemodels with different complexities
during different periods of the pandemic. For example, to
model the disease spread at the early stage of the pandemic,
a simple model is usually preferred due to the sparsity of
the cases. As the disease processes, we gain more knowl-
edge of the transmission and disease progression. There
is also confounding heterogeneity in the spread, such as
spatiotemporal variation and age-specific risk of severe
disease. A complex model with a significant amount of
flexibility can capture the heterogeneities and complexity
of the underlying process; therefore, it may show advan-
tages by incorporatingmore information about the disease
transmission and local features that might affect the dis-
ease’s spread. Even within the same modeling framework,
we can adjust the complexity of the model used. For ex-
ample, we can consider different types (i.e., varying or con-
stant) of intercept and slope in the proposed STEM. How-
ever, a complex model includes more parameters than a
simpler one, and the estimation of many unknown param-
eters can lead to a greater degree of uncertainty in model
predictions.
Stability. The stability (robustness, or in a broad sense
includes replicability and repeatability) principle requires
that each step in estimation and prediction is stable con-
cerning appropriate perturbations, such as small changes
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in the model or data [Yu13]. In epidemiology studies, sta-
bility has been shown to be essential to draw reliable con-
clusions when interpreting results from models. Stability
can help evaluate interpretation methods and is manda-
tory for reliable interpretations.
Interpretability. More complex models can embed more
features to capture exciting patterns in the dataset if trained
appropriately. Meanwhile, this usually makes them convo-
luted andmore challenging to explain. This issue is usually
due to their “black-box” nature, i.e., people do not know
how or why the model came up with a particular output.
It is challenging to understand what caused it to arrive at
this prediction. A good balance between the model’s inter-
pretation and underlying trend extraction is another key to
picking a model. Governments have been using statistical
models to assist in health system adjustment as the virus
spreads in the communities. Model interpretability is cru-
cial for them to understand the underlying process. Com-
plex models without clear interpretation make it hard for
the decision-makers to extract useful information and take
effective NPIs.
Resources. Different models require different types of re-
sources that are available. For example, modern complex
machine learning techniques are usually more computa-
tionally expensive than traditional models. To realize suc-
cessful training of the models, the state of the art machine
learning algorithm may require a computer cluster, and it
may take several weeks to train entirely from scratch. By
contrast, traditional simple models can be implemented
on a traditional personal computer (PC), and they usu-
ally take much less time to train. Therefore, knowing the
type of device we could deploy the models, such as the
distributed system over the cloud, PCs, or mobile devices,
can be crucial in choosing a suitable model. To provide
timely updated COVID-19 data analysis results and pre-
dictions, we need accurate and (computationally) efficient
methods.
Data. Data has always been important tomodeling. Some
epidemic models make particular assumptions about the
structure of the data or the desired results. The choice of
the model also depends on the size of good quality data.
In general, machine learning models typically need more
data than mathematical and statistical models to perform
well. To achieve the desired prediction accuracy, neural
networks and random forests usually require thousands
or millions of observations. In contrast, statistical mod-
els often allow inference and make decent predictions on
dozens or hundreds of observations. However, if there
are very few observations, inference from statisticalmodels
can be problematic as well. For example, when analyzing
COVID-19, early in a disease outbreak, infected and death

cases are rare, and thus, a simple exponential growth curve
may bemore accurate and stable thanmany complexmod-
els. As the epidemic evolves, surveillance data become
abundant and have a higher spatiotemporal resolution. A
simplemodel using the available datamight bemisleading
unless it can incorporate the various steps being taken
to slow transmission. A more complex model, such as
the spatiotemporal models, can benefit understanding the
spread of disease and improve the prediction accuracy.

While epidemic models can be useful tools for track-
ing and forecasting COVID-19, they also have limitations.
Models are only as accurate as of the input assumptions,
which depend on continually changing data. Many un-
expected scenarios will or may happen in the future. For
evidence-based decision making, it is essential to under-
stand the basic model assumptions and limitations before
drawing conclusions. The performance of the model is
constrained by our knowledge of the virus. We hope the
discussions in this paper stimulate new methodological
developments in epidemic modeling and forecasting as
the pandemic progresses.
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