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SUMMARY

In this paper, we develop a graphical modeling framework for the inference of networks across multiple

sample groups and data types. In medical studies, this setting arises whenever a set of subjects, which may

be heterogeneous due to differing disease stage or subtype, is profiled across multiple platforms, such as

metabolomics, proteomics, or transcriptomics data. Our proposed Bayesian hierarchical model first links

the network structures within each platform using a Markov random field prior to relate edge selection

across sample groups, and then links the network similarity parameters across platforms. This enables

joint estimation in a flexible manner, as we make no assumptions on the directionality of influence across

the data types or the extent of network similarity across the sample groups and platforms. In addition,
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our model formulation allows the number of variables and number of subjects to differ across the data

types, and only requires that we have data for the same set of groups. We illustrate the proposed approach

through both simulation studies and an application to gene expression levels and metabolite abundances

on subjects with varying severity levels of Chronic Obstructive Pulmonary Disease (COPD).

Key words: Data integration; Gaussian graphical model; Bayesian inference; Markov random field prior; spike and

slab prior; chronic obstructive pulmonary disease (COPD)

1. INTRODUCTION

Gaussian graphical models, which describe the dependence relations among a set of random variables,

have been widely applied to estimate biological networks on the basis of high-throughput data. When all

samples are collected under similar conditions or reflect a single type of disease, methods such as the

graphical lasso (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007; Friedman and others, 2008) or

Bayesian network inference approaches (Roverato, 2002; Wang and Li, 2012) can be applied to infer a

sparse network. In many studies, however, such as the COPDGene study (Regan and others, 2010) of

this paper, described below, samples are obtained for different subtypes or disease, varying experimental

settings, or other heterogeneous conditions. In this setting, applying standard graphical model inference

approaches to the pooled data across conditions will lead to spurious findings, while separate estimation

for each subgroup reduces statistical power. The challenge becomes even more formidable when multi-

ple data types (or platforms) are under consideration, specifically gene expression levels and metabolite

abundances in the COPDGene study, measured on multiple subjects. In this case, pooling the data is not

appropriate, as it ignores the fact that direct connections between variables of different data types may not

be sensible. Nonetheless, analyzing data from each platform separately ignores potential commonalities,

for example, that subjects with more advanced disease may have more extensive disruption of functional

mechanisms across data types. The need for statistical methods to address these questions is particularly
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pressing given the increasing number of studies investing in comprehensive profiling of subjects across

multiple data platforms. Our proposed statistical method enables joint inference of networks across sam-

ple groups and data types, providing accurate characterization of complex disease mechanisms which can

be used to develop targeted treatment approaches.

Recently, methods have been proposed to estimate multiple networks on a common set of variables.

Early work includes approaches that encourage either common edge selection or precision matrix simi-

larity by penalizing cross-group differences (Guo and others, 2011; Danaher and others, 2014; Zhu and

others, 2014; Cai and others, 2016). These methods use a single penalty parameter to control network sim-

ilarity across all groups. Hao and others (2018) have extended the approach to simultaneously infer graph

clustering via an additional penalty on the estimated cluster mean. In contrast, more recent proposals en-

courage network similarity in a more tailored manner, assuming that the networks for each sample group

are related within a tree structure (Oates and Mukherjee, 2014), or, more generally, within an undirected

weighted graph (Saegusa and Shojaie, 2016; Ma and Michailidis, 2016). These methods require that the

cross-group relations are known a priori or inferred in a preliminary step. More flexible approaches that

employ Bayesian frameworks to simultaneously learn the networks for each group and their similarity

have been proposed in Peterson and others (2015) and Shaddox and others (2018).

In this work, we develop a graphical modeling framework which enables the joint inference of network

structures when there is heterogeneity among both sets of subjects (i.e., at different stages of a disease) and

sets of variables (i.e., types of data or platforms). Our proposed Bayesian hierarchical model first links the

network structures within each platform using a Markov random field prior to relate edge selection across

the sample subgroups, and then links the measures of cross-group similarity across platforms. This is a

flexible modeling approach, which allows the number of variables and number of subjects to differ across

the data types, and only requires that we have data for the same set of subgroups. Consider for example,

the gene expression and metabolite abundances measured on healthy controls and on moderate and severe

COPD subjects of our case study. These two platforms measure different aspects of the same biological
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pathway. Small compounds and metabolites are measured by the LC/MS platform, while gene expression

levels of enzymes and proteins are measured by the microarray platform. Also, alterations in the pathway

affect different components (metabolites or enzymes) of the pathway. In this type of scenario, we can

expect data between the two platforms to be related. Our modeling framework is concerned with two

types of network similarity-within and between platforms. Within each platform, we assess how similar

subgroups are in terms of their graph structure. This results in a super-graph for each platform expressing

whether two subgroups are similar, i.e., connected, within each platform. We then assess whether or

not these super graphs are similar between platforms. This approach enables the joint estimation of the

biological networks in a flexible manner, as we make no assumptions on the directionality of influence

across the data types, nor on the extent of network similarity across the sample groups and platforms.

