UNIFORM RECTIFIABILITY
AND e-APPROXIMABILITY OF HARMONIC FUNCTIONS IN LP

STEVE HOFMANN AND OLLI TAPIOLA

ABsTRACT. Suppose that £ C R*t! is a uniformly rectifiable set of codimen-
sion 1. We show that every harmonic function is e-approximable in LP(Q2) for
every p € (1,00), where  := R*t1\ E. Together with results of many authors
this shows that pointwise, L> and LP type e-approximability properties of
harmonic functions are all equivalent and they characterize uniform rectifia-
bility for codimension 1 Ahlfors-David regular sets. Our results and techniques
are generalizations of recent works of T. Hyténen and A. Rosén and the first
author, J. M. Martell and S. Mayboroda.

1. INTRODUCTION

In many branches of analysis, Carleson measure estimates are powerful tools that
are deeply connected to e.g. elliptic partial differential equations and geometric
measure theory. These estimates are particularly useful for measures of the type
[Vu(Y)| dY (see e.g. [FS72, Gar81]) but the problem is that even strong analytic
properties of the function u are not enough to guarantee that the distributional
gradient defines a measure of this type. The idea behind e-approzimability is that
although a function may fail this Carleson measure property, it can sometimes be
approximated arbitrarily well in the L sense (typically, if it is the solution to
an elliptic PDE) by a function ¢ such that |Vp(Y)|dY is a Carleson measure.
Starting from the work of N. Th. Varopoulos [Var78| and J. Garnett [Gar81], this
approximation technique has had an imporant role in the development of the theory
of elliptic partial differential equations. It has been used to e.g. explore the absolute
continuity properties of elliptic measures [KKPT00, HKMP15] and, very recently,
give a new characterization of uniform rectifiability [HMM16, GMT16].

In this article, we extend the recent results of the first author, J. M. Martell and
S. Mayboroda [HMM16| and show that if £ C R"! is a uniformly rectifiable (UR)
set of codimension 1, then every harmonic function is e-approximable in LP(Q) for
every ¢ € (0,1) and every p € (1,00), where Q := R"*1 \ E. The L? version of
g-approximability was recently introduced by T. Hytonen and A. Rosén [HR16]
who showed that any weak solution to certain elliptic partial differential equations
in Riﬂ is e-approximable in LP for every ¢ € (0,1) and every p € (1, 00).

Let us be more precise and recall the definition of e-approximability:

Definition 1.1. Suppose that E C R"*! is an n-dimensional ADR set (see Def-
inition 1.7) and let Q == R"*!\ E and € € (0,1). We say that a function u is
e-approzimable if there exists a constant C. and a function ¢ = ¢ € BVjo.(02)
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satisfying

lu—pllLe@) <e and // [Vo(Y)|dY < C..
.LEE T>O rn B(z,r)NQ

Here ffB(w I V| dY stands for the total variation of ¢ over B(z,r) N (see
Section 1.5).

Sometimes W11 [HKMP15] or C* [Gar81, KKPT00] is used in the definition in-
stead of BVjoc. The first results about e-approximability showed that every bounded
harmonic function u, normalized so that ||u||~ < 1, enjoys this this approximation
property for every ¢ € (0,1) in the upper half-space erfl [Var78, Gar81] and in
Lipschitz domains [Dah80]. This is a highly non-trivial property since there exist
bounded harmonic functions u such that |Vu(Y)|dY is not a Carleson measure

[Gar81]. The LP version of the property was defined only recently in [HR16]:

Definition 1.2. Suppose that E C R"*! is an n-dimensional ADR set and let
Q =R\ E € (0,1) and p € (1,00). We say that a function u is e-approzimable
in LP if there exists a function ¢ = ¢® € BVjoc(§2) and constants Cp, and D,, . such
that

)

{ [Nw(u — @)l r(my S €Cpl|Nuttl| Lo ()
IC(VO)lLrm) S DpellNatl L)

where N, is the non-tangential maximal operator (see Definition 1.28) and

C(Ve)(z) = sup — // V| dY-
r>0 rh (z,r)NQ

In [HR16], the authors showed that if @ = R?™! and A € L®(R™; L(R"))
satisfies (A(x)v,v) > Aalv|? for almost every z € R™ and all v € R**1\ {0}, then
any weak solution u to the t-independent real scalar (but possibly non-symmetric)
divergence form elliptic equation div,  A(x)V, u(z,t) = 0 is e-approximable in L?
for any € € (0,1) and any p € (1, 00).

If we move from R’} to the UR context (see Definition 1.8) with no assump-
tions on connectivity, things will not only get more complicated but we also lose
many powerful tools. For example, constructing objects like Whitney regions and
Carleson boxes becomes considerably more difficult and the harmonic measure no
longer necessarily belongs to the class A, with respect to the surface measure
[BJ90]. Despite these difficulties, there exists a rich theory of harmonic analysis
and many results on elliptic partial differential equations on sets with UR bound-
aries. Uniform rectifiability can be characterized in numerous different ways and
many of these characterizations are valid in all codimensions (see the seminal work
of G. David and S. Semmes [DS91, DS93|). For example, UR sets are precisely
those ADR sets for which certain types of singular integral operators are bounded
from L? to L2. Recently, the first author, Martell and Mayboroda showed that if E
is a UR set of codimension 1, then every bounded harmonic function in R**1\ E is
e-approximable for every € € (0,1) [HMM16]. After this, it was shown by Garnett,
Mourgoglou and Tolsa that e-approximability of bounded harmonic functions im-
plies uniform rectifiability for n-ADR sets [GMT16]. This characterization result
was then generalized for a class of elliptic operators by Azzam, Garnett, Mourgoglou
and Tolsa [?].

Our main result is the following generalization of the Hytonen-Rosén approxi-
mation theorem [HR16, Theorem 1.3]:

Theorem 1.3. Let E C R"™! be a UR set of codimension 1 and denote Q =

R\ E. Then every harmonic function in §) is e-approzimable in LP for every

e € (0,1) and every p € (1,00) with C, = ||Mp||zr—r» and D, = Cp||M || r—rr /€2,
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where M is the Hardy-Littlewood mazximal operator and My is its dyadic version
(see Section 1.1).

In fact, the key ideas of Hytonen and Rosén allow us to construct p-independent
approximating functions. To be more precise, let us consider the following pointwise
approximating property:

Definition 1.4. Suppose that E C R"*! is an n-dimensional ADR set and let
Q =R\ Eand ¢ € (0,1). We say that a function u is pointwise e-approzimable
if there exists a function ¢ = ¢° € BVj,.(2) and a constant D, such that

{ N, (u— ¢)(2) S eMp(N.u)(x)
Co(Ve)(x) S DoM(Mp(N,u))(a)

for almost any x € E, where Cp is a dyadic version of D (see Section 1.6).

Since C(V) and Cp(Vy) are LP-equivalent by Lemma 1.26, Theorem 1.3 is an
immediate corollary of the following result and the LP-boundedness of the Hardy-
Littlewood maximal operator and its dyadic versions:

Theorem 1.5. Suppose that E C R"! is an n-dimensional UR set and let
Q =R\ E and ¢ € (0,1). Then every harmonic function in § is pointwise
e-approximable.

Although the LP version of e-approximability seems like the weakest one of all
the properties, it is equivalent with the other properties in the codimension 1 ADR
context provided that p is large enough. This follows from the recent results of S.
Bortz and the second author [?]. Hence, combining our results with the results in
[HMM16], [GMT16] and [?] gives us the following characterization theorem:

Theorem 1.6. Suppose that E C R"! is an n-dimensional ADR set and let
Q =R\ E. The following conditions are equivalent:
1) E is UR.
2) Bounded harmonic functions in Q0 are e-approzimable for every e € (0,1).
3) Harmonic functions in Q0 are pointwise e-approzimable for every e € (0,1).
4) Harmonic functions in S0 are e-approxzimable in LP for some p >n/(n—1)
and every e € (0,1).
5) Harmonic functions in Q are e-approximable in LP for all p € (1,00) and
every ¢ € (0,1).

To prove the implication 1) = 3), we combine some techniques of the proof of
the Hytonen-Rosén theorem with the tools and techniques from [HMM16]. Some
of the techniques can be used in a straightforward way but with the rest of them
we have take care of many technicalities and be careful with the details.

We start by recalling the basic definitions and some results needed in our state-
ments and proofs. For the most part, our notation and terminology agrees with
[HMM16].

