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Abstract
Objectives  Gangs are thought to enhance participation in violence. It is expected then that 
gang-related violent crimes trigger additional crimes in a contagious manner, above and 
beyond what is typical for non-gang violent crime.
Methods  This paper uses a multivariate self-exciting point process model to estimate the 
extent of contagious spread of violent crime for both gang-related and non-gang aggra-
vated assaults and homicides in recent data from Los Angeles. The degree of contagious 
cross-triggering between gang-related and non-gang violent crime is also estimated.
Results  Gang-related violence triggers twice as many offspring events as non-gang vio-
lence and there is little or no cross-triggering. Gang-related offspring events are signifi-
cantly more lethal than non-gang offspring events, but no more lethal than non-contagious 
background gang crimes.
Conclusions  Contagious spread of gang-related violent crime is different from contagion 
in non-gang violence. The results support crime prevention policies that target the disrup-
tion of gang retaliations.

Keywords  Homicide · Assault · Gangs · Point process · Violence prevention

Introduction

The historically low violent crime rates in large- and mid-sized cities today mask the sig-
nificant challenges posed by criminal street gangs. For example, while the total numbers of 
homicides per year in Chicago and Los Angeles are significantly below where they were 
even 10 years ago, the fraction of homicides that are gang-related has remained consist-
ently high (Hutson et al. 1995; Egley and McDaniel 2012; Valasik et al. 2017). That gang 
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crime tends to be more violent than non-gang crime has long been recognized (see Pyrooz 
et al. 2016). Gang violent crime also tends to be much more lethal than non-gang violent 
crime (Block and Block 1993). The general thinking is that gangs uniquely motivate a high 
level of involvement in violent crime. Violence appears to be central to establishing and 
maintaining the reputation of gangs and their members, in addition to supporting instru-
mental goals (Short and Strodtbeck 1964; Luckenbill 1977; McGloin and Collins 2015). 
Gangs may drive both increased numbers of spontaneous acts of violence (i.e., crimes 
that occur without any obvious trigger) (Tita et  al. 2004) and the contagious spread of 
events in response to prior acts of violence (Loeffler and Flaxman 2017; Short et al. 2014; 
Decker 1996). Specifically, gangs may encourage their members to both build on recent 
successes (i.e., self-excitation), and mount swift reprisals when attacked by rivals (i.e., tit-
for-tat retaliation). Contagious violence may be particularly important in the reputational 
dynamics of gangs if stringing together successes, or hitting back fast and hard, carries 
greater symbolic value than simply attacking when it is not expected (Lewis and Papachris-
tos 2020). It also is the central theoretical justification for policy interventions that seek 
to reduce shootings and homicides by ‘interrupting’ the contagion process (Skogan et al. 
2009; Webster et al. 2012; Tremblay et al. 2020).

At the same time, contagious spread of violence does not appear to be strictly limited to 
gang contexts. It is observed for gun violence in general, both over social networks (Green 
et al. 2017; Papachristos et al. 2015) and in spatio-temporal crime patterns (Mohler 2014), 
though the temporal and spatial scale of contagious diffusion may be quite narrow (Loef-
fler and Flaxman 2017). Violence contagion in non-gang contexts may be rooted in some 
of the same social processes attributed to gangs including reputation management (Ander-
son 1999; Jacobs and Wright 2006; Tedeschi and Felson 1994; Mitchell et  al. 2017), or 
it may reflect a generic human preference to simply repeat what has worked in the recent 
past (Samuelson and Zeckhauser 1988). Thus, it is important to assess the degree to which 
contagious spread of gang-related violence is distinctive from that of non-gang violence. 
Assessing such differences is important for understanding the scope of group-level social 
processes that underlie gangs (Thornberry et al. 1993; Decker et al. 2013). It is possible 
that group-level social processes increase the frequency of spontaneous (non-contagious) 
acts of violence, but do not amplify the contagious spread of violence above and beyond 
what is the case for non-gang violence. As a matter of policy, finding that contagious 
spread of violence is similar across gang-related and non-gang crimes would suggest that 
‘violence interruption’ could be applied more broadly. Finding that gang-related crimes 
are more contagious would provide further justification for limited use of resources to treat 
gang-related events most likely to trigger future crimes. Accurately distinguishing between 
gang-related and non-gang crimes would then be of added importance.

We test for differences in the contagious spread of violence using a data set of gang-
related and non-gang aggravated assaults and homicides from Los Angeles, CA. A multi-
variate self-exciting point process model allows us to simultaneously estimate clustering 
due to non-contagious background heterogeneity and that due to contagious diffusion for 
both gang-related and non-gang crime (see Loeffler and Flaxman 2017). Similar methods 
have been used previously to study spatio-temporal patterns in property crime (Mohler 
et al. 2011, 2015) and violent crime (Stomakhin et al. 2011; Short et al. 2014; Green et al. 
2017; Mohler 2014). The key contribution here is the use of a multivariate point pro-
cess model that allows us to estimate contagious spread both within and between crime 
contexts. Specifically, we are able to examine cross-triggering between gang-related and 
non-gang crime, where violence contagiously spreads between non-gang and gang-related 
contexts. We find that gang-related violence triggers twice as many contagious offspring 
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events as non-gang violence and there is little or no cross-triggering. We also find that 
gang-related contagious offspring events are significantly more lethal than non-gang off-
spring events, but no more lethal than (non-contagious) background gang crimes.

Methods

Univariate Point Processes

The idea that crime spreads or diffuses contagiously has a long history in criminology. 
It is closely connected to ideas of event dependence (Farrell and Pease 1993) and conta-
gion is generally thought to contribute to spatio-temporal clustering of crime (Loeffler and 
Flaxman 2017; Johnson et al. 2007). Decker (1996) explicitly defines violence contagion 
as “subsequent acts of violence caused by an initial act” (see also Loftin 1986). Retalia-
tory gang violence is perhaps the most intuitive example of contagious violence; one gang 
striking back in response to a prior attack (i.e., A attacks B, then B attacks A) (McGloin 
and Collins 2015). Repeated attacks by the same gang against one or more rivals can also 
be contagious, if an earlier attack by a gang creates the incentive to mount another attack 
aimed at the same or a different rival (i.e., A attacks B, then A again attacks B or attacks C) 
(Papachristos 2009; Lewis and Papachristos 2020). Similarly, cascades of violence across 
a network of gangs can also be self-exciting if the victim of an attack responds by attack-
ing a third gang (i.e., A attacks B, then B attacks C) (Papachristos et al. 2013; Randle and 
Bichler 2017; Lewis and Papachristos 2020). Indirect contagion is also possible if knowl-
edge of a crime between two rivals prompts a gang to mount an attack against yet another 
rival (i.e., A attacks B, then C attacks D). In all of these hypothetical cases, however, the 
causal dependence between events is expected to generate clustering of those events in 
space and time.