In this regards, our approach differs from many of the existing methods for integrative analysis, that

typically model the association between different types of observed random variables assuming a direction

of influence among the data types, see for example Wang and others (2013) and Cassese and others (2014)

for the use of multi-component hierarchical models, Chen and others (2015) for mixed graphical models,

and Lin and others (2016) for a multi-layered Gaussian graphical model where directed edges are allowed

across layers of each data type. Instead, we infer measures of relative similarity based on the data, which

provide valuable insight into the extent of network relatedness across sample groups and data types.

The paper is organized as follows. We present the motivating Chronic Obstructive Pulmonary Disease

(COPD) case study in Section 2. In Section 3, we describe the proposed Bayesian model and procedures

for posterior inference. We return to the COPD data set in Section 4, where we apply our proposed method

to infer metabolic and gene co-expression networks for varying disease stages. Section 5 provides simula-

tions studies illustrating the performance of the proposed method against competing approaches. Finally,

we conclude with a discussion in Section 6.
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2. THE COPDGENE STUDY

Our work has been motivated, in particular, by a collaborative study aimed at understanding how cellu-

lar metabolic and gene expression networks are disrupted by COPD, the 3rd leading cause of death in

the United States (National Center for Health Statistics, 2016), and one of the top causes of hospitaliza-

tion. While smoking is the primary risk factor for COPD, only 20% of smokers will ever develop the

disease. There is a poor understanding of risk factors accounting for disease susceptibility, as well as the

underlying pathogenic mechanisms resulting in airway inflammation and emphysema. Understanding the

genetic, clinical, and molecular factors that determine why some smokers develop COPD is the primary

motivation of the NIH funded multicenter observational study, COPDGene, which has over 10,000 partic-

ipants and includes extensive molecular profiling using transcriptomics, metabolomics, and proteomics.

For this study, subjects 45-80 years old with at least a 10 pack-year history of smoking were recruited and

biomarker measurements were attained from blood (Regan and others, 2010). There is a high degree of

heterogeneity in the patient population, which includes subjects from various clinical stages, defined us-

ing the Global Initiative for Chronic Obstructive Lung Disease (GOLD) staging criteria. We apportioned

subjects according to GOLD COPD stages and model resulting networks for a control group (GOLD stage

= 0), a mild or moderate group (GOLD Stage = 1 or 2), and a severe group (GOLD Stage = 3 or 4). Here

we focus in particular on a subset of subjects for whom gene expression levels or metabolite abundances

are available. For the gene platform, this apportionment resulted in a control group (GOLD Stage = 0) of

42 subjects, a mild or moderate group (GOLD Stage = 1 or 2) of 42 subjects, and a severe group (GOLD

Stage = 3 or 4) of 42 subjects. For the metabolite platform, the control group again had 42 subjects, while

the moderate and severe group had respectively 45 and 44 subjects. Ten subjects had GOLD Stage =

-1, indicating that although they had abnormal lung function, they didn’t satisfy the clinical criteria for

COPD. These subjects were therefore excluded from the analysis. This data set illustrates the need for our

proposed method, which can be used to analyze the multi-platform data across the heterogenous patient

groups in a coherent and integrative fashion. In summary, this paper is concerned with the analysis of data
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measured on two platforms, genes and metabolites, for three subgroups of subjects classified by COPD

GOLD stage.

3. PROPOSED METHOD

In this section, we provide details on the proposed method, including the likelihood, prior formulation,

and procedures for posterior inference. Graphical representations are provided in Figure 1.

3.1 Likelihood

Suppose we observe data on S data types andK subgroups. In our COPDGene case study, we have S = 2

andK = 3. For each subgroup and each platform, let Xsk be the nsk×ps data matrix, with k = 1, . . . ,K

indexing the subgroup, s = 1, . . . , S indexing the platform type, nsk the sample size for subgroup k from

platform s, and ps the total number of observed variables for platform s. Assuming that the samples are

independent and identically distributed within each of the K subgroups and S platforms, we can write the

likelihood for subject l in subgroup k and platform s as the multivariate normal distribution

Xskl ∼ N (µsk,Ω
−1
sk ), l = 1, . . . , nsk, (3.1)

where the mean vector µsk ∈ Rps and precision matrix Ωsk = Σ−1
sk are specific to subgroup k and

platform s. For simplicity, we column-center the data for each subgroup and therefore assume µsk = 0.

We note that Ωsk is constrained to the space M+ of ps × ps positive-definite symmetric matrices. We

denote the entry in the ith row and jth column of Ωsk as ωskij .

3.2 Prior formulation

The patterns of zeros in the precision matrices Ωsk correspond to undirected graphs among the variables.

