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Abstract. Suppose that E ⊂ Rn+1 is a uniformly rectifiable set of codimen-
sion 1. We show that every harmonic function is ε-approximable in Lp(Ω) for
every p ∈ (1,∞), where Ω := Rn+1 \E. Together with results of many authors
this shows that pointwise, L∞ and Lp type ε-approximability properties of
harmonic functions are all equivalent and they characterize uniform rectifia-
bility for codimension 1 Ahlfors-David regular sets. Our results and techniques
are generalizations of recent works of T. Hytönen and A. Rosén and the first
author, J. M. Martell and S. Mayboroda.

1. Introduction

In many branches of analysis, Carleson measure estimates are powerful tools that
are deeply connected to e.g. elliptic partial differential equations and geometric
measure theory. These estimates are particularly useful for measures of the type
|∇u(Y )| dY (see e.g. [FS72, Gar81]) but the problem is that even strong analytic
properties of the function u are not enough to guarantee that the distributional
gradient defines a measure of this type. The idea behind ε-approximability is that
although a function may fail this Carleson measure property, it can sometimes be
approximated arbitrarily well in the L∞ sense (typically, if it is the solution to
an elliptic PDE) by a function ϕ such that |∇ϕ(Y )| dY is a Carleson measure.
Starting from the work of N. Th. Varopoulos [Var78] and J. Garnett [Gar81], this
approximation technique has had an imporant role in the development of the theory
of elliptic partial differential equations. It has been used to e.g. explore the absolute
continuity properties of elliptic measures [KKPT00, HKMP15] and, very recently,
give a new characterization of uniform rectifiability [HMM16, GMT16].

In this article, we extend the recent results of the first author, J. M. Martell and
S. Mayboroda [HMM16] and show that if E ⊂ Rn+1 is a uniformly rectifiable (UR)
set of codimension 1, then every harmonic function is ε-approximable in Lp(Ω) for
every ε ∈ (0, 1) and every p ∈ (1,∞), where Ω := Rn+1 \ E. The Lp version of
ε-approximability was recently introduced by T. Hytönen and A. Rosén [HR16]
who showed that any weak solution to certain elliptic partial differential equations
in Rn+1

+ is ε-approximable in Lp for every ε ∈ (0, 1) and every p ∈ (1,∞).
Let us be more precise and recall the definition of ε-approximability:

Definition 1.1. Suppose that E ⊂ Rn+1 is an n-dimensional ADR set (see Def-
inition 1.7) and let Ω := Rn+1 \ E and ε ∈ (0, 1). We say that a function u is
ε-approximable if there exists a constant Cε and a function ϕ = ϕε ∈ BVloc(Ω)
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satisfying

‖u− ϕ‖L∞(Ω) < ε and sup
x∈E,r>0

1

rn

¨
B(x,r)∩Ω

|∇ϕ(Y )| dY ≤ Cε.

Here
˜
B(x,r)∩Ω

|∇ϕ| dY stands for the total variation of ϕ over B(x, r) ∩ Ω (see
Section 1.5).

SometimesW 1,1 [HKMP15] or C∞ [Gar81, KKPT00] is used in the definition in-
stead ofBVloc. The first results about ε-approximability showed that every bounded
harmonic function u, normalized so that ‖u‖∞ ≤ 1, enjoys this this approximation
property for every ε ∈ (0, 1) in the upper half-space Rn+1

+ [Var78, Gar81] and in
Lipschitz domains [Dah80]. This is a highly non-trivial property since there exist
bounded harmonic functions u such that |∇u(Y )| dY is not a Carleson measure
[Gar81]. The Lp version of the property was defined only recently in [HR16]:

Definition 1.2. Suppose that E ⊂ Rn+1 is an n-dimensional ADR set and let
Ω := Rn+1\E, ε ∈ (0, 1) and p ∈ (1,∞). We say that a function u is ε-approximable
in Lp if there exists a function ϕ = ϕε ∈ BVloc(Ω) and constants Cp and Dp,ε such
that {

‖N∗(u− ϕ)‖Lp(E) . εCp‖N∗u‖Lp(E)

‖C(∇ϕ)‖Lp(E) . Dp,ε‖N∗u‖Lp(E)
,

where N∗ is the non-tangential maximal operator (see Definition 1.28) and

C(∇ϕ)(x) := sup
r>0

1

rn

¨
B(x,r)∩Ω

|∇ϕ| dY.

In [HR16], the authors showed that if Ω = Rn+1
+ and A ∈ L∞(Rn;L(Rn+1))

satisfies 〈A(x)v, v〉 ≥ λA|v|2 for almost every x ∈ Rn and all v ∈ Rn+1 \ {0}, then
any weak solution u to the t-independent real scalar (but possibly non-symmetric)
divergence form elliptic equation divx,tA(x)∇x,tu(x, t) = 0 is ε-approximable in Lp
for any ε ∈ (0, 1) and any p ∈ (1,∞).

If we move from Rn+1
+ to the UR context (see Definition 1.8) with no assump-

tions on connectivity, things will not only get more complicated but we also lose
many powerful tools. For example, constructing objects like Whitney regions and
Carleson boxes becomes considerably more difficult and the harmonic measure no
longer necessarily belongs to the class A∞ with respect to the surface measure
[BJ90]. Despite these difficulties, there exists a rich theory of harmonic analysis
and many results on elliptic partial differential equations on sets with UR bound-
aries. Uniform rectifiability can be characterized in numerous different ways and
many of these characterizations are valid in all codimensions (see the seminal work
of G. David and S. Semmes [DS91, DS93]). For example, UR sets are precisely
those ADR sets for which certain types of singular integral operators are bounded
from L2 to L2. Recently, the first author, Martell and Mayboroda showed that if E
is a UR set of codimension 1, then every bounded harmonic function in Rn+1 \E is
ε-approximable for every ε ∈ (0, 1) [HMM16]. After this, it was shown by Garnett,
Mourgoglou and Tolsa that ε-approximability of bounded harmonic functions im-
plies uniform rectifiability for n-ADR sets [GMT16]. This characterization result
was then generalized for a class of elliptic operators by Azzam, Garnett, Mourgoglou
and Tolsa [?].

Our main result is the following generalization of the Hytönen-Rosén approxi-
mation theorem [HR16, Theorem 1.3]:

Theorem 1.3. Let E ⊂ Rn+1 be a UR set of codimension 1 and denote Ω :=
Rn+1 \ E. Then every harmonic function in Ω is ε-approximable in Lp for every
ε ∈ (0, 1) and every p ∈ (1,∞) with Cp = ‖MD‖Lp→Lp and Dp = Cp‖M‖Lp→Lp/ε2,

2



where M is the Hardy-Littlewood maximal operator and MD is its dyadic version
(see Section 1.1).

In fact, the key ideas of Hytönen and Rosén allow us to construct p-independent
approximating functions. To be more precise, let us consider the following pointwise
approximating property:

Definition 1.4. Suppose that E ⊂ Rn+1 is an n-dimensional ADR set and let
Ω := Rn+1 \E and ε ∈ (0, 1). We say that a function u is pointwise ε-approximable
if there exists a function ϕ = ϕε ∈ BVloc(Ω) and a constant Dε such that{

N∗(u− ϕ)(x) . εMD(N∗u)(x)
CD(∇ϕ)(x) . DεM(MD(N∗u))(x)

for almost any x ∈ E, where CD is a dyadic version of D (see Section 1.6).

Since C(∇ϕ) and CD(∇ϕ) are Lp-equivalent by Lemma 1.26, Theorem 1.3 is an
immediate corollary of the following result and the Lp-boundedness of the Hardy-
Littlewood maximal operator and its dyadic versions:

Theorem 1.5. Suppose that E ⊂ Rn+1 is an n-dimensional UR set and let
Ω := Rn+1 \ E and ε ∈ (0, 1). Then every harmonic function in Ω is pointwise
ε-approximable.

Although the Lp version of ε-approximability seems like the weakest one of all
the properties, it is equivalent with the other properties in the codimension 1 ADR
context provided that p is large enough. This follows from the recent results of S.
Bortz and the second author [?]. Hence, combining our results with the results in
[HMM16], [GMT16] and [?] gives us the following characterization theorem:

Theorem 1.6. Suppose that E ⊂ Rn+1 is an n-dimensional ADR set and let
Ω := Rn+1 \ E. The following conditions are equivalent:

1) E is UR.
2) Bounded harmonic functions in Ω are ε-approximable for every ε ∈ (0, 1).
3) Harmonic functions in Ω are pointwise ε-approximable for every ε ∈ (0, 1).
4) Harmonic functions in Ω are ε-approximable in Lp for some p > n/(n− 1)

and every ε ∈ (0, 1).
5) Harmonic functions in Ω are ε-approximable in Lp for all p ∈ (1,∞) and

every ε ∈ (0, 1).

To prove the implication 1) ⇒ 3), we combine some techniques of the proof of
the Hytönen-Rosén theorem with the tools and techniques from [HMM16]. Some
of the techniques can be used in a straightforward way but with the rest of them
we have take care of many technicalities and be careful with the details.

We start by recalling the basic definitions and some results needed in our state-
ments and proofs. For the most part, our notation and terminology agrees with
[HMM16].

1.1. Notation. We use the following notation.
• The set E ⊂ Rn+1 will always be a closed set of Hausdorff dimension n.

We denote Ω := Rn+1 \ E.
• The letters c and C denote constants that depend only on the dimension,

the ADR constant (see Definition 1.7), the UR constants (see Definition
1.8) and other similar parameters. We call them structural constants. The
values of c and C may change from one occurence to another. We do
not track how our bounds depend on these constants and usually just write
λ1 . λ2 if λ1 ≤ cλ2 for a structural constant c and λ1 ≈ λ2 if λ1 . λ2 . λ1.
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• We use capital letters X,Y, Z, and so on to denote points in Ω and lowecase
letters x, y, z, and so on to denote points in E.

• The (n + 1)-dimensional Euclidean open ball of radius r will be denoted
B(x, r) orB(X, r) depending on whether the center point lies on E or Ω. We
denote the surface ball of radius r centered at x by ∆(x, r) := B(x, r) ∩E.

• Given a Euclidean ball B := B(X, r) or a surface ball ∆ := ∆(x, r) and
constant κ > 0, we denote κB := B(X,κr) and κ∆ := ∆(x, κr).

• For every X ∈ Ω we set δ(X) := dist(X,E).
• We let Hn be the n-dimensional Hausdorff measure and denote σ := Hn|E .

The (n+ 1)-dimensional Lebesgue measure of a measurable set A ⊂ Ω will
be denoted by |A|.

• For a set A ⊂ Rn+1, we let 1A be the indicator function of A: 1A(x) = 0 if
x /∈ A and 1A(x) = 1 if x ∈ A.

• The interior of a set A will be denoted by int(A). The closure of a set A
will be denoted by A.

• For µ-measurable sets A with positive and finite measure we set
ffl
A
f dµ :=

1
µ(A)f dµ.

• The Hardy-Littlewood maximal operator and its dyadic version (see Section
1.3) in E will be denoted M and MD, respectively:

Mf(x) := sup
∆(y,r)3x

 
∆(y,r)

|f(z)| dσ(z),

MDf(x) := sup
Q∈D,Q3x

 
Q

|f(z)| dσ(z).

1.2. ADR, UR and NTA sets.

Definition 1.7. We say that a closed set E ⊂ Rn+1 is an n-ADR (Ahlfors-David
regular) set if there exists a uniform constant C such that

1

C
rn ≤ σ(∆(x, r)) ≤ Crn

for every x ∈ E and every r ∈ (0, diam(E)), where diam(E) may be infinite.