1.1. Notation. We use the following notation.

e The set £ C R"*! will always be a closed set of Hausdorff dimension n.
We denote € := R\ E.

e The letters ¢ and C denote constants that depend only on the dimension,
the ADR constant (see Definition 1.7), the UR constants (see Definition
1.8) and other similar parameters. We call them structural constants. The
values of ¢ and C may change from one occurence to another. We do
not track how our bounds depend on these constants and usually just write
A1 S Ao if A1 < e)g for a structural constant ¢ and A; = Ay if Ap < Ay < Aq.
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e We use capital letters X, Y, Z, and so on to denote points in 2 and lowecase
letters x,y, z, and so on to denote points in F.

e The (n + 1)-dimensional Euclidean open ball of radius r will be denoted
B(z,r) or B(X,r) depending on whether the center point lies on F or Q2. We
denote the surface ball of radius r centered at = by A(z,r) := B(z,r)NE.

e Given a Euclidean ball B := B(X,r) or a surface ball A := A(z,r) and
constant £ > 0, we denote kB := B(X, kr) and kA = A(x, kr).

e For every X € Q we set §(X) = dist(X, F).

o We let H™ be the n-dimensional Hausdorff measure and denote o := H"|g.
The (n + 1)-dimensional Lebesgue measure of a measurable set A C Q will
be denoted by |A].

e For aset A C R"!, we let 14 be the indicator function of A: 14(x) = 0 if
x¢ Aand 14(x) =1if z € A.

e The interior of a set A will be denoted by int(A). The closure of a set A
will be denoted by A.

e For pi-measurable sets A with positive and finite measure we set f ufdp =
ﬁ fdu.

e The Hardy-Littlewood maximal operator and its dyadic version (see Section
1.3) in F will be denoted M and Mp, respectively:

Mfe) = s f F()|do(2),

A(y,r)dx

ot = f ol

QeD,Q>3zx

1.2. ADR, UR and NTA sets.

Definition 1.7. We say that a closed set E C R"*! is an n-ADR (Ahlfors-David
regular) set if there exists a uniform constant C' such that

1
57“” <o(Az,r)) < Cr"

for every x € F and every r € (0,diam(FE)), where diam(E) may be infinite.

Definition 1.8. Following [DS91, DS93|, we say that an n-ADR set E C R"*! is
UR (uniformly rectifiable) if it contains “big pieces of Lipschitz images” (BPLI) of
R™: there exist constants 6, A > 0 such that for every x € E and r € (0,diam(FE))
there is a Lipschitz mapping p = p,,: R™ — R"*! with Lipschitz norm no larger
that A, such that

HY(ENB(z,r)Np({y € R": |y| < r})) > 6r".

Definition 1.9. Following [JK82|, we say that a domain  C R"*! is NTA (non-
tangentially accessible) if

e () satisfies the Harnack chain condition: there exists a uniform constant
C such that for every p > 0, A > 1 and X, X’ € Q with §(X),6(X') > p
and | X — X'| < Ap there exists a chain of open balls By,...,By C Q,
N < O(A), with X € By, X' € By, By N Bpy1 # 0 and C~'diam(By) <
dist(By, 082) < Cdiam(By),

e () satisfies the corkscrew condition: there exists a uniform constant ¢ such
that for every surface ball A := A(z,r) with € 9Q and 0 < r < diam(99)
there exists a point Xa € Q such that B(Xa,cr) C B(z,r) NQ,

o R"T1\  satisfies the corkscrew condition.
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1.3. Dyadic cubes; Carleson and sparse collections.

Theorem 1.10 (E.g. [Chr90, SW92, HK12]). Suppose that E is an ADR set. Then
there exists a countable collection D,

D= Dy, Dp={Qk: ac A}
kEZ
of Borel sets (that we call dyadic cubes) such that

e the collection D is nested: if Q,P € D, then QN P € {0, Q, P},
o £ = UQEDk Q for every k € Z and the union is disjoint,
e there exist constants ¢; > 0 and C1 > 1 with the following property: for

any cube QX there exists a point 2% € QX (that we call the center point of
QF ) such that

A(22a612_k) c Qfx c A(Z(]ia012_k) = AQ’ga (111)
e ifQ,PecDand Q C P, then
Ag C Ap, (1.12)

e for every cube QX there exists a uniformly bounded number of disjoint cubes
QZH such that QF = U, ngl, where the uniform bound depends only on
the ADR constant of F,

e the cubes form a connected tree under inclusion: if Q, P € D, then there

exists a cube R € D such that QU P C R.

Remark 1.13. The last property in the previous theorem does not appear in the
constructions in [Chr90, SW92, HK12], but it is easy to modify the construction to
get this property. The basic idea in the construction in [HK12] is to choose first the
center points z*, then define a partial order among those points and finally build
the cubes by using density arguments. Thus, if we simply choose the center points
2k in such a way that there exists a point zo € (\,cz{2%}a, then by (1.11) for any

r > 0 there exists a cube @, that contains the ball B(zg,r). This implies the last
property in the previous theorem.

Notation 1.14. 1) Since the set E may be bounded or disconnected, we may
encounter a situation where Q¥ = Qlﬂ although k # [. In particular, in
the second to last property of Theorem 1.10 there might exist only one
cube Q’Ej'l which equals QF as a set. Thus, we use the notation D(FE)
for the collection of all relevant cubes Q € D, ie. if Q¥ € D(E), then
C127% < diam(E) and the number k is maximal in the sense that there does
not exist a cube Qg € D such that Q% = Q¥ for some [ > k. Notice that
the number k is bounded for each cube since the ADR condition excludes
the presence of isolated points in E. This way in D(F) it is natural to talk
about the children of a cube @ (i.e. the largest cubes P C @) and the
parent of a cube @ (i.e. the smallest cube R D Q).

2) For every cube QF := Q € D, we denote £(Q) :== 27" and zg = 2%. We call
£(Q) the side length of Q.
3) For every @Q € D, we denote the collection of dyadic subcubes of @ by Dg.

Definition 1.15. Suppose that A > 1. We say that a collection A C D is A-
Carleson (or that it satisfies a Carleson packing condition) if

E o(Q) < Aa(Qo)
QEA,QCQo
for every cube @y € D.



Definition 1.16. Suppose that A € (0,1). We say that a collection A C D is
A-sparse if for every cube @) € A there exists a subset Eg C @ satisfying

1) Eq N Eg =0if Q # Q" and
2) o(Eg) > Xo(Q).

The following result will be useful for us with some technical estimates.
Theorem 1.17. A collection A C D is A-Carleson if and only if it is %—sparse.

Although it is very easy to show that sparseness implies the Carleson property,
the other implication is not obvious. For dyadic cubes in R™, it was first proven by
I. Verbitsky [?, Corollary 2] and the result was later rediscovered by A. Lerner and
F. Nazarov with a different proof [?, Lemma 6.3]. For general Borel sets, the result
was proven by T. Hénninen [?, Theorem 1.3]. Since the dyadic cubes in Theorem
1.10 are Borel sets, the result of Hanninen is suitable for us.

In addition to sparseness arguments, we use a discrete Carleson embedding the-
orem (Theorem A.1) to prove that local bounds imply global bounds. In fact, we
could use the embedding theorem instead of sparseness arguments throughout the
paper but this would give us slightly weaker estimates.

Definition 1.18. Let A C D be any collection of dyadic cubes. We say that a
cube P € A is an A-mazimal subcube of Qq if there do not exist any cubes P’ € A
such that P C P’ C Qo.

1.4. Corona decomposition, Whitney regions and Carleson boxes.

Definition 1.19. We say that a subcollection S C D(F) is coherent if the following
three conditions hold.
(a) There exists a maximal element Q(S) € S such that @ C S for every Q € S.
(b) If @ € S and P € D(E) is a cube such that @ C P C Q(S), then also
PesS.
(c) If @ € S, then either all children of @ belong to S or none of them do.

If S satisfies only conditions (a) and (b), then we say that S is semicoherent.

In this article, we do not work directly with Definition 1.8 but use the bilateral
corona decomposition instead:

Lemma 1.20 (|[HMM16, Lemma 2.2|). Suppose that E C R™™! is a uniformly
rectifiable set of codimension 1. Then for any pair of positive constants n < 1 and
K > 1 there exists a disjoint decomposition D(E) = G U B satisfying the following
properties:

(1) The “good” collection G is a disjoint union of coherent stopping time regimes
S.

(2) The “bad” collection B and the mazimal cubes Q(S) satisfy a Carleson pack-
ing condition: for every Q € D(E) we have

Yo a@)+ Y a(QS)) < Coro(Q).
Q'CQ,Q'eB S:Q(S)cQ

(3) For every S, there exists a Lipschitz graph T's, with Lipschitz constant at
most 1, such that for every Q € S we have

sup dist(z,I's)+ sup dist(y, E) < nl(Q),
zeA, yEBLMTs

where By, = B(zq, K{(Q)) and Aj) = B5H N E.
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The proof of this decomposition is based on the use of both the unilateral corona
decomposition [DS91] and the bilateral weak geometric lemma [DS93] of David and
Semmes. The decomposition plays a key role in this paper.

In [HMM16, Section 3|, the bilateral corona decomposition is used to construct
Whitney regions Ug and Carleson boxes Ty with respect to the dyadic cubes @ €
D(E) using a dyadic Whitney decomposition of R"*1 \ E. The Whitney regions
are a substitute for the dyadic Whitney tiles @ x (¢(Q)/2,4(Q)) and the Carleson
boxes are a substitute for the dyadic boxes @ x (0,4(Q)) in RT‘l. We list some
of their important properties in the next lemma which we use constantly without
specifically referring to it each time.