Specifically, ωskij = 0 if and only if the corresponding edge (i, j) is missing in the conditional depen-

dence graph for subgroup k from platform s. The goal of our modeling formulation is to infer a sparse
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version the precision matrices Ωsk in a manner that links inference across platforms.

The graph for each platform s and subgroup k can be defined by a set of vertices V = {1, . . . , ps}

and edges E ∈ V ×V , and may be expressed as a symmetric binary matrix Gsk, where each off-diagonal

element gskij denotes the inclusion of edge (i, j). Our proposed model first links the edge inclusion indi-

cators across sample subgroups within each platform, and then links platforms based on the dependences

across subgroups within each platform. We now describe in detail the components of our prior.

3.2.1 Mixture prior on precision matrix elements We rely on the mixture prior proposed in Wang

(2015) to infer a sparse version of Ωsk. This prior is attractive as it allows direct modeling of the la-

tent graph Gsk and is computationally scalable. Mathematically, it can be expressed as a product of

ps(ps − 1)/2 normal mixture densities on the off-diagonal elements, and ps exponential densities on the

diagonal elements, normalized to have total probability of one. This is equivalent to a hierarchical model

p(Ωsk|Gsk, ν0, ν1, λ) ∝
∏
i<j

N (ωskij |0, ν2gskij
)
∏
i

Exp(ωskii|
λ

2
)

p(Gsk|ν0, ν1, π, λ) ∝
∏
i<j

{
πgskij (1− π)1−gskij

}
, (3.2)

where νgskij
= ν1 if edge (i, j) is present in graph Gsk and νgskij

= ν0 otherwise, with ν0 (< ν1) being

set to a small number. The two component normal mixture model has been shown to be a successful prior

in the context of variable selection, which in our case is equivalent to edge selection, and the choice of

hyperparameters ν0 and ν1 has been closely studied by George and McCulloch (1993). If for example,

ν0 is chosen to be small, the event gi,j = 0 indicates that the edge ωi,j comes from the N(0, ν20) or

diffuse component of the mixture, and consequently ωi,j is closer to zero and can be estimated as zero.

In contrast, if ν1 is chosen to be large, the event gi,j = 1 means ωi,j comes from the other component

N(0, ν21) and ωi,j can then be thought of as substantially different from zero.

3.2.2 Markov Random Field priors for linked network inference Markov Random Field (MRF) pri-

ors (Besag, 1974) have been successfully employed to capture network structure among the variables in
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Bayesian variable selection modeling frameworks (Li and Zhang, 2010; Stingo and others, 2011) and

more recently to link the selection of edges across multiple networks (Peterson and others, 2015; Shaddox

and others, 2018). Here we build upon this line of work and utilize MRF priors both to link edge selection

across networks within a platform, and to link the network similarity parameters across platforms.

Prior linking networks within each platform: Let gskij = {gs1ij , . . . , gsKij}T represent the vector of

binary inclusion indicators of edge (i, j) across the K graphs for platform s. We define a MRF prior on

this vector of binary inclusion indicators, linking edge selection across networks within a platform as

p(gskij |νsij ,Θs) =
exp(νsij1

Tgskij + gskij
TΘsgskij)

C(νsij ,Θs)
, (3.3)

with νsij a sparsity parameter and Θs a K × K symmetric matrix characterizing pairwise relatedness

across sample subgroups. The diagonal elements of Θs are constrained to be 0, while the off-diagonal

elements θskm drive the within platform similarity and link the edge selection between sample subgroups

k and m, such that a larger magnitude represents increased preference for shared similar structure be-

tween those two subgroups. In our experience, these entries can be interpreted on a relative rather than an

absolute scale, as magnitude can vary depending on hyperparameter settings, although ordering is gen-

erally preserved. Additionally, the vector of binary inclusion indicators allows easy interpretation of the

off-diagonal elements of θskm as regression coefficients of a probit model. If we introduce the notation

νs = {νsij |1 6 i < j 6 ps}, then we can write the joint prior across graphs Gsk for platform s as the

product of the densities for each edge as

P (Gs1, . . . ,GsK |νs,Θs) =
∏
i<j

p(gskij |νsij ,Θs). (3.4)

Imposing sparsity on the matrix Θs results in a “super-graph” describing relatedness of the networks

across the sample subgroups, with zero entries indicating that the networks are sufficiently different that

edge selection should not be shared. This is achieved assuming a spike-and-slab prior on the off-diagonal

entries of Θs, with a Gamma as the slab, since only positive values for θskm are sensible,

P (θskm|γskm) = (1− γskm)δ0 + γskm
βα

Γ(α)
θα−1
skme

−βθskm , (3.5)
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where Γ(·) represents the gamma function, α and β are fixed hyperparameters, and the latent indicator

variable γskm indicates the event that the network for subgroup k is related to subgroup m on platform s.