Different statistical methods have been used to detect and characterize contagion from 
observed clustering of events (Short et  al. 2009; Mantel 1967; Aral et  al. 2009; Mohler 
et al. 2011; Diggle et al. 2005; Ogata 1998; for a review see Loeffler and Flaxman 2017). 
Decker’s definition of violence contagion particularly lends itself to evaluation using self-
exciting point process models. Such models minimally take into consideration the discrete 
time and location of crime events and estimate the degree to which clustering of crime 
events is the result of: (1) relatively stable, spatial heterogeneity in local risk factors; and 
(2) local spatial and temporal dependencies among offenses (Heckman 1991; Tseloni and 
Pease 2003; Loeffler and Flaxman 2017). A generic self-exciting point process model 
describes the conditional intensity of violent crime at location x, y at time t as:

The conditional intensity �(x, y, t) may be interpreted as the expected instantaneous rate 
of crime at a given location. The model partitions the conditional intensity into two parts. 
The background intensity �(x, y) is stationary in time (i.e., it does not include t), but poten-
tially varies from one location to another (i.e., it includes x, y ). Self-excitation is described 
by a so-called “triggering kernel” g that is dependent on the history of events occurring in 
space and time (i.e., it includes x, y and t). A parameterization of the generic model for the 
multivariate case is introduced below.

(1)�(x, y, t) = �(x, y) + K
∑

xi ,yi,ti

g
(

x − xi, y − yi, t − ti
)
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In the absence of self-excitation, the conditional intensity in Eq. (1) defaults to a spa-
tially inhomogeneous Poisson arrival process (Daley and Vere-Jones 2003). In other words, 
risk may vary from place to place, but events occurring within each place are expected to 
be Poisson distributed in space and time. Self-excitation adds a contagion-like mechanism 
to this baseline. It allows past events i = 1, 2,…N to influence the risk that a new event 
will occur. The parameter K is called the productivity of the self-exciting point process. It 
is the average number of offspring events triggered contagiously by any one parent. Fig-
ure 1 illustrates how the clustering of events (in time) is statistically connected to conta-
gious self-excitation.

Multivariate Point Processes

Past applications of self-exciting point process models to crime have considered clustering 
in single event types (Mohler et al. 2011; Loeffler and Flaxman 2017). Indeed, the term 
“self-exciting” refers to the idea that an event of one type (e.g., gang violence) triggers one 
or more events of the self-same type. Clearly, gang-related violent crime does not occur in 
a vacuum. Gang-related crimes happen alongside non-gang violent crimes and each may 
mutually influence the contagious spread of new crimes. Gang-related and non-gang vio-
lent crimes can be thought of as following their own point process. In addition, we can 
model how these point processes interact with one another. The multivariate counterpart to 
Eq. (1) gives the conditional intensity for crime type u as:

As in the univariate case, Eq. (1) includes a spatially inhomogeneous background rate 
�u(x, y) for each crime type u. The self-exciting triggering kernel g now specifies a pro-
ductivity Kuiu

 , which is the average number of offspring of type u triggered contagiously 
by a crime of type ui . The fully specified model with the background rate and self-exciting 
kernel is:

(2)𝜆u(x, y, t) = 𝜇u(x, y) + Kuiu

∑

ti<t

g
(

x − xi, y − yi, t − ti
)

.

Fig. 1   A temporal self-exciting 
point process model fit to gang-
related violent crimes in South 
Los Angeles over a two-week 
period in 2016
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In Eq. (3), �uiu is a weights matrix describing how events of type ui contribute to the 
background rate for events of type u, η is the typical spatial decay of background risk 
at increasing distance from location x, y , and T is the total time represented by observed 
data. In Eq.  (4), ω is the temporal decay rate associated with self-excitation (i.e., the 
rate at which risk of contagion following a single event returns to the background risk), 
and σ is the spatial decay of elevated risk associated with self-excitation with increasing 
distance from location x, y (i.e., a near-repeat spatial effect).

Our primary interest is in the multivariate productivity Kuiu
 from Eq.  (2). For the 

case of interacting gang-related and non-gang violent crimes, Kuiu
 is a matrix with four 

entries. If we label gang-related violent crimes with u = 1 and non-gang violent crimes 
with u = 0 , then entry k11 in Kuiu

 is the average number of gang-related offspring crimes 
triggered by a single gang-related parent. This is violence contagion within gang con-
texts (i.e., a gang-related violent crime triggers one or more additional gang-related vio-
lent crimes). Entry k01 is the average number of gang-related offspring triggered by any 
one non-gang parent crime. This is contagion from non-gang to gang contexts. Conta-
gious cross-triggering of this sort might describe crimes in a social context not explic-
itly tied to gangs (e.g., a dispute over money or love interests), but brings the broader 
gang apparatus to bear (e.g., as a form of escalation via friends or family). Entry k00 is 
the average number of non-gang offspring crimes triggered by a single non-gang par-
ent crime. This is contagion within non-gang contexts. It may cover contagion among 
crimes following some generic form of “street justice,” independent of gang dynam-
ics. Finally, entry k10 is the average number of non-gang offspring crimes triggered by 
any single gang-related violent crime parent. This is contagion from gang to non-gang 
contexts. We might expect this triggering pathway if gangs do not take a special interest 
in a prior crime committed against them, thus leaving it to an individual to resolve the 
problem himself.

Figure 2 provides a conceptual illustration of these interactions in a network framework. 
Background, non-contagious events are identified without a causal arrow from any prior 
event. These are events generated by a Poisson process with parameters �1 and �0 cor-
responding to gang-related and non-gang crimes, respectively. Contagious self-excitation 
is identified by events with a causal arrow arising from a prior event. The causal arrows 
connect events that are either of the same type (i.e., self-excitation), or between types (i.e., 
cross triggering).

(3)�u(x, y) =

N
∑

i=1

�uiu

2��2T
× exp

(

−

(

x − xi
)2

+
(

y − yi
)2

2�2

)

(4)g(x, y, t) = � exp (−�t) ×
1

2��2
exp

(

−
x2 − y2

2�2

)

Fig. 2   Background rates and trig-
gering pathways linking gang-
related and non-gang crimes over 
time. Non-gang and gang-related 
crimes are assigned to two inter-
acting point processes operating 
over time and space. Only the 
time dimension is shown k11

k00

k10k01

Time
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Model Estimation and Statistical Testing

Modern statistical methods allow simultaneous estimation of the background and self-
excitation components of the conditional intensity exposing the unique effects of con-
tagion (see Loeffler and Flaxman 2017). We use a version of Poisson log-likelihood 
estimation (MLE) called Expectation–Maximization to estimate the multivariate model 
(Lewis and Mohler 2011). The details of implementation are discussed in the Appendix. 
We use the Wald test (Z) to evaluate if parameter estimates are different from zero (Fox 
1997) and also to compare triggering estimates across models (see also Paternoster et al. 
1998).