Definition 1.8. Following [DS91, DS93], we say that an n-ADR set E ⊂ Rn+1 is
UR (uniformly rectifiable) if it contains “big pieces of Lipschitz images” (BPLI) of
Rn: there exist constants θ,Λ > 0 such that for every x ∈ E and r ∈ (0,diam(E))
there is a Lipschitz mapping ρ = ρx,r : Rn → Rn+1, with Lipschitz norm no larger
that Λ, such that

Hn(E ∩B(x, r) ∩ ρ({y ∈ Rn : |y| < r})) ≥ θrn.

Definition 1.9. Following [JK82], we say that a domain Ω ⊂ Rn+1 is NTA (non-
tangentially accessible) if

• Ω satisfies the Harnack chain condition: there exists a uniform constant
C such that for every ρ > 0, Λ ≥ 1 and X,X ′ ∈ Ω with δ(X), δ(X ′) ≥ ρ
and |X − X ′| < Λρ there exists a chain of open balls B1, . . . , BN ⊂ Ω,
N ≤ C(Λ), with X ∈ B1, X ′ ∈ BN , Bk ∩ Bk+1 6= ∅ and C−1diam(Bk) ≤
dist(Bk, ∂Ω) ≤ Cdiam(Bk),

• Ω satisfies the corkscrew condition: there exists a uniform constant c such
that for every surface ball ∆ := ∆(x, r) with x ∈ ∂Ω and 0 < r < diam(∂Ω)
there exists a point X∆ ∈ Ω such that B(X∆, cr) ⊂ B(x, r) ∩ Ω,

• Rn+1 \ Ω satisfies the corkscrew condition.
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1.3. Dyadic cubes; Carleson and sparse collections.

Theorem 1.10 (E.g. [Chr90, SW92, HK12]). Suppose that E is an ADR set. Then
there exists a countable collection D,

D :=
⋃
k∈Z

Dk, Dk := {Qkα : α ∈ Ak}

of Borel sets (that we call dyadic cubes) such that
• the collection D is nested: if Q,P ∈ D, then Q ∩ P ∈ {∅, Q, P},
• E =

⋃
Q∈Dk Q for every k ∈ Z and the union is disjoint,

• there exist constants c1 > 0 and C1 ≥ 1 with the following property: for
any cube Qkα there exists a point zkα ∈ Qkα (that we call the center point of
Qkα) such that

∆(zkα, c12−k) ⊆ Qkα ⊆ ∆(zkα, C12−k) =: ∆Qkα
, (1.11)

• if Q,P ∈ D and Q ⊆ P , then

∆Q ⊆ ∆P , (1.12)

• for every cube Qkα there exists a uniformly bounded number of disjoint cubes
Qk+1
βi

such that Qkα =
⋃
iQ

k+1
βi

, where the uniform bound depends only on
the ADR constant of E,

• the cubes form a connected tree under inclusion: if Q,P ∈ D, then there
exists a cube R ∈ D such that Q ∪ P ⊆ R.

Remark 1.13. The last property in the previous theorem does not appear in the
constructions in [Chr90, SW92, HK12], but it is easy to modify the construction to
get this property. The basic idea in the construction in [HK12] is to choose first the
center points zkα, then define a partial order among those points and finally build
the cubes by using density arguments. Thus, if we simply choose the center points
zkα in such a way that there exists a point z0 ∈

⋂
k∈Z{zkα}α, then by (1.11) for any

r > 0 there exists a cube Qr that contains the ball B(z0, r). This implies the last
property in the previous theorem.

Notation 1.14. 1) Since the set E may be bounded or disconnected, we may
encounter a situation where Qkα = Qlβ although k 6= l. In particular, in
the second to last property of Theorem 1.10 there might exist only one
cube Qk+1

βi
which equals Qkα as a set. Thus, we use the notation D(E)

for the collection of all relevant cubes Q ∈ D, i.e. if Qkα ∈ D(E), then
C12−k . diam(E) and the number k is maximal in the sense that there does
not exist a cube Qlβ ∈ D such that Qlβ = Qkα for some l > k. Notice that
the number k is bounded for each cube since the ADR condition excludes
the presence of isolated points in E. This way in D(E) it is natural to talk
about the children of a cube Q (i.e. the largest cubes P ( Q) and the
parent of a cube Q (i.e. the smallest cube R ) Q).

2) For every cube Qkα := Q ∈ D, we denote `(Q) := 2−k and zQ := zkα. We call
`(Q) the side length of Q.

3) For every Q ∈ D, we denote the collection of dyadic subcubes of Q by DQ.

Definition 1.15. Suppose that Λ ≥ 1. We say that a collection A ⊂ D is Λ-
Carleson (or that it satisfies a Carleson packing condition) if∑

Q∈A,Q⊂Q0

σ(Q) ≤ Λσ(Q0)

for every cube Q0 ∈ D.
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Definition 1.16. Suppose that λ ∈ (0, 1). We say that a collection A ⊂ D is
λ-sparse if for every cube Q ∈ A there exists a subset EQ ⊂ Q satisfying

1) EQ ∩ EQ′ = ∅ if Q 6= Q′ and
2) σ(EQ) ≥ λσ(Q).

The following result will be useful for us with some technical estimates.

Theorem 1.17. A collection A ⊂ D is Λ-Carleson if and only if it is 1
Λ -sparse.

Although it is very easy to show that sparseness implies the Carleson property,
the other implication is not obvious. For dyadic cubes in Rn, it was first proven by
I. Verbitsky [?, Corollary 2] and the result was later rediscovered by A. Lerner and
F. Nazarov with a different proof [?, Lemma 6.3]. For general Borel sets, the result
was proven by T. Hänninen [?, Theorem 1.3]. Since the dyadic cubes in Theorem
1.10 are Borel sets, the result of Hänninen is suitable for us.

In addition to sparseness arguments, we use a discrete Carleson embedding the-
orem (Theorem A.1) to prove that local bounds imply global bounds. In fact, we
could use the embedding theorem instead of sparseness arguments throughout the
paper but this would give us slightly weaker estimates.

Definition 1.18. Let A ⊂ D be any collection of dyadic cubes. We say that a
cube P ∈ A is an A-maximal subcube of Q0 if there do not exist any cubes P ′ ∈ A
such that P ( P ′ ⊂ Q0.

1.4. Corona decomposition, Whitney regions and Carleson boxes.

Definition 1.19. We say that a subcollection S ⊂ D(E) is coherent if the following
three conditions hold.

(a) There exists a maximal element Q(S) ∈ S such that Q ⊂ S for every Q ∈ S.
(b) If Q ∈ S and P ∈ D(E) is a cube such that Q ⊂ P ⊂ Q(S), then also

P ∈ S.
(c) If Q ∈ S, then either all children of Q belong to S or none of them do.

If S satisfies only conditions (a) and (b), then we say that S is semicoherent.

In this article, we do not work directly with Definition 1.8 but use the bilateral
corona decomposition instead:

Lemma 1.20 ([HMM16, Lemma 2.2]). Suppose that E ⊂ Rn+1 is a uniformly
rectifiable set of codimension 1. Then for any pair of positive constants η � 1 and
K � 1 there exists a disjoint decomposition D(E) = G ∪ B satisfying the following
properties:

(1) The “good” collection G is a disjoint union of coherent stopping time regimes
S.

(2) The “bad” collection B and the maximal cubes Q(S) satisfy a Carleson pack-
ing condition: for every Q ∈ D(E) we have∑

Q′⊂Q,Q′∈B
σ(Q′) +

∑
S:Q(S)⊂Q

σ(Q(S)) ≤ Cη,Kσ(Q).

(3) For every S, there exists a Lipschitz graph ΓS , with Lipschitz constant at
most η, such that for every Q ∈ S we have

sup
x∈∆∗Q

dist(x,ΓS) + sup
y∈B∗Q∩ΓS

dist(y,E) < η`(Q),

where B∗Q := B(zQ,K`(Q)) and ∆∗Q := B∗Q ∩ E.
6



The proof of this decomposition is based on the use of both the unilateral corona
decomposition [DS91] and the bilateral weak geometric lemma [DS93] of David and
Semmes. The decomposition plays a key role in this paper.

In [HMM16, Section 3], the bilateral corona decomposition is used to construct
Whitney regions UQ and Carleson boxes TQ with respect to the dyadic cubes Q ∈
D(E) using a dyadic Whitney decomposition of Rn+1 \ E. The Whitney regions
are a substitute for the dyadic Whitney tiles Q× (`(Q)/2, `(Q)) and the Carleson
boxes are a substitute for the dyadic boxes Q × (0, `(Q)) in Rn+1

+ . We list some
of their important properties in the next lemma which we use constantly without
specifically referring to it each time.

Lemma 1.21. The Whitney regions UQ, Q ∈ D(E), satisfy the following properties.
• The region UQ is a union of a bounded number of slightly fattened Whitney
cubes I∗ := (1 + τ)I such that `(Q) ≈ `(I) and dist(Q, I) ≈ `(Q). We
denote the collection of these Whitney cubes by WQ.

• The regions UQ have a bounded overlap property. In particular, we have∑
i |UQi | . |

⋃
i UQi | for cubes Qi such that Qi 6= Qj if i 6= j.

• If UQ ∩ UP 6= ∅, then `(Q) ≈ `(P ) and dist(Q,P ) . `(Q).
• For every Y ∈ UQ we have δ(Y ) ≈ `(Q).
• For every Q ∈ D(E), we have |UQ| ≈ `(Q)n+1 ≈ `(Q) · σ(Q).
• If Q ∈ G, then UQ breaks into exactly two connected components U+

Q and
U−Q such that |U+

Q | ≈ |U
−
Q |.

• If Q ∈ B, then UQ breaks into a bounded number of connected components
U iQ such that |U iQ| ≈ |U

j
Q| for all i and j.

• If diam(E) =∞, then
⋃
Q∈D(E) UQ = Ω.

• If diam(E) <∞, then there exists a point z0 ∈ E and a constant C ≥ 1 such
that B(z0, C · diam(E)) \ E ⊂

⋃
Q∈D(E) UQ. The constant C can be made

large but this makes the implicit constant in the bounded overlap property
large as well.

For every Q ∈ G, the components U+
Q and U−Q have “center points” that we

denote by X+
Q and X−Q , respectively. We also set Y ±Q := X±

Q̃
, where Q̃ is the dyadic

parent of Q unless Q = Q(S), in which case we set Q̃ = Q. We use these points
in the construction in Section 5.1. For any cube Q ∈ G, the collection WQ breaks
naturally into two disjoint subcollection W+

Q and W−Q .
For every Q ∈ D(E), we define the Carleson box as the set

TQ := int

 ⋃
Q′∈DQ

UQ

 .

For each A ⊂ D(E), we set

ΩA := int

 ⋃
Q′∈A

UQ′

 . (1.22)

1.5. Local BV .

Definition 1.23. We say that a function f ∈ L1
loc(Ω) has locally bounded variation

(denote f ∈ BVloc(Ω)) if for any bounded open set U ⊂ Ω such that U ⊂ Ω we
have ¨

U

|∇f(Y )| dY := sup
−→
Ψ∈C1

0 (U),

‖
−→
Ψ‖L∞≤1

¨
U

f(Y )div
−→
Ψ(Y ) dY <∞.
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The total variation of f in U
˜
U
|∇f(Y )| dY should not be mistaken for a usual

Lebesgue integral since we may have situations where A ⊂ B and |A| = |B| but˜
A
|∇f(Y )| dY �

˜
B
|∇f(Y )| dY . It does, however, define a measure by the Riesz

representation theorem:

Theorem 1.24 ([?, Section 5.1]). Suppose that f ∈ BVloc(Ω). Then there exists a
Radon measure µ such that

µ(U) =

¨
U

|∇f(Y )| dY

for any open set U ⊂ Ω such that U ⊂ Ω.