The joint prior on the off-diagonal entries is the product of the marginal densities

p(Θs|γs) =
∏
k<m

p(θskm|γskm). (3.6)

This prior construction allows sharing of information between subgroups when appropriate, without forc-

ing similarity in cases where the networks are actually different. Additionally, we specify a prior on the

sparsity parameter νsij as

P (νsij) =
1

β(a, b)

eaνsij

(1 + eνsij )a+b
, (3.7)

where β(·) denotes the Beta function, and a and b are fixed hyperparameters. Platform specific hyperpa-

rameters may be chosen in cases where sparsity is known to be different from one platform to another.

Prior linking cross-group relations across platforms: To link networks at the platform level, we model the

overall relationship between each pair of platforms based on the dependencies across subgroups within

each platform. This is a flexible approach which allows the number of variables and number of subjects to

differ across the platforms, and only requires that we have data for the same set of subgroups. Specifically,

we construct an MRF prior on the vector of binary indicators for network relatedness between subgroups

k and m across all platforms, γkm = {γ1km, . . . , γSkm}T , as

p(γkm|wkm,Φ) = C(wkm,Φ)−1 exp(wkm1Tγkm + γTkmΦγkm), (3.8)

with wkm capturing the sparsity of the vector γkm and Φ a S × S symmetric matrix denoting pairwise

similarity across platforms, in a similar manner to the matrices Θs described previously. The off- diagonal

elements of Φ drive the between platform similarity, a non-zero φst indicates platforms s and t have

similar super graphs Θs and Θt. As above, we place a spike-and-slab prior on the entries of Φ,

p(φst|ζst) = (1− ζst)δ1 + ζst
κη

Γ(η)
φη−1
st e−κφst , (3.9)

with κ and η fixed hyperparameters, and ζst a latent binary variable which indicates that platforms s and

t have related cross-group dependencies. Off-diagonal entries φst in the symmetric S × S matrix signify
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the magnitude of pairwise relatedness across platforms, modeling the relations across different platforms

as learned from the data in an innovative and versatile manner. We then place independent Bernoulli(u)

priors on the latent indicators ζst, with u a fixed hyperparameter ∈ [0, 1], and specify a prior on wkm

similarly to (3.7) with hyperparameters d and f to complete the model.

3.3 Posterior inference

Let Ψ = {Ωsk,Gsk,Θs, νsij ,γs, wkm,Φ, ζ} denote the set of all parameters and X denote the observed

data for all sample subgroups and all platforms. We can write the joint posterior as

p(Ψ|X) ∝
S∏
s=1

{
K∏
k=1

[
p(Xsk|Ωsk) · p(Ωsk|Gsk)

]
×

∏
16i<j6ps

[
P (gsij |νsij ,Θs) · p(νsij)

]
· p(Θs|γs)

}
×
∏
k<m

[
p(γkm|wkm,Φ)p(wkm)

]
· p(Φ|ζ) · p(ζ).

(3.10)

As this distribution is analytically intractable, we construct a Markov chain Monte Carlo (MCMC) sampler

to obtain a posterior sample of the parameters of interest.

3.3.1 MCMC sampling scheme Our MCMC scheme includes a block Gibbs sampler to sample the

precision matrix Ωsk and graph Gsk for each platform s and subgroup k. Then we sample the graph

similarity parameters Θs and γs for each platform using a Metropolis-Hastings method that is equivalent

to a reversible jump and incorporates between-model and within-model moves. Next, we use Metropolis-

Hastings steps to sample the edge-specific sparsity parameters νsij and the cross-subgroup relation spar-

sity parameters wkm from their respective posterior conditional distributions. Lastly, we update the cross-

platform parameters Φ and ζ using a Metropolis-Hastings method similarly to the one used to update Θs

and γs. A detailed description of the MCMC algorithm is provided in the Supplementary Material.

3.3.2 Model selection There are various approaches for making inference on the graph structures based

on the MCMC output. One approach is to use the maximum a posteriori (MAP) estimate, which represents
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the mode of the posterior distribution for each graph. However, this approach is generally not preferred in

the context of large networks since the space of possible graphs is large and we may only visit a particular

graph a few times during the MCMC. We then rely on a more practical approach for model selection, and

estimate the marginal posterior probability (MPP) of inclusion for each edge gskij , which we calculate

as the proportion of MCMC iterations, after burn-in, where edge (i, j) was included in graph Gsk. Final

inference is performed by selecting edges according to the median model (i.e., with MPP> 0.5) for

inclusion in our posterior selected graphs (Barbieri and Berger, 2004).

4. CASE STUDY ON COPD DISEASE SEVERITY

We are interested in studying the reshaping of gene and metabolite networks as disease stage worsens. Our

ultimate goal is to be able to map the underlying molecular causes of disease progression and to determine

whether biological platforms describe the same mechanisms.