Stochastic Declustering

Below we will have an interest in labeling specific events as background or contagious 
crimes. Stochastic declustering is a suite of methods developed in the study of earthquake 
catalogs where the goal is to distinguish between background seismicity and aftershocks 
(Zhuang et  al. 2002). The same methods can be applied to the study of crime (Mohler 
et  al. 2011). Starting with a self-exciting point process model with parameters fit to a 
given data set, stochastic declustering proceeds through a thinning procedure that removes 
events probabilistically classified as retaliations. The events remaining after thinning rep-
resent the background events generated by a spatially non-homogeneous Poisson process 
�(t, x, y) = �(x, y) . In the univariate spatio-temporal case, the probability ρ that an event j is 
a retaliation is given by:

Intuitively, the numerator is the cumulative contribution of self-excitation from all prior 
events i to the instantaneous intensity that generated event j. In Fig. 1, if we take j to be the 
last event in cycle 2, then g = 0 for all of the events in cycle 1, which contribute nothing to 
the probability that j is a retaliation. The first ten events in cycle 2 have g > 0 and therefore 
each contributes something to the probability that j is a retaliation. The ratio of 

∑

g to λ is 
the proportion of the conditional intensity underlying event j that is due to self-excitation. 
The ratio therefore acts like an empirical probability. The probability that an event j is a 
background event is therefore:

For a catalog of N total crimes, the simplest stochastic decluttering procedure is to gen-
erate N uniform random variables U1,U2,… ,UN in the range (0, 1] and classify a crime j as 
a background crime when Uj < 1 − 𝜌j , otherwise classify it as a retaliation (Zhuang et al. 
2002). Since each declustering, computed for the catalog of N total crimes, is a realization 
of a stochastic process (like a Monte Carlo simulation), we repeat the stochastic decluster-
ing 1000 times to compute the mean and standard deviation of the estimated number of 
background crimes and retaliations. We use stochastic declustering to consider differences 
in lethality of both non-gang and gang-related background crimes and retaliations.

(5)𝜌j =

∑

ti<tj
g
�

xj − xi, yj − yi, tj − ti
�

𝜆
�

xj, yj, tj
� .

(6)1 − �j =
�
(

xj, yj
)

�
(

xj, yj, tj
) .
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Data

Violent crime data from Los Angeles were used in this study. Analyses were restricted 
to the 3071 aggravated assaults and 71 homicides that occurred in an 87.2  km2 area of 
South Los Angeles during 2016 (Fig. 3, Table 1). The region encompasses ten geographic 
areas serviced by the Los Angeles Mayor’s Office of Gang Reduction Youth Development 
(GRYD). GRYD is a comprehensive prevention, intervention and violence intervention 

Fig. 3   Aggravated assaults and homicides in South Los Angeles in 2016. a and c Gang-related violent 
crimes. b and d Non-gang violent crimes. Shaded area shows the region serviced by the Los Angeles May-
or’s Office of Gang Reduction Youth Development. LAPD Divisions are indicated in (c). Locations of the 
10, 105 and 110 Freeways are indicated in (d)
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program (Tremblay et al. 2020). The ten areas overlap with all or part of the Los Angeles 
Police Department’s (LAPD) Southwest, Newton, 77th and Southeast Patrol Divisions.1 
The data used in the analyses were provided by the LAPD and include only crimes reported 
to the police. Homicide is reported with close to perfect accuracy. National figures suggest 
that approximately 60% of aggravated assaults are reported on average (Morgan and Oude-
kerk 2019). Crime underreporting may have a neutral or biased effect on detection of the 
contagious spread of crime. For example, if retaliatory gang crimes were systematically 
more (less) likely to be reported than background gang crimes, then the contagious spread 
of crime would appear to be stronger (weaker) than it actually is (see Loeffler and Flaxman 
2017). We return to this issue in the Discussion.

The LAPD distinguishes between gang-related and non-gang crimes for a wide range 
of crime types including homicide, assault, rape, robbery, shots fired and carjacking. The 
LAPD recognizes that the distinction is subjective in nature and must be based on an 
assessment of the totality of information about a crime. Specifically, the LAPD manual 
states that: “Any crime may constitute a gang-related crime when the suspect or victim 
is an active or affiliate gang member, or when circumstances indicate that the crime is 
consistent with gang activity” (LAPD 2019: §269.10). Relevant circumstances include if 
the crime occurred within gang territorial boundaries or known gang hangout, and if the 
modus operandi of the crime is inherently gang-related (e.g., drive-by shooting). The area 
gang officer in charge is nominally involved in determining if any crime is gang related. We 
are unable to verify the criteria used in the labeling of specific crimes. Prior research sug-
gests, however, that gang involvement of suspects and/or victims tends to be the deciding 
factor (Maxson and Klein 1990; Rosenfeld et al. 1999). Rosenfeld et al. (1999) would clas-
sify such crimes as gang-affiliated. We use gang-related as a more general term since we do 
not have specific information on the basis for labeling each crime (see Discussion).

Approximately 30% of the aggravated assaults in the study region were identified as 
gang-related. Approximately 80% of the homicides in the study region were identified as 
gang related. The next section uses these data to examine differences between gang-related 
and non-gang in the contagious spread of violent crime.

Table 1   Aggravated assaults and 
homicides in South Los Angles 
during 2016

Non-gang Gang-related Total

N % N % N

Aggravated assault 2196 71.5 875 28.5 3071
Homicide 15 20.3 59 79.7 74
Total 2211 70.3 934 29.7 3145

1  Excluded from the areas serviced by GRYD are portions of Newton Division northeast of E. Adams 
Blvd, which represent the Los Angeles Downtown area, and the extension of Southeast Division, south of 
E. El Segundo Blvd.
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Results

Univariate Model Results

We now fit the univariate spatio-temporal model (Eq. 1) to the gang-related and non-
gang crimes separately (see Appendix). The estimated model parameters along with 
standard errors are shown in Table 2. The parameters β and K represent the contribu-
tions of background and contagion processes, respectively, to the spatio-temporal occur-
rence of crime. We use subscripts 1 and 0 to reference parameter estimates for gang-
related and non-gang crime respectively. The values of β indicates that background 
processes play a greater role (+ 22%) in generating non-gang crimes than gang-related 
crimes. The parameter K is a measure of the expected number of contagious offspring 
events (e.g., retaliations) triggered by any one prior crime. Gang crimes on average 
trigger two-times more gang-related offspring events compared with non-gang crimes. 
For every 100 gang-related violent crimes there are an estimated 28.1 gang-related off-
spring. For every 100 non-gang violent crimes there are an estimated 12.1 non-gang 
offspring (Table 2). All of the parameter estimates are significantly different from zero 
(results not shown). The background rate for non-gang crimes is significantly higher 
than for gang-related crimes ( �1 − �0 = −0.16, Z = −2.191, p = 0.014 ) (Table  2). The 
triggering rate for gang-related offspring is significantly higher than for non-gang off-
spring ( K1 − K0 = 0.160, Z = 2.558, p = 0.005 ) (Table 2).

Contagious triggering also occurs over a longer period of time for gang crimes. The 
half-life of contagion is given as ln(2)∕� . This means that 50% of gang-related contagious 
offspring occur on average within ln(2)∕0.647 = 1.07 days of a triggering event. Ninety 
percent of gang-related offspring occur within 7 days of a triggering event. By contrast, 
50% of non-gang contagious offspring occur on average within ln(2)∕1.636 = 0.424 days 
of the triggering event. Ninety percent of non-gang offspring occur within 3 days. The 
difference is marginally insignificant ( �1 − �0 = −0.989, Z = −1.603, p = 0.054 ). The 
spatial region over which background and contagion processes operate is given by �2 
and is approximately the same for both gang and non-gang crimes. The difference is 
insignificant ( �2

1
− �2

0
= −0.004, Z = −1.275, p = 0.101).