Lemma 1.21. The Whitney regions Ug, Q € D(E), satisfy the following properties.
o The region Ug is a union of a bounded number of slightly fattened Whitney
cubes I* == (1 + 7)1 such that £(Q) =~ (1) and dist(Q,I) =~ £(Q). We
denote the collection of these Whitney cubes by Wq.
o The regions Ug have a bounded overlap property. In particular, we have
Yo U S 1U; Ug,| for cubes Q; such that Q; # Q; if i # j.
IfUgNUp # 0, then £(Q) = £(P) and dist(Q, P) S £(Q).
For every Y € Ug we have 6(Y) = £(Q).
For every Q € D(E), we have |Ug| =~ (Q)" ™ = £(Q) - 0(Q).
If Q € G, then Ug breaks into exactly two connected components Uér and
Ug such that |U$| ~|Uqg |
o IfQ € B, then Ug breaks into a bounded number of connected components
U¢ such that |Uj| ~ |Ué| for alli and j.
o If diam(E) = oo, then Ugepgp) Ug = 2
o If diam(FE) < oo, then there exists a point zg € E and a constant C' > 1 such
that B(zo,C - diam(E)) \ E C Ugep(p) Uq- The constant C' can be made
large but this makes the implicit constant in the bounded overlap property
large as well.

For every Q € G, the components Ug and U have “center points’ that we
denote by X 5 and X, respectively. We also set Y= Xg, where Q is the dyadic
parent of Q unless Q = Q(S), in which case we set Q = Q. We use these points
in the construction in Section 5.1. For any cube @) € G, the collection Wg breaks

naturally into two disjoint subcollection W5 and Wé .
For every Q € D(E), we define the Carleson box as the set

To=int | |J Ug

Q'€Dg
For each A C D(E), we set
Qu=int | |J Uq |- (1.22)
QeA
1.5. Local BV.
Definition 1.23. We say that a function f € L], () has locally bounded variation

(denote f € BWVoe(2)) if for any bounded open set U C € such that U C Q we
have

//|Vf(Y)|dY:: sup //f(Y)divEf(Y)dY@o.
U Teck(w), MU
[ Lo <1
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The total variation of f in U [[,, [V f(Y)|dY should not be mistaken for a usual
Lebesgue integral since we may have situations where A C B and |A| = |B| but
I IVFY)dY < [[5 IVF(Y)]dY. It does, however, define a measure by the Riesz

representation theorem:

Theorem 1.24 ([?, Section 5.1]). Suppose that f € BVjo.(?). Then there exists a

Radon measure p such that
0) = [ 1vsyay
U

for any open set U C S such that U C Q.
In particular, if f € BVioe(Q), the sets U, Uy,..., Uy C § are open and U C

U, Ui, then
//U IVFY)dY < Z//U IVF(Y)|dY. (1.25)

1.6. C and Cp. For every k € N, we let Fj be the ordered pair (E,k). In this
section, we let Qg = E be the maximal dyadic cube if F is a bounded set. We
define the operators C and Cp by setting

C(f)(z) = =sup //B(x T)\E Y)|dY,
e = s o // v)la.

D* D(E), if diam(FE) = oo
o (E)U{Fk k=A07A0+1,...}7 if dlam(E) < 00

where

and
Tr, = B(z,2"diam(E)), ((Fy,) = 2"diam(E)

for some fixed point zp € E and a number A¢ such that T, C T, . We will call
also the pairs Fj cubes although their actual structure is irrelevant and we will
interpret x € F}, simply as z € F.

Usually these functions are not pointwise equivalent but we only have the esti-
mate Cp(f)(z) S C(f)(z) for every x € E (this follows from the ADR property of
E and the fact that Tg C B(zq, C¢(Q)) for a uniform constant C'). However, in
LP sense, these functions are always comparable. This can be seen easily from the
level set comparison formula that we prove next. This comparability is convenient
for us since we construct the approximating function ¢ in Theorem 1.3 with the
help of the dyadic Whitney regions. Thus, it is more natural for us to prove the
desired LP bound for Cp(Ve) instead of C(Vy). We prove the comparison formula
by using well-known techniques from the proof of the corresponding formula for the
Hardy-Littlewood maximal function and its dyadic version [Duo01, Lemma 2.12].

Lemma 1.26. Suppose that f € BVj,.(?). Then there exist uniform constants A,
and Ay (depending on the dimension and the ADR constant) such that for every
A > 0 we have

o({z € B:C(Vf)(z) > A\}) < Ay-o({z € E: Co(VF)(z) > A}).

In particular, ||C(f)|lzr(g) < A]_Aé/pHC]D)(f)HLP(E) for every p € (1, 00).
8



Proof. We first note that if » > diam(FE), then by the definition of Cp we have
the bound -+ ffB(z’T)\E IVF(Y)|dY < Cp(Vf)(z). Thus, we may assume that the
balls in this proof have uniformly bounded radii < diam(F) and the cubes belong
to D(F). Naturally, we may also assume that the right hand side of the inequality
is finite.

We notice that if Cp(f)(x) > A, then there exists a cube @ € D(E) such that
x € @ and ﬁ ffTQ IVF(Y)|dY > X. By the definition of Cp(f), we also have

Co(f)(y) > A for every y € Q. In particular, we have

{r e E: Cp(Vf)(x) >N} = UQi

for disjoint dyadic cubes @;. We now claim that if A; is large enough, then

{x e E: C(Vf)(z) > A1A} € |24, (1.27)

where Ag, is the surface ball (1.11). Suppose that y ¢ |J,2Aq, and let r > 0.
Let us choose k € Z so that 2F=1 < r < 2%, Now there exist at most K dyadic
cubes Ry, R, ..., Ry such that ¢(R;) = 2 and R; N A(y,r) # 0 for every j =
1,2,...,m. We notice that none of the cubes R; can be contained in any of the
cubes Q; since otherwise we would have y € 2Agr, C 2Aq, by (1.12). Thus,
we have WR Y™ f fTR IVF(Y)|dY < X for every j. We can use a straightforward

geometric argument to show that B(y,r) C UL, Tr, (see [HMM16, pages 2353-
2354]). Hence, since r ~ {(R;) for every j, we have

S ey S Iy // VIYlY S A

and y ¢ {x € E: C(Vf)(z) > A1} for a large enough A;. In particular, (1.27)
holds and we have

(e € B: CVI)(@) > AN £ Y 0(2q.)
<Y
=0 (UQ) =o({z € E: Cp(Vf)(z) > A}).
The LP comparability C(Vf) and Cp(Vf) follows immediately:
TN sy =p [ 2ol € B5 CTA(@) > A dx

< Agp/oc N lo({z € E: AiCo(Vf)(z) > A}) dA
0
= AZ1)A2||CD(Vf)H]Zp(E)'
O

1.7. Cones, non-tangential maximal functions and square functions. We
recall from [HMM16, Section 3| that the Whitney regions Uy and the fattened
Whitney regions (7@, Q € D, are defined using fattened Whitney boxes I* := (1+7)1
and I** := (1 + 27)I respectively, where 7 is a suitable positive parameter. Let us
define the regions IAJQ using even fatter Whitney boxes I*** := (1 4 37)W.
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Definition 1.28. For any x € F, we define the cone at x by setting

)= |J Ueq (1.29)
QeD(E),Q>x

We define the non-tangential mazximal function N,u and, for u € WI})CQ(Q), the
square function Su as follows:

Nou(z) = sup |u(Y)], =zebk,
Yer(x)

1/2
(/ |Vu(Y)|26(Y)1”dY> , 2x€E.
T'(z)

The Hyt6nen-Rosén techniques in [HR16, Section 6] rely on the use of local
S <N and N < S estimates from [HKMP15]. Although a local S < N estimate
holds also in our context [HMM], a local N < S estimate does not hold without
suitable assumptions on connectivity. Thus, we cannot apply the Hytonen-Rosén
techniques directly but we have to combine them with the techniques created in
[HMM16].

In Section 5 we consider the following modified versions of I'(z) and N,u to
bypass some additional technicalities:

Su(z)

Definition 1.30. For every « € E and «a > 0 we define the cone of a-aperture at
x Ty (x) by setting

To(z) = |J UJ U» (1.31)
QeD(E),Q3z PeD(E),
{(P)=£(Q),
aAgNP#D
Using the cones I, (x), we define the non-tangential mazimal function of a-aperture
Nu by setting Nfu(x) = supyer, () [w(Y)].

Remark 1.32. If the set FE is bounded, then the cones (1.29) and (1.31) are
also bounded since we only constructed Whitney regions U such that diam(U) <
diam(E). Thus, if F is bounded, we use the cones

[(z) := I'(z) U B(z, C - diam(E))* and
To(z) == To(z) U B(20, Cy - diam(E))°
for a suitable point zy € E and suitable constants C' and C,, instead.

The usefulness of these modified cones and non-tangential maximal functions
lies in the fact that for a suitable choice of a the cone I', () contains some crucial
points that may not be contained in I'(x) and in the L? sense the function Nu is
not too much larger than N,u. We prove the latter claim in the next lemma but
postpone the proof of the first claim to Section 5.

Lemma 1.33. Suppose that u is a continuous function and let o« > 1. Then
| NullLr £y Ra [INSullLe(g) for every p € (0,00).

Proof. We only prove the claim for the case diam(E) = oo as the proof for the case
diam(E) < oo is almost the same.