Gene expression levels were measured from peripheral blood mononuclear cells (PBMCs) using the

Affymetrix Human Genome U133 Plus 2.0 Array (Bahr and others, 2013), and plasma metabolite abun-

dances were generated from Liquid Chromotography/Mass Spectrometry (Bowler and others, 2014). Can-

didate pathways were selected as follows. Differently expressed genes and differently abundant metabo-

lites were identified for airflow obstruction (FEV1pp forced expiratory volume in 1 second percent pre-

dicted) correcting for age, sex, body mass index, and current smoking status. KEGG Pathways (Kanehisa

and others, 2014) that showed enrichment of the significant genes and metabolites were then prioritized.

Top candidate pathways may play a role in the response to cigarette smoke exposure and are interesting

candidates for more detailed exploration in emphysema.

Below we report results on one of the top candidate pathways we analyzed, Regulation of autophagy

(RegAuto). Results on a second candidate pathway, FcγR-mediated phagocytosis (FcγR), can be found in

the Supplementary Material. Expression levels were measured for 28 (RegAuto) and 104 (FcγR) probe-

sets. These were collapsed to 20 (RegAuto), and 58 (FcγR) unique genes by selecting, for each gene, the
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probeset with the strongest association to emphysema. Metabolite data was matched to lipid and aqueous

annotation files in order to extract KEGG IDs for each sample. After subsetting to the RegAuto and FcγR

pathways, we were left with 117 (RegAuto) and 60 (FcγR) measurements, but numerous instances of

duplicate KEGG IDs. To reduce redundancy and exclude highly correlated covariates, we carried out an

iterative principal component analysis procedure to select a subset of less correlated variables for analysis.

This procedure is outlined in the Supplementary Material and an example code is provided online. After

this procedure, 21 (RegAuto) and 23 (FcyγR) metabolites were left for analysis.

4.1 Hyperparameter settings

The application of our model requires the specification of several hyperparameters. Here we describe

the specification we used to obtain the results reported below and refer to the simulation study for more

insights and sensitivity analyses. For prior (3.2) on the precision matrix elements, hyperparameters were

specified as ν0 = .02 and ν1 = 1 according to published guidelines given in Wang (2015). As for the prior

(3.5) on the off-diagonal entries of ΘS linking sample subgroups within a platform, we specified the slab

portion of the mixture prior as a Gamma(α, β) with α = 1 and β = 9 for both platforms. This resulted in a

prior with mean approximately equal to .1 and P (θkm 6 1) = .99, which avoids assigning high values to

the off diagonal entries of Θs. For the prior (3.7) on the sparsity parameter νsij of the MRF prior linking

networks within each platform, we specified a = 1 and b = 7 resulting in a prior probability of edge

inclusion around .125. The similarly specified prior on sparsity parameter wkm in the MRF prior (3.8)

linking cross-subgroup relations across platforms was specified as d = 1 and f = 19, for all subgroup

pairs k,m, resulting in approximately 5% prior probability of subgroup relatedness. The mixture prior

(3.9) on the off-diagonal entries of Φ was specified as Gamma(η, κ) with η = 4 and κ = 5, resulting

in a prior mean of .4 and P (φst 6 1) = .96, avoiding assigning high values to the off diagonal entries

of Φ. Lastly, the hyperparameter u in the Bernoulli prior on the indicators of platform similarity ζst was

specified as u = .1. Sensitivity analyses reported in the Supplementary Material show that hyperparameter



Bayesian Inference of Networks 13

settings have minimal impact on graph learning performance as the inferred network remains fairly stable.

With certain settings, large changes may occur in the magnitude of relative similarity measures Θs and Φ,

however ordering is generally preserved. Results we report here and in the Supplementary Material were

obtained by running two MCMC samplers for 10,000 burnin iterations followed by 30,000 iterations used

for inference, with different starting points. To verify convergence of the chains, we compared correlations

of resulting MPPs from the two chains. Those were in the range (.9357, 1.000), for Pearson correlations.

Final results were obtained by pooling together the output of the two chains.

4.2 Results

Estimated graphs for control, moderate, and severe subgroups, for the RegAuto pathway, obtained by

selecting edges with MPPs greater than 0.5, are shown in Figure 2, and those for the FcγR pathway are

reported in the Supplementary Material. In these plots, obtained using the software cytoscape (Shannon

and others, 2003), the size of a node is drawn proportionally to the number of edges connecting that node

to others in the same graph (i.e., the “degree” of the node). For the RegAuto pathway, relative network

similarities across subgroups were estimated as

MPP (Θ)GenesRegAuto =

 · .9932 .9741
· .9861

·

 MPP (Θ)Metabolites
RegAuto =

 · .9562 .9618
· .9560

·


with relative similarity across platforms estimated as MPP (Φ)RegAuto = .9685. These values indicate a

preference for shared structure across platforms and sample subgroups. Histograms of posterior distribu-

tions of non-zero values of ΘS and Φ are shown in the Supplementary Material.