Table 2   Estimated parameters and standard errors of the estimates for univariate models fit separately to 
2016 data

† Parameter description: β Estimated influence of background events; K Expected number of triggered off-
spring per parent event; 1/ω Estimated mean time to a triggered offspring crime; σ Estimated spatial decay 
for triggering with increasing distance from parental event
†† Wald statistic comparing gang-related to non-gang parameter estimates for separate models assuming no 
covariance between estimates

Parameter† Non-gang estimate (SE) Gang-related estimate 
(SE)

Z†† p value

β 0.880 (0.071) 0.720 (0.071) − 2.191 0.014
K 0.121 (0.062) 0.281 (0.062) 2.558 0.005
ω 1.636 (0.223) 0.647 (0.223) − 1.603 0.054
σ 0.126 (0.003) 0.122 (0.003) − 1.275 0.101
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Multivariate Model Results

The multivariate model provides an opportunity to estimate interactions effects between 
crimes labeled as non-gang and gang-related. Table 3 presents the results. The interpreta-
tion of the parameter �ij is more complicated in the multivariate case. Here �ij gives the 
degree to which background processes associated with events of type i contribute to the 
occurrence of events of type j. For example, �11 is the degree to which gang-related back-
ground processes contribute to gang-related background crimes, while �01 is the degree 
to which non-gang background processes contribute to gang background crimes. The 
matrix of �ij values is highly asymmetrical. Non-gang background processes make insig-
nificant contributions to the occurrence of both non-gang 

(

�00 = 0.0074
)

 and gang-related 
crimes 

(

�01 = 4.1 × 10−7
)

 . The standard errors indicate that neither parameter estimate is 
significantly different from zero ( 𝛽00 ∶ Z = 0.293, p = 0.385;𝛽01 ∶ Z < 0.001, p = 0.5 ) 
(Table 3). By contrast, gang-related background processes make a noticeable contribution 
to the occurrence of gang-related crimes 

(

�11 = 0.836
)

 , and a massive contribution to the 
occurrence of non-gang crimes 

(

�10 = 2.057
)

 . The standard errors indicate that these are 
significantly different from zero ( 𝛽11 ∶ Z = 1.862, p = 0.031;𝛽10 ∶ Z = 3.18, p < 0.001 ) 
(Table 3). In other words, background processes underlying gang violence appear to create 
stationary conditions that support the occurrence of both gang and non-gang violence. This 
observation is consistent with the idea gangs produce a “lawlessness” that allows both gang 
and non-gang to thrive (Leovy 2015; Lane and Meeker 2003).

Interpretation of the contagious interactions between processes for gang-related and non-
gang crimes proceeds in similar manner (Table 3). The parameter k11 is the average number 
of gang-related contagious offspring triggered by a single prior gang-related crime. The 
parameter k00 is the average number of non-gang contagious offspring triggered by a prior 
non-gang crime. Comparing these two values shows that contagion is more common among 
gang-related crimes (i.e., k11 = 0.164 > k00 = 0.113 ). For every 100 gang-related crimes 

Table 3   Estimated parameters 
and standard errors of the 
estimates for the multivariate 
model of non-gang and gang-
related crimes

† Parameter descriptions: �ij Estimated influence of events to type i 
on the background rate for events of type j; kij Expected number of 
offspring events of type j triggered by events of type i; 1/ω Estimated 
mean time to a triggered offspring crime; σ Estimated spatial decay for 
triggering with increasing distance from parental event
†† Wald statistic testing parameter estimate against the null hypothesis 
that the true parameter is zero

 Parameter† Estimate SE Z†† p-value

β11 0.836 0.449 1.862 0.031
β10 2.057 0.647 3.18 0.001
β00 0.074 0.254 0.293 0.385
β01 4.11E−07 0.187 2.20E−06 0.5
k11 0.164 0.035 4.724 < 0.0001
k10 8.14E−06 0.06 1.36E−04 0.5
k00 0.113 0.063 1.797 0.036
k01 3.14E−04 0.027 0.012 0.495
ω 2.282 1.082 2.109 0.017
σ 0.125 0.002 77.443 < 0.0001
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there are an additional 16.4 gang-related contagious offspring. For every 100 non-gang 
violent crimes there are 11.3 non-gang contagious offspring. Gang-related crimes produce 
about 45% more gang-related offspring on average. The results are attenuated compared 
with the univariate models. In both cases, the parameters are significantly different from 
zero ( k11 ∶ Z = 4.724, p < 0.0001;k00 ∶ Z = 1.797, p = 0.036 ). However, the difference 
between the parameter estimates is insignificant ( k11 − k00 = 0.051, Z = 0.704, p = 0.24).

There is very limited interaction between non-gang and gang-related crimes. The param-
eter k01 gives the average number of gang-related offspring triggered by a prior non-gang 
crime. The estimate for this parameter is three orders of magnitude smaller than is seen 
for offspring triggered strictly within non-gang crimes (i.e., k00 = 0.113 > k01 = 0.0003 ). 
We interpret this to mean that non-gang crimes may trigger gang-related retaliations, but 
this is a very rare occurrence indeed. Whereas every 100 non-gang violent crimes trigger 
an additional 11 non-gang retaliations, it takes 10,000 non-gang crimes to trigger 3 gang-
related retaliations. The parameter k10 describes the average number of non-gang conta-
gious offspring triggered by a single gang-related crime. The estimate k10 = 8.14 × 10−6 
suggests that gang-related crimes effectively never trigger non-gang offspring. In 
both case, the parameters for cross-triggering are not significantly different from zero 
( k01 ∶ Z = 0.012, p = 0.495;k10 ∶ Z = 1.36 × 10−4, p = 0.5 ) and the parameters are not 
significantly different from one another ( k01 − k10 = 0.003, Z = 0.0046, p = 0.498).

Model Parsimony

An important question concerns whether contagion is important for describing the spatio-
temporal dynamics of gang-related and non-gang crime. To evaluate this question, we use 
the Akaike Information Criterion (AIC) (Akaike 1974) to compare models. Specifically, 
we compare models where �(t) = � + g to alternative, simpler models where �(t) = � . The 
only difference is the inclusion of contagion in the former. The latter assumes that events 
are generated by a stationary Poisson process only. AIC seeks to balance model parsimony 
against model fit. In general, we prefer simpler models as long as they offer a reasonable 

Table 4   AIC values for models 
with and without retaliation

Poisson AIC Self-exciting AIC

Univariate non-gang − 2775.73 − 7165.22
Univariate gang-related 366.82 − 1444.60
Multivariate − 2408.92 − 8611.85

Table 5   Number of background 
crimes and retaliations 
determined by stochastic 
declustering

† Standard errors are the same since the probability that an event is 
background is complementary to the probability that it is a retaliation
‡ The total number of crimes is lower due to uncertainty in geolocation

Non-gang Gang-related Total

N (SE) % N (SE) % N %

Background 1769.4 (14.0)† 88.7 658.6 (9.7) 83.6 2428.0 87.2
Retaliation 225.6 (14.0)† 11.3 129.4 (9.7) 16.4 355.0 12.8
Total N 1995 788 2783‡
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fit to the data. The more complex model provides a preferred description of the data (i.e., 
more negative AIC values) (Table 4). Even though stationary, background processes pro-
duce many more crimes than contagion processes, leading to an expectation of a good fit 
to the simpler model, contagion appears to be integral to both gang-related and non-gang 
violent crime dynamics.

