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Abstract The advancement of manufacturing tech-

niques has led to a rapid increase in the design and

fabrication of periodic and architectured materials for

a variety of dynamics and wave manipulation appli-

cations. Classical low-frequency homogenization

techniques have been popular and invaluable tools to

facilitate the numerical simulation of these systems,

although their application is naturally limited to the

long-wavelength regime. As a result, scattering dom-

inated features, such as the occurrence of frequency

band-gaps, cannot be captured by these models.

Indeed, the first band-gap typically marks the approx-

imate limit of validity of low-frequency homogeniza-

tion approaches. Abandoning the use of this approach

allows recovering the detailed dynamic behavior due

to the geometric features of the periodic units, but it

also comes at a significant increase in computational

cost. In this study, we leverage the use of fractional

operators to revisit the classical low-frequency

homogenization approaches and explore their possible

extension beyond the initial band-pass (low-fre-

quency) regime. Remarkably, the resulting frac-

tional-order homogenization approach is capable of

representing the dynamic behavior of periodic

structures within the first few frequency band-gaps.

In particular, we apply the fractional approach to

model elastic wave propagation in a bi-material

periodic beam which serves as an idealization of a

one-dimensional elastic metamaterial. The use of the

fractional operator formalism allows casting the

classical integer-order wave equation with spatially-

variable coefficients, typical of an inhomogeneous

beam, into a fractional-order differential equation with

constant coefficients. Thus, the spatial heterogeneity

of the periodic system is accounted for via the order of

the fractional derivative. The fractional-order govern-

ing equation is obtained via variational principles,

starting from fractional-order kinematic relations. It is

found that the resulting fractional differential model of

the heterogeneous system has, in its most general

form, a complex valued and frequency-dependent

order. The results from the fractional order model are

compared with those obtained from the classical wave

equation in order to assess the validity of the approach

and its performance. The dynamic analysis is carried

out at both band-gap and band-pass regimes showing a

good agreement with results from traditional

methodologies.
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1 Introduction

The rapid growth of the fields of periodic and

architectured materials has further highlighted the

need for accurate and efficient computational methods

capable of predicting their dynamic behavior. Many of

these media exploit the periodicity of certain structural

features (e.g. the distribution of either material or

geometric properties) to achieve a global dynamic

behavior that would not be achievable in classical

homogeneous material systems, such as metals or

polymers. These materials are typically assembled by

repeating periodically in space the smallest unit

element, called the fundamental unit cell, that captures

in itself all the distinctive constitutive features of the

medium. When these periodic structures operate in a

subwavelength frequency regime (the so-called meta-

material regime), they can exhibit unique wave-

guiding characteristics including wave shaping, colli-

mation, focusing, and steering [1–5].

Over the past few decades, several methods have

been proposed to simulate the dynamics of these

periodic structures. Some examples include, but are

not limited to, model-order reduction techniques

[6, 7], finite difference methods [8, 9], quadrature

based methods [10, 11], finite element methods

[12, 13], and plane-wave expansion methods

[14, 15]. From a high-level perspective, all these

approaches are characterized by a process of dis-

cretization of the system in either space or time. While

these techniques have found good success and are still

widely used, they are subject to limitations that impose

an implicit trade-off between accuracy and computa-

tional time. Further, there are specific types of media

for which the discretization process leads rapidly to

computational resources that are beyond available

capabilities. Examples of these media include multi-

scale inhomogeneities such as those present in com-

plex microstructures, porous and fractal media.

A very powerful alternative that is not subject to the

same computational costs of discretized methods is

offered by homogenization techniques [16–20] which

eliminate the spatial dependence of the material

parameters by replacing them with so-called effective

parameters. Broadly speaking, there are two different

approaches to classical homogenization: low-fre-

quency approaches and high-frequency approaches.

In classical low-frequency homogenization proce-

dures, the inhomogeneous medium is replaced by a

homogeneous one characterized by constant and

uniform material properties capable of representing

the behavior of the original material as a whole. These

homogenized properties facilitate the use of contin-

uum theory for the efficient prediction of the dynamic

response of the complex medium. While these

homogenization techniques have long been a powerful

approach to model media having complex and inho-

mogeneous structure, they encounter some important

limitations stemming from certain intrinsic assump-

tions at the basis of the method. In periodic structures,

the classical low-frequency homogenization

approaches fail to predict the existence and the

location of frequency band-gaps, which are due to

multiple scattering from the heterogeneous inclusions

in the shorter wavelength regime (often indicated as

the phononic regime). This is not surprising since the

homogenized material properties can be representa-

tive of the actual heterogeneous medium only in a

range where the wavelength of the propagating wave

is sufficiently larger (typically by, at least, a factor of

2) than the characteristic dimension of the microstruc-

tural features [16, 19, 20]. This shortcoming was

addressed by high-frequency approaches where an

asymptotic multiple scale expansion of the homoge-

nized material properties is used to capture some

aspects of the microstructural features [17, 18].

Despite providing a very successful approach to

broadband homogenization (apparently covering both

material regimes), some limitations of the high-

frequency approach follows from its theoretical for-

mulation and the associated computational cost.

Independently of the specific approach, homoge-

nization formulations intrinsically perform averaging

operations of the spatially varying material properties

and leverage specifically designed convoluted kernels

to obtain either the homogenized material properties

(in low-frequency approaches) or corrections to the

first-order homogenized properties (in the high-fre-

quency approaches). It is indeed this underlying

convolution approach that motivated the present

investigation and the corresponding reformulation of

the homogenization approach via a class of differ-

integral operators, known as fractional-order opera-

tors. As discussed in the following, fractional order

operators are based on convolutions with power-law

kernels, hence suggesting a natural application to

homogenization problems. In recent years, fractional

calculus has emerged as a powerful mathematical tool
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to model a variety of complex physical phenomena.

Fractional-order operators allow for the differentiation

and integration to any real or complex order, are

intrinsically multiscale, and provide a natural way to

account for several complex physical mechanisms

(e.g. nonlocal effects, medium heterogeneity, and

memory effects) [21]. These characteristics of frac-

tional operators have led to a surge of interest in

fractional calculus and its application to the simulation

of several physical problems. Areas that have seen the

largest number of applications include the formulation

of constitutive equations for viscoelastic materials

[22, 23], model-order reduction of lumped parameter

systems [24], modeling of nonlocal elasticity [25–36],

phenomenological homogenized models [37–40], and

transport processes in complex media [41–45].