Since the set E is ADR, measures of balls with comparable radii are comparable.
Using this property makes it is simple and straightforward to generalize the classical
proof of C. Fefferman and E. Stein [FS72, Lemma 1] from R’ to © to show that
[Naullrr(g) *a,p INpullLr() where

Nou(z) = sup |u(Y)|, T, (x):={Y €Q:dist(z,Y) <~y 6(Y)}.
YEf,Y(m)
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By the definition of the cones I'(z), there exists 4o > 0 such that I, (z) € I'(z) for
every x € E. Thus, we only need to show that I'y(z) C I',(z) for some uniform
v = ~y(a) for all x € E since this gives us the estimate (*) in the chain

*

*)
[Noull oy < INJulleey < IINyullee)

Ry o WNyotll e () < [[Neull e (m)-
Suppose that Q,P € D(E), z € Q, {(Q) = ¢(P) and aAg NP # (. By the
construction of the Whitney regions, for every Y € Up we have

§(Y) = {(P) = dist(Y, P).
On the other hand, since aAg NP # () and ¢(P) = ¢(Q), we know that for any
y € P we have
dist(z,y) < al(Q) = al(P).

Let us take any z € P. Now for every Y € fjp we have

dist(z,Y) < dist(z, z) + dist(z,Y) < al(P) + £(P) S ab(P) =~ - 0(Y).

In particular, there exists a uniform constant v = («) such that T',(x) C fv(x)
U

2. PRINCIPAL CUBES

As in [HR16], we define the numbers Mp(N.u)(Q) by setting

Mo(N.)(Q) = s ]i Nou(y) do(y)

for every @Q € D(E) = . We shall use a collection Z C D(E) = D such that

T={QuieN}, Q@cQnvi, (Ja-F (2.1)

where N = {1,2,...,n0} for some ny € N if E is bounded, and N = N otherwise.
This type of a collection exists by the last property in Theorem 1.10 and by the
properties of dyadic cubes, the collection is Carleson. Let us construct a collection
P C D of "stopping cubes” using the construction described in [HR16, Section 6.1].
We set Py :=Z and consider all the cubes Q' € D(E) \ Py such that

(a) for some @ € Py we have Q' C @ and

M (Ne)(@) = s f Noul)do(y) > 2M6(Na)(@Q), (22
Q'CREDJR
(b) @’ is not contained in any such Q” C @ such that either Q" € Py or (2.2)
holds for the pair (Q", Q).

We denote by P; the collection we get by adding all the cubes @’ satisfying both

(a) and (b) to Py. We then continue this process for P; in place of Py and so on.
We set P == Jp—, Pr. We also set

mp@Q = the smallest cube Qg € P such that Q C Q.

Here we mean smallest with respect to the side length. Naturally, we have mpQ = Q
for every @ € P, and since Z C P, for every cube @) € D there exists some cube
Pg € P such that Q C Py.

11



Remark 2.3. The collection P is an auxiliary collection that helps us to simplify
the proofs of several claims. We use it in the following way. Suppose that we have
a subcollection W C D and we want to show that W satisfies a Carleson packing
condition. Let Qg € D. Now for every Q € W such that Q C Qp, we have either
mpQ = mpQy or mpQ = P = wpP for some P € P such that P C mpQy. In
particular, we have

Yo=Y @+ > POR(®)

QEW,QCQo QeEW, PEP,PCpQo QEW,
TP Q=mp Qo TP Q=P

=1Io,+ >,  Ip.

PEP,PCrpQo

We prove in Lemma 2.4 below that the collection P satisfies a Carleson packing
condition. Thus, if we can show that Ig, < o(Qo) for an arbitrary cube Qo € P,
we get

> Ips ) a(P)Sa(Qo)

PEP,PCrpQo PeP,PCrpQo

Thus, to show that the collection W satisfies a Carleson packing condition, it is
enough to show that Io, < 0(Qo) for every cube Qo € D. The usefulness of this
simplification is that if @ € D\ P and mp@ = P, then by the construction of the
collection P we have

Mp(N.u)(Q) < 2Mp(N,u)(P).
We use this property several times in the proofs.

For any cube @y € D, we say that R € P is a P-proper subcube of Qg if we
have Mp(N.u)(R) > 2Mp(N.u)(Qo) and Mp(N.u)(R') < 2Mp(N.u)(Qo) for every
intermediate cube R C R’ C Q.

Lemma 2.4. For every Qo € D(E) we have

> o(P) £ a(Q). (2.5)

PeP,PCQo

Proof. Let us start by noting that we may assume that QQy € P since otherwise
we can simply consider the P-maximal subcubes of (Jg. To be more precise, the
P-maximal subcubes of Q¢ are disjoint by definition and thus, if we sum their
measures together, it is at most o(Qp). Now, if Q@ € P and Q C Qop, we know
that @ is one of the P-maximal subsubes of @)y or it is contained properly in one
of them. Hence, if we prove the estimate (2.5) for the case Qo € P, it implies the
same estimate even with the same implicit constant for the case Qg ¢ P.

Suppose first that we have a collection of disjoint cubes @' C @ that satisfy
Mp(N.u)(Q') > 2Mp(N,u)(Q). Then, for every such cube Q' we have Mp(N,.u)(Q") >
fQ N,udo and thus, for every point z € Q" we get

Mp(1gN,u)(z) =  sup ][ N.udo
ReD,w€RCQJR

> sup ][ N.udo
RED,Q'CRCQJR

12



In particular, by the L' — L** boundedness of My we have

Y o(Q) <o ({x € E: Mp(1gN.u)(z) > 2Mp(N.u)(Q)})
o

1 _ JeNeudo 5(Q) _ o(Q)
< B e lee = N 2 < e

We notice that if R € P\ Z, then R is a P-proper subcube of some cube @ € P.
To be more precise, if R € P\ Z, then there exists a chain of cubes R = R; C Ry C
... € Ry, R; € P, such that for every i = 1,2,...,k — 1 R; is a P-proper subcube
of R;+1 and Ry € Z. If such a chain of length k from R to @) exists, we denote
R e ’Pf?. By using the property (2.6) k times, we see that for each @ € P we have

Yoems Y Y o<y Y o

k k—1 k k—1
ReP) RePl ! SEPY.SCR ReP)

<...< 2,}_1 3 o(R) < "éff) (2.7)
REPS

(2.6)

Now it is straightforward to prove the packing condition. We have

Yooap) = Y e+ D ap

PeP,PCQo PeZ,PCQo PEP\Z,PCQo

Czo(Q)+ >, D>, Y. oP)

QET,QCQo k=1 PePk

IN

(2§7) Cro(Q) + Z Za(i))

QEL,RCQo k=1 2
=Cr0(Q)+ Y, 0(Q) <Cza(Qo) + Cro(Qo)
QEL,QCQo
which proves the claim. U

3. “LARGE OSCILLATION” CUBES

Before constructing the approximating function, we consider two collections of
cubes that will act as the basis of our construction. In this section, we show that
the union of the collection of “large oscillation” cubes

R = {Q € D: oscu > eMp(N,u)(Q) for some z} .
Yq

and the collection of “bad” cubes from the corona decomposition satisfies a Carleson

packing condition. We apply this property in the technical estimates in Section 5.

Lemma 3.1. For every Qo € D(E) we have

> o(R) S 5o(@). (3.2)

ReR,RCQo

Proof. We break the proof into three parts.
Part 1: Simplification. First, by Remark 2.3, it is enough to show that

1
Z o(R) < ;U(Qo)~
ReER,RCQo
mp R=mpQo

13



Also, since the “bad” collection in the bilateral corona decomposition is Carleson,
it suffices to consider the “good” cubes in R, i.e. the collection R N G. Thus, we
may assume that Qg € R NG since otherwise we may simply consider the (R N G)-
maximal subcubes of Q)¢ similarly as with the collection P in the proof of Lemma
2.4. Furthermore, since the Whitney regions Ugr of the “good” cubes R break into
two components Ug and Up, it is enough to bound the sum

Z U(R) S U(Qo)a
ReRT,RCQo
mp R=7p Qo

where RT = {Q € RNG: oscyy > eMp(N,u)(Q)}, as the arguments for the
corresponding collection R~ are the same.

Since Qo € G, there exists a stopping time regime Sy = Sp(Qo) such that Qg €
Sp. We note that if we have Q C Qo for a cube Q € R, then either Q € Sy or, by
the coherency and disjointness of the stopping time regimes, Qg € S for such a &
that Q(S) € Qo. Let & = &(Qo) be the collection of the stopping time regimes S
such that Q(S) € Qp. Then we have

Z o(R) = Z o(R) + Z Z o(R)

ReERT,RCQo RERTNS,RCQo S€EG RERTNS,RCQo
mp R=7p Qo mp R=7p Qo mp R=mp Qo
= IQ(J + IIQO.