In particular, if f ∈ BVloc(Ω), the sets U,U1, . . . , Uk ⊂ Ω are open and U ⊂⋃
i Ui, then ¨

U

|∇f(Y )| dY ≤
∑
i

¨
Ui

|∇f(Y )| dY. (1.25)

1.6. C and CD. For every k ∈ N, we let Fk be the ordered pair (E, k). In this
section, we let Q0 = E be the maximal dyadic cube if E is a bounded set. We
define the operators C and CD by setting

C(f)(x) := sup
r>0

1

rn

¨
B(x,r)\E

|f(Y )| dY,

CD(f)(x) := sup
Q∈D∗,x∈Q

1

`(Q)n

¨
TQ

|f(Y )| dY,

where

D∗ :=

{
D(E), if diam(E) =∞

D(E) ∪ {Fk : k = Λ0,Λ0 + 1, . . .}, if diam(E) <∞

and

TFk := B(z0, 2
kdiam(E)), `(Fk) := 2kdiam(E)

for some fixed point z0 ∈ E and a number Λ0 such that TQ0 ⊂ TFΛ0
. We will call

also the pairs Fk cubes although their actual structure is irrelevant and we will
interpret x ∈ Fk simply as x ∈ E.

Usually these functions are not pointwise equivalent but we only have the esti-
mate CD(f)(x) . C(f)(x) for every x ∈ E (this follows from the ADR property of
E and the fact that TQ ⊂ B(zQ, C`(Q)) for a uniform constant C). However, in
Lp sense, these functions are always comparable. This can be seen easily from the
level set comparison formula that we prove next. This comparability is convenient
for us since we construct the approximating function ϕ in Theorem 1.3 with the
help of the dyadic Whitney regions. Thus, it is more natural for us to prove the
desired Lp bound for CD(∇ϕ) instead of C(∇ϕ). We prove the comparison formula
by using well-known techniques from the proof of the corresponding formula for the
Hardy-Littlewood maximal function and its dyadic version [Duo01, Lemma 2.12].

Lemma 1.26. Suppose that f ∈ BVloc(Ω). Then there exist uniform constants A1

and A2 (depending on the dimension and the ADR constant) such that for every
λ > 0 we have

σ ({x ∈ E : C(∇f)(x) > A1λ}) ≤ A2 · σ ({x ∈ E : CD(∇f)(x) > λ}) .

In particular, ‖C(f)‖Lp(E) ≤ A1A
1/p
2 ‖CD(f)‖Lp(E) for every p ∈ (1,∞).
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Proof. We first note that if r � diam(E), then by the definition of CD we have
the bound 1

rn

˜
B(x,r)\E |∇f(Y )| dY . CD(∇f)(x). Thus, we may assume that the

balls in this proof have uniformly bounded radii . diam(E) and the cubes belong
to D(E). Naturally, we may also assume that the right hand side of the inequality
is finite.

We notice that if CD(f)(x) > λ, then there exists a cube Q ∈ D(E) such that
x ∈ Q and 1

σ(Q)

˜
TQ
|∇f(Y )| dY > λ. By the definition of CD(f), we also have

CD(f)(y) > λ for every y ∈ Q. In particular, we have

{x ∈ E : CD(∇f)(x) > λ} =
⋃
i

Qi

for disjoint dyadic cubes Qi. We now claim that if A1 is large enough, then

{x ∈ E : C(∇f)(x) > A1λ} ⊆
⋃
i

2∆Qi (1.27)

where ∆Qi is the surface ball (1.11). Suppose that y /∈
⋃
i 2∆Qi and let r > 0.

Let us choose k ∈ Z so that 2k−1 ≤ r < 2k. Now there exist at most K dyadic
cubes R1, R2, . . . , Rm such that `(Rj) = 2k and Rj ∩ ∆(y, r) 6= ∅ for every j =
1, 2, . . . ,m. We notice that none of the cubes Rj can be contained in any of the
cubes Qi since otherwise we would have y ∈ 2∆Rj ⊂ 2∆Qi by (1.12). Thus,
we have 1

`(Rj)n

˜
TRj
|∇f(Y )| dY ≤ λ for every j. We can use a straightforward

geometric argument to show that B(y, r) ⊂
⋃m
j=1 TRj (see [HMM16, pages 2353-

2354]). Hence, since r ≈ `(Rj) for every j, we have

1

rn

¨
B(y,r)

|∇f(Y )| dY
(1.25)
.

m∑
j=1

1

`(Rj)n

¨
TRj

|∇f(Y )| dY . λ

and y /∈ {x ∈ E : C(∇f)(x) > A1λ} for a large enough A1. In particular, (1.27)
holds and we have

σ({x ∈ E : C(∇f)(x) > A1λ}) ≤
∑
i

σ(2∆Qi)

.
∑
i

σ(Qi)

= σ

(⋃
i

Qi

)
= σ({x ∈ E : CD(∇f)(x) > λ}).

The Lp comparability C(∇f) and CD(∇f) follows immediately:

‖C(∇f)‖pLp(E) = p

ˆ ∞
0

λp−1σ({x ∈ E : C(∇f)(x) > λ}) dλ

≤ A2p

ˆ ∞
0

λp−1σ({x ∈ E : A1CD(∇f)(x) > λ}) dλ

= Ap1A2‖CD(∇f)‖pLp(E).

�

1.7. Cones, non-tangential maximal functions and square functions. We
recall from [HMM16, Section 3] that the Whitney regions UQ and the fattened
Whitney regions ÛQ, Q ∈ D, are defined using fattenedWhitney boxes I∗ := (1+τ)I
and I∗∗ := (1 + 2τ)I respectively, where τ is a suitable positive parameter. Let us
define the regions ÛQ using even fatter Whitney boxes I∗∗∗ := (1 + 3τ)W .
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Definition 1.28. For any x ∈ E, we define the cone at x by setting

Γ(x) :=
⋃

Q∈D(E),Q3x

ÛQ. (1.29)

We define the non-tangential maximal function N∗u and, for u ∈ W 1,2
loc (Ω), the

square function Su as follows:

N∗u(x) := sup
Y ∈Γ(x)

|u(Y )|, x ∈ E,

Su(x) :=

(ˆ
Γ(x)

|∇u(Y )|2δ(Y )1−n dY

)1/2

, x ∈ E.

The Hytönen-Rosén techniques in [HR16, Section 6] rely on the use of local
S . N and N . S estimates from [HKMP15]. Although a local S . N estimate
holds also in our context [HMM], a local N . S estimate does not hold without
suitable assumptions on connectivity. Thus, we cannot apply the Hytönen-Rosén
techniques directly but we have to combine them with the techniques created in
[HMM16].

In Section 5 we consider the following modified versions of Γ(x) and N∗u to
bypass some additional technicalities:

Definition 1.30. For every x ∈ E and α > 0 we define the cone of α-aperture at
x Γα(x) by setting

Γα(x) :=
⋃

Q∈D(E),Q3x

⋃
P∈D(E),
`(P )=`(Q),
α∆Q∩P 6=∅

ÛP . (1.31)

Using the cones Γα(x), we define the non-tangential maximal function of α-aperture
Nα
∗ u by setting Nα

∗ u(x) := supY ∈Γα(x) |u(Y )|.

Remark 1.32. If the set E is bounded, then the cones (1.29) and (1.31) are
also bounded since we only constructed Whitney regions U such that diam(U) .
diam(E). Thus, if E is bounded, we use the cones

Γ̂(x) := Γ(x) ∪B(z0, C · diam(E))c and

Γ̂α(x) := Γα(x) ∪B(z0, Cα · diam(E))c

for a suitable point z0 ∈ E and suitable constants C and Cα instead.

The usefulness of these modified cones and non-tangential maximal functions
lies in the fact that for a suitable choice of α the cone Γα(x) contains some crucial
points that may not be contained in Γ(x) and in the Lp sense the function Nα

∗ u is
not too much larger than N∗u. We prove the latter claim in the next lemma but
postpone the proof of the first claim to Section 5.

Lemma 1.33. Suppose that u is a continuous function and let α ≥ 1. Then
‖N∗u‖Lp(E) ≈α ‖Nα

∗ u‖Lp(E) for every p ∈ (0,∞).

Proof. We only prove the claim for the case diam(E) =∞ as the proof for the case
diam(E) <∞ is almost the same.

Since the set E is ADR, measures of balls with comparable radii are comparable.
Using this property makes it is simple and straightforward to generalize the classical
proof of C. Fefferman and E. Stein [FS72, Lemma 1] from Rn+1

+ to Ω to show that
‖Nαu‖Lp(E) ≈α,β ‖Nβu‖Lp(E) where

Nγu(x) := sup
Y ∈Γ̃γ(x)

|u(Y )|, Γ̃γ(x) := {Y ∈ Ω: dist(x, Y ) < γ · δ(Y )} .
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By the definition of the cones Γ(x), there exists γ0 > 0 such that Γ̃γ0
(x) ⊂ Γ(x) for

every x ∈ E. Thus, we only need to show that Γα(x) ⊂ Γ̃γ(x) for some uniform
γ = γ(α) for all x ∈ E since this gives us the estimate (*) in the chain

‖N∗u‖Lp(E) ≤ ‖Nα
∗ u‖Lp(E)

(*)
≤ ‖Nγu‖Lp(E)

≈γ,γ0 ‖Nγ0u‖Lp(E) ≤ ‖N∗u‖Lp(E).

Suppose that Q,P ∈ D(E), x ∈ Q, `(Q) = `(P ) and α∆Q ∩ P 6= ∅. By the
construction of the Whitney regions, for every Y ∈ ÛP we have

δ(Y ) ≈ `(P ) ≈ dist(Y, P ).

On the other hand, since α∆Q ∩ P 6= ∅ and `(P ) = `(Q), we know that for any
y ∈ P we have

dist(x, y) . α`(Q) = α`(P ).

Let us take any z ∈ P . Now for every Y ∈ ÛP we have

dist(x, Y ) ≤ dist(x, z) + dist(z, Y ) . α`(P ) + `(P ) . α`(P ) ≈ α · δ(Y ).

In particular, there exists a uniform constant γ = γ(α) such that Γα(x) ⊂ Γ̃γ(x).
�

2. Principal cubes

As in [HR16], we define the numbers MD(N∗u)(Q) by setting

MD(N∗u)(Q) := sup
Q⊆R∈D

 
R

N∗u(y) dσ(y)

for every Q ∈ D(E) =: D. We shall use a collection I ⊂ D(E) = D such that

I :=
{
Qi : i ∈ Ñ

}
, Qi ( Qi+1 ∀i,

⋃
i

Qi = E, (2.1)

where Ñ = {1, 2, . . . , n0} for some n0 ∈ N if E is bounded, and Ñ = N otherwise.
This type of a collection exists by the last property in Theorem 1.10 and by the
properties of dyadic cubes, the collection is Carleson. Let us construct a collection
P ⊂ D of ”stopping cubes“ using the construction described in [HR16, Section 6.1].
We set P0 := I and consider all the cubes Q′ ∈ D(E) \ P0 such that

(a) for some Q ∈ P0 we have Q′ ( Q and

MD(N∗u)(Q′) = sup
Q′⊆R∈D

 
R

N∗u(y) dσ(y) > 2MD(N∗u)(Q), (2.2)

(b) Q′ is not contained in any such Q′′ ( Q such that either Q′′ ∈ P0 or (2.2)
holds for the pair (Q′′, Q).