As mentioned above, the differ-integral nature of

fractional-order operators allows them to model

spatial and temporal scale effects. While time frac-

tional operators enable memory effects (i.e., the

response of a system is a function of its past history),

space fractional operators can account for medium

heterogeneity, nonlocal effects and scale effects. In

other terms, while temporal fractional derivatives

physically represent damping and dissipation that

occur in lossy or viscoelastic materials, spatial frac-

tional derivatives are indicative of attenuation in

systems that potentially are still conservative. That is,

space fractional derivatives are ideal tools to capture

frequency band-gaps in which attenuation is due to

multiple back scattering and not to energy dissipation.

This discussion suggests that fractional calculus can

serve as a powerful mathematical tool for the homog-

enization and analysis of complex heterogeneous and

periodic structures. In fact, recently, a handful of

studies have started exploring this application of

fractional calculus [38, 41]. In [38], Hollkamp et al.

used space-fractional operators to obtain the homog-

enized equations governing the dynamic response of

heterogeneous bi-material rods. The most notable re-

sult of this study was the validity of these equations

beyond the classical homogenization (long wave-

length) limit and their resulting ability to capture the

response within, at least, the first frequency band-gap.

In [38], the governing equations were numerically

solved using a finite difference scheme that, while

effective, was sensitive to instabilities due to the

complex valued order of the fractional operators.

In this work, we perform a preliminary assessment

on the use of fractional calculus as a homogenization

technique to periodic systems while concurrently

developing accurate and stable numerical techniques

for complex valued fractional-order differential equa-

tions (which describe the resulting fractional-order

homogenized media). The proposed fractional-order

technique is more akin to the class of low-frequency

approaches, in the sense that it replaces the spatially-

varying material properties (or equivalently, the

elastodynamic equation with spatially-varying coeffi-

cients) with homogenized material properties (or

equivalently, constant coefficient elastodynamic equa-

tion). From a high level perspective, this study focuses

on the generalization of the approach presented in [38]

by pursuing two main objectives: (1) the extension of

the underlying theoretical formulation to model the

flexural response of periodic Euler–Bernoulli beams,

particularly within the frequency band-gaps, and (2)

the development of more efficient computational

approaches for the solution of fractional complex-

order differential equations. To achieve these two

objectives we will first derive the fractional-order

governing equations of an Euler–Bernoulli periodic

beam bymeans of variational principles. Then, we will

derive the dispersion relations of the fractional-order

beam and use it to obtain the equivalent fractional

order capable of capturing the response of the

heterogeneous system. Finally, we will present a Ritz

fractional-order finite element method (f-FEM) for

complex-order equations and use it to simulate the

steady-state response of the fractional-order beam.

Fractional-order FEMs have been developed in the

literature using Galerkin [46], Petrov–Galerkin [47]

and very recently, Ritz-based methods [48]. However,

it appears that none of these studies have addressed the

solution of complex valued fractional-order equations.

We anticipate that the f-FEM developed in this study is

robust and capable of admitting both real and complex

valued fractional-orders. The results obtained via the

f-FEM establish that the fractional-order homogeniza-

tion technique presents excellent predictions for the

response of the periodic beam in the first band-gap and

fairly good predictions within the second band-gap.

Further, we also use these results to compare the

fractional-order approach with classical low-fre-

quency and high-frequency homogenization tech-

niques. The proposed fractional-order technique is

more akin to the classical low-frequency approach, in
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the sense that it replaces the spatially-varying material

properties (or equivalently, the elastodynamic equa-

tion with spatially-varying coefficients) with homog-

enized material properties (or equivalently, constant

coefficient elastodynamic equation).

The remainder of the paper is structured as follows:

first, we obtain the dispersion relations for a periodic

beam using the classical Euler–Bernoulli theory. Next,

we present a fractional-order theory for modeling the

response of heterogeneous beams. Finally, we obtain

the fractional model parameters for the periodic beam

and use these parameters in the f-FEM to obtain the

response of the periodic beam at different forcing

frequencies.

2 Governing equations and dispersion relations

of the periodic beam

In this study, we use the dispersion relation obtained

using the classical (integer-order) beam theory in

order to obtain the fractional model parameters for the

periodic beam. Note that the strategy to determine the

fractional order in a fractional mechanics representa-

tion can follow different avenues depending on the

underlying physics being captured. This topic is still

an object of extensive research and a widespread

consensus on general methodologies has not been

reached yet. Nevertheless, the focus of this study is on

the formulation and performance of the fractional

order approach to model periodic systems, hence the

generality of this method will not be affected by the

strategy employed for the order determination.

In order to implement the approach mentioned

above, we first derive the dispersion relations for the

periodic beam by using the classical (integer-order)

Euler–Bernoulli beam formulation. Recall that the

Euler–Bernoulli formulation is valid only for slender

beams, that is for beams with a length to thickness

ratio greater than or equal to approximately 100 [49].

Consider an infinite periodic beam consisting of two

isotropic sections #1 and #2 with different properties,

as shown in Fig. 1. The length of the two layers are

denoted L1 and L2, such that the lattice constant d of

the beam is given by d ¼ L1 þ L2 (see Fig. 1). The

coordinate system is chosen such that the origin lies on

the interface between the two layers. It is immediate

that layer #1 appears for x 2 ½�L1 þ Nd;Nd�, while
layer #2 appears for x 2 ½Nd; L2 þ Nd�, where N ¼

f0;�1;�2. . .g is a set of integers. The Young’s

modulus, quadratic moment of inertia, density and

area of cross-section of the layers are denoted by

Em; Im; qm and Am, respectively. In the above

m 2 f1; 2g, where m ¼ 1 denotes the first layer, while

m ¼ 2 denotes the second layer within the periodic

beam.