Let us show that if I, < 0(Qo) for every Qo € D, then Ilg, < o(Qo) for every
Qo € D. Suppose that Q@ € S € &. Since Q(S) € Qo, we have mpQ = 7pQo only
if 7pQ = 1pQ(S) = mpQo. Thus, it holds that

Hoy=3 > o®<>, >  oR

SE6 RERTNS,RCQo SE6 RERTNS,RCQo
’71'723:71‘7)@0 TrpR:ﬂ"pQ(S)
=Y Igs)
Se6
S ) o(Q(S))
Ses
< o(Qo)

by the Carleson packing property of the collection {Q(S)}s. Hence, to prove (3.2),
it suffices to show Ig, S 0(Qo)-

Part 2: 0(Y) S D4(Y) in (/]\; Let A C G be a collection of cubes and set

0% = int Uﬁg = int U U I

QeA QeA IEWg

and D4(Y) = dist(Y,0Q%). Recall the definitions of I** and I*** from Section
1.7. Let us fix a cube P € A and a point Y € U} = Ulew,t I**. We now claim

that 6(Y) < D4(Y) . We notice first that although the regions IAJ'Z; may overlap,
we have £(Q) =~ ¢(Q") = ¢(P) for all overlapping regions ﬁg and ﬁg, such that

Y e IAJ'Z; N IAJ;;, (see (3.2), (3.8) and related estimates in [HMM16]). Also, the

fattened Whitney boxes I*** may overlap, but we have £(I***) ~ ((I) ~ £(J) =~

LJ™**) = ¢(P)if Y € I** N J***. By a simple geometrical consideration we know
14



that
dist(Y, 01" =, £(I).

It now holds that D 4(Y") = dist(Y, 9I***) for some I*** 5 Y or D4(Y) > dist(Y, OI***)
for every such I***. In particular, we have

DY) > inf inf dist(Y,0I"")
QeAYeU, Iewd
~ inf inf £(I)~ inf £(Q)={P).
QeAYeU,, IeW] QeAYeT,,

Now we can take any I € W, such that Y € I** and notice that ((P) ~ ((I) ~
0(I**) = dist(I**,092) = dist(Y, 09Q). Hence D4(Y) 2 6(Y) for every Y € Ujb.

Part 3: The sum Ig,. To simplify the notation, let us write
Ry ={R€RT"NSy: RC Qu,mpR = mpQo}.
We consider the region 2***
~ +
Q** .= int U Up
ReRY

and set D(Y) = dist(Y, 0Q***) for every Y € Q. Suppose that R € RJ. By Part
2, we know that

SY)S DY) foreveryY € [7?2' (3.3)
We also notice that
O =int U IAJ;; C int U U I(z) |,
RERY ReR} TER
so we have

sup [u(X)[ = sup sup [u(X)]
XeQr** RGRS— Xeﬁ};

IN

sup inf N,u(x)

Rer{ T€H

sup Mp(N.u)(R) S Mp(Nwu)(mpQo)- (3.4)
ReR{

IN

In the last inequality we used the definition of R (see Remark 2.3).
By [HMM1I6, (5.8)] (or [HM14, Section 4]), we have

2
(%Sfu) <SUR)™™ //ﬁg |Vu(Y)]?5(Y)dY (3.5)

R

for every R € RT. Notice also that if R € Rg , then by the definition of the

numbers Mp(N,.u)(Q) we have Mp(N.u)(mpQo) < Mp(N,u)(R) simply because

R C mpQo. Thus, using (A) the definition of the numbers Mp(N.u)(Q), (B) the

ADR property of E, (C) the definition of the collection Rt and (D) the bounded
15



overlap of the regions ﬁg we get

Mo (Nw) (70 Qo) T, £ Y Mo(Now) (R () (35

RERY
(B)

< > Mp(Nou)(R)*(R)"

RERY

(35)1 Z// |Vu(Y)[25(Y) dY

RR+

B Doy R

RR+

g //mm 2D(Y) dY

Since Q¢ € R, we notice that the collection RS‘ forms a semi-coherent subregime
of &. Thus, by [HMM16, Lemma 3.24|, the set Q*** is a chord-arc domain (i.e.
NTA domain with ADR boundary). Furthermore, by [AHM*14, Theorem 1.2],
oQ*** is UR. Since Q*** C B(zg,,C¥l(Qo)) for a suitable structural constant C
(see [HMM16, (3.14)]), the ADR property of 9Q and [HMM16, Theorem 1.1] give
us

1 1
5 [ IVuEDE) Y € Sl e - 0(Q0)

(3.4) q

S ?MD(N*U)(WPQo)z - (Qo)- (3.7)
Since the numbers Mp(N,u)(mpQo)? cancel from (3.6) and (3.7), this concludes
the proof of the lemma. O

Since the bad collection B in the bilateral corona decomposition satisfies a Car-
leson packing condition, we immediately get the following corollary:

Corollary 3.8. For every Qo € D(E) we have

> o5 50, (39)

RE(RUB),RCQo
4. GENERATION CUBES

For every stopping time regime S, we construct a collection of generation cubes
G(S) as in [HMM16, Section 5] but with modified stopping conditions. For clarity,
let us repeat the key details and definitions from [HMM16, Section 5] here. We set
Q" == Q(S) and Gy = {Q"}, start subdividing Q° dyadically and stop when we
reach a cube @ € Do for which at least one of the following conditions holds:

(1) Qisnotin S,

(2) u(Yg) = u(Ygo)| > eMp(N.u)(Q),

(3) fu(Ygy) —u(Ygo)| > eMp(N.u)(@Q).
The points Yéﬁ were defined in Section 1.4. We denote the collection of maximal
subcubes of Q¥ extracted by these stopping time conditions by F; = F1(Q°) and
we let G; = G1(QY) := F1 NS be the collection of first generation cubes. We
notice that the collection of subcubes of Q° that are not contained in any stopping
cube @ € F; form a semicoherent subregime of S. We denote this subregime by
S = S/(QO).

16



If G, is non-empty, we repeat the construction above for the cubes Q' € G,
but replace Ygo by Yéﬁ in conditions (2) and (3). Continuing like this gives us
collections G for k > 0 (notice that starting from some & the collections might be
empty), where

Grn(@) = |J Gu@H.
QFeGr(QY)

To emphasize the dependency on S, we denote
Gi(S) = Gi(Q(S)),

and we set the collection of all generation cubes to be
¢ =JG(s).
s

By this construction, we have

s= | s@ (4.1)

QEG(S)

for each stopping time regime S, where S'(Q) is a semicoherent subregime of S
with maximal element @ and the subregimes S’'(Q) are disjoint.

Our next goal is to prove that the collection G* satisfies a Carleson packing
condition:

Lemma 4.2. For every Qo € D we have

S o(8) S 5o(@). (4.3)

5€G*,5CQ0

Before the proof, let us make two observations that help us to simplify the proof.

1) By arguing as in the proof of Lemma 3.1, we may assume that Qo € G*
and it suffices to show that

1
a(S) S ;20(@0)7
SeG*NSy,SCQo
mpS=mpQo

where Sy is the unique stopping time regime such that Qy € Sp.
2) For every k > 0 and S € Gr(Sp), let G1(S) C G(Sp) be the G*-children of
S, i.e. the cubes P € Gi11(Sp) such that P C S. For each such S we have

1

Mp(N,u)(S)? Q)< 3 [Vu(Y)|?5(Y) dY, (4.4)

’ Qe%;(s) ¢’ //ﬂym
TPQ=mpQo

where .7 (S) = S'(S)N{Q € D: 7pQ = mpQp} is a semicoherent subregime
of Sp and €2 () is the associated sawtooth region (see (1.22)). The estimate
(4.4) is a counterpart of [HMM16, Lemma 5.11] and it follows easily from
the original proof. To be a little more precise, instead of having £? <
100|u(Y5) —u(Y)? for every @ € G1(S) as in [HMM16, (5.13)], we
have e2Mp(N.u)(5)? < e2Mp(N.u)(Q)? < [u(Yy) — u(Yq)[? for every
Q € G1(S). The rest of the proof works as it is.
17



Proof of Lemma 4.2. Let us follow the arguments in the proof of [HMM16, Lemma
5.16] and write

2. o= > ¥
SEG*NSH,SCQo k>0 SeGr(Qo)
mpS=1pQo mpS=1pQo

*U(Qo)‘f‘z Z Z o(S) =10(Qo) +1
k>18'€Gr_1(Qo) SE€G1(S")
mpS=mpQo

Using (4.4) and the definition of the sawtooth regions gives us

(4.4)
Mp(Now)(mpQ0)’l S 1 //Q " [Vu(Y)26(Y) dY

k>1 S'eGy— 1(Q0)

1
<35> > > // Vu(Y)[25(Y)dY (4.5)
k>15'€Gr_1(Qo) SES'(S")
mpS=mpQo

Let us denote Qg = USer)O Us where G3) = {S € D: 7pS = mpQo} U1 Usrea, (00 S (5)-
By the construction, Uy>1 Usieq, (g, S'(9') is a coherent subregime of Sy with

maximal element Qo and thus, G¢, is a semicoherent subregime of Sp. In partic-

ular, the sawtooth region )y splits into two chord-arc domains Qg by [HMM16,

Lemma 3.24]. Furthermore, by [AHM*14, Theorem 1.2], both 9Qf and 99 are

UR. We also note that Qy C B(zq,, C4(Qo)) (see [HMM16, (3.14)]). Thus, since

the triple sum in (4.5) runs over a collection of disjoint cubes, we can use the

bounded overlap of the Whitney regions, [HMM16, Theorem 1.1] and the ADR

property of E to show that

1
2 Y 2 wurpayay
k>1S"€Gr-1(Qo) SEeS’'(S")

TpS=mpQo

<7// IVu(Y)28(Y) dY

S 2 ||“HL<>°(QO)J(Q0)

Since mp S = mpQo for every S € Gp, , by (2.2) we have Mp(N,u)(S) < 2Mp(N.u)(mpQo)
for every S € Gp, . In particular:

[ullZe o) < sup sup |u(Y)]?
SeGy, YeUs

< sup inf N,u(x)?
Seay, *€9

< sup Mp(Now)(S)?  Mp(N.u)(mpQo)’.