We denote by P1 the collection we get by adding all the cubes Q′ satisfying both
(a) and (b) to P0. We then continue this process for P1 in place of P0 and so on.
We set P :=

⋃∞
k=0 Pk. We also set

πPQ = the smallest cube Q0 ∈ P such that Q ⊆ Q0.

Here we mean smallest with respect to the side length. Naturally, we have πPQ = Q
for every Q ∈ P, and since I ⊂ P, for every cube Q ∈ D there exists some cube
PQ ∈ P such that Q ⊂ PQ.
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Remark 2.3. The collection P is an auxiliary collection that helps us to simplify
the proofs of several claims. We use it in the following way. Suppose that we have
a subcollection W ⊂ D and we want to show that W satisfies a Carleson packing
condition. Let Q0 ∈ D. Now for every Q ∈ W such that Q ⊂ Q0, we have either
πPQ = πPQ0 or πPQ = P = πPP for some P ∈ P such that P ( πPQ0. In
particular, we have∑

Q∈W,Q⊆Q0

σ(Q) =
∑
Q∈W,

πPQ=πPQ0

σ(Q) +
∑

P∈P,P(πPQ0

∑
Q∈W,
πPQ=P

σ(Q)

=: IQ0 +
∑

P∈P,P(πPQ0

IP .

We prove in Lemma 2.4 below that the collection P satisfies a Carleson packing
condition. Thus, if we can show that IQ0 . σ(Q0) for an arbitrary cube Q0 ∈ P,
we get ∑

P∈P,P(πPQ0

IP .
∑

P∈P,P(πPQ0

σ(P ) . σ(Q0).

Thus, to show that the collection W satisfies a Carleson packing condition, it is
enough to show that IQ0

. σ(Q0) for every cube Q0 ∈ D. The usefulness of this
simplification is that if Q ∈ D \ P and πPQ = P , then by the construction of the
collection P we have

MD(N∗u)(Q) ≤ 2MD(N∗u)(P ).

We use this property several times in the proofs.

For any cube Q0 ∈ D, we say that R ∈ P is a P-proper subcube of Q0 if we
haveMD(N∗u)(R) > 2MD(N∗u)(Q0) andMD(N∗u)(R′) ≤ 2MD(N∗u)(Q0) for every
intermediate cube R ( R′ ( Q0.

Lemma 2.4. For every Q0 ∈ D(E) we have∑
P∈P,P⊆Q0

σ(P ) . σ(Q0). (2.5)

Proof. Let us start by noting that we may assume that Q0 ∈ P since otherwise
we can simply consider the P-maximal subcubes of Q0. To be more precise, the
P-maximal subcubes of Q0 are disjoint by definition and thus, if we sum their
measures together, it is at most σ(Q0). Now, if Q ∈ P and Q ⊂ Q0, we know
that Q is one of the P-maximal subsubes of Q0 or it is contained properly in one
of them. Hence, if we prove the estimate (2.5) for the case Q0 ∈ P, it implies the
same estimate even with the same implicit constant for the case Q0 /∈ P.

Suppose first that we have a collection of disjoint cubes Q′ ⊂ Q that satisfy
MD(N∗u)(Q′) > 2MD(N∗u)(Q). Then, for every such cubeQ′ we haveMD(N∗u)(Q′) >ffl
Q
N∗u dσ and thus, for every point x ∈ Q′ we get

MD(1QN∗u)(x) = sup
R∈D,x∈R⊆Q

 
R

N∗u dσ

≥ sup
R∈D,Q′⊆R(Q

 
R

N∗u dσ

= MD(N∗u)(Q′) > 2MD(N∗u)(Q).
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In particular, by the L1 → L1,∞ boundedness of MD we have∑
Q′

σ(Q′) ≤ σ ({x ∈ E : MD(1QN∗u)(x) > 2MD(N∗u)(Q)})

≤ 1

2MD(N∗u)(Q)
‖1QN∗u‖L1(σ) =

ffl
Q
N∗u dσ

M(N∗u)(Q)

σ(Q)

2
≤ σ(Q)

2
. (2.6)

We notice that if R ∈ P \ I, then R is a P-proper subcube of some cube Q ∈ P.
To be more precise, if R ∈ P \I, then there exists a chain of cubes R = R1 ( R2 (
. . . ( Rk, Ri ∈ P, such that for every i = 1, 2, . . . , k − 1 Ri is a P-proper subcube
of Ri+1 and Rk ∈ I. If such a chain of length k from R to Q exists, we denote
R ∈ PkQ. By using the property (2.6) k times, we see that for each Q ∈ P we have∑

R∈PkQ

σ(R) ≤
∑

R∈Pk−1
Q

∑
S∈PkQ,S(R

σ(S) ≤ 1

2

∑
R∈Pk−1

Q

σ(R)

≤ . . . ≤ 1

2k−1

∑
R∈P1

Q

σ(R) ≤ σ(Q)

2k
(2.7)

Now it is straightforward to prove the packing condition. We have∑
P∈P,P⊆Q0

σ(P ) =
∑

P∈I,P⊆Q0

σ(P ) +
∑

P∈P\I,P⊆Q0

σ(P )

≤ CIσ(Q0) +
∑

Q∈I,Q⊆Q0

∞∑
k=1

∑
P∈PkQ

σ(P )

(2.7)
≤ CIσ(Q0) +

∑
Q∈I,Q⊆Q0

∞∑
k=1

σ(Q)

2k

= CIσ(Q0) +
∑

Q∈I,Q⊆Q0

σ(Q) ≤ CIσ(Q0) + CIσ(Q0)

which proves the claim. �

3. “Large Oscillation” cubes

Before constructing the approximating function, we consider two collections of
cubes that will act as the basis of our construction. In this section, we show that
the union of the collection of “large oscillation” cubes

R :=

{
Q ∈ D : osc

UiQ

u > εMD(N∗u)(Q) for some i

}
.

and the collection of “bad” cubes from the corona decomposition satisfies a Carleson
packing condition. We apply this property in the technical estimates in Section 5.

Lemma 3.1. For every Q0 ∈ D(E) we have∑
R∈R,R⊆Q0

σ(R) .
1

ε2
σ(Q0). (3.2)

Proof. We break the proof into three parts.
Part 1: Simplification. First, by Remark 2.3, it is enough to show that∑

R∈R,R⊂Q0

πPR=πPQ0

σ(R) .
1

ε2
σ(Q0).
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Also, since the “bad” collection in the bilateral corona decomposition is Carleson,
it suffices to consider the “good” cubes in R, i.e. the collection R ∩ G. Thus, we
may assume that Q0 ∈ R∩G since otherwise we may simply consider the (R∩G)-
maximal subcubes of Q0 similarly as with the collection P in the proof of Lemma
2.4. Furthermore, since the Whitney regions UR of the “good” cubes R break into
two components U+

R and U−R , it is enough to bound the sum∑
R∈R+,R⊂Q0

πPR=πPQ0

σ(R) . σ(Q0),

where R+ := {Q ∈ R ∩ G : oscU+
Q
> εMD(N∗u)(Q)}, as the arguments for the

corresponding collection R− are the same.
Since Q0 ∈ G, there exists a stopping time regime S0 = S0(Q0) such that Q0 ∈

S0. We note that if we have Q ⊂ Q0 for a cube Q ∈ R+, then either Q ∈ S0 or, by
the coherency and disjointness of the stopping time regimes, Q0 ∈ S for such a S
that Q(S) ( Q0. Let S = S(Q0) be the collection of the stopping time regimes S
such that Q(S) ( Q0. Then we have∑

R∈R+,R⊂Q0

πPR=πPQ0

σ(R) =
∑

R∈R+∩S0,R⊂Q0

πPR=πPQ0

σ(R) +
∑
S∈S

∑
R∈R+∩S,R⊂Q0

πPR=πPQ0

σ(R)

=: IQ0 + IIQ0 .

Let us show that if IQ0
. σ(Q0) for every Q0 ∈ D, then IIQ0

. σ(Q0) for every
Q0 ∈ D. Suppose that Q ∈ S ∈ S. Since Q(S) ( Q0, we have πPQ = πPQ0 only
if πPQ = πPQ(S) = πPQ0. Thus, it holds that

IIQ0 =
∑
S∈S

∑
R∈R+∩S,R⊂Q0

πPR=πPQ0

σ(R) ≤
∑
S∈S

∑
R∈R+∩S,R⊂Q0

πPR=πPQ(S)

σ(R)

=
∑
S∈S

IQ(S)

.
∑
S∈S

σ(Q(S))

. σ(Q0)

by the Carleson packing property of the collection {Q(S)}S . Hence, to prove (3.2),
it suffices to show IQ0

. σ(Q0).

Part 2: δ(Y ) . DA(Y ) in Û+
P . Let A ⊂ G be a collection of cubes and set

Ω∗A := int

 ⋃
Q∈A

Û
+

Q

 = int

 ⋃
Q∈A

⋃
I∈W+

Q

I∗∗∗


and DA(Y ) := dist(Y, ∂Ω∗A). Recall the definitions of I∗∗ and I∗∗∗ from Section
1.7. Let us fix a cube P ∈ A and a point Y ∈ Û+

P =
⋃
I∈W+

P
I∗∗. We now claim

that δ(Y ) . DA(Y ) . We notice first that although the regions Û
+

Q may overlap,

we have `(Q) ≈ `(Q′) ≈ `(P ) for all overlapping regions Û
+

Q and Û
+

Q′ such that

Y ∈ Û
+

Q ∩ Û
+

Q′ (see (3.2), (3.8) and related estimates in [HMM16]). Also, the
fattened Whitney boxes I∗∗∗ may overlap, but we have `(I∗∗∗) ≈ `(I) ≈ `(J) ≈
`(J∗∗∗) ≈ `(P ) if Y ∈ I∗∗∗ ∩ J∗∗∗. By a simple geometrical consideration we know
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that

dist(Y, ∂I∗∗∗) ≈τ `(I).

It now holds thatDA(Y ) = dist(Y, ∂I∗∗∗) for some I∗∗∗ 3 Y orDA(Y ) ≥ dist(Y, ∂I∗∗∗)
for every such I∗∗∗. In particular, we have

DA(Y ) ≥ inf
Q∈A,Y ∈Û+

Q

inf
I∈W+

Q

dist(Y, ∂I∗∗∗)

≈ inf
Q∈A,Y ∈Û+

Q

inf
I∈W+

Q

`(I) ≈ inf
Q∈A,Y ∈Û+

Q

`(Q) ≈ `(P ).

Now we can take any I ∈ W+
P such that Y ∈ I∗∗ and notice that `(P ) ≈ `(I) ≈

`(I∗∗) ≈ dist(I∗∗, ∂Ω) ≈ dist(Y, ∂Ω). Hence DA(Y ) & δ(Y ) for every Y ∈ Û+
P .

Part 3: The sum IQ0
. To simplify the notation, let us write

R+
0 := {R ∈ R+ ∩ S0 : R ⊂ Q0, πPR = πPQ0}.