The Lethality of Gang‑Related Retaliations

Both the univariate and multivariate Hawkes models can be used to perform stochastic 
declustering of individual crime events (Zhuang et  al. 2002). This method allows us to 
probabilistically label each event in the dataset as either a background crime or contagious 
offspring (e.g., retaliation). Table 5 reports the estimated numbers of background crimes 
and offspring for 1000 repeated declustering runs. Because stochastic declustering assigns 
labels probabilistically, these can change somewhat from one declustering run to another. 
Table  5 therefore also reports standard errors of the estimates. The numbers in Table  5 
can be interpreted like expected values of the outcome variable from a regression model. 
Consistent with reported model parameters, the estimated number of background crimes 
exceed the estimated number of retaliations by at least 5:1, but the estimated number of 
contagious offspring comprise a much greater fraction of the gang-related violent crimes 
(16.4%) compared to non-gang violent crimes (11.3%).

Table 6 shows the estimated number of aggravated assaults and homicides each proba-
bilistically classified as background crimes or contagious offspring. Approximately 0.6% 
(9.8 of 1769.4) of the non-gang background crimes are homicides. Similarly, 0.5% (1.2 
of 256.6) of the non-gang contagious offspring are homicides. By contrast, 7.2% (47.2 of 
658.6) of the gang-related background crimes are homicides. Approximately 8.3% (10.8 
of 129.4) of the gang-related offspring are homicides. Gang-related background crimes 
are significantly more lethal than non-gang background crimes (+ 6.6%, pooled propor-
tion test: Z = 9.57 , p < 0.0001 ). Gang-related contagious offspring are significantly more 
lethal than non-gang contagious offspring (+ 7.8%, Z = 3.9, p < 0.0001 ). Non-gang conta-
gious offspring are not more lethal than non-gang background crimes (− 0.02%, Z = − 0.04, 
p = 0.52 ). Gang-related offspring are fractionally more lethal gang-related background 
crimes, but the difference is not statistically significant (+ 1.2%, Z = 0.47, p = 0.32 ). That 

Table 6   Number of background 
crimes and retaliations by crime 
type

† Standard errors are the same since the probability that an event is 
background is complementary to the probability that it is a retaliation

Aggravated assault Homicide Total

N (SE) % N (SE) %

Non-gang
 Background 1759.6 (14.1)† 88.7 9.8 (0.8) 89.0 1769.4 (14.0)
 Retaliation 224.5 (14.1)† 11.3 1.2 (0.8) 11.0 225.6 (14.0)
 Total N 1984 11 1995

Gang-related
 Background 611.4 (9.2) 83.8 47.2 (2.8) 81.3 658.6 (9.7)
 Retaliation 118.6 (9.2) 16.2 10.8 (2.8) 18.7 129.4 (9.7)
 Total N 730 58 788
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there is not a greater jump in lethality associated with contagion in gang contexts is per-
haps a reflection of the greater prevalence of gun usage in gang-related violent crimes 
(Maxson et al. 1985; Bjerregaard and Lizotte 1995; Huebner et al. 2016).

Discussion

The present study uses multivariate self-exciting point-process models to detect and char-
acterize violence contagion in gang-related and non-gang crimes. We emphasize several 
key findings. First, background crimes are numerically dominant for both gang and non-
gang contexts. This is seen most clearly in the stochastic declustering analyses where back-
ground crimes make up approximately 89% of non-gang and 84% of gang-related violent 
crimes, respectively (see Table 5). Second, we found some evidence that gang-related vio-
lent crime is more contagious than non-gang crime. In the univariate model, any one gang-
related crime on average triggers around twice as many contagious offspring events as any 
one non-gang crime. In the multivariate model, any one gang related violent crime triggers 
around 1.5 times as many contagious offspring as non-gang violent crime. The difference 
is statistically significant for the univariate models, but insignificant for the multivariate 
model with interactions. Third, the risk of contagious spread associated with each gang-
related crime lasts about twice as long as for any one non-gang crime, though the time 
scale associated with triggering is very short in both cases (see also Loeffler and Flax-
man 2017). Fourth, while gang-related violent crime is more lethal than non-gang violent 
crime, there is no significant difference in the lethality of gang-related background crimes 
compared to gang-related contagious offspring (e.g., retaliations). Finally, we found that 
cross triggering between non-gang and gang-related violence is rare to non-existent.

The Uniqueness of Gang‑Related Crime

Overall, our results align with several decades of research documenting many differences 
between gang-related and non-gang crime. Research has shown that gang crime tends to be 
more violent than non-gang crime and is more likely to involve the use of firearms (Bjer-
regaard and Lizotte 1995; Pyrooz et al. 2016; Huebner et al. 2016; Block and Block 1993). 
Gang homicides are more likely to take place in public settings and involve multiple par-
ticipants (Maxson et al. 1985). While the participants in gang assaults and homicides are 
less likely to know one another, they tend to resemble one another in demographic and 
socio-economic characteristics to a substantial degree (Pyrooz et al. 2014). Gang offend-
ers and victims are typically young, male and from socio-economically disadvantaged 
backgrounds (Maxson et al. 1985; Rosenfeld et al. 1999). Beyond setting and participant 
characteristics, gang violence is markedly concentrated in disadvantaged neighborhoods 
compared with non-gang violent crime (Papachristos and Kirk 2006; Valasik et al. 2017) 
and proximity to neighborhoods with a high density of gang membership tends to increase 
gang violent crime above and beyond the influence of structural factors (Huebner et  al. 
2016). Across cities, the volume of gang violence is associated with differences in social 
and economic deprivation, while non-gang violence more generally tracks differences in 
population density (Pyrooz 2012).

The models and analyses presented here suggest that gang-related violence is also more 
contagious than non-gang violence. This result is consistent with research documenting 
the prevalence of retaliation in gang-related and non-gang homicides. Maxson et al. (1985) 
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noted that fear of retaliation was a feature in 33% of the gang homicides they studied, but 
also in 10% of the non-gang homicides. Kubrin and Weitzer (2003) looked at differences 
between retaliatory and non-retaliatory homicides over a 10-year period in St. Louis, MO. 
Of 1731 crimes with documented motive, 337 (19.5%) were deemed retaliatory. Nearly 
28% (60 of 216) of the recorded gang homicides were retaliatory. However, approximately 
23% (144 of 622) of drug-related homicides and 18% (114 of 645) of alcohol-related homi-
cides were also deemed retaliatory. While Kubrin and Weitzer’s (2003) crime categories 
were not mutually exclusive—some of the 144 drug-related crimes may have also been 
counted among the 60 gang-related crimes—they show that retaliatory violence is not lim-
ited to gang contexts. Our findings provide some measure of how different the contagious 
spread is in gang-related aggravated assaults and homicides and how limited the degree of 
interaction with non-gang violent crimes may be.

Implications for Theory

The results presented here are relevant to understanding the group-level processes associ-
ated with gangs. The general consensus is that gangs create both unique offending oppor-
tunities and motivate the use of violence to achieve instrumental and symbolic goals (Klein 
and Maxson 2006; Decker et  al. 2013). Unique offending opportunities emerge out of 
neighborhood-based gang territoriality (Brantingham et  al. 2012; Tita et  al. 2005), gang 
sanctioned unstructured social routines (Melde and Esbensen 2011), and ready access to 
guns via gang social networks (Roberto et  al. 2018). These processes influence the spa-
tial structure of gang activity patterns, enhance the control that gangs exert over space, 
and reduce the barriers to violent engagement. Gangs may motivate the use violence to 
achieve instrumental goals such as controlling elicit markets (Taniguchi et al. 2011). How-
ever, indiscriminate violence is generally seen as detrimental to corporate goals and may 
be a signature of “disorganized” gangs (Klein et al. 1991; Decker and Van Winkle 1994). 
More importantly, gangs appear to motivate the use violence to establish and maintain rep-
utation, both for individual gang members and the gang as a whole (Short and Strodtbeck 
1964; Luckenbill 1977; Decker 1996; Lewis and Papachristos 2020).