Since the numbers Mp(N,u)(7pQo)? cancel out, we have proven the Carleson pack-
ing condition of G*. (]
18



5. CONSTRUCTION OF THE APPROXIMATING FUNCTION

Before we construct the function, we prove the following technical lemma related
to the modified cones I', () that we defined in Section 1.7. Recall that

Io(x)= U Ue (5.1)
QED(E),Qox PED(E),
£{(P)=£(Q),
aAgNP#)
Lemma 5.2. There exists a uniform constant ag > 0 such that the following holds:
if Q € D(E) is any cube and P € G* is a generation cube such that (Q) < {(P)
and Qs/(py N T # 0, then X}F,Yff € Ty, (z) for every x € Q.

Proof. We start by noticing that there exists a > 0 (depending only on the struc-
tural constants) such that

if P appears in the union (5.1), then also P appears in the same union, (5.3)

where P is the dyadic parent of P. Indeed, if we have Q,P € D(E), z € Q,
Q) = ¢(P) and aAg NP # (), then also x € Q, ¢(Q) = ¢(P) and alg N P 0.
The last claim follows from the fact that § # aAg NP C alg N P.
Let us then prove the claim of the lemma by following the argument in the proof
of [HMM16, Lemma 5.20]. Since Qg/(py N Ty # 0, there exist cubes P’ € S'(P)
and Q' C @ such that Up: N Uy # (. By the properties of the Whitney regions,
we have dist(Q’, P") < 4(Q’) ~ £(P’). Let us consider two cases:
i) Suppose that £(P") > £(Q). Then there exists a cube Q" such that @ C Q"
and 4(Q") = ¢(P'). Since Q' C Q”, we have dist(Q", P') < dist(Q’, P') <
0(Q") < €(Q"). Thus, for a large enough g, we have Up/ C Ty, (z) for
every x € ) and the claim follows from (5.3).
ii) Suppose that £(P") < £(Q). Then by the semicoherency of S'(P), there
exists a cube P” € §'(P) such that P’ C P C P and ¢(P") = £(Q). Since
P’ C P” and Q' C @, we know that dist(P”,Q) < dist(P', Q') < 4(Q') <
£(Q). Thus, for a large enough «g, we have Upr C Ty, (z) for every x € Q.
Again, the claim follows now from (5.3).

O

5.1. Constructing the function in Tj,. In this section we adopt the terminology
from other papers (including [HMM16]) and say that a component Ué is blue if
oscy u < eMp(N,u)(Q) and red if 0SCyi U > eMp(N.u)(Q).

We recall the construction of the local functions ¢g, ¢1 and ¢ from [HMMI16,
Section 5]. We start by defining an ordered family of good cubes {Qy }x>1 relative
to a fixed cube Qg € D. If Qp € G, then @@y € S for some stopping time regime S
and thus, Qo € S for some subregime in (4.1). In this case, we set Q1 = Q(S}]).
If Qo ¢ G, then we let Q1 be any good subcube of Qg such that @ is maximal
with respect to the side length; such a cube much exist since B is Carleson. Since
@1 € G, we have (Q; € S for some stopping time regime S, and by the coherency
of §, we have Q1 = Q(S}) for some subregime in (4.1). Once the cube @1 has
been chosen in these two cases, we let Q2 be a subcube of maximum side length
in (Dg, N G) \ S; and so on. This gives us a sequence of cubes Q) € G such that
Q1) > UQ2) > U(Q3) = -+, Qr = Q(S}) and G NDg, C Uys, S We define
recursively

k—1
A=0Qs, A=0g\[JA4] k=2
j=1
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and

k—1
+ . ot + . ot
AY =95, AL =05\ U4, k=2
j=1
where
s +
S)S,/C = 1nt U UQ
Qes;,
We also set

Qo= J0s =JAr and 0 =[]JAF.
k k k
We now define g on Qg by setting

po = Z (U(YQ—:)lA; + u(YQ_k)lA;) .
k

As for the rest of the subcubes of Dg,, we let {Q(k)}x be some fixed enumeration
of the cubes (R U B) NDg, and define recursively

k—1
Vi=Uqu, Vi=Uw\|[UVi] k=2
j=1
Each Whitney region Ugy) splits into a uniformly bounded number of connected
components Ué(k). Thus, we may further split

k—1
Vi=Uhny WW=Usp\|UJVi| k=2
j=1

and then define

wY), if Up, is red ;
P1(Y) = { u(Xp), if Ub, is blue Y e Vi,

on each V}', where X7 is the center of a fixed Whitney cube I C U} We then

Q(k)

denote 5 = int (UQE(BUn)mDQ UQ> =int (U, Vi), set the values of ¢o and ¢; to
0

be 0 outside their original domains of definition and define the function ¢ on the

Carleson box T, as

.7 (Y), Y eTg, \ Q1
w={ B0 vea™

From the point of view of Cp, the values of ¢ on the boundary of 2; are not
important since the (n + 1)-dimensional measure of 9€; is 0. Thus, we may simply
set ¢|aq, = u since this is convenient from the point of view of N, (u — ¢).

5.2. Verifying the estimates on Q. Let us fix a cube Qg € D(E). We start by
verifying the following three estimates on Q.

— —
Lemma 5.4. Suppose that z € Qo, Q' € Dg, and V € C§(Wq) with || V| p~ < 1,
where Wg: C § is any bounded and open set satisfying Tgr C Wqgr. Then the
following estimates hold:
1) Ni(lry, (u—9))(z) < eMp(N.u)(z),
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ii)

— 1
// podiv¥ S — N do,
T\ €% Jpag

iii)

1
// 01 dw\II < — N,udo,
Tq BAGr

where § > 0 is a uniform constant and ag > 0 is the constant in Lemma 5.2.

Proof.
i) Let us estimate the quantity |u(Y") — ¢(Y")| for different Y € Tg,.

e Suppose that Y € V! such that Ué(k) is a red component. Then we
have o(Y) = w(Y) and |u(Y) — p(Y)| = 0.

e Suppose that Y € Vk such that UQ(k) is a blue component. Then
oY) = u(Xy) for a Whitney cube I C UQ(k) and |[u(Y) — (V)] <
oscyy, U < eMp(N.u)(Q(k)).

e Suppose that Y € Tg, \ ©;. Then Y € A,f for some k such that
Qr ¢ R. Without loss of generality, we may assume that Y € A,Jg.
Now ¢(Y) = u(YJk) and, since Q ¢ R, we have |u(Y) — p(Y)] <
oscy < eMp(N.u)(Qr).

Combining the previous estimates gives us

Ni(lrg, (u—¢))(z) = YEF?H)%T [u(Y) — oY)

= sup sup |u(Y)—p(Y)|
QEDQO YeUq
Qoz

< sup eMp(N.u)(Q)
QeDg,
Q>oz

< eMp(N.u)(x).

ii) We first notice that since ¥ is compactly supported in §2, we have dist(supp ¥, E) >
0. Thus, for each Ay, the set (T N Ax Nsupp W) \ 2 consists of a union of
boundedly overlapping sets that are “nice” enough for integration by parts.

The divergence theorem gives us

// ©o divEf> < Z // Yo diva>

TQ’\le k (Tgr NAR\QL

-y div(po¥)
(TQ/ f‘lAk)\Qil

k

-y ( i TN
% (T NATHND))

%
+ // U N
a((TQmAv\szl))

< Z lu(Yg )| - H™ (T N O(AL\ @)
+ Z (Y ) - H™ (T N O(A;, \ Q1))
k

=Jt4+71.
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We only consider the sum IT since the sum I~ can be handled the same
way as IT. We get

Hn(TQ/ n 8(14;: \971)) < HH(TQ/ N 6AZ) + Hn(TQ/ n A—]; N 691)

and thus, we have

It <3 u(Yg)| - H (T N OAY)
k
+ 3 JuYE)| - HY (T N AF N 0Q0) = I + 17
k

Let us consider the sum I, first. We split

Ih= > uYg)l-H (Te N OAY)
k: QrCQ’
+ Y Ju(Yg)|HM Ty NOAL) = Ji + T4
k: QrZQ’

By [HMM16, Proposition A.2, (5.21)] we know that dA; satisfies an upper
ADR bound. Thus, since 9(T N Af) C Qigli and diam(Sds;) < €(Qk), we
get

TS Y mYE)- Qo= > (Y )] - o(Qk)
k:QrCQ’ k:QrCQ’

< inf N, u - .

< D infNau-o(Qr)
k:QrCQ’

Since the collection of generation cubes is Ce~2-Carleson by Lemma 4.2, it
is C'e2-sparse by Theorem 1.17. Thus, we get

1
Z inf Nou-o(Qr) S - Z inf Nou-o(Eg,)
kQreq Qe

Let us then consider the sum J2+ . By the same argument as in [HMM16, p.