The governing equation of the Euler–Bernoulli

beam in integer-order form is given by:

o2

ox2
EðxÞIðxÞ o

2wðx; tÞ
ox2

� �
þ qðxÞAðxÞ o

2wðx; tÞ
ot2

¼ 0

ð1Þ

where w(x, t) is the deflection of the mid-plane of the

beam at a spatial location x and at the time instant t. In

a periodic beam, the Young’s modulus E(x), the

quadratic moment of inertia I(x), the density qðxÞ, and
the area of the cross-section A(x) are periodic func-

tions of the spatial location x with a period

d ¼ L1 þ L2, as discussed above. Although the beam

properties are a periodic function of the spatial

location x, they are isotropic within each individual

section. This latter consideration allows for the

simplification of Eq. (1) to the following:

EmIm
o4wðx; tÞ

ox4
þ qmAm

o2wðx; tÞ
ot2

¼ 0 ð2Þ

where m ¼ 18x 2 ½�L1 þ Nd;Nd� and

m ¼ 28x 2 ½Nd; L2 þ Nd�. Using the method of sepa-

ration of variables we decompose w(x, t) in the

standard form wðx; tÞ ¼ WðxÞe�ixt involving the pro-

duct of decoupled spatial and temporal functions. Note

that x is the angular frequency and i¼
ffiffiffiffiffiffiffi
�1

p
. Substi-

tuting w(x, t) in Eq. (2) results in the following

expression for W(x):

WðxÞ ¼ Am1e
bmx þ Am2e

�bmx þ Am3e
ibmx þ Am4e

�ibmx

ð3aÞ

Fig. 1 Schematic of the periodic beam consisting of two

sections having different material properties. Some character-

istic dimensions are also shown
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bm ¼ qmAmx2

EmIm

� �1
4

ð3bÞ

where m 2 f1; 2g and Am1;Am2;Am3; and Am4 are

either real or complex constants. Further, it appears

from Eq. (2) that the coefficients of the beam

governing differential equations are periodic in nature.

Using the Floquet theorem for the periodic beam, it

can be shown that the displacement, slope, bending

moment, and shear force are quasi-periodic across

adjoining cells. It follows that:

WðxÞ ¼ ekdWðx� dÞ8x 2 ð�1;1Þ ð4Þ

where k is the Floquet wave number which can be

either real or complex.

The dispersion relations for the periodic beam can

now be derived by establishing a relationship between

the set of eight constants Am1;Am2;Am3; and Am4.

Imposing the continuity of displacement, slope,

bending moment, and shear force at x ¼ 0 (i.e. at the

interface between the two layers within a unit cell)

results in the following set of four equations:

A11 þ A12 þ A13 þ A14

¼ A21 þ A22 þ A23 þ A24

ð5aÞ

b1A11 � b1A12 þ ib1A13 � ib1A14

¼ b2A21 � b2A22 þ ib2A23 � ib2A24

ð5bÞ

E1I1
�
b21A11 þ b21A12 � b21A13 � b21A14

�
¼ E2I2

�
b22A21 þ b22A22 � b22A23 � b22A24

� ð5cÞ

E1I1
�
b31A11 � b31A12 � ib31A13 þ ib31A14

�
¼ E2I2

�
b32A21 � b32A22 � ib32A23 þ ib32A24

� ð5dÞ

An additional set of four relations are established by

using the Floquet relations in Eq. (4) in order to relate

the different physical variables at x ¼ �L1 and at

x ¼ L2. This gives:

A11e
kd�b1L1 þA12e

kdþb1L1 þA13e
kd�ib1L1 þA14e

kdþib1L1

¼A21e
b2L2 þA22e

�b2L2 þA23e
ib2L2 þA24e

�ib2L2

ð6aÞ

b1A11e
kd�b1L1 � b1A12e

kdþb1L1

þ ib1A13e
kd�ib1L1 � ib1A14e

kdþib1L1

¼ b2A21e
b2L2 � b2A22e

�b2L2 þ ib2A23e
ib2L2 � ib2A24e

�ib2L2

ð6bÞ

E1I1
�
b21A11e

kd�b1L1 þ b21A12e
kdþb1L1

� b21A13e
kd�ib1L1 � b21A14e

kdþib1L1
�

¼ E2I2
�
b22A21e

b2L2 þ b22A22e
�b2L2

� b22A23e
ib2L2 � b22A24e

�ib2L2
�

ð6cÞ

E1I1
�
b31A11e

kd�b1L1 � b31A12e
kdþb1L1

� ib31A13e
kd�ib1L1 þ ib31A14e

kdþib1L1
�

¼ E2I2
�
b32A21e

b2L2 � b32A22e
�b2L2

� ib32A23e
ib2L2 þ ib32A24e

�ib2L2
�

ð6dÞ

The Eqs. (5,6) are combined to form a set of eight

homogeneous equations of the form ½T�fXg ¼ 0,

where X ¼ fA11A12A13A14 � A21 � A22 � A23 �
A24gT is a vector containing the eight constants. The

matrix [T] is obtained as:

½T � ¼

1 1 1 1 1 1 1 1

1 � 1 i � i ~b � ~b i~b � i~b

1 1 � 1 � 1 ~Z ~b2 ~Z ~b2 � ~Z ~b2 � ~Z ~b2

1 � 1 � i i ~Z ~b3 � ~Z ~b3 � i ~Z ~b3 i ~Z ~b3

je�b1L1 jeb1L1 je�ib1L1 jeib1L1 eb2L2 e�b2L2 eib2L2 e�ib2L2

je�b1L1 � jeb1L1 ije�ib1L1 � ijeib1L1 ~beb2L2 � ~be�b2L2 i~beib2L2 � i~be�ib2L2

je�b1L1 jeb1L1 � je�ib1L1 � jeib1L1 ~Z ~b2eb2L2 ~Z ~b2e�b2L2 � ~Z ~b2eib2L2 � ~Z ~b2e�ib2L2

je�b1L1 � jeb1L1 � ije�ib1L1 ijeib1L1 ~Z ~b3eb2L2 � ~Z ~b3e�b2L2 � i ~Z ~b3eib2L2 i ~Z ~b3e�ib2L2

2
66666666666664

3
77777777777775

ð7Þ
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where j ¼ ekd; ~b ¼ b2=b1, and ~Z ¼ E2I2=E1I1. For a

nontrivial solution to the displacement field of the

periodic beam the determinant of the matrix [T] must

be set to zero. This yields the dispersion relation for

the periodic beam as a fourth degree polynomial of the

variable j given as:

PðjÞ ¼ a4j
4 þ a3j

3 þ a2j
2 þ a1jþ a0 ¼ 0 ð8Þ

where ak are either real or complex constants. The

roots of the above polynomial give the value of j and

subsequently the Floquet wave number k.
Given the complex nature of the matrix [T], we did

not obtain explicit expressions for the wave number k
and instead adopted a numerical approach. We make a

remark here pertaining to the numerical procedure of

finding the roots of the above polynomial PðjÞ. Given
the presence of exponentials within the matrix [T], the

coefficients of the characteristic polynomial PðjÞ are
highly conditioned, i.e., ratios of the coefficients of

PðjÞ are large. In such a case it was found that the use
of numerical root-finding solvers results in erroneous

solutions for j. In order to extract the roots accurately,
we exploit a certain symmetry within the periodic

beam in order to factorize PðjÞ into two quadratic

polynomials.