Our findings support a conclusion that group-level processes amplify the dynamics 
of gang-related violence. Gang-related violence is more contagious than non-gang vio-
lence by a factor of 1.5–2 based on the multivariate and univariate models, respectively. 
However, gang-related contagious offspring (e.g., retaliations) are not more lethal than 
gang-related background gang crimes. This is an important observation in the context of 
Decker’s (1996) escalation hypothesis, where the group-level processes of gangs make it 
more likely that an argument leads to a battery, a battery to a shooting, and a shooting to a 
homicide (see also Matsuda et al. 2013). If we assume that escalation is inherently a conta-
gious process, then it may be seen as problematic that there is not a substantial ratcheting 
up of lethality with contagious aggravated assaults. A possible explanation for our results 
is that most gang-related shootings are attempted homicides. Thus, both background and 
contagious aggravated assaults already represent the peak of escalation. If a shooting ends 
up as a successful homicide with some fixed probability, then the lethality of background 
and contagious gang-related violent crimes should be roughly the same. Valasik (2018), 
by contrast, argues that gang-related aggravated assaults are more likely to be spontane-
ous and homicides more likely to be planned, which might imply a that contagious events 
should be more lethal.
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The finding that cross triggering between non-gang and gang-related violence is rare to 
non-existent reinforces the idea that gang-related violent crimes are dynamically unique. 
The limited “spillover” between contexts might be surprising given ethnographic accounts 
that individuals move between non-gang and gang social roles with ease (Patillo-McCoy 
1999; see also Smith and Papachristos 2016). We might expect that frequent switching 
among social roles would create many opportunities cross-triggering, even if the “spillo-
ver” was accidental. One possible explanation for our results is that individuals and their 
social groups (gang and non-gang) operate under a heuristic that attempts to keep gang-
related and non-gang motives quite separate. In other words, individuals may simply 
“know” which crimes require a gang-related response and which do not. It is also possible 
that unaffiliated victims of gang-related crime have limited recourse to retaliate (Papachris-
tos 2009; Leovy 2015). A definition of gang-related crime based on the affiliation of vic-
tims and/or suspects may also limit the amount of observable cross triggering. Specifically, 
since it only takes only one participant (suspect or victim) to label an event as a gang-
related crime, it may be that the gang-related context soaks up all crimes that have even a 
tenuous relationship to gangs (see Maxson and Klein 1990; Rosenfeld et al. 1999; Maxson 
and Klein 1996). The multiplexity of social roles is washed out by an affiliation-based defi-
nition of gang crime. The crimes remaining thus may be truly independent of gang dynam-
ics and therefore should be expected to display limited cross-triggering.

The present paper encourages us to think about crime in probabilistic terms. We can-
not say that one crime was definitively the cause of another, only that knowing about one 
crime helps predict a future crime (see Granger 1988). Nevertheless, we do assign events 
to background and offspring crime categories using stochastic declustering and report 
expected values over repeated declustering runs (see Zhuang et  al. 2002). The resulting 
probabilistic assignments could invite comparisons with other sources of information about 
the corresponding crimes (e.g., Kubrin and Weitzer 2003). These may align closely. How-
ever, conflicts might arise if inspection of case records produces evidence that contradicts 
probabilistic labeling. It is difficult to know what to do with such contradictions. If an event 
presents statistical dependence sufficient to count it as a contagious offspring, but narra-
tive evidence suggests otherwise, which labeling are we to believe? Confounding variables 
might be responsible for producing apparent statistical dependence for events that are in 
fact not contagious (Loeffler and Flaxman 2017). Alternatively, a crime might indeed be 
the product of contagion, but this motive may be hidden from those compiling a narrative 
of the crime. What are we to do if the narrative suggests a crime is a contagious retaliation, 
yet there is no evidence of statistical dependence? If the events are non-local (in space), 
then the absence of statistical dependence might be understandable (see below). Alterna-
tively, the narrative might be biased towards some theory of the crime based on spurious 
evidence. We do not see these challenges as limitations per se. Rather they point to an 
important area of empirical research. Such research might include a careful comparison 
of the results of statistical modeling efforts alongside detailed review of case files. It also 
suggests that there is room for hybrid approaches that introduce covariate information from 
case files into self-exciting point process models to try to control for other causal pathways 
connecting events (Sha et al. 2020; Mohler and Brantingham 2018; Liu et al. 2020).

Finally, we note that the multivariate models presented here could assess the degree of 
interaction between other event types hypothesized to be ecologically similar. For example, 
the so-called “broken windows” theory of crime posits in part that misdemeanor crimes 
support felonies (Wilson and Kelling 1982). Crime types could interact via a long term 
(slowly evolving) process that shows up as environmental heterogeneity in the short term, 
or via short-term triggering; this distinction would be between misdemeanors creating 
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general conditions that encourage felonies, or misdemeanor vandalism events triggering 
specific burglaries. The models presented here could help identify both possibilities. Spe-
cifically, in a multivariate model, the entries in β provide information on how different 
crime types contribute jointly to environmental heterogeneity. The entries of K provide 
information of whether there is cross-triggering between misdemeanors and felonies of 
interest. Importantly, while the models developed here examined a multivariate case with 
only two crime contexts, one could theoretically include a full suite of crime types. Such 
analyses may confirm expected relationships between certain crime types, but also identify 
unexpected relationships between crime types thought to be independent, or independence 
of crime types thought to be connected (see Kuang et al. 2017).

Implications for Policy

Contagious events such as tit-for-tat gang retaliations present clear tactical target for inter-
vention. That an event may be triggered by one or more prior events provides important 
information that can be used to gain an intervention advantage. Indeed, we can think of 
the statistical dependencies inherent to the contagious spread of violence as the basis of 
an “early warning system” to be used by police or civilian interventionists (see Mohler 
et  al. 2011, 2015; Green et  al. 2017; Loeffler and Flaxman 2017). Knowing how likely 
a contagious offspring event is to occur, how quickly it will occur and over what spatial 
domain, may allow for concentrated efforts to disrupt those retaliations. In the present case, 
for example, the estimated half-life of approximately 1  day for gang-related contagious 
offspring (e.g., retaliations) provides some indication of just how rapid the response time 
needs to be for of violence interruption efforts (Skogan et al. 2009; Whitehill et al. 2014; 
Tremblay et al. 2020). The first twenty-four hours appears to be crucial. However, while 
the contagious spread of violence is more common when gangs are involved, it is still quite 
a prominent feature of non-gang violent crime. Indeed, researchers may be more surprised 
at the level of contagious triggering in non-gang contexts than the conclusion that gang-
related violence is more contagious. While we might expect some level of violence con-
tagion in non-gang crime in street settings, we might also expect that greater diversity of 
non-gang violent crime settings (e.g., domestic, workplace) would dilute observed trigger-
ing. At this time, we cannot distinguish differences between settings at a scale to evaluate 
impact on the models. In any case, the results presented here suggest that there may be 
room for violence interruption efforts in a wider array of contexts, even if there is not a 
clear connection to gangs.