We consider the region Ω∗∗∗,

Ω∗∗∗ := int

 ⋃
R∈R+

0

Û
+

R


and set D(Y ) := dist(Y, ∂Ω∗∗∗) for every Y ∈ Ω. Suppose that R ∈ R+

0 . By Part
2, we know that

δ(Y ) . D(Y ) for every Y ∈ Û+
R . (3.3)

We also notice that

Ω∗∗∗ = int

 ⋃
R∈R+

0

Û
+

R

 ⊂ int

 ⋃
R∈R+

0

⋃
x∈R

Γ(x)

 ,

so we have

sup
X∈Ω∗∗∗

|u(X)| = sup
R∈R+

0

sup
X∈Û+

R

|u(X)|

≤ sup
R∈R+

0

inf
x∈R

N∗u(x)

≤ sup
R∈R+

0

MD(N∗u)(R) .MD(N∗u)(πPQ0). (3.4)

In the last inequality we used the definition of R+
0 (see Remark 2.3).

By [HMM16, (5.8)] (or [HM14, Section 4]), we have(
osc
U+
R

u

)2

. `(R)−n
¨
Û+
R

|∇u(Y )|2δ(Y ) dY (3.5)

for every R ∈ R+. Notice also that if R ∈ R+
0 , then by the definition of the

numbers MD(N∗u)(Q) we have MD(N∗u)(πPQ0) ≤ MD(N∗u)(R) simply because
R ⊂ πPQ0. Thus, using (A) the definition of the numbers MD(N∗u)(Q), (B) the
ADR property of E, (C) the definition of the collection R+ and (D) the bounded
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overlap of the regions Û+
R we get

MD(N∗u)(πPQ0)2IQ0

(A)
≤

∑
R∈R+

0

MD(N∗u)(R)2σ(R) (3.6)

(B)
.

∑
R∈R+

0

MD(N∗u)(R)2`(R)n

(C),(3.5)
.

1

ε2

∑
R∈R+

0

¨
Û+
R

|∇u(Y )|2δ(Y ) dY

(3.3)
.

1

ε2

∑
R∈R+

0

¨
Û+
R

|∇u(Y )|2D(Y ) dY

(D)
.

1

ε2

¨
Ω∗∗∗
|∇u(Y )|2D(Y ) dY

Since Q0 ∈ R, we notice that the collection R+
0 forms a semi-coherent subregime

of S0. Thus, by [HMM16, Lemma 3.24], the set Ω∗∗∗ is a chord-arc domain (i.e.
NTA domain with ADR boundary). Furthermore, by [AHM+14, Theorem 1.2],
∂Ω∗∗∗ is UR. Since Ω∗∗∗ ⊂ B(xQ0 , C`(Q0)) for a suitable structural constant C
(see [HMM16, (3.14)]), the ADR property of ∂Ω and [HMM16, Theorem 1.1] give
us

1

ε2

¨
Ω∗∗∗
|∇u(Y )|2D(Y ) dY .

1

ε2
‖u‖2L∞(Ω∗∗∗) · σ(Q0)

(3.4)
.

1

ε2
MD(N∗u)(πPQ0)2 · σ(Q0). (3.7)

Since the numbers MD(N∗u)(πPQ0)2 cancel from (3.6) and (3.7), this concludes
the proof of the lemma. �

Since the bad collection B in the bilateral corona decomposition satisfies a Car-
leson packing condition, we immediately get the following corollary:

Corollary 3.8. For every Q0 ∈ D(E) we have∑
R∈(R∪B),R⊆Q0

σ(R) .
1

ε2
σ(Q0). (3.9)

4. Generation cubes

For every stopping time regime S, we construct a collection of generation cubes
G(S) as in [HMM16, Section 5] but with modified stopping conditions. For clarity,
let us repeat the key details and definitions from [HMM16, Section 5] here. We set
Q0 := Q(S) and G0 := {Q0}, start subdividing Q0 dyadically and stop when we
reach a cube Q ∈ DQ0 for which at least one of the following conditions holds:

(1) Q is not in S,
(2) |u(Y +

Q )− u(Y +
Q0)| > εMD(N∗u)(Q),

(3) |u(Y −Q )− u(Y −Q0)| > εMD(N∗u)(Q).

The points Y ±Q were defined in Section 1.4. We denote the collection of maximal
subcubes of Q0 extracted by these stopping time conditions by F1 = F1(Q0) and
we let G1 = G1(Q0) := F1 ∩ S be the collection of first generation cubes. We
notice that the collection of subcubes of Q0 that are not contained in any stopping
cube Q ∈ F1 form a semicoherent subregime of S. We denote this subregime by
S ′ = S ′(Q0).
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If G1 is non-empty, we repeat the construction above for the cubes Q1 ∈ G1

but replace Y ±Q0 by Y ±Q1 in conditions (2) and (3). Continuing like this gives us
collections Gk for k ≥ 0 (notice that starting from some k the collections might be
empty), where

Gk+1(Q0) :=
⋃

Qk∈Gk(Q0)

G1(Qk).

To emphasize the dependency on S, we denote

Gk(S) := Gk(Q(S)),

and we set the collection of all generation cubes to be

G∗ :=
⋃
S
G(S).

By this construction, we have

S =
⋃

Q∈G(S)

S ′(Q) (4.1)

for each stopping time regime S, where S ′(Q) is a semicoherent subregime of S
with maximal element Q and the subregimes S ′(Q) are disjoint.

Our next goal is to prove that the collection G∗ satisfies a Carleson packing
condition:

Lemma 4.2. For every Q0 ∈ D we have∑
S∈G∗,S⊆Q0

σ(S) .
1

ε2
σ(Q0). (4.3)

Before the proof, let us make two observations that help us to simplify the proof.

1) By arguing as in the proof of Lemma 3.1, we may assume that Q0 ∈ G∗
and it suffices to show that∑

S∈G∗∩S0,S⊂Q0

πPS=πPQ0

σ(S) .
1

ε2
σ(Q0),

where S0 is the unique stopping time regime such that Q0 ∈ S0.
2) For every k ≥ 0 and S ∈ Gk(S0), let G1(S) ⊂ G(S0) be the G∗-children of

S, i.e. the cubes P ∈ Gk+1(S0) such that P ( S. For each such S we have

MD(N∗u)(S)2
∑

Q∈G1(S)

πPQ=πPQ0

σ(Q) .
1

ε2

¨
ΩS (S)

|∇u(Y )|2δ(Y ) dY, (4.4)

where S (S) := S ′(S)∩{Q ∈ D : πPQ = πPQ0} is a semicoherent subregime
of S0 and ΩS (S) is the associated sawtooth region (see (1.22)). The estimate
(4.4) is a counterpart of [HMM16, Lemma 5.11] and it follows easily from
the original proof. To be a little more precise, instead of having ε2 ≤
100|u(Y +

Q ) − u(Y +
S )|2 for every Q ∈ G1(S) as in [HMM16, (5.13)], we

have ε2MD(N∗u)(S)2 ≤ ε2MD(N∗u)(Q)2 ≤ |u(Y +
Q ) − u(Y +

S )|2 for every
Q ∈ G1(S). The rest of the proof works as it is.
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Proof of Lemma 4.2. Let us follow the arguments in the proof of [HMM16, Lemma
5.16] and write

∑
S∈G∗∩S0,S⊂Q0

πPS=πPQ0

σ(S) =
∑
k≥0

∑
S∈Gk(Q0)

πPS=πPQ0

σ(S)

= σ(Q0) +
∑
k≥1

∑
S′∈Gk−1(Q0)

∑
S∈G1(S′)

πPS=πPQ0

σ(S) =: σ(Q0) + I.

Using (4.4) and the definition of the sawtooth regions gives us

MD(N∗u)(πPQ0)2I
(4.4)
.

1

ε2

∑
k≥1

∑
S′∈Gk−1(Q0)

¨
ΩS (S′)

|∇u(Y )|2δ(Y ) dY

≤ 1

ε2

∑
k≥1

∑
S′∈Gk−1(Q0)

∑
S∈S′(S′)
πPS=πPQ0

¨
US

|∇u(Y )|2δ(Y ) dY (4.5)

Let us denote Ω0 :=
⋃
S∈G∗Q0

US whereG∗Q0
:= {S ∈ D : πPS = πPQ0}∩

⋃
k≥1

⋃
S′∈Gk−1(Q0) S ′(S′).

By the construction,
⋃
k≥1

⋃
S′∈Gk−1(Q0) S ′(S′) is a coherent subregime of S0 with

maximal element Q0 and thus, G∗Q0
is a semicoherent subregime of S0. In partic-

ular, the sawtooth region Ω0 splits into two chord-arc domains Ω±0 by [HMM16,
Lemma 3.24]. Furthermore, by [AHM+14, Theorem 1.2], both ∂Ω+

0 and ∂Ω−0 are
UR. We also note that Ω0 ⊂ B(xQ0

, C`(Q0)) (see [HMM16, (3.14)]). Thus, since
the triple sum in (4.5) runs over a collection of disjoint cubes, we can use the
bounded overlap of the Whitney regions, [HMM16, Theorem 1.1] and the ADR
property of E to show that

1

ε2

∑
k≥1

∑
S′∈Gk−1(Q0)

∑
S∈S′(S′)
πPS=πPQ0

¨
US

|∇u(Y )|2δ(Y ) dY

.
1

ε2

¨
Ω0

|∇u(Y )|2δ(Y ) dY

.
1

ε2
‖u‖2L∞(Ω0)σ(Q0).

Since πPS = πPQ0 for every S ∈ G∗Q0
, by (2.2) we haveMD(N∗u)(S) ≤ 2MD(N∗u)(πPQ0)

for every S ∈ G∗Q0
. In particular:

‖u‖2L∞(Ω0) ≤ sup
S∈G∗Q0

sup
Y ∈US

|u(Y )|2

≤ sup
S∈G∗Q0

inf
x∈S

N∗u(x)2

≤ sup
S∈G∗Q0

MD(N∗u)(S)2 .MD(N∗u)(πPQ0)2.

Since the numbersMD(N∗u)(πPQ0)2 cancel out, we have proven the Carleson pack-
ing condition of G∗. �
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5. Construction of the approximating function

Before we construct the function, we prove the following technical lemma related
to the modified cones Γα(x) that we defined in Section 1.7. Recall that

Γα(x) =
⋃

Q∈D(E),Q3x

⋃
P∈D(E),
`(P )=`(Q),
α∆Q∩P 6=∅

ÛP . (5.1)

Lemma 5.2. There exists a uniform constant α0 > 0 such that the following holds:
if Q ∈ D(E) is any cube and P ∈ G∗ is a generation cube such that `(Q) ≤ `(P )
and ΩS′(P ) ∩ TQ 6= ∅, then X±P , Y

±
P ∈ Γα0(x) for every x ∈ Q.

Proof. We start by noticing that there exists α > 0 (depending only on the struc-
tural constants) such that

if P appears in the union (5.1), then also P̃ appears in the same union, (5.3)

where P̃ is the dyadic parent of P . Indeed, if we have Q,P ∈ D(E), x ∈ Q,
`(Q) = `(P ) and α∆Q ∩ P 6= ∅, then also x ∈ Q̃, `(Q̃) = `(P̃ ) and α∆Q̃ ∩ P̃ 6= ∅.
The last claim follows from the fact that ∅ 6= α∆Q ∩ P ⊂ α∆Q̃ ∩ P̃ .