2370], we know that the number of the cubes Qj such that Ty N A # 0

and £(Q) > £(Q') is uniformly bounded. Thus, by Lemma 5.2 and the fact
22



that 8Az satisfies an upper ADR bound (as we noted above), we get

Yo uYg)l-H (To oA
ki Que @',
T NOAT #0,
€(Q")<(Qx)
< inf Noow - H" (T NOAS
< > uf (Tq 9

k: QrzQ’,
TorNOAST #0,

Q") <UQk)
S inf Ni*ou - (diam(Tgr)"

~inf N*u - o(Q’)
Q/
< / NXudo.

For the cubes @ in J, such that £(Qr) < £(Q’) we may use the same
argument as in [HMM16, p. 2370] to see that every such cube is contained in
some nearby cube Q" of @’ of the same side length as Q' with dist(Q’, Q") <
£(Q"). The number of such Q" is uniformly bounded. By using the same
techniques as with the sum Jfr , we get

n 1
Z |u(Y5k)| “H" (T NOAL) S Z - N.udo

13 7
ki Quz@, Q- e
To NOAT #D,
£€Q")>4(Qx)
1
<= N,udo
€% JBorg
for some uniform constant Sy. Thus, we get
1
+
Jy S = NXudo.

BoA g

Let us then consider the sum 12+ . We first notice that

Hn(TQ/ n A$ N 891) < ZH”(TQ/ n Az n 8Vm)

Thus, we get

I < N u(Yg,)l - H (T N AL N oV,,)

kK m
>0 DoY)l H (T N AL N0V
k:QrCQ’ m

+ > > T uYg)l H (Tg N AL N OV,)
k:QrZQ" m
= J:,)+ + Jj .
Suppose that A} NOV;, # 0. Then, by the construction, we have £(Q(m)) <
(Qy) and dist(Q(m), Qr) < £(Q). Thus, there exists a uniform constant
B1 > 0 such that Q(m) C B1Ag, and the set f1Ag, can be covered by a
uniformly bounded number of disjoint cubes with approximately the same
side length as Q. In particular, since TQ/ﬂAzﬂan satisfies an upper ADR
23



bound for every m by the construction and [HMM16, (5.25), Proposition
A 2], we get

I = >0 > )l H Ty N AL NOV,)

k:QrCQ' m
S D gl > ((Q(m))"
k:QrCQ’ m:Q(m)CﬁlAQk
S D (gl > o(Q(m))
k:QrCQ’ m:Q(m)CP1Aq,
(39) 1 N
<5 g 0@,
k:QrCQ’

Now we can use exactly the same arguments as with the sum Jfr to see
that

1
Jy <= | N.audo.

2
6 Q/
Finally, let us handle the sum J;". Just as above with the sum J;, for some
uniform constant S > 0 we get

S uYE)| - H (T 0 A N0V

k:QrzQ" ™
£Q")<(Qk)

< > gl Y a@em)

k:QrZ Q' m:Vin C P2l g
TorNAf#0
€RN<UQ)

(3.9 1 . ,
S5 Y Wg)le@)
k:Qirz Q'

TQlﬂAz75®
4(Q")<(Qr)

52 1
< = Z ig,foou'U(Ql)

3
k:Qire Q'
TQ/ ﬁA:#@
4Q")<L(Qk)
1
S NZudo,
9 Q'

where we used the fact that there exists only a uniformly bounded number
of cubes @ that satisfy the condition of the sum by [HMM16, Lemma
5.20]. By using the same argument as with the latter half of the sum J2+,
we get the bound

1
> NG H T nAf N0V S 5 [ Nads
kQuz@ ™ By g
2Q")>€(Qr)

for some uniform contant B3 > 0. Thus, we have
1
JI <5 / Nudo.
€% JBsAg

Combining the estimates for J;7, J;F, J5 and J; gives us the claim.
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iii) By [HMM16, (5.25)], we have
H"(0Vi) < H"(0Vi) SUQ(K))" = o(Q(K)) (5.5)

for every Q(k) and i. We also note that 9T satisfies an upper ADR bound
[HMM16, Proposition A.2]. Recall that the function ¢, is supported on £2;.
Thus, since the sets V; are disjoint, we get

// (pldiVE} = Z// ngdiVE}
Ty 1 TQlﬂ‘/L

Q
Y et
;i MTenVy
S awe® - [ ve ¥
! i TQ/I'TV;’ TQ/ﬁVli
< div(y // Vil |-
;; < //T /ﬁvl 1 TQ/F-]V7 ‘ !

Q
Let us first assume that Ué(l) is a blue component. Recall that since the

collection R U B is Ce~2-Carleson by Corollary 3.8, it is Ce?-sparse by
Theorem 1.17. Thus, by the definition of ¢; and the divergence theorem,

we have
. = .
// div(p V)| + // V| = ‘// ‘dlv(gol@)‘
TQ/ﬁVL1 TQ/F‘IVl1 TQ/ﬁVll
< )
T, /ﬁavll

Q
(5.5) £ N l
< in u-o
< it N 0(QU))
1
< = inf Nyu-o(E .
~e2 Qu) (Eow)

Suppose then that UQ(Z) is a red component. Since 9V}’ C T'(y) for every

%
y € Q(l), we get |ffTQmW div(u¥)| < & infgy Nou-o(Egq) by the same
argument as above. Also, by the definition of the function ¢, Caccioppoli’s
inequality and the sparseness arguments, we have

< ﬁ (//ﬁ@(l) |u|2> v oQ(1)) /2
<//U U ) ) 0Q) /2
e @

n+1
S (Q( 7y b (New) - QD)™
. 1
~o(Q()) - clyl%lf)(N*u) < ?a(EQ(l)) . II%f)N U
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Thus, since every Whitney region Ug has only a uniformly bounded number
of components Ué, we get

1
A\ < —o(E - inf N,u.
//T’| ¢1|N;EQ (Eow) inf

Since V; meets Ty, we know that dist(Q(1), Q") < ¢(Q'). In particular,
all the relevant cubes Q(I) are contained in some nearby cubes Q" such
that £(Q") ~ £(Q’') and dist(Q”, Q') < ¢(Q’). The number of such Q" is
uniformly bounded. Thus, since the sets Eq(;) are disjoint, we get

1 1 1

—o(FEg() - inf Nyu < — N < — N.u
Xl:gz (Eqw) oW 22 ; Qv e2 Bodrey

for some uniform constant Sy.

O

Let us then consider the dyadic total variation of the whole approximating func-
tion ¢:

- -
Proposition 5.6. Suppose that Q' € Dg, and ¥ € CJ(Wq/) with || V| L= < 1,
where Wg: C Q is any bounded and open set satisfying T C Wgr. Then

- 1
// pdivV < — N®udo,
T, €% Jpay
where > 0 is a uniformly bounded constant and agy > 0 is the constant in Lemma
5.2.

Proof. We start by splitting the integral with respect to ¢ and ;.

// c,odivil> = // Yo divEf> + // v1 div@.
Ty T, /\Qil TQIQE

Q
For the first integral, we can simply use the part ii) of Lemma 5.4. For the second
integral we get

// goldiv\_ﬁ = Z // wldiVE}
TQ/ ﬂm k VkﬂTQ/
= Z // diV(LPlE’)) - // Vi - v
k VkﬂTQ/ VkﬂTQ/

—
< div(p1 W) + // Veul.
zk: V//‘/knTQ/ ( ! ) zk: VkﬂTQ/| 1|

The second sum is just as in the proof of part iii) of Lemma 5.4 and thus, we can
bound it by Ce™? [ BoAgs N,u. For the first sum, we use the divergence theorem

and Theorem 1.17 and get
S avew)| <> a7 X
k VkﬂTQl k 8(VkﬂTQ/)
< Z sup |u] - H" (Vi N OTg)
k

Uqk)
< inf Nou-o(Q(k
S Y NaeQW)
k: dist(Q(k),Q")<(Q7)
1
< inf Nou-o(E .
<5 > Inf (EQw))

g
E: dist(Q(k),Q") <0(Q")
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By the structure of the Whitney regions, we know V;, N T = 0 if £(Q(k)) > £(Q")
or dist(Q(k), Q") > £(Q’). Thus, there exists a uniform constant 8; > 0 such that
Q(k) C p1Ag for every k in the sum above. We may cover $1Ag/ by a uniformly
bounded number of disjoint cubes P; such that ¢(P;) ~ £(Q’). This gives us

inf Nyu-o(E / N.u
2 Qi) Eow) < 2 Fow

k: dist(Q(k),Q") SUQ’) k: dist(Q(k),Q") S€(Q')

< Z/P N,udo

7 J

for some uniform constant B2 > ;. Combining the previous bounds finishes the
proof. O

Remark 5.7. We notice that the previous proposltlon holds also in the following

form: If we have cubes @', Q1, Q2 € Dg, and Ve Ci (W) with ||\IIHLoo <1 for
an open and bounded set W containing T/, then

1
// <pdivEf> < - min / N.u da,/ N.udo
(TqrNTo, \Tq, < B28q B280q,

for some uniform constant B5. Indeed, in the previous two proofs, we needed only
the upper ADR estimates for the boundaries of A,, and Vi and these estimates
remain valid if we remove a finite number of pieces whose boundaries satisfy an
upper ADR estimate. By [HMM16, Proposition A.2|, 9T is ADR for every Q €
D(E). Also, by the stucture of the regions, these modified sets are “nice” enough
to justify integration by parts that we used in the proofs.