It is important to remember, however, that contagious offspring events comprise only 
a minority fraction of violent gang (and non-gang) (see also Loeffler and Flaxman 2017). 
In our study area, for example, only 16% of the gang-related homicides and aggravated 
assaults are probabilistically identified as the product of contagion (see Table  5). The 
remaining 84% are background events. Thus, violence interruption programs can only 
hope to directly impact a small fraction of all gang crimes, and an even smaller fraction 
of non-gang violent crimes. Background crimes are more challenging to deal with. These 
emerge out of a complex mix of cultural norms, patterns of social interaction, and struc-
tural environmental conditions (Valasik 2018; Mitchell et  al. 2017; Huebner et  al. 2016; 
Pyrooz 2012; Melde and Esbensen 2013). It is difficult, if not impossible to physically 
preempt background crimes “in the moment,” since there are just not enough resources 
(law enforcement or community-based) to be in all of the combustible situations that might 
spontaneously generate a crime. Background crimes therefore may be more appropriately 
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addressed by prevention measures that seek to alter the very nature of social and envi-
ronmental conditions underlying such events. When conditions do converge in particular 
context, it is hoped that prior prevention efforts limit their combustibility. For example, 
focused deterrence strategies or injunctions that target gangs as groups (Braga et al. 2018; 
Ridgeway et al. 2019) may indirectly alter the situational calculus underlying background 
crimes (as well as contagious spread). Going after deeper “root causes,” such as individual 
developmental risk factors or neighborhood structural disadvantage, is both complex and 
challenging, but may nevertheless yield long-term benefits (Sharkey, Torrats-Espinosa, and 
Takyar 2017; Gravel et al. 2013). Comprehensive violence prevention programs that seek 
to reduce the risk factors for joining gangs may be thought of as one approach to reduc-
ing the potential for background gang crime (see Hennigan et  al. 2014, 2015; Tremblay 
et al. 2020). The analyses presented here suggest that it is ideal target both background and 
contagious offspring crimes, reaping the benefits of addressing “root causes” and short-
term triggers. Comprehensive gang violence reduction programs should therefore benefit 
by including both prevention and violence interruption efforts, rather than just one or the 
other.

Limitations and Future Research

The data used in this study rely on distinctions between gang-related and non-gang crime 
made by the LAPD. Gang-crime measures derived directly from law enforcement sources 
present both advantages and disadvantages (Melde 2016). Prior research has shown that 
law enforcement measures of gang-related homicides have internal reliability, pass con-
vergent-discriminant validity tests, and have external validity (Decker and Pyrooz 2010). 
Cities with specialized gang units, like Los Angeles, also perform better on reliability and 
validity tests. Whether law enforcement measures of gang-related aggravated assaults per-
form similarly is unknown at present. Though not intended as a test of convergent-discri-
minant validity, the results presented here suggest that LAPD’s labeling of violent crimes 
is based on a statistically valid construct. The absence of triggering between gang-related 
and non-gang violent crimes (i.e., k01 ≪ k00 and k10 ≪ k11 ) suggests that the labels suc-
cessfully discriminate between real contextual differences in violent crimes. The substan-
tive triggering among gang-related crimes suggests that the labels are applied to events 
arising from the same context. The observed results are not what we would expect if labels 
were applied arbitrarily (see Appendix).

Nevertheless, it is possible that the gang-related and non-gang constructs themselves 
are systematically biased due to organizational goals (Melde 2016). Recent revelations of 
alleged police misconduct by LAPD officers in identifying as gang members also raises 
concern (Miller and Chabria 2020). Biases that influence the labeling of suspects and vic-
tims as gang members can impact the labeling of the corresponding crimes. We have no 
specific information on the prevalence of biased labels in the present data. Future research 
should carefully assess how the processes that might underlie biased labeling of gang-
related crimes operate, the potential impact of biased labels on model performance, how 
such biases do or do not impact law enforcement outcomes, and ultimately how such biases 
might be corrected (e.g., Brantingham 2017; Mohler et al. 2018; Brantingham et al. 2018). 
Initial assessments suggest that crimes are labeled independently of one another as they are 
reported (see Appendix).

We should be particularly clear about limitations that arise from defining violence con-
tagion in terms of local statistical dependencies estimated through point process models. 
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Contagious events may also exist via long-range (in time) and non-local (in space) connec-
tions between crimes (see Jacobs 2004). For example, a retaliation may be motivated by the 
anniversary of a past crime. Rivalries fueled in part by online conflict (Storrod and Densley 
2017; Pyrooz et  al. 2013; Densley 2020; Patton 2019), may encourage conflict between 
distant neighborhoods. The models used here expect exponential triggering, making it 
unlikely that non-local temporal and spatial statistical dependencies would be detected. If 
such long-range and non-local dependencies are rare, then there we expect limited impact 
on the estimation of the model. If they are common, then non-parametric models may be 
needed identify such dependencies. Mohler et al. (2011), for example, identify triggering 
in residential burglary at 3, 7 and 39 day lags, using non-parametric methods, rather than 
simply as a monotonically decreasing function of time. These are important possibilities 
that also could be investigated through close examination of case files. We note, however, 
that retaliation is invoked primarily as an explanation for “sudden peaks in gang violence” 
(Decker 1996; Decker and Van Winkle 1996), which implies that contagion is viewed pre-
dominantly a local, short time-scale processes.

There are also potential limitations associated with the under-reporting of crime. The 
probabilistic approach in self-exciting point process models traces dependencies between 
crimes that are known to the police. An unreported argument, burglary, robbery or simple 
battery that triggers an offspring event cannot be statistically recognized as such. Differ-
ences in crime reporting may vary with trust in law enforcement across neighborhoods 
(Kirk and Papachristos 2011). It is not entirely clear that willingness to report crime varies 
much between gang-related and non-gang crime (Melde and Rennison 2010). In any case, 
as long as the underreporting probability is the same for triggering crimes (parents) and 
offspring, then estimates of triggering parameters are not biased (Daley and Vere-Jones 
2003), or are impacted in predictable ways (Tucker et al. 2019).

We are well aware that Los Angeles, like Chicago, is distinctive for its long history and 
scale of its chronic gang problem. The analyses presented here based on data from Los 
Angeles may not generalize to other settings. Ultimately, it is in empirical matter whether 
retaliatory dynamics vary from one gang setting to another. The models presented here 
provide an opportunity to test such hypotheses in other settings.

We close with the remark that background and contagious processes estimated here do 
include unmeasured prevention intervention effects. The LAPD,  through both traditional 
enforcement and the Community Safety Partnership program (Rice and Lee 2015), and the 
Los Angeles Mayor’s Office of Gang Reduction and Youth Development (GRYD) (Trem-
blay et al. 2020) both respond to gang crimes with the intention to reduce the spread of 
violence. Therefore, the magnitude of contagious processes as measured in this paper is 
likely less than what would be the case in the absence of interventions. A full statistical 
specification of the importance of gang-related violence contagion will ultimately require 
controlling for these intervention effects.