Note that the continuity and the Floquet relations

remain unchanged when the layers within the periodic

beam are interchanged. More specifically, the formu-

lation remains unchanged under the transformation:

L2 ! �L1 and L1 ! �L2. Under this transformation

b2 ! b1 and b1 ! b2. Using these transformations

within the determinant leads to the fact that a0 ¼ a4
and a1 ¼ a3. Now, on dividing the polynomial PðjÞ
by the leading order coefficient a4, it is immediate that

PðjÞ can be factorized into two quadratic polynomials

in the following fashion:

PðjÞ � ðj2 þ p1jþ 1Þðj2 þ p2jþ 1Þ ¼ 0 ð9Þ

where the coefficients p1 and p2 are given as:

p1;2 ¼
1

2

a3
a4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3
a4

� �2

�4
a2
a4

� 2

� �s2
4

3
5 ð10Þ

Using the factorized quadratic polynomials, the solu-

tions for j can now be found by using the standard

results for obtaining the roots of quadratic

polynomials:

j1;2 ¼
1

2
�p1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 � 4

q� �
ð11aÞ

j3;4 ¼
1

2
�p2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 � 4

q� �
ð11bÞ

The Floquet wave number can be found by taking the

logarithm of the obtained values of j:

kn ¼
1

d
logðjnÞ ð12Þ

where n ¼ f1; 2; 3; 4g. It follows from Eq. (11) that

j1j2 ¼ 1 and j3j4 ¼ 1. Thus, in principle, k2 ¼
�k1 þ iN1p=d and k4 ¼ �k3 þ iN2p=d where N1 and

N2 are integers. We choose N1 ¼ 0 and N2 ¼ 0 here

and hence we take the principal logarithm in Eq. (12).

Note that this does not affect the generality of the

results and we will show that this results in a folding of

the dispersion curves across the first (irreducible)

Brillouin zone of the periodic beam. In the subsequent

analysis, we consider a periodic beam consisting of

aluminum and brass. The specific properties of the

layer #1: Aluminum and layer #2: Brass are given in

Table 1. The dispersion of flexural waves in this

periodic beam is obtained using the above presented

formalism and is shown in Fig. 2. Figure 2a plots the

wave number versus frequency folded across the first

Brillouin zone while Fig. 2b is the unfolded dispersion

curve for the aluminum-brass rod. The frequency

regions where RðkÞ 6¼ 0, highlighted in the plots with

a gray area, are the frequency band-gaps of the

periodic aluminum-brass beam; that is, these are the

frequency ranges where wave propagation will not

Table 1 Properties of the layers within the periodic beam

Material Young’s modulus (GPa) Density (kg/m3) Length (m) Thickness (m) Width (m)

Aluminum 70 2700 1 0.005 0.005

Brass 110 8100 1 0.005 0.005
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persist due to the scattering effects taking place on the

local features of the unit cell.

3 Fractional-order model of the periodic beam

In this section, we develop the fractional-order model

for the analysis of the periodic beam. As discussed in

[38, 41], the fractional-order approach can be consid-

ered as a homogenization technique where the space-

fractional operators capture the effect of inhomo-

geneities. Under the slender beam assumptions, a

fractional-order analogue of the Euler–Bernoulli beam

theory can be developed to model the displacement

field of the homogenized beam subjected to transverse

loads. The dimensions of the beam are L� b� h,

where L is the length, b is the width, and h is the height,

as illustrated in Fig. 3. The nonlocal axial strain ð~�Þ in
the fractional-order beam is defined as [34, 48]:

~�ðx; zÞ ¼ �zDa
x

o ~wðx; tÞ
ox

� �
ð13Þ

where ~w is the fractional-order homogenized trans-

verse response of the beam. In this study, we consider

only slender beams (L=h ¼ 200). Recall that, for

slender beams (L=h[ 50), the rigidity to transverse

shear forces is much higher when compared to the

bending rigidity, therefore the contribution of the

shear deformation is essentially negligible

[34, 48, 49].

In the above equation, Da
xð�Þ is a space-fractional

Riesz-Caputo (RC) derivative with order a 2 ð0; 1Þ
defined on the interval x 2 ð0; LÞ as [34, 48]:

Da
xWðxÞ ¼ 1

2
~la�1 C

0D
a
xWðxÞ � C

x D
a
LWðxÞ

� �
ð14Þ

whereW is an arbitrary function, and ~l is a length-scale

factor introduced to ensure dimensional consistency of

the fractional-order derivative. C0D
a
xð�Þ and C

x D
a
L are the

left- and right-handed Caputo derivatives to the order

a, respectively. The interval of the RC fractional

derivative (0, L) defines the horizon of nonlocality of

the fractional-order beam, i.e., the distance beyond

which information is no longer accounted for within

the fractional derivative. Note that the horizon of

nonlocality in this study coincides with the length of

the beam, which is different from [41] where a finite

dimensional nonlocal horizon was defined. This

difference in the selection of the size of the nonlocal

horizon is consistent with the fact that this study deals

with the response of an infinite heterogeneous beam

(as opposed to [48] that focused on the response of

Fig. 2 Plot of the dispersion curve of the aluminum-brass periodic beam. aThe dispersion curve is folded across the first Brillouin zone.
b The unfolded dispersion curve of the periodic beam

Fig. 3 Schematic of a linear elastic beam subject to a

distributed transverse load Ftðx; tÞ
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homogeneous and finite nonlocal beams). It follows

that, while analysing an infinite beam the horizon of

nonlocality would correspondingly extend over the

entire beam, i.e., it would be infinite in nature. In this

case, the nonlocal convolution (corresponding to the

intervals of the RC derivative) would be performed

over the interval ð�1;1Þ. While it is possible to

assume a finite length for the horizon of the fractional-

order beam, we decided to choose the entire length of

the beam as the horizon in order to reduce the number

of fractional model parameters to one, that is the

fractional-order a. As we will show in Sect. 4, the

equivalence of the dispersion relations of the frac-

tional-order model and integer-order model allows

determining the value of a single parameter. We use

this equivalence to fix the value of a. We merely note

that this assumption on the infinite extent of the

nonlocal horizon matches closely with the formulation

proposed by Eringen et al. [50]. Note also that

classical integer-order homogenization theories often

result in integral averaging expressions over the entire

domain of the solid [19]. Further, we emphasize here

that, the use of the Caputo fractional derivatives in

Eq. (13) leads to a frame-invariant formulation. Recall

that the Caputo derivative of a constant function is

zero, as for classical integer-order derivatives. This

property does not hold true for all definitions of

fractional derivatives [21]. In the context of frame

invariance, this is a key point that ensures that no strain

is accumulated in the 1D solid under translation

[25, 30].