Table 1 indicates the total number of inferred pair interactions across the two pathways, together

with the counts of pairs that exhibit evidence of disrupted interactions due to disease severity. In the

table, for each pathway, the three disease subgroups ordered from least to most severe are coded with

0’s and 1’s, with 1 indicating a high marginal posterior probability (MPP> 0.5) of edge inclusion in the
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subgroup network. For instance, 110 would indicate that the edge is present in the control and moderate

subgroup, yet not in the severe subgroup. That is, in the severe subgroup the MPP of edge inclusion falls

below the threshold of 0.50. Group codings of 100 and 110 indicate greater interaction in the control

and group codings 011 and 001 indicate greater interaction in disease. For the gene platform, counts for

known protein-protein interactions are included in parentheses for the gene platform. Biological General

Repository for Interaction Datasets (BioGrids) v. 3.4.156 (Chatr-Aryamontri and others, 2017) was used

to obtain protein-protein interactions and disease annotation information was gathered from Stelzer and

others (2011). We observe 50 − 60% disruption in total pairs of genes and metabolites, and different

patterns of disruption for metabolites and gene interactions. For both metabolites and genes, there are

a large number of connections in control subjects that are then disrupted in moderate/severe subjects.

But for metabolites, there is also a relatively large number of metabolite connections in severe subjects

that are not present in the moderate/control subjects, suggesting that parts of the metabolite pathway are

activated as disease severity increases. These results also illustrate that while our method takes advantages

of commonalities between the platforms, it can also highlight platform specific differences.

In order to gain further intuition on the properties of the estimated graphs, we calculated a number

of graph metrics across all subgroups and pathways. Results on number of edges, global clustering co-

efficient, averaged betweenness centrality and count of hub nodes are reported in Table 2. The global

clustering coefficient of a graph is based on node triplets, i.e. 3 connected nodes, and is defined as the

number of closed triplets divided by the total number of connected triplets. It measures the degree to

which nodes in a graph tend to cluster together, with values closer to 1 if the graph is more modular i.e.

it can be divided into clusters of highly connected nodes. Betweenness centrality quantifies the number

of times a node acts as a bridge along the shortest path between two other nodes, as a measure of how

important the node is in serving as a connector between other nodes in the graph.

A close inspection of the estimated networks and our results suggests that, in general, estimated gene

networks exhibited a trend of decreased connectivity or a large drop in connections as disease severity
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increased, while metabolite networks do not show such a trend. There may be several reasons why the

network patterns are different between the genes and metabolites. One possible reason is that the same

metabolites are present in other biological pathways that may be compensating for the changes due to

disease. Another reason is that the plasma metabolomics may be reflecting activity in multiple organs,

while the gene level data is primarily reflecting changes in gene expression more specifically in the blood.

Additionally, results in Table 2 generally indicate higher global clustering coefficients and degree cen-

trality measures for gene platforms than for metabolite platforms. This suggests that gene networks are

generally more clustered into denser subnetworks characterized by high connectivity within each path-

way when compared to metabolite networks. Additionally, interpreting degree centrality measures in the

context of information flow within networks suggests that when disrupted, highly connected genes may

impact network communication more than disrupted metabolite interactions.

4.3 Hub node analysis

Further analysis of the results was carried out on hub nodes, for both platforms, to validate findings with

known protein-protein interactions and to examine disease related gene annotation. Hub listings were

generated for each pathway and each platform to allow analysis of node connectivity and variations in

connectivity as disease increased in severity. A summary of results is given in Table 2, where hub node

count for our application setting signifies the number of nodes per group with a degree > 4, or at least four

connections. As an example, for genes in the FCγR pathway we find that the there are less connections

per node, less hub nodes, and less connections in the Severe subjects compared to the Moderate/Control

subjects suggesting that there is overall disruption for this pathway at the gene expression level. In the sup-

plementary materials, we provide biological background on specific genes, metabolites and connections

in the estimated networks for the two pathways.
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5. SIMULATION STUDIES

In this section we compare our proposed method with three recently proposed graphical model learning

methods: Fused Graphical Lasso, Group Graphical Lasso, and Hub Graphical Lasso. The first two meth-

ods are designed to learn the network structure of related subgroups (Danaher and others, 2014): The

Fused Graphical Lasso encourages both shared structure and shared edge values, the Group Graphical

Lasso encourages shared graph structures but not shared edge values. The Hub Graphical Lasso (Mohan

and others, 2014) encourages similarity across networks based on the presence or absence of highly-

connected hub nodes. None of the competing methods encourages similarity across platforms.