Let us then prove the claim of the lemma by following the argument in the proof
of [HMM16, Lemma 5.20]. Since ΩS′(P ) ∩ TQ 6= ∅, there exist cubes P ′ ∈ S ′(P )
and Q′ ⊂ Q such that UP ′ ∩ UQ′ 6= ∅. By the properties of the Whitney regions,
we have dist(Q′, P ′) . `(Q′) ≈ `(P ′). Let us consider two cases:

i) Suppose that `(P ′) ≥ `(Q). Then there exists a cube Q′′ such that Q ⊂ Q′′
and `(Q′′) = `(P ′). Since Q′ ⊂ Q′′, we have dist(Q′′, P ′) ≤ dist(Q′, P ′) .
`(Q′) ≤ `(Q′′). Thus, for a large enough α0, we have ÛP ′ ⊂ Γα0(x) for
every x ∈ Q and the claim follows from (5.3).

ii) Suppose that `(P ′) < `(Q). Then by the semicoherency of S ′(P ), there
exists a cube P ′′ ∈ S ′(P ) such that P ′ ⊂ P ′′ ⊂ P and `(P ′′) = `(Q). Since
P ′ ⊂ P ′′ and Q′ ⊂ Q, we know that dist(P ′′, Q) ≤ dist(P ′, Q′) . `(Q′) ≤
`(Q). Thus, for a large enough α0, we have ÛP ′′ ⊂ Γα0(x) for every x ∈ Q.
Again, the claim follows now from (5.3).

�

5.1. Constructing the function in TQ0 . In this section we adopt the terminology
from other papers (including [HMM16]) and say that a component U iQ is blue if
oscUiQu ≤ εMD(N∗u)(Q) and red if oscUiQu > εMD(N∗u)(Q).

We recall the construction of the local functions ϕ0, ϕ1 and ϕ from [HMM16,
Section 5]. We start by defining an ordered family of good cubes {Qk}k≥1 relative
to a fixed cube Q0 ∈ D. If Q0 ∈ G, then Q0 ∈ S for some stopping time regime S
and thus, Q0 ∈ S ′1 for some subregime in (4.1). In this case, we set Q1 = Q(S ′1).
If Q0 /∈ G, then we let Q1 be any good subcube of Q0 such that Q1 is maximal
with respect to the side length; such a cube much exist since B is Carleson. Since
Q1 ∈ G, we have Q1 ∈ S for some stopping time regime S, and by the coherency
of S, we have Q1 = Q(S ′1) for some subregime in (4.1). Once the cube Q1 has
been chosen in these two cases, we let Q2 be a subcube of maximum side length
in (DQ0

∩ G) \ S ′1 and so on. This gives us a sequence of cubes Qk ∈ G such that
`(Q1) ≥ `(Q2) ≥ `(Q3) ≥ · · · , Qk = Q(S ′k) and G ∩ DQ0 ⊂

⋃
k≥1 S ′k. We define

recursively

A1 := ΩS′1 , Ak := ΩS′k \

k−1⋃
j=1

Aj

 , k ≥ 2.
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and

A±1 := Ω±S′1
, A±k := Ω±S′k

\

k−1⋃
j=1

Aj

 , k ≥ 2,

where

ΩS′k := int

 ⋃
Q∈S′k

U±Q

 .

We also set

Ω0 :=
⋃
k

ΩS′k =
⋃
k

Ak and Ω±0 :=
⋃
k

A±k .

We now define ϕ0 on Ω0 by setting

ϕ0 :=
∑
k

(
u(Y +

Qk
)1A+

k
+ u(Y −Qk)1A−k

)
.

As for the rest of the subcubes of DQ0
, we let {Q(k)}k be some fixed enumeration

of the cubes (R∪ B) ∩ DQ0 and define recursively

V1 := UQ(1), Vk := UQ(k) \

k−1⋃
j=1

Vj

 , k ≥ 2.

Each Whitney region UQ(k) splits into a uniformly bounded number of connected
components U iQ(k). Thus, we may further split

V i1 := U iQ(1), V ik := U iQ(k) \

k−1⋃
j=1

Vj

 , k ≥ 2

and then define

ϕ1(Y ) :=

{
u(Y ), if U iQ(k) is red
u(XI), if U iQ(k) is blue , Y ∈ V ik ,

on each V ik , where XI is the center of a fixed Whitney cube I ⊂ U iQ(k). We then

denote Ω1 := int
(⋃

Q∈(B∪R)∩DQ0
UQ

)
= int (

⋃
k Vk), set the values of ϕ0 and ϕ1 to

be 0 outside their original domains of definition and define the function ϕ on the
Carleson box TQ0 as

ϕ(Y ) :=

{
ϕ0(Y ), Y ∈ TQ0

\ Ω1

ϕ1(Y ), Y ∈ Ω1
,

From the point of view of CD, the values of ϕ on the boundary of Ω1 are not
important since the (n+ 1)-dimensional measure of ∂Ω1 is 0. Thus, we may simply
set ϕ|∂Ω1

= u since this is convenient from the point of view of N∗(u− ϕ).

5.2. Verifying the estimates on Q0. Let us fix a cube Q0 ∈ D(E). We start by
verifying the following three estimates on Q0.

Lemma 5.4. Suppose that x ∈ Q0, Q′ ∈ DQ0
and
−→
Ψ ∈ C1

0 (WQ′) with ‖
−→
Ψ‖L∞ ≤ 1,

where WQ′ ⊂ Ω is any bounded and open set satisfying TQ′ ⊂ WQ′ . Then the
following estimates hold:

i) N∗(1TQ0
(u− ϕ))(x) ≤ εMD(N∗u)(x),
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ii) ¨
TQ′\Ω1

ϕ0div
−→
Ψ .

1

ε2

ˆ
β∆Q′

Nα0
∗ u dσ,

iii) ¨
TQ′

ϕ1div
−→
Ψ .

1

ε2

ˆ
β∆Q′

N∗u dσ,

where β > 0 is a uniform constant and α0 > 0 is the constant in Lemma 5.2.

Proof.
i) Let us estimate the quantity |u(Y )− ϕ(Y )| for different Y ∈ TQ0

.
• Suppose that Y ∈ V ik such that U iQ(k) is a red component. Then we

have ϕ(Y ) = u(Y ) and |u(Y )− ϕ(Y )| = 0.
• Suppose that Y ∈ V ik such that U iQ(k) is a blue component. Then
ϕ(Y ) = u(XI) for a Whitney cube I ⊆ U iQ(k) and |u(Y ) − ϕ(Y )| ≤
oscUi

Q(k)
u ≤ εMD(N∗u)(Q(k)).

• Suppose that Y ∈ TQ0 \ Ω1. Then Y ∈ A±k for some k such that
Qk /∈ R. Without loss of generality, we may assume that Y ∈ A+

k .
Now ϕ(Y ) = u(Y +

Qk
) and, since Qk /∈ R, we have |u(Y ) − ϕ(Y )| ≤

oscU+
Qk

≤ εMD(N∗u)(Qk).
Combining the previous estimates gives us

N∗(1TQ0
(u− ϕ))(x) = sup

Y ∈Γ(x)∩TQ0

|u(Y )− ϕ(Y )|

= sup
Q∈DQ0
Q3x

sup
Y ∈UQ

|u(Y )− ϕ(Y )|

≤ sup
Q∈DQ0
Q3x

εMD(N∗u)(Q)

≤ εMD(N∗u)(x).

ii) We first notice that since Ψ is compactly supported in Ω, we have dist(suppΨ, E) >
0. Thus, for each Ak, the set (TQ′ ∩Ak ∩ suppΨ)\Ω1 consists of a union of
boundedly overlapping sets that are “nice” enough for integration by parts.
The divergence theorem gives us¨

TQ′\Ω1

ϕ0 div
−→
Ψ ≤

∑
k

¨
(TQ′∩Ak)\Ω1

ϕ0 div
−→
Ψ

=
∑
k

¨
(TQ′∩Ak)\Ω1

div(ϕ0
−→
Ψ)

≤
∑
k

(¨
∂((TQ′∩A

+
k )\Ω1))

ϕ0
−→
Ψ ·
−→
N

+

¨
∂((TQ′∩A

−
k )\Ω1))

ϕ0
−→
Ψ ·
−→
N

)
≤
∑
k

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂(A+
k \ Ω1))

+
∑
k

|u(Y −Qk)| · Hn(TQ′ ∩ ∂(A−k \ Ω1))

=: I+ + I−.
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We only consider the sum I+ since the sum I− can be handled the same
way as I+. We get

Hn(TQ′ ∩ ∂(A+
k \ Ω1)) ≤ Hn(TQ′ ∩ ∂A+

k ) +Hn(TQ′ ∩A+
k ∩ ∂Ω1)

and thus, we have

I+ ≤
∑
k

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k )

+
∑
k

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Ω1) =: I+

1 + I+
2 .

Let us consider the sum I+
1 first. We split

I+
1 =

∑
k : Qk⊂Q′

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k )

+
∑

k : Qk 6⊂Q′
|u(Y +

Qk
)| · Hn(TQ′ ∩ ∂A+

k ) =: J+
1 + J+

2 .

By [HMM16, Proposition A.2, (5.21)] we know that ∂A+
k satisfies an upper

ADR bound. Thus, since ∂(TQ′ ∩ A+
k ) ⊂ ΩS′k and diam(ΩS′k) . `(Qk), we

get

J+
1 .

∑
k:Qk⊂Q′

|u(Y +
Qk

)| · `(Qk)n ≈
∑

k:Qk⊂Q′
|u(Y +

Qk
)| · σ(Qk)

≤
∑

k:Qk⊂Q′
inf
Qk

N∗u · σ(Qk).

Since the collection of generation cubes is Cε−2-Carleson by Lemma 4.2, it
is Cε2-sparse by Theorem 1.17. Thus, we get

∑
k:Qk⊂Q′

inf
Qk

N∗u · σ(Qk) .
1

ε2

∑
k:Qk⊂Q′

inf
Qk

N∗u · σ(EQk)

≤ 1

ε2

∑
k:Qk⊂Q′

ˆ
EQk

N∗u dσ

≤ 1

ε2

ˆ
Q′
N∗u dσ

Let us then consider the sum J+
2 . By the same argument as in [HMM16, p.

2370], we know that the number of the cubes Qk such that TQ′ ∩ ∂A+
k 6= ∅

and `(Qk) ≥ `(Q′) is uniformly bounded. Thus, by Lemma 5.2 and the fact
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that ∂A+
k satisfies an upper ADR bound (as we noted above), we get∑

k : Qk 6⊂Q′,
TQ′∩∂A

+
k 6=∅,

`(Q′)≤`(Qk)

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k )

≤
∑

k : Qk 6⊂Q′,
TQ′∩∂A

+
k 6=∅,

`(Q′)≤`(Qk)

inf
Q′
Nα0
∗ u · Hn(TQ′ ∩ ∂A+

k )

. inf
Q′
Nα0
∗ u · (diam(TQ′))

n

≈ inf
Q′
Nα0
∗ u · σ(Q′)

≤
ˆ
Q′
Nα0
∗ u dσ.

For the cubes Qk in J+
2 such that `(Qk) ≤ `(Q′) we may use the same

argument as in [HMM16, p. 2370] to see that every such cube is contained in
some nearby cubeQ′′ ofQ′ of the same side length asQ′ with dist(Q′, Q′′) .
`(Q′). The number of such Q′′ is uniformly bounded. By using the same
techniques as with the sum J+

1 , we get∑
k : Qk 6⊂Q′,
TQ′∩∂A

+
k 6=∅,

`(Q′)≥`(Qk)

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k ) .

∑
Q′′

1

ε2

ˆ
Q′′

N∗u dσ

≤ 1

ε2

ˆ
β0∆Q′

N∗u dσ

for some uniform constant β0. Thus, we get

J+
2 .

1

ε2

ˆ
β0∆Q′

Nα0
∗ u dσ.

Let us then consider the sum I+
2 . We first notice that

Hn(TQ′ ∩A+
k ∩ ∂Ω1) ≤

∑
m

Hn(TQ′ ∩A+
k ∩ ∂Vm).