Further, the axial stress ð~rÞ in the homogenized

fractional-order beam is defined as:

~rðx; zÞ ¼ ~E~�ðx; zÞ ð15Þ

where ~E is the Young’s modulus of the fractional-

order beam. The thermodynamic consistency of the

above constitutive equations has been discussed in

detail in [51]. Using the above defined strain and stress

fields, the total nonlocal potential energy of the

fractional-order beam of volume X is obtained as:

P ¼ 1

2

Z
X
~rðx; zÞ~�ðx; zÞdV �

Z
L

FTðx; tÞ ~wðxÞdx

ð16Þ

where the second integral in the above expression

corresponds to the work done by the transverse force

FTðx; tÞ which is applied externally on a plane

perpendicular to the mid-plane of the beam. We have

also assumed that no body forces are applied. The

kinetic energy of the beam is given as:

T ¼ 1

2

Z
X
~q

o ~w

ot

� �2

dV ð17Þ

Using the expressions for the potential and kinetic

energy, the governing differential equations (GDE),

the associated boundary conditions (BC), and the

initial conditions (IC) necessary to determine the

response of the fractional-order beam are obtained by

using the generalized Hamilton’s principle as:

GDE : ~E ~I
o

ox
Da

x Da
x

o ~w

ox

� �� �� �
þ ~q ~A

o2 ~w

ot2

¼ FTðx; tÞ 8 x 2 ð0; LÞ [ t 2 ð0;1Þ
ð18aÞ

BC :

~E ~I I1�a
x Da

x

o ~wðx; tÞ
ox

� �� �
¼ 0 or d

o ~wðx; tÞ
ox

� �

¼ 0 at x 2 f0; Lg [ t 2 ð0;1Þ

~E ~I Da
xD

a
x

o ~wðx; tÞ
ox

� �� �
¼ 0 or d ~wðx; tÞ

¼ 0 at x 2 f0; Lg [ t 2 ð0;1Þ

8>>>>>>><
>>>>>>>:

ð18bÞ

IC: d ~wðx; tÞ ¼ 0 and d
o ~wðx; tÞ

ot

� �

¼ 0 at t ¼ 0 [ x 2 ð0; LÞ
ð18cÞ

where ~I, ~q, and ~A are the quadratic moment of inertia,

density, and cross-sectional area of the fractional-

order beam, respectively. The detailed steps leading to

the above simplification can be found in [48] where a

similar variational approach has been used in the

context of slender fractional-order nonlocal structures.

In Eq. (18), Da
xð�Þ is a Riesz-type Riemann-Liouville

(R-RL) derivative of order a defined on the interval

x 2 ð0; LÞ as:

Da
xWðxÞ ¼ 1

2
~la�1 RL

0 Da
xWðxÞ � RL

x Da
LWðxÞ

� �
ð19Þ

where W is an arbitrary function, and RL
0 Da

xð�Þ and
RL
x Da

Lð�Þ are the left- and right-handed Riemann

Liouville fractional-order derivatives, respectively.

I1�a
x ð�Þ is a Reisz-type fractional integral defined in

the following fashion:
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I 1�aWðxÞ ¼ 1

2
~la�1

0I 1�a
x WðxÞ þ xI 1�a

L WðxÞ
� �

ð20Þ

where 0I1�a
x ð�Þ and xI1�a

L ð�Þ are the left- and right-

handed Riemann Liouville fractional-order integrals,

respectively. Note that classical beam governing

equations are recovered for a ¼ 1.

The above presented fractional-order beam model

deserves a few additional remarks. First, note that the

fractional-order formulation presented in this study

follows from that presented in [48]. While this study is

concerned with the homogenization of heterogeneous

structures using fractional calculus, the study con-

ducted in [48] focused primarily on the modeling of

nonlocal beams. With regards to the latter remark and

given the differ-integral definition of the fractional-

order operators, we emphasize that the fractional-

order formulation is capable of modeling both nonlo-

cal elasticity as well as homogenized response of

heterogeneous structures. We merely note that the

modeling of the long-range cohesive forces in nonlo-

cal elasticity can also be interpreted as a homogeniza-

tion approach wherein the effect of a large number of

points within a prescribed distance, known as the

horizon of nonlocality, is accounted for in the

continuum governing equations. Further, in contrast

to [48] which focuses primarily on the static response

of beams, this study focuses on the dynamic analysis

of the fractional-order beam.

Next, we also emphasize that the set of linear

operators describing the governing differential equa-

tions (18a–18c) of the beam are self-adjoint. This

ensures that the system is positive definite indepen-

dently of the boundary or loading conditions. Thus, the

fractional-order approach presents a way to homoge-

nize the response of heterogeneous structures while

ensuring a self-adjoint positive definite system. As

mentioned previously, this property leads to well-

posed formulations free from boundary effects and

inaccurate predictions, hence enabling the use of

variational-principles to develop FE techniques for

numerical simulations. This latter observation is of

particular interest because the classical integral for-

mulations of nonlocal beams available in literature

have been shown to be ill-posed and leading to

inaccurate (also called ‘‘paradoxical’’) predictions for

certain boundary conditions [48, 52]. In conclusion,

the proposed fractional-order approach is mathemat-

ically well-posed [48], causal [25, 41], frame-invariant

[41], thermodynamically consistent [51], and satisfies

strain compatibility [41]. These characteristics suggest

that the proposed fractional-order approach is physi-

cally and mathematically consistent. The latter com-

ment is critical because the literature on fractional

continuum mechanics shows that not every fractional-

order elastodynamic formulation is mathematically

and physically consistent. Notably, there can be

reformulations to the present approach based on

recently proposed K�fractional derivatives. The

interested reader can find detailed discussions on

these operators in [53–55].

4 Fractional model parameters for the periodic

beam

In order to apply the fractional-order beam model to

the analysis of the dynamic response of the periodic

beam, wemust obtain the fractional model parameters,

namely the order a and length scale ~l, corresponding to
the periodic beam. While different strategies could be

envision to accomplish this step, in this study we insist

that the dispersion in the periodic beam obtained using

the classical approach and the fractional-order

approach are equivalent. The dispersion relations for

the integer-order periodic beam were derived in Sect.