5.1 Comparison study

We investigate whether alternative methods can produce satisfactory results, in terms of network accuracy,

in settings that mimic our COPD data (two platforms and three sampling subgroups). We consider two

set-ups for generating p× p adjacency and precision matrices, for each sampling group k = 1, 2, 3:

(1) Scale free networks: the probability that a given node has e edges is proportional to e−α. We kept

α = 1, the default setting as stated in the igraph package (Csardi and Nepusz, 2006), and simulated

networks of the same size of pathways analyzed in the COPD case study (p = 40 nodes).

(2) AR(2) networks: the entries of the p× p precision matrix are defined as ωi,i = 1 for i = 1, . . . , p,

ωi,i+1 = ωi+1,i = 0.5 for i = 1, . . . , p− 1 and ωi,i+2 = ωi+2,i = 0.4 for i = 1, . . . , p− 2. We simulated

networks of larger size than pathways analyzed in the COPD case study (p = 80 nodes).

As our model learns similarity between networks and does not enforce similarity unless supported

by the data, current modeling allows for all patterns of similarity. In particular, from the preliminary

adjacency matrices above, in our simulations we considered two settings of pairwise similarity across

sampling groups for each platform: In setting one, for platform 1, Groups 1 and 2 were set up to be

“similar” while Group 3 was set up to be different. We generated “similar” networks across all three

groups for the second platform. Here, two groups are defined as “similar” if the precision matrix of one
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group shares approximately 90% of edges with the precision matrix of the other group. In setting 2, both

platforms were set up to have different networks across all three subgroups.

For scale free networks, to ensure that each generated precision matrix was positive definite, we used

a similar approach to that of Danaher and others (2014) where each off-diagonal element is divided by

the sum of the off-diagonal elements in its row, and then the matrix is averaged with its transpose. Con-

sequently, precision matrices generated via the scale free network method have lower signal, in terms of

magnitude of the non-zero elements of the precision matrices, than the AR(2) networks; we simulated

scale free networks of size p = 40 and AR(2) networks of size p = 80 to ensure a minimal signal

strength. After all precision matrices were determined, data matrices Xs,k of size n = 100 for k = 1, 2, 3

and s = 1, 2, were generated from normal distributions N(0,Ω−1
s,k) and variables were standardized to

have a standard deviation of one. We used the same hyperparameter setting used in the analysis of the

COPD data, and ran our MCMC samplers for 10,000 burnin iterations followed by 30,000 iterations used

for inference. Additional sensitivity analyses may be found in the Supplementary Material. Using a 2-

core 1.7 GHz Intel core i7 processor with 8 GB memory, our code takes approximately 40 minutes to run

5000 iterations for a 2 platform scenario with 40 variables per platform. Alternative methods, such as the

fused and group graphical lasso, are computationally more efficient, although grid searches and trials to

determine optimized penalty parameters can be quite time consuming.

In Table 3 we report network accuracy metrics averaged over 25 replicates; we considered the true

positive rate (TPR), the false positive rate (FPR), the Matthews correlation coefficient (MCC), and area

under the curve (AUC). Overall the proposed method performs comparatively well, and it is the only

approach that controls the false positive rate across all scenarios. The differences in performances in favor

of the proposed approach are particularly large in Setting Two. This is not surprising since the proposed

approach is the only joint graph inference approach that learns from the data whether groups are related

and, consequently, does not always enforce similarity across groups. Additionally, in the Supplementary

Material we show a comparison of TPRs attained across methods for fixed FDRs, providing some evidence
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that our proposed method improves power with respect to methods that employ separate estimations for

each subgroup.

6. CONCLUSION

Motivated by a collaborative study on COPD progression, we have proposed a novel approach for joint

multiple platform network analysis (here, genes and metabolites). Our Bayesian approach uses computa-

tionally efficient priors on precision matrices and hierarchical MRF priors to link similarities across sub-

groups and platforms. Even though less scalable than alternative methods, a Bayesian framework makes

use of all information in the data, sharing it across subgroups when appropriate, and enabling joint esti-

mation in a very flexible manner, as we make no assumptions on the directionality of influence across the

data types or on the extent of network similarity. In addition, our model formulation allows the numbers

of variables and subjects to differ across data types. We have demonstrated improved performance over al-

ternative approaches for multiple networks using simulated data. On the COPDGene data, we have jointly

inferred metabolite and gene networks across subgroups of disease stage, identifying notable interactions

that illustrate disease progression and suggesting pathway compensation as a consequence to disease.

These interactions pinpoint molecular targets for further study and provide potential therapy options.
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7. SUPPLEMENTARY MATERIAL

Supplementary material may be found online at http://biostatistics.oxfordjournals.org. Matlab code is

available at https://github.com/elinshaddox/MultiplePlatformBayesianNetworks.
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Fig. 1. Left: Graphical model representation of the proposed model, illustrating variables, parameters, and hyper
parameters for each of the K groups and S platforms. Right: A graphical illustration with K = 3 subgroups and
S = 3 platforms.