Thus, we get

I+
2 ≤

∑
k

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

=
∑

k:Qk⊂Q′

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

+
∑

k:Qk 6⊂Q′

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

=: J+
3 + J+

4 .

Suppose that A+
k ∩∂Vm 6= ∅. Then, by the construction, we have `(Q(m)) .

`(Qk) and dist(Q(m), Qk) . `(Qk). Thus, there exists a uniform constant
β1 > 0 such that Q(m) ⊂ β1∆Qk and the set β1∆Qk can be covered by a
uniformly bounded number of disjoint cubes with approximately the same
side length asQk. In particular, since TQ′∩A+

k ∩∂Vm satisfies an upper ADR
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bound for every m by the construction and [HMM16, (5.25), Proposition
A.2], we get

J+
3 =

∑
k:Qk⊂Q′

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

.
∑

k:Qk⊂Q′
|u(Y +

Qk
)|

∑
m:Q(m)⊂β1∆Qk

`(Q(m))n

.
∑

k:Qk⊂Q′
|u(Y +

Qk
)|

∑
m:Q(m)⊂β1∆Qk

σ(Q(m))

(3.9)
.

1

ε2

∑
k:Qk⊂Q′

|u(Y +
Qk

)| · σ(Qk).

Now we can use exactly the same arguments as with the sum J+
1 to see

that

J+
3 .

1

ε2

ˆ
Q′
N∗u dσ.

Finally, let us handle the sum J+
4 . Just as above with the sum J+

3 , for some
uniform constant β2 > 0 we get∑

k:Qk 6⊂Q′
`(Q′)≤`(Qk)

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

≤
∑

k:Qk 6⊂Q′

TQ′∩A
+
k 6=∅

`(Q′)≤`(Qk)

|u(Y +
Qk

)|
∑

m:Vm⊂β2∆Q′

σ(Q(m))

(3.9)
.

1

ε2

∑
k:Qk 6⊂Q′

TQ′∩A
+
k 6=∅

`(Q′)≤`(Qk)

|u(Y +
Qk

)| · σ(Q′)

5.2
≤ 1

ε2

∑
k:Qk 6⊂Q′

TQ′∩A
+
k 6=∅

`(Q′)≤`(Qk)

inf
Q′
Nα0
∗ u · σ(Q′)

.
1

ε2

ˆ
Q′
Nα0
∗ u dσ,

where we used the fact that there exists only a uniformly bounded number
of cubes Qk that satisfy the condition of the sum by [HMM16, Lemma
5.20]. By using the same argument as with the latter half of the sum J+

2 ,
we get the bound∑
k:Qk 6⊂Q′

`(Q′)≥`(Qk)

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm) .

1

ε2

ˆ
β3∆Q′

N∗u dσ

for some uniform contant β3 > 0. Thus, we have

J+
4 .

1

ε2

ˆ
β3∆Q′

Nα0
∗ u dσ.

Combining the estimates for J+
1 , J+

2 , J+
3 and J+

4 gives us the claim.
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iii) By [HMM16, (5.25)], we have

Hn(∂V ik ) ≤ Hn(∂Vk) . `(Q(k))n ≈ σ(Q(k)) (5.5)

for every Q(k) and i. We also note that ∂TQ′ satisfies an upper ADR bound
[HMM16, Proposition A.2]. Recall that the function ϕ1 is supported on Ω1.
Thus, since the sets Vl are disjoint, we get¨
TQ′

ϕ1div
−→
Ψ =

∑
l

¨
TQ′∩Vl

ϕ1div
−→
Ψ

=
∑
l

∑
i

¨
TQ′∩V il

ϕ1div
−→
Ψ

=
∑
l

∑
i

(¨
TQ′∩V il

div(ϕ1
−→
Ψ)−

¨
TQ′∩V il

∇ϕ1 ·
−→
Ψ

)

≤
∑
l

∑
i

(∣∣∣∣∣
¨
TQ′∩V il

div(ϕ1
−→
Ψ)

∣∣∣∣∣+

¨
TQ′∩V il

|∇ϕ1|

)
.

Let us first assume that U iQ(l) is a blue component. Recall that since the
collection R ∪ B is Cε−2-Carleson by Corollary 3.8, it is Cε2-sparse by
Theorem 1.17. Thus, by the definition of ϕ1 and the divergence theorem,
we have∣∣∣∣∣

¨
TQ′∩V il

div(ϕ1
−→
Ψ)

∣∣∣∣∣+

¨
TQ′∩V il

|∇ϕ1| =

∣∣∣∣∣
¨
TQ′∩V il

div(ϕ1
−→
Ψ)

∣∣∣∣∣
≤
¨
TQ′∩∂V il

|u(XI(l,i))|

(5.5)
≤ inf

Q(l)
N∗u · σ(Q(l))

.
1

ε2
inf
Q(l)

N∗u · σ(EQ(l)).

Suppose then that U iQ(l) is a red component. Since ∂V il ⊂ Γ(y) for every

y ∈ Q(l), we get |
˜
TQ′∩V il

div(u
−→
Ψ)| ≤ 1

ε2 infQ(l)N∗u ·σ(EQ(l)) by the same
argument as above. Also, by the definition of the function ϕ1, Caccioppoli’s
inequality and the sparseness arguments, we have¨

TQ′∩V il
|∇ϕ1| =

¨
V il

|∇u|

.

(¨
V il

|∇u|2
)1/2

`(Q(l))(n+1)/2

.
1

`(Q(l))

(¨
ÛQ(l)

|u|2
)1/2

`(Q(l))(n+1)/2

.
1

`(Q(l))

(¨
ÛQ(l)

inf
Q(l)

(N∗u)2

)1/2

`(Q(l))(n+1)/2

.
1

`(Q(l))
inf
Q(l)

(N∗u) · `(Q(l))n+1

≈ σ(Q(l)) · inf
Q(l)

(N∗u) .
1

ε2
σ(EQ(l)) · inf

Q(l)
N∗u.
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Thus, since every Whitney region UQ has only a uniformly bounded number
of components U iQ, we get¨

TQ′

|∇ϕ1| .
∑
l

1

ε2
σ(EQ(l)) · inf

Q(l)
N∗u.

Since Vl meets TQ′ , we know that dist(Q(l), Q′) . `(Q′). In particular,
all the relevant cubes Q(l) are contained in some nearby cubes Q′′ such
that `(Q′′) ≈ `(Q′) and dist(Q′′, Q′) . `(Q′). The number of such Q′′ is
uniformly bounded. Thus, since the sets EQ(l) are disjoint, we get∑

l

1

ε2
σ(EQ(l)) · inf

Q(l)
N∗u ≤

1

ε2

∑
Q′′

ˆ
Q′′

N∗u .
1

ε2

ˆ
β0∆Q′

N∗u

for some uniform constant β0.
�

Let us then consider the dyadic total variation of the whole approximating func-
tion ϕ:

Proposition 5.6. Suppose that Q′ ∈ DQ0
and

−→
Ψ ∈ C1

0 (WQ′) with ‖
−→
Ψ‖L∞ ≤ 1,

where WQ′ ⊂ Ω is any bounded and open set satisfying TQ′ ⊂WQ′ . Then¨
TQ′

ϕ div
−→
Ψ .

1

ε2

ˆ
β∆Q′

Nα0
∗ u dσ,

where β > 0 is a uniformly bounded constant and α0 > 0 is the constant in Lemma
5.2.

Proof. We start by splitting the integral with respect to ϕ0 and ϕ1.¨
TQ′

ϕdiv
−→
Ψ =

¨
TQ′\Ω1

ϕ0 div
−→
Ψ +

¨
TQ′∩Ω1

ϕ1 div
−→
Ψ .

For the first integral, we can simply use the part ii) of Lemma 5.4. For the second
integral we get¨

TQ′∩Ω1

ϕ1div
−→
Ψ =

∑
k

¨
Vk∩TQ′

ϕ1div
−→
Ψ

=
∑
k

(¨
Vk∩TQ′

div(ϕ1
−→
Ψ)−

¨
Vk∩TQ′

∇ϕ1 ·
−→
Ψ

)

≤
∑
k

∣∣∣∣∣
¨
Vk∩TQ′

div(ϕ1
−→
Ψ)

∣∣∣∣∣+
∑
k

¨
Vk∩TQ′

|∇ϕ1|.

The second sum is just as in the proof of part iii) of Lemma 5.4 and thus, we can
bound it by Cε−2

´
β0∆Q′

N∗u. For the first sum, we use the divergence theorem
and Theorem 1.17 and get∑

k

∣∣∣∣∣
¨
Vk∩TQ′

div(ϕ1
−→
Ψ)

∣∣∣∣∣ ≤∑
k

¨
∂(Vk∩TQ′ )

∣∣∣ϕ1
−→
Ψ ·
−→
N
∣∣∣

≤
∑
k

sup
UQ(k)

|u| · Hn(Vk ∩ ∂TQ′)

≤
∑

k: dist(Q(k),Q′).`(Q′)

inf
Q(k)

N∗u · σ(Q(k))

.
1

ε2

∑
k: dist(Q(k),Q′).`(Q′)

inf
Q(k)

N∗u · σ(EQ(k)).
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By the structure of the Whitney regions, we know Vk ∩ TQ′ = ∅ if `(Q(k))� `(Q′)
or dist(Q(k), Q′)� `(Q′). Thus, there exists a uniform constant β1 > 0 such that
Q(k) ⊂ β1∆Q′ for every k in the sum above. We may cover β1∆Q′ by a uniformly
bounded number of disjoint cubes Pj such that `(Pj) ≈ `(Q′). This gives us∑

k: dist(Q(k),Q′).`(Q′)

inf
Q(k)

N∗u · σ(EQ(k)) ≤
∑

k: dist(Q(k),Q′).`(Q′)

ˆ
EQ(k)

N∗u

≤
∑
j

ˆ
Pj

N∗u dσ

≤
ˆ
β2∆Q′

N∗u dσ

for some uniform constant β2 ≥ β1. Combining the previous bounds finishes the
proof. �

Remark 5.7. We notice that the previous proposition holds also in the following
form: If we have cubes Q′, Q1, Q2 ∈ DQ0

and
−→
Ψ ∈ C1

0 (WQ′) with ‖
−→
Ψ‖L∞ ≤ 1 for

an open and bounded set WQ′ containing TQ′ , then¨
(TQ′∩TQ1

)\TQ2

ϕ div
−→
Ψ .

1

ε2
min

{ˆ
β2∆Q′

N∗u dσ,

ˆ
β2∆Q1

N∗u dσ

}
for some uniform constant β2. Indeed, in the previous two proofs, we needed only
the upper ADR estimates for the boundaries of Am and Vk and these estimates
remain valid if we remove a finite number of pieces whose boundaries satisfy an
upper ADR estimate. By [HMM16, Proposition A.2], ∂TQ is ADR for every Q ∈
D(E). Also, by the stucture of the regions, these modified sets are “nice” enough
to justify integration by parts that we used in the proofs.

5.3. From local to global. Let us now construct the global approximating func-
tion. Although our construction is a little different than the construction in [HMM16,
p. 2373], the basic ideas are the same.