2. To obtain the dispersion relation of the fractional-

order beam, we substitute the following ansatz in the

homogeneous part of the fractional-order beam gov-

erning equation:

~wðx; tÞ ¼ A1e
ð~kx�ixtÞ þ A2e

ð~kxþixtÞ ð21Þ

where A1 and A2 are the amplitudes of the wave

propagating in the positive and in the negative x̂

direction, respectively. Further, ~k is the wave number

of the wave and x is the angular frequency. Note that

the wave number ~k can be real or complex. Given the

wave solution assumed in Eq. (21), the real and

complex parts of the complex wave number ~k
correspond to the attenuating and propagating com-

ponent of the wave. Note that, the ansatz assumed in

Eq. (21) is contrary to the standard form:

A1e
ið~kx�xtÞ þ A2e

ið~kxþxtÞ. We assumed the former

expression in order to remain consistent with

the form of the Floquet wave number assumed in

Sect. 2.
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It appears that the derivation of the dispersion

relations requires the operation of the R-RL derivative

and the RC derivative in Eq. (18) on the exponential

functions in the assumed solution in Eq. (21). As

mentioned previously, the R-RL and the RC deriva-

tives in Eq. (18) have lower and upper bounds at the

boundaries of the beam. When the fractional-order

derivative (either RL or Caputo) has a lower bound of

�1 the solution kernel of the fractional wave

equation can be chosen in the form of exponential

functions and we have [38]:

C;RL
�1 Da

x ½ebx� ¼ baebx ð22Þ

When lower bounds other than �1 are chosen, then

solution kernels based on Mittag–Leffler functions are

appropriate. However, under proper assumptions for

the interval of the fractional derivative both kernels

satisfy the same dispersion relations [38]. Similar

comment holds for the upper bound. In this study, we

choose the exponential kernels given their simplicity

and computational efficiency. Using the fractional-

order derivative of the exponential given in Eq. (22),

we obtain the complete form of the dispersion

relations for transverse waves in the fractional-order

beam as:

~k ¼ e
2pi
1þa x2~l2ð1�aÞ ~q ~A

~E ~I

� � 1
2ð1þaÞ

ð23Þ

The fractional-order a for the periodic beam can now

be obtained by insisting that the wave number

obtained through Eq. (23), for a given frequency, is

equal to the wave number ~k obtained using the

classical beam theory in Sect. 2, at the same frequency.

Recall that the constant ~l is introduced to ensure

dimensional consistency of the formulation and hence,

we assume that ~l ¼ 1m similar to [38]. These

assumptions lead to the following expression for a:

a ¼
log x2 ~q ~A= ~E ~I

	 

log ð�~k2Þ

" #
� 1 ð24Þ

Note that the propagating component of the wave

number for transverse waves in a beam relates to the

angular frequency as: IðkÞ ¼ xqA=EI. Using this

relation, the expression for a is simplified as:

a ¼ 4
log jIðkÞj
log ð�~k2Þ

" #
� 1 ð25Þ

It is immediate that the fractional-order formulation

for the periodic beam results in a variable-order a,
where a is a function of the angular frequency x. Note

that for obtaining the value of a, the wave number ~k
corresponding to the unfolded propagating wave

solution should be chosen. By using the properties of

the periodic beam given in Table 1, the numerically

obtained wave numbers in Fig. 2, and the expression

for the order given in Eq. (25), we obtain the

fractional-order for the periodic beam. The plot of

the fractional-order is given in Fig. 4.

We make a few remarks concerning the nature of

the fractional-order. First, as evident from Fig. 4, the

fractional-order model of the periodic beam results in

a complex frequency-dependent order. We emphasize

that this characteristic of the fractional-order formu-

lation is independent of the choice of the material and

geometric parameters of the periodic beam. Rather,

the nature of the order (real or complex) is dependent

on the dispersion characteristics of the beam. This

behavior of the fractional-order model is related to the

characteristics of differential operators with complex

orders. As shown in [38, 56, 57], a complex order

derivative enables a frequency-dependent modulation

of both phase and amplitude of the different harmonic

components, therefore allowing for virtually unre-

stricted matching capabilities for the dispersion rela-

tions. Further, it appears from Fig. 4 that the order is a

Fig. 4 The plot of the fractional-order a for the aluminum-brass

periodic beam as a function of frequency. The fractional-order is

equal to 1 for frequencies in the pass-bands, while the order is

complex valued for frequencies within the band-gaps of the

periodic structure
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complex number for band-gap frequencies while, the

order is a real number ða ¼ 1Þ for band-pass frequen-
cies. This is consistent with the physics of the problem

since a ¼ 1 is indicative of propagating waves [41]. In

the band-gaps, RðaÞ\ and IðaÞ\. RðaÞ\ indicates

that flexural waves in the periodic beam decay

spatially, which is again consistent with the fact that

this frequency is located within a band-gap. Addition-

ally, as shown in [38], IðaÞ\ indicates a frequency-

dependent modulation of the phase of the beam

response.

5 Steady-state response of the fractional-order

beam

We use the fractional model parameters derived in

Sect. 4 within the fractional-order beam model to

analyse the response of the periodic beam. Given the

complex differ-integral nature of the beam governing

equations in Eq. (18) we adopt a numerical strategy to

solve the governing equations. More specifically, we

use the fractional-order finite element method (f-

FEM) developed in [48] to simulate the response of the

periodic beam. However, certain modifications are

necessary because the definition of the RC derivative

adopted in this study (see Eq. (14)) is different from

[48]. Additionally, the f-FEM proposed in [48] was

developed for fractional differential equations (FDEs)

with real-valued orders, while the order of the

fractional-model for the periodic beam is complex

valued. In the following, we briefly discuss the main

features of the f-FEM and then the corresponding

numerical results.

5.1 Fractional finite element method (f-FEM)

Analogously to classical FEM, the f-FEM is formu-

lated starting from a discretized form of the total

potential energy functional given in Eq. (16). The

domain X ¼ ½0; L� is divided into Ne finite elements

denoted asXe
i with i ¼ f1; . . .;Neg such that[Ne

i¼1X
e
i ¼

X and Xe
j \ Xe

k ¼ ;8j 6¼ k. The transverse displace-

ment at any point x 2 Xe
i is evaluated by interpolating

the corresponding nodal degrees of freedom of Xe
i as:

~wðxÞ ¼ ½N̂ðxÞ�fWe
i g ð26Þ

where, ½N̂ðxÞ� is a matrix containing the interpolation

functions and fWe
i g is a vector containing the nodal

displacement variables of the element Xe
i . From the

definition given in Eq. (13), the fractional-order axial

strain in the beam is expressed as [48]:

~�ðx; zÞ ¼ �zDa
x

o ~w

ox

� �
¼ �z

2Cð1� aÞZ L

0

Aðx; x0; aÞ½Bðx0Þ�½~Cðx; x0Þ�dx0
� �

fWg

¼ �z½ ~BðxÞ�fWg

ð27Þ

where x0 is a dummy variable used for convolution

along the x̂ axis, and fWg denotes the global degrees

of freedom vector. Aðx; x0; aÞ ¼ 1=jx� x0ja denotes

the kernel of the fractional-order derivative. Further,

the matrix ½Bðx0Þ� is expressed as:

½Bðx0Þ� ¼ d2½N̂ðx0Þ�
dx02

ð28Þ

Further, ½~Cðx; x0Þ� is a connectivity matrix that is used

to attribute the nonlocal contributions from the

different elements in the horizon of x to the corre-

sponding nodes of those elements. In order to correctly

account for these nonlocal contributions from the

elements in the horizon, we transform the nodal values

fWe
x0 g into {W} using connectivity matrices in the

following manner:

fWe
x0 g ¼ ½~Cðx; x0Þ�fWg ð29Þ

The connectivity matrix ½~Cðx; x0Þ� is designed such that
it is non-zero only if the point x0 lies in the nonlocal

horizon of x. It is immediate to see that these matrices

activate the contribution of the nodes enclosing x0 for
the numerical evaluation of the convolution integral in

Eq. (27).

The expression for the fractional-order strain in

Eq. (27) is used along with the nonlocal stress given in

Eq. (15) to obtain the total deformation energy of the

beam as:

U ¼ 1

2
fWgT ½ ~K�fWg ð30Þ

where the nonlocal stiffness matrix ½ ~K� is given as:

½ ~K� ¼ ~E ~I

Z L

0

f ~BðxÞgTf ~BðxÞgdx ð31aÞ
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Note that the use of the connectivity matrix in Eq. (27)

results in the fact that the global stiffness matrix ½ ~K� is
obtained directly in the global form, hence not

requiring a separate assembly process for the element

stiffness matrices. As discussed in [48], owing to the

existence of cross-stiffness matrices, the assembly of

the element stiffness matrices in a nonlocal FEM

requires care and it is not as immediate as the case of a

local FEM. Although it might appear that this

assembly strategy would require the use of larger

(global) matrices, we emphasize that simple principles

of connectivity are used to avoid the multiplication of

large sparse matrices in Eq. (27), similar to what is

done in local FEM. Note that the FEM also involves

the numerical integration of the nonlocal stiffness

matrix ½ ~K�. The specific details of the numerical

integration procedure are extensive and can be found

in [48].

The final algebraic equations describing the FE

model of the fractional-order Euler–Bernoulli beam

are now obtained by using the extended Hamilton’s

principle as:

½ ~M�f €Wg þ ½ ~K�fWg ¼ fFTg ð32Þ

where the mass-matrix ð½ ~M�Þ and the force vector

ðfFTgÞ of the fractional-order beam are the same as

obtained in classical FEM for beams [48, 49]. The

solution of the above algebraic equations gives the

nodal generalized displacement coordinates. Regard-

ing the f-FEM for the equivalent fractional-order

system for the periodic beam, it is convergent for

complex orders. More specifically, it was observed

that convergence was achieved when the ratio

Ne=L[ 10. This is in contrast to the Grunwald-

Letnikov finite difference formula in [39], which was

divergent for fractional domains with a complex order.

Second, given that we obtain complex values of the

order for frequencies with the band-gaps, the f-FEM

would require the computation of a complex valued

Gamma function (see Eq. (27)). In order to compute

the complex valued Gamma function we adopted the

algorithm proposed in [58].

5.2 Numerical results and discussion

The f-FEM was applied to analyse the dynamic

response of the fractional-order beam. We consider

only the section of the infinite periodic beam in the

positive portion of the x̂ axis and apply a driving

condition consisting of a sinusoidal transverse dis-

placement ~wð0; tÞ ¼ W0 sin ðX0tÞ at x ¼ 0 as shown in

Fig. 5. At the steady-state, we assume a general

response in the form fWg ¼ fW0g sinðX0tÞ, where
fW0g is the steady-state amplitude. By substituting the

previous ansatz for fWg in the FE Eq. (32), we obtain:

fW0g ¼ ½ ~K� � X2
0½ ~M�

� ��1fFTg ð33Þ

Note that, given that the solution is obtained via

f-FEM, the initially infinite domain must be truncated.

In order to simulate an infinite domain, the truncated

end must be complemented with an absorbing bound-

ary condition (that prevents unwanted reflections).

The absorbing boundary condition was implemented

according to [59].

To demonstrate the capability of the fractional-

order formulation we considered the following loading

cases: (1) Loading #1: the driving angular frequency

X0 ¼ 5 rad/s lies in the first pass-band; (2) Loading

#2: the driving angular frequencyX0 ¼ 15 rad/s lies in

the first band-gap; (3) Loading #3: the driving angular

frequency X0 ¼ 40 rad/s lies in the second pass-band;

and (4) Loading #4: the driving angular frequency

X0 ¼ 61 rad/s lies in the second band-gap. The

fractional-order a for these cases are obtained using

Eq. (25) and are found to be 1, 0:97� 0:19i, 1, and

0:99� 0:05i, respectively. As expected, the order is an

integer for the frequency within the pass-band, while it

is complex for the frequency within the band-gap. We

expect that the response of the beam is periodic for

loading #1 and attenuated for loading #2. The results

obtained for the four loading cases defined above are

shown in Fig. 6 where they have been compared

Fig. 5 The infinite bi-layer periodic beam converted into a

homogeneous fractional-order beam. The right hand side of the

beam is treated with absorbing boundary conditions in order to

simulate the infinite beam during the steady state analysis. For

the steady state analysis, the response of the periodic beam and

its fractional-order counterpart are analyzed following the

application of a sinusoidal displacement applied at the left hand

side
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against numerical simulations obtained using the

commercial FE software COMSOL.