Table 1. Case study on COPD: numbers of total pairs of unique gene interactions and numbers of disease disrupted
pairs based on disease severity. Numbers in parentheses reflect the number of pairs with known protein protein inter-
actions (PPIs).

Pathway Platform Total Pairs 100 110 011 001 Total Disrupted
FcγR Metabolites 73 17 5 3 18 43
FcγR Genes 656 (49) 151 (8) 63 (7) 74 (3) 63 (4) 351 (22)
Reg Auto Metabolites 66 14 4 5 17 40
Reg Auto Genes 101 (6) 23 (2) 13 7 8 51 (2)

ZHU, Y., SHEN, X. AND PAN., W. (2014). Structural pursuit over multiple undirected graphs. Journal of

the American Statistical Association 109(508), 1683–1696.

[Received August 1, 2010; revised October 1, 2010; accepted for publication November 1, 2010]
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Fig. 2. Regulation of Autophagy (RegAuto) pathway, gene (top) and metabolite (bottom) platforms: Estimated graphs
for control (left), moderate (middle), and severe (right) subgroups, obtained by selecting edges with MPPs greater
than 0.5. The size of the nodes is proportional to their degree.

Table 2. Case study on COPD: Graph measures results, including number of edges, global clustering, betweenness
centrality and count of hub nodes, for each subgroup. Hub nodes are defined as nodes with a degree > 4, or at least
four connections. Specific hub nodes and extended degree results can be found in the Supplementary Material.

FcγR pathway
Metabolites Genes

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
59 57 58 Number of Edges 405 444 332

0.1665 0.2430 0.1683 Global Clustering 0.4268 0.4495 0.4442
0.2122 0.2783 0.3348 Betweenness Centrality 0.0771 0.0483 0.0995

12 5 10 Count of Hub Nodes 50 53 46

Reg Auto pathway
Metabolites Genes

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
49 51 54 Number of Edges 71 76 49

0.0881 0.2143 0.1003 Global Clustering 0.4649 0.5175 0.4123
0.1524 0.21117 0.1862 Betweenness centrality 0.1800 0.1205 0.1435

9 8 6 Count of hub nodes 14 15 8
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Table 3. Simulation study: In setting one, one group on one of the two platforms is dissimilar from the others. In
setting two, both platforms have dissimilar groups. Network accuracy metrics are reported as Mean (Standard Error)
over 25 replicates for p = 80 scenarios and 50 replicates for p = 40 scenarios.

Setting one, p = 40
Method TPR FPR MCC AUC
Fused Lasso 0.743 (0.0031) 0.028 (0.0004) 0.639 (0.0028) 0.936 (0.0020)
Group Lasso 0.785 (0.0031) 0.060 (0.0005) 0.536 (0.0023) 0.912 (0.0022)
Hub Group Lasso 0.123 (0.0049) 0.005 (0.0004) 0.263 (0.0062) 0.899 (0.0022)
Multi-Platform Bayes 0.611 (0.0063) 0.022 (0.0005) 0.579 (0.0055) 0.895 (0.0036)

Setting two, p = 40
Method TPR FPR MCC AUC
Fused Lasso 0.907 (0.0016) 0.157 (0.0006) 0.439 (0.0012) 0.963 (0.0003)
Group Lasso 0.930 (0.0015) 0.167 (0.0005) 0.436 (0.0010) 0.954 (0.0004)
Hub Group Lasso 1.000 (0.0000) 0.467 (0.0048) 0.232 (0.0021) 0.945 (0.0004)
Multi-Platform Bayes 1.000 (0.0001) 0.028 (0.0004) 0.794 (0.0020) 1.000 (0.0001)

Setting one, p = 80
Method TPR FPR MCC AUC
Fused Lasso 0.657 (0.0037) 0.035 (0.0005) 0.546 (0.0029) 0.919 (0.0023)
Group Lasso 0.777 (0.0031) 0.069 (0.0005) 0.506 (0.0022) 0.916 (0.0023)
Hub Group Lasso 0.263 (0.0064) 0.005 (0.0003) 0.427 (0.0050) 0.905 (0.0023)
Multi-Platform Bayes 0.636 (0.0063) 0.023 (0.0005) 0.597 (0.0053) 0.941 (0.0037)

Setting two, p = 80
Method TPR FPR MCC AUC
Fused Lasso 0.735 (0.0017) 0.080 (0.0004) 0.451 (0.0015) 0.957 (0.0009)
Group Lasso 0.998 (0.0002) 0.270 (0.0006) 0.343 (0.0005) 0.938 (0.0229)
Hub Group Lasso 1.000 (0.0000) 0.464 (0.0044) 0.233 (0.0019) 0.945 (0.0004)
Multi-Platform Bayes 1.000 (0.0001) 0.026 (0.0004) 0.808 (0.0021) 1.000 (0.0001)
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