5.3. From local to global. Let us now construct the global approximating func-
tion. Although our construction is a little different than the construction in [HMM16,
p. 2373], the basic ideas are the same.

5.3.1. E is a bounded set. Let us first assume that diam(E) < co. In this case, we
have a cube Qo € D(F) such that E = Qo and ¢(Qo) ~ diam(F). We now set

— ¥Qo (X)’ if X € TQO
P(X) _{ wX), fXeQ\Ty, °

where g, is the function constructed in Section 5.1. By part i) of Lemma 5.4, we

have N, (u—¢)(x) < eMp(N.u)(z) on E. As for the Cp bound, we first notice that
for any Q € Dg, Proposition 5.6 gives us

7// Vel < %M(Nf()u)(x) (5.8)
Tq €

for every € @ since 0(Q) =~ o(8Aq). Let us now fix a cube Fk € D* (recall

the definition of D* in Section 1.6), take any T e Ci(Tg,) with || v L~ <1 and
modify the argument in [HMM16, p. 2353]. We denote R := 2*diam(E) and thus
have T, = B(zo, R). By a suitable choice of parameters in the construction of the
Whitney regions in [HMM16], the Carleson box Tg, is so large that we may fix a
ball B(zg,r) C Tg, such that r > 2diam(FE). Because of this, we may fix a uniform
constant a; such that a small enlargement of B(zo,R) \ B(zp,7) is contained in
Lo, (2) (recall the definition of I‘al in Section 1.7) for every x € E. We split

— <pdiV\IJ = gple\IJ + // <pdiV\I/.
K(Fk)" \//Tpk To, (Fk)n Tr, \Ta,




By Proposition 5.6, we can bound the first integral by M (Nou)(z) for any € Q.
As for the second integral, we use the smoothness of u, Holder’s inequality and
Caccioppoli’s inequality to get

// %) div@ = // U diva>
Tr, \Tq, Tr, \Tq,
< // [Vul
B(20,R)\Tq,
< // |Vul
B(z0,R)\B(z0,r)

1/2
2 n+1
S // |Vul R 2
B(z0,R)\B(zo0,r)
1/2
2 n+l
< A vu(0R| R
0<j<log,(R/r) * 2 r<lzo—X|<2+r
1/2
. +1
<inf Ny - i n—1 n+l
S inf N > (@) R™Z
0<;j<logy(R/r)
n_1l_ 'ntl
2

< iréfolu "R 2 R
< R"M(NJu)(x)

for every x € @Qg. Combining the calculations and the cases gives us the desired Cp
bound.

5.3.2. E is an unbounded set. Suppose then that diam(FE) = co. We fix a sequence
of cubes Q; € D(E), i € N, such that |J,Q; = F and Q; C Qi1 and ¢(Q;) <
Y0¢(Q;41) for every i, where we fix the value of the constant vy later. We set

Wy = TQN Wy = TQk \TQk,—l
and

Pk = 1Wkg0Qk7 @ = Z@k
k

Here g, is the function constructed in Section 5.1 for the cube Q. The sets W
cover the whole space €2 and since T, C Tg,,, for every 4, they are also pairwise
disjoint. Let us consider the pointwise bound for N,(u — ¢). Fix z € E and
let @, be the smallest of the previously chosen cubes such that z € @,,. Now, if
I'(z)NTg, = 0 forevery j = 1,2,...,m~—1, then the pointwise bound follows directly
from part i) of Lemma 5.4. Suppose then that there exists a point Y € I'(x) N Ty,
for some j < m. We may assume that Y ¢ T, for all i < j. By the structure of
the sets, there exist now cubes Py C @, and P, C @, such that {(P1) ~ {(P»),
dist(Pr, 2) S4(P1), Y € Up,NUp, and p(Y') = ¢|u,, (Y). By the considerations in
the proof of part i) of Lemma 5.4, we know that |u(Y)—¢(Y)| < eMp(N.u)(P,). By
the properties of P; and P», there exists a uniform constant 8y such that P, C SpAg
for any @ € D(FE) such that @ D P,. In particular,

eMp(Nyu)(Py) =€ sup ][ N,udo
QED(E),PCQ JQ

Se sup ][ N.udo < eM(N,u)(x).
QED(E),P2CQ JBoAg
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Thus,

Na(u—o)(z) = S [u(Y) = (V)]

=sup sup |u(Y)— (V)| < eMp(N.ou)(z).
keN Y eT (z)NW,

Let us then prove the Cp estimate. We fix a point € F and a cube @ € D(E)
such that z € @ and split the proof to three different cases. Below, 8 and « are
uniform constants and m is the smallest such number that To C Ty, .

1) Tg C Ty, such that To N Ty, = 0 for every k < m. Now we simply have

1
JLove= [ 1venls 5 [ veudo
Tq Tq €7 Jpag

by Proposition 5.6.
2) TQ C Tg,, and Qx C Q for every k < m. Take any v € Ci(Tg) with
1%~ < 1. We get

— —
// pdiv¥ :// <pmd1V\I/ + Z // Pm—; div¥
Tq TQ\TQm Qum—(i+1)
+ // $1 diV\I/
Tq,

1

< = Noudo + / NZudo

= Z =3

by Remark 5.7. We note that the balls BAq, form an increasing sequence
with respect to inclusion. If we choose the constant «y to be large enough,
the balls SAg, satisfy a Carleson packing condition independent of m.
Thus, for a large enough ~g, we get

k—1
1 1 1
- Neuwdo +Y " = / Neudo < = Mp(Nu) do.
€ Jpaq =1 &7 JBag, € Jpaq

by a simple dyadic covering argument and the discrete Carleson embedding

theorem (Theorem A.1).
3) To C Ty, Qx ¢ Q for every k < m and Tg NTgp,, , # 0. Without loss of

%
generality, we may assume that £(Q) ~ (Q,—1). Take any VU € Cj(Tg)
_)
with | UL~ < 1. We get

_>
// <pd1V\I/ // Pm dlv\I' + Z // Pm—i div¥
To To\Ta,,_, (TeNTq,, ;\TaQ,, (1)
+ // ©1 div\I/
TQI’WTQ1

1
<5 N“udaJrZ / Neudo
€ Jpag BAQ;
by Remark 5.7. Again, if we choose the constant vy to be large enough, we
get
1 Newdo +) i/ Neudo < = Mp(Nu) do
e Jpng = Jsng, T T e Jaag ’

by a simple dyadic covering argument and the discrete Carleson embedding
theorem (Theorem A.1).
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Since U(Q) ~ o(BAQ), combining the three cases gives us

g [ VS S [ v de s SMOn(T W) @)

Q) Jaa,
for almost every x € ). This completes the proof of Theorem 1.5.

APPENDIX A. DISCRETE CARLESON EMBEDDING THEOREM

For the convenience of the reader, we prove here the version of the Carleson
embedding theorem that we used in Section 5.3.2.

Theorem A.1. Suppose that p is a locally finite doubling Borel measure in a
(quasi)metric space X satisfying p(B(x,7)) > 0 for any r > 0 and D is a dyadic
system in X. Let f > 0 be a locally integrable function. If A C D is a collection
that satisfies a Carleson packing condition with a constant A > 1, then

/ fdp < A/ Mpfdu
QEA QCQo

for any Qo € D.

Proof. For every m € Z, we define the averaging operator 7T, by setting

Tuf@ = 3 1Q<z)][Q .

QeD
L(Q)=2""

and we define the measure v by setting

dv(z,m) = Z lo(z) | du(z).

QeEAL(Q)=2—m
/ fp= ][ fdp
QE-A QCQO

o A

m:2-m<l(Qp) QEA
2(Q)=2""

> Tonf () dv (2, m)

m:2-m<e(Qo) Y o
/ v(EY) dA,
0

where EY = {(z,m): z € Qo,27™ < {(Qo), Tmf(x) > A}. Thus, to prove
the claim, we only need to show that v(EY) < Ap(E)), where E\ = {z €
Qo: sup,, Tmf(z) > A}. If u(E)) = oo, the claim is trivial. Thus, we may as-
sume that u(E)) < oco.

We notice that if x € E), then there exists a subcube Q' C Qg such that x € Q'
and J[Q’ fdu > X. By the definition of 7,,, we also have y € E, for every y € Q’.
In particular, we have maximal disjoint subcubes R; C )y such that E) = Uj R;.
We further observe the following two things:

e If x € Qo )\ Uj R;, then by the maximality of the cubes R; we have
sup,, Tmf(x) < A

Now we have

QEA QCQo
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e If x € Q C Qo and Ty, f(x) > A for some m such that 2™ > ¢(Q), then
there exists a cube @ 2 @ such that JC@ fdu > X In particular, Q C E)
but @ is not a maximal cube.

Based on these observations, we have
B5 C|JRy x {m: 27™ < U(R;)}.
J
By the Carleson packing condition, we get
V(R x {m: 27" <URp)}) = Y > @) < Au(Ry)

m:27m<U(R;) Q'CR;,Q' €A
L(QN=2"m

for every j. In particular, since the cubes R; are disjoint, we get

V(ER) < 3 w(Ry x {m: 27" < UR)) < 3 Au(Py) = Ap(Ey),

which completes the proof. O
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