As evident from Fig. 6, the match between the

results obtained via the fractional-order formulation

and the classical results, when the driving angular

frequency lies within the first pass-band and first band-

gap frequencies (loading #1 and loading #2), are

excellent. The maximum error (‘1 norm) obtained

between the f-FEM and COMSOL results are 1% and

2% in the loading (1) and (2), respectively. For the

loading #3 where the driving angular frequency lies

within the second pass-band, the f-FEM result matches

the phase of the COMSOL result, but does not match

the amplitude locally. This type of behavior is not

unexpected because the frequency is near the long

wavelength limit and the response is increasingly

dominated by scattering effects. Further, recall that for

band-pass frequencies, the order of the fractional

system is a ¼ 1 and for a ¼ 1, the fractional-order

beam formulation reduces to the classical Euler–

Bernoulli beam formulation with homogenized mate-

rial properties (see Eq. (25)). Like other homogeniza-

tion techniques, the proposed fractional

homogenization model cannot capture localized

effects due to wave scattering. In order to capture

the localized effects, the fractional methodology

would need to be modified. It is hypothesized that

the localized effects associated with the short wave-

length limit could be captured by utilizing a spatially-

variable fractional order. Note, however, the good

(a)

(c)

(b)

(d)

Fig. 6 The steady state response obtained obtained using the

fractional order governing equation for the aluminum-brass

periodic beam solved via the f-FEM method. For the different

cases, the forcing frequency of the external load is within the a

first pass-band: loading #1, b first band-gap: loading #2, c
second pass-band: loading #3, and d second band-gap: loading

#4. The inset in c provides a zoomed in view of the response of

the beam from x ¼ 10 m to x ¼ 30 m
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agreement between the f-FEM and the COMSOL

results for loading #4 where the driving angular

frequency lies within the second band-gap. The

maximum error (‘1 norm) obtained between the f-

FEM and COMSOL result is merely 7% in this case.

Again, the amplitudes of the two curves do not match

due to localization at high frequencies, but the

fractional model did successfully capture the attenu-

ating flexural displacement within the band-gap. This

is a key feature that most classical homogenization

approaches cannot capture accurately.

Recall that the proposed technique is effectively a

homogenization approach and like most homogeniza-

tion methods (except for some recently developed

high-frequency homogenization techniques), it is

locally accurate only for long wavelengths. When

approaching short wavelength regimes, local interfer-

ence effects due to forward propagating and back-

scattered waves cannot be accurately captured. Nev-

ertheless, this approach is able to correctly capture the

wave attenuation as well as the proper spatial phase for

band-gap frequencies. These results highlight the

robustness of the fractional-order formulation in

capturing the response of the periodic beam particu-

larly at band-gap frequencies, where classical homog-

enization techniques fail to capture the spatial

attenuation of the flexural waves [38]. The results

presented above for driving frequencies within the first

and second band-gap allow us to make some remarks

on the nature of the fractional-order model predictions

for higher-order band-gaps. For higher-order band-

gaps, it is expected that the fractional-order model

presented in this study will capture attenuation due to

the complex valued fractional-order (see Fig. 4).

However, there would be an increasing mismatch in

the amplitude of the response due to the inability of the

fractional-order model to capture the localized scat-

tering effects. In this regard, depending on the specific

application, the latter aspect may or may not be a

disadvantage. As an example, if the objective is to

simulate the response of a solid with an embedded slab

of the periodic medium (e.g. a periodic 1D beam

embedded in an otherwise homogeneous beam), the

detailed response inside the periodic medium might

not be of interest. Note that this comment is applicable

to homogenized models in general and it is neither a

consequence nor a peculiarity of the fractional order

modeling.

We conclude observing that, in view of the above

described characteristics, the homogenized fractional

model may provide a powerful alternative route to

develop homogenization approaches. In this regard,

we note some advantages of the fractional-order

approach over classical (integer-order) high-fre-

quency homogenization techniques. Recall that the

location of the band-gaps in high-frequency homog-

enization approaches is computed by solving the

eigenvalue problem corresponding to a unit cell

subject to quasi-periodic boundary conditions,

obtained via asymptotic multiple scale representation

of the elastodynamic equation. The computation of

this eigenvalue problem is often limited by the

computational capabilities of the eigen solver and

becomes progressively more complex as a higher

number of terms is used within the multiscale expan-

sion. The combination of this aspect with the need for

a local approximation of the periodic structure’s

dispersion curves (near the band-gaps) leads to a

limitation on the accuracy of high-frequency homog-

enization approaches. On the other side, we note that

the high-frequency homogenization approach is the-

oretically more rigorous than the fractional-order

approach proposed in this work. Nevertheless, we

also highlight that this work was intended to explore

the feasibility and the potential of fractional-order

homogenization techniques for the simulation of

periodic systems, and it should not be considered as

indicative of optimal performance. Indeed, it is

possible to envision that the performance of the

proposed method could be further improved by taking

full advantage of the spectrum of opportunities offered

by fractional operators such as, for example, extending

the method using either variable-order [60] or dis-

tributed-order operators [25]. Variable-order operators

are well-equipped to capture spatially-varying

microstructures [60] and distributed-order operators

can capture multiscale response [25].

6 Conclusions

This study presented a preliminary assessment on the

application of fractional calculus to the homogeniza-

tion of heterogeneous structures. In particular, the

formulation of a fractional-order homogenization

technique for the analysis of 1D periodic beams was

presented and shown to be capable of overcoming the
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classical long wavelength limit typical of low-fre-

quency techniques. At a mathematical level, the differ-

integral nature of the space-fractional operators was

exploited to convert the classical integer-order differ-

ential equation with spatially-variable coefficients,

governing the flexural response of beams, into a

fractional differential equation with constant coeffi-

cients. By assuming a nonlocal horizon equal to the

length of the beam, the order of the fractional model

was derived by imposing the equivalence of the

dispersion behavior with the initial heterogeneous

beam. The procedure yielded a complex-valued and

frequency-dependent order whose real and imaginary

parts are related to the decay and to the frequency

modulation of the amplitude and phase of the wave

propagating in the medium. A fractional-order finite

element method (f-FEM) was developed in order to

numerically solve the complex-valued and fractional-

order governing equations. The consistency of this

numerical method was a direct result of the self-

adjoint, well-posed, and positive definite nature of the

fractional-order system. The f-FEM outperforms,

particularly in terms of stability, previously used

methods based on finite difference schemes. The

fractional-order framework was validated, at both

band-pass and band-gap frequencies, by direct com-

parison against the response of a periodic beam solved

via the traditional finite element method based on

integer-order equations. The ability of the fractional

order models to capture the attenuation within the first

few band-gaps is a strength of the proposed method

over classical low-frequency homogenization tech-

niques that cannot capture the spatial decay of waves

unless resorting to the addition of artificial and

unrealistic damping terms.

In conclusion, the fractional-order method provides

an interesting alternative route to extend the range of

applicability of homogenization techniques beyond

the classical long wavelength limit. This aspect

suggests that fractional-order mathematics could serve

as the basis to develop a new generation of high-

frequency homogenization methods, potentially cap-

able of combining the strengths of both low- and high-

frequency methods. We finally highlight that the

fractional-order homogenization technique developed

in this study is very general in nature. Although it was

applied to one-dimensional periodic structures, it is

anticipated that this technique could be extended to

higher dimensional periodic systems.
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