5.3.1. E is a bounded set. Let us first assume that diam(E) <∞. In this case, we
have a cube Q0 ∈ D(E) such that E = Q0 and `(Q0) ≈ diam(E). We now set

ϕ(X) :=

{
ϕQ0

(X), if X ∈ TQ0

u(X), if X ∈ Ω \ TQ0

,

where ϕQ0 is the function constructed in Section 5.1. By part i) of Lemma 5.4, we
have N∗(u−ϕ)(x) ≤ εMD(N∗u)(x) on E. As for the CD bound, we first notice that
for any Q ∈ DQ0

Proposition 5.6 gives us
1

σ(Q)

¨
TQ

|∇ϕ| . 1

ε2
M(Nα0

∗ u)(x) (5.8)

for every x ∈ Q since σ(Q) ≈ σ(β∆Q). Let us now fix a cube Fk ∈ D∗ (recall
the definition of D∗ in Section 1.6), take any

−→
Ψ ∈ C1

0 (TFk) with ‖
−→
Ψ‖L∞ ≤ 1 and

modify the argument in [HMM16, p. 2353]. We denote R := 2kdiam(E) and thus
have TFk = B(z0, R). By a suitable choice of parameters in the construction of the
Whitney regions in [HMM16], the Carleson box TQ0 is so large that we may fix a
ball B(z0, r) ⊂ TQ0

such that r ≥ 2diam(E). Because of this, we may fix a uniform
constant α1 such that a small enlargement of B(z0, R) \ B(z0, r) is contained in
Γ̂α1(x) (recall the definition of Γ̂α1(x) in Section 1.7) for every x ∈ E. We split

1

`(Fk)n

¨
TFk

ϕ div
−→
Ψ =

1

`(Fk)n

¨
TQ0

ϕdiv
−→
Ψ +

1

`(Fk)n

¨
TFk\TQ0

ϕdiv
−→
Ψ .
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By Proposition 5.6, we can bound the first integral byM(Nα0
∗ u)(x) for any x ∈ Q0.

As for the second integral, we use the smoothness of u, Hölder’s inequality and
Caccioppoli’s inequality to get¨

TFk\TQ0

ϕdiv
−→
Ψ =

¨
TFk\TQ0

u div
−→
Ψ

≤
¨
B(z0,R)\TQ0

|∇u|

≤
¨
B(z0,R)\B(z0,r)

|∇u|

.

(¨
B(z0,R)\B(z0,r)

|∇u|2
)1/2

R
n+1

2

≤

 ∑
0≤j≤log2(R/r)

¨
2jr≤|z0−X|<2j+1r

|∇u(X)|2
1/2

R
n+1

2

. inf
E
Nα1
∗ u ·

 ∑
0≤j≤log2(R/r)

(2jr)n−1

1/2

R
n+1

2

. inf
E
Nα1
∗ u ·R

n−1
2 R

n+1
2

≤ RnM(Nα1
∗ u)(x)

for every x ∈ Q0. Combining the calculations and the cases gives us the desired CD
bound.

5.3.2. E is an unbounded set. Suppose then that diam(E) =∞. We fix a sequence
of cubes Qi ∈ D(E), i ∈ N, such that

⋃
iQi = E and Qi ( Qi+1 and `(Qi) <

γ0`(Qi+1) for every i, where we fix the value of the constant γ0 later. We set

W1 := TQ1
, Wk := TQk \ TQk−1

and

ϕk := 1Wk
ϕQk , ϕ :=

∑
k

ϕk.

Here ϕQk is the function constructed in Section 5.1 for the cube Qk. The sets Wk

cover the whole space Ω and since TQi ⊂ TQi+1
for every i, they are also pairwise

disjoint. Let us consider the pointwise bound for N∗(u − ϕ). Fix x ∈ E and
let Qm be the smallest of the previously chosen cubes such that x ∈ Qm. Now, if
Γ(x)∩TQj = ∅ for every j = 1, 2, . . . ,m−1, then the pointwise bound follows directly
from part i) of Lemma 5.4. Suppose then that there exists a point Y ∈ Γ(x) ∩ TQj
for some j < m. We may assume that Y /∈ TQi for all i < j. By the structure of
the sets, there exist now cubes P1 ⊂ Qm and P2 ⊂ Qj such that `(P1) ≈ `(P2),
dist(P1, P2) . `(P1), Y ∈ UP1

∩UP2
and ϕ(Y ) = ϕ|UP2

(Y ). By the considerations in
the proof of part i) of Lemma 5.4, we know that |u(Y )−ϕ(Y )| ≤ εMD(N∗u)(P2). By
the properties of P1 and P2, there exists a uniform constant β0 such that P1 ⊂ β0∆Q

for any Q ∈ D(E) such that Q ⊇ P2. In particular,

εMD(N∗u)(P2) = ε sup
Q∈D(E),P2⊆Q

 
Q

N∗u dσ

. ε sup
Q∈D(E),P2⊆Q

 
β0∆Q

N∗u dσ ≤ εM(N∗u)(x).
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Thus,

N∗(u− ϕ)(x) = sup
Y ∈Γ(x)

|u(Y )− ϕ(Y )|

= sup
k∈N

sup
Y ∈Γ(x)∩Wk

|u(Y )− ϕ(Y )| . εMD(N∗u)(x).

Let us then prove the CD estimate. We fix a point x ∈ E and a cube Q ∈ D(E)
such that x ∈ Q and split the proof to three different cases. Below, β and α are
uniform constants and m is the smallest such number that TQ ⊂ TQm .

1) TQ ⊂ TQm such that TQ ∩ TQk = ∅ for every k < m. Now we simply have¨
TQ

|∇ϕ| =
¨
TQ

|∇ϕm| .
1

ε2

ˆ
β∆Q

Nα
∗ u dσ

by Proposition 5.6.
2) TQ ⊂ TQm and Qk ⊂ Q for every k < m. Take any

−→
Ψ ∈ C1

0 (TQ) with
‖
−→
Ψ‖L∞ ≤ 1. We get

¨
TQ

ϕ div
−→
Ψ =

¨
TQ\TQm−1

ϕm div
−→
Ψ +

m−2∑
i=1

¨
TQm−i\TQm−(i+1)

ϕm−i div
−→
Ψ

+

¨
TQ1

ϕ1 div
−→
Ψ

.
1

ε2

ˆ
β∆Q

Nα
∗ u dσ +

k−1∑
i=1

1

ε2

ˆ
β∆Qi

Nα
∗ u dσ

by Remark 5.7. We note that the balls β∆Qi form an increasing sequence
with respect to inclusion. If we choose the constant γ0 to be large enough,
the balls β∆Qi satisfy a Carleson packing condition independent of m.
Thus, for a large enough γ0, we get

1

ε2

ˆ
β∆Q

Nα
∗ u dσ +

k−1∑
i=1

1

ε2

ˆ
β∆Qi

Nα
∗ u dσ .

1

ε2

ˆ
β∆Q

MD(Nα
∗ u) dσ.

by a simple dyadic covering argument and the discrete Carleson embedding
theorem (Theorem A.1).

3) TQ ⊂ TQm , Qk 6⊂ Q for every k < m and TQ ∩ TQm−1
6= ∅. Without loss of

generality, we may assume that `(Q) ≈ `(Qm−1). Take any
−→
Ψ ∈ C1

0 (TQ)

with ‖
−→
Ψ‖L∞ ≤ 1. We get

¨
TQ

ϕdiv
−→
Ψ =

¨
TQ\TQm−1

ϕm div
−→
Ψ +

m−2∑
i=1

¨
(TQ∩TQm−i )\TQm−(i+1)

ϕm−i div
−→
Ψ

+

¨
TQ∩TQ1

ϕ1 div
−→
Ψ

.
1

ε2

ˆ
β∆Q

Nα
∗ u dσ +

k−1∑
i=1

1

ε2

ˆ
β∆Qi

Nα
∗ u dσ

by Remark 5.7. Again, if we choose the constant γ0 to be large enough, we
get

1

ε2

ˆ
β∆Q

Nα
∗ u dσ +

k−1∑
i=1

1

ε2

ˆ
β∆Qi

Nα
∗ u dσ .

1

ε2

ˆ
β∆Q

MD(Nα
∗ u) dσ

by a simple dyadic covering argument and the discrete Carleson embedding
theorem (Theorem A.1).
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Since σ(Q) ≈ σ(β∆Q), combining the three cases gives us

1

σ(Q)

¨
TQ

|∇ϕ| . 1

ε2

1

σ(Q)

ˆ
β∆Q

MD(Nα
∗ u) dσ .

1

ε2
M(MD(Nα

∗ u))(x)

for almost every x ∈ Q. This completes the proof of Theorem 1.5.

Appendix A. Discrete Carleson embedding theorem

For the convenience of the reader, we prove here the version of the Carleson
embedding theorem that we used in Section 5.3.2.

Theorem A.1. Suppose that µ is a locally finite doubling Borel measure in a
(quasi)metric space X satisfying µ(B(x, r)) > 0 for any r > 0 and D is a dyadic
system in X. Let f ≥ 0 be a locally integrable function. If A ⊂ D is a collection
that satisfies a Carleson packing condition with a constant Λ ≥ 1, then∑

Q∈A,Q⊂Q0

ˆ
Q

f dµ ≤ Λ

ˆ
Q0

MDf dµ

for any Q0 ∈ D.

Proof. For every m ∈ Z, we define the averaging operator Tm by setting

Tmf(x) =
∑
Q∈D

`(Q):=2−m

1Q(x)

 
Q

f dµ,

and we define the measure ν by setting

dν(x,m) =

 ∑
Q∈A,`(Q)=2−m

1Q(x)

 dµ(x).

Now we have ∑
Q∈A,Q⊂Q0

ˆ
Q

f dµ =
∑

Q∈A,Q⊂Q0

µ(Q)

 
Q

f dµ

=
∑

m: 2−m≤`(Q0)

∑
Q∈A

`(Q)=2−m

ˆ
Q0

1Q

( 
Q

f

)
dµ

=
∑

m: 2−m≤`(Q0)

ˆ
Q0

Tmf(x) dν(x,m)

=

ˆ ∞
0

ν(E∗λ) dλ,

where E∗λ := {(x,m) : x ∈ Q0, 2
−m ≤ `(Q0), Tmf(x) > λ}. Thus, to prove

the claim, we only need to show that ν(E∗λ) ≤ Λµ(Eλ), where Eλ := {x ∈
Q0 : supm Tmf(x) > λ}. If µ(Eλ) = ∞, the claim is trivial. Thus, we may as-
sume that µ(Eλ) <∞.

We notice that if x ∈ Eλ, then there exists a subcube Q′ ⊂ Q0 such that x ∈ Q′
and

ffl
Q′
f dµ > λ. By the definition of Tm, we also have y ∈ Eλ for every y ∈ Q′.

In particular, we have maximal disjoint subcubes Rj ⊂ Q0 such that Eλ =
⋃
j Rj .

We further observe the following two things:
• If x ∈ Q0 \

⋃
j Rj , then by the maximality of the cubes Rj we have

supm Tmf(x) ≤ λ.
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• If x ∈ Q ⊂ Q0 and Tmf(x) > λ for some m such that 2−m > `(Q), then
there exists a cube Q̃ ) Q such that

ffl
Q̃
f dµ > λ. In particular, Q ⊂ Eλ

but Q is not a maximal cube.
Based on these observations, we have

E∗λ ⊂
⋃
j

Rj × {m : 2−m ≤ `(Rj)}.

By the Carleson packing condition, we get

ν(Rj × {m : 2−m ≤ `(Rj)}) =
∑

m: 2−m≤`(Rj)

∑
Q′⊂Rj ,Q′∈A
`(Q′)=2−m

µ(Q′) ≤ Λµ(Rj)

for every j. In particular, since the cubes Rj are disjoint, we get

ν(E∗λ) ≤
∑
j

ν(Rj × {m : 2−m ≤ `(Rj)}) ≤
∑
j

Λµ(Pj) = Λµ(Eλ),

which completes the proof. �
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