Conclusions

This paper developed multivariate self-exciting point process models for comparing the 
characteristics of contagious violence between gang-related and non-gang contexts. Gang-
related violence in Los Angeles triggers twice as many contagious offspring (e.g., retalia-
tions) as non-gang violence, and there is little or no evidence of cross-triggering between 
these crime contexts. While gang-related contagious offspring are significantly more lethal 
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than non-gang offspring, gang-related offspring are no more lethal than gang-related back-
ground crimes. Contagious gang violence is indeed different from that observed with non-
gang violence. The results support intervention policies that seek to disrupt the spread of 
gang violence. However, since contagious offspring events represent only a fraction of all 
gang crimes, it is ideal target them alongside background crimes, reaping the benefits of 
addressing “root causes” and short-term triggers.
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Appendix

Parameter Estimation Methods

The models presented above can be estimated directly from data using current machine 
learning techniques. The specific method we use is a type of Maximum Likelihood Estima-
tion (MLE) known as expectation maximization (EM). The procedures underlying the EM 
algorithm are very closely related to stochastic declustering (Mohler et al. 2011; Zhuang 
et al. 2002; Marsan and Lengline 2008). The expectation step of the EM algorithm starts 
with a random guess for the model parameter values. Given this guess, the probability �j 
that event j is a retaliation caused via self-excitation, or the probability 1 − �j that it is a 
background event, is computed using equations analogous to Eqs. (5) and (6) in the main 
text. The probabilistic expectations for each event are then fed to a maximization step 
where a new set of parameter values (for iteration k + 1) are determined by maximizing 
the likelihood with respect to the observed data. This maximization is done for all param-
eters taking into consideration whether crimes are labeled as gang-related or non-gang. 
The EM algorithm alternates between the expectation and maximization steps until there is 

Table 7   Triggering parameter 
estimates using temporal 
boundary corrections of different 
durations

 Parameter Boundary correction in days Estimate

k
11

5 0.164
k
10

5 1.39 × 10−3

k
00

5 0.114
k
01

5 4.09 × 10−3

k
11

10 0.164
k
10

10 7.13 × 10−5

k
00

10 0.114
k
01

10 8.69 × 10−4

k
11

30 0.168
k
10

30 1.21 × 10−4

k
00

30 0.126
k
01

30 1.56 × 10−3
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no further change in the parameter values. EM is able to recover true parameter values with 
a high degree of certainty. Standard errors for the parameter estimates are obtained from 
the inverse Hessian matrix for the corresponding likelihood function (Ogata 1978). Further 
technical details for implementation of EM algorithms can be found in (Veen and Schoen-
berg 2008; Mohler 2013).

Boundary Effects

The available data is restricted to a finite temporal and spatial window. We evaluated the 
effect of temporal boundaries on the triggering matrix K by progressively reducing the tem-
poral window by 5, 10 and 30 days and re-estimating the model (see Fox et al. 2016). The 
estimated parameters using reduced data are qualitatively the same as the full data sample 
(Table 7). Boundary effects are limited because the kernel support has a much shorter tem-
poral length scale (measured in days) relative to the full data (a full year).

Null Model and Convergent‑Discriminant Validity

The multivariate point process model suggests a null model for the dynamics of gang-
related and non-gang crimes. Consider a hypothetical case where all violent crimes are 
drawn from the same random process with a common background rate μ and common trig-
gering productivity K. Individual crimes may differ from one another in their spatial and 
temporal characteristics simply as a result of random variation. As a population of events, 
however, they are well-described by a single stochastic process. Imagine that we then ran-
domly label a fraction p1 of the crimes as gang-related and 1 − p1 as non-gang. The label is 
independent of any measured characteristics of the crimes. If this arbitrary labeling process 
holds, then we expect 

(

1 − p1
)

k11 = p1k00 and 
(

1 − p1
)

k01 = p1k10 . That is, we expect both 
within-label triggering and between-label cross-triggering to be equivalent after scaling by 
the fraction of crimes labeled as gang-related. In the special case that p1 = 0.5 , meaning 
that an equal number of crimes are randomly labeled as gang-related and non-gang, then 
the expectations is that k11 = k00 = k01 = k10 . Equivalence in retaliatory triggering seems 
unlikely given the empirical differences between gang-related and non-gang crimes in par-
ticipant, situational and neighborhood characteristics (Maxson et al. 1985; Rosenfeld et al. 
1999; Huebner et  al. 2016). The null model is nonetheless valuable for sharpening our 
thinking on how to interpret parameter estimates.

The null model also suggests that the triggering pathways shown in Fig. 2 can be inter-
preted in a manner similar to the convergent-discriminant validity tests used by Decker and 
Pyrooz (2010) (see also Taylor 2015; Piquero 1999). Convergent-discriminant validity tests 
posit that two statistics that seek to measure the same underlying construct will be more 

Table 8   Parameter estimates 
given Monte Carlo reshuffling of 
gang-related and non-gang crime 
labels

 Parameter Shuffled estimate  Scaled parameter Scaled estimate

k̃
11

0.037 (1 − p
1
)k̃

11
0.026

k̃
10

0.092 (1 − p
1
)k̃

10
0.028

k̃
00

0.083 p
1
k̃
00

0.024

k̃
01

0.038 p
1
k̃
01

0.026
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strongly correlated with one another than two statistics that measure different underlying 
constructs. If gang-related and non-gang crime labels measure different constructs, then 
we would expect the within-label triggering to be stronger then between-label triggering, 
which is what we observe in the main model estimates. To evaluate the significance of 
this observation, we performed 500 Monte Carlo simulations where we shuffled the labels 
randomly over events and re-estimated the parameters of the multivariate model after 
each reshuffling. Reshuffling breaks any correlation between the labels and the underlying 
dynamics. Recall our null hypothesis that the estimates of k11 and k00 as well as k01 and k10 
should be equivalent after sample-size scaling if the labels are no better than random. We 
find exactly this to be the case for the shuffled labels (Table 7). When the shuffled param-
eter estimates k̃ij are scaled using the empirical fraction p1 = 0.3 of gang-related labels, 
the resulting scaled parameters are statistically indistinguishable (Table 8). We take this as 
evidence supporting a conclusion the labels correspond to different theoretical constructs 
with different underlying dynamics. However, this test does not test whether the theoretical 
constructs are biased.

Runs Tests for Biased Labeling

One potential source of bias in crime labels is a carryover effect where the classification 
of one crime as gang-related (or non-gang) biases the label applied to the next crime that 
arrives. We use the Wald–Wolfowitz runs test to assess whether labels are applied indepen-
dently to each crime as it arrives, or whether they form groups suggestive of biased carryo-
ver. We examined three LAPD Basic Car areas within LAPD Patrol Divisions in the South 
Los Angeles study region. We assume Basic Car are exposed to crime “arrivals” from a 
relatively stable set of gang-related and non-gang contexts. We also assume that there is 
a stable set of individuals involved in labeling of crimes within a Basic Car area, allowing 
for potential bias to develop. The null hypothesis is that labels are applied randomly and 
independently from one reported crime arrival to another and that the number of runs (i.e., 
blocks of identically labeled crimes) should not exceed what is expected under this null 
hypothesis. We fail to reject the null hypothesis in each of the three Basic Car areas exam-
ined (Table 9). This suggests that crimes are labeled independently as they arrive. It also 
suggests that clusters of crimes generated by contagious triggering among gang-related and 
non-gang crimes, respectively, are not large enough to override a general pattern of random 
crime arrivals of each type.
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