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Abstract The advancement of manufacturing tech-
niques has led to a rapid increase in the design and
fabrication of periodic and architectured materials for
a variety of dynamics and wave manipulation appli-
cations. Classical low-frequency homogenization
techniques have been popular and invaluable tools to
facilitate the numerical simulation of these systems,
although their application is naturally limited to the
long-wavelength regime. As a result, scattering dom-
inated features, such as the occurrence of frequency
band-gaps, cannot be captured by these models.
Indeed, the first band-gap typically marks the approx-
imate limit of validity of low-frequency homogeniza-
tion approaches. Abandoning the use of this approach
allows recovering the detailed dynamic behavior due
to the geometric features of the periodic units, but it
also comes at a significant increase in computational
cost. In this study, we leverage the use of fractional
operators to revisit the classical low-frequency
homogenization approaches and explore their possible
extension beyond the initial band-pass (low-fre-
quency) regime. Remarkably, the resulting frac-
tional-order homogenization approach is capable of
representing the dynamic behavior of periodic
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structures within the first few frequency band-gaps.
In particular, we apply the fractional approach to
model elastic wave propagation in a bi-material
periodic beam which serves as an idealization of a
one-dimensional elastic metamaterial. The use of the
fractional operator formalism allows casting the
classical integer-order wave equation with spatially-
variable coefficients, typical of an inhomogeneous
beam, into a fractional-order differential equation with
constant coefficients. Thus, the spatial heterogeneity
of the periodic system is accounted for via the order of
the fractional derivative. The fractional-order govern-
ing equation is obtained via variational principles,
starting from fractional-order kinematic relations. It is
found that the resulting fractional differential model of
the heterogeneous system has, in its most general
form, a complex valued and frequency-dependent
order. The results from the fractional order model are
compared with those obtained from the classical wave
equation in order to assess the validity of the approach
and its performance. The dynamic analysis is carried
out at both band-gap and band-pass regimes showing a
good agreement with results from traditional
methodologies.

Keywords Fractional calculus - Homogenization -

Periodic media - Elastic metamaterials - Frequency
band-gaps
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1 Introduction

The rapid growth of the fields of periodic and
architectured materials has further highlighted the
need for accurate and efficient computational methods
capable of predicting their dynamic behavior. Many of
these media exploit the periodicity of certain structural
features (e.g. the distribution of either material or
geometric properties) to achieve a global dynamic
behavior that would not be achievable in classical
homogeneous material systems, such as metals or
polymers. These materials are typically assembled by
repeating periodically in space the smallest unit
element, called the fundamental unit cell, that captures
in itself all the distinctive constitutive features of the
medium. When these periodic structures operate in a
subwavelength frequency regime (the so-called meta-
material regime), they can exhibit unique wave-
guiding characteristics including wave shaping, colli-
mation, focusing, and steering [1-5].

Over the past few decades, several methods have
been proposed to simulate the dynamics of these
periodic structures. Some examples include, but are
not limited to, model-order reduction techniques
[6, 7], finite difference methods [8, 9], quadrature
based methods [10, 11], finite element methods
[12, 13], and plane-wave expansion methods
[14, 15]. From a high-level perspective, all these
approaches are characterized by a process of dis-
cretization of the system in either space or time. While
these techniques have found good success and are still
widely used, they are subject to limitations that impose
an implicit trade-off between accuracy and computa-
tional time. Further, there are specific types of media
for which the discretization process leads rapidly to
computational resources that are beyond available
capabilities. Examples of these media include multi-
scale inhomogeneities such as those present in com-
plex microstructures, porous and fractal media.

A very powerful alternative that is not subject to the
same computational costs of discretized methods is
offered by homogenization techniques [16-20] which
eliminate the spatial dependence of the material
parameters by replacing them with so-called effective
parameters. Broadly speaking, there are two different
approaches to classical homogenization: low-fre-
quency approaches and high-frequency approaches.
In classical low-frequency homogenization proce-
dures, the inhomogeneous medium is replaced by a
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homogeneous one characterized by constant and
uniform material properties capable of representing
the behavior of the original material as a whole. These
homogenized properties facilitate the use of contin-
uum theory for the efficient prediction of the dynamic
response of the complex medium. While these
homogenization techniques have long been a powerful
approach to model media having complex and inho-
mogeneous structure, they encounter some important
limitations stemming from certain intrinsic assump-
tions at the basis of the method. In periodic structures,
the classical low-frequency  homogenization
approaches fail to predict the existence and the
location of frequency band-gaps, which are due to
multiple scattering from the heterogeneous inclusions
in the shorter wavelength regime (often indicated as
the phononic regime). This is not surprising since the
homogenized material properties can be representa-
tive of the actual heterogeneous medium only in a
range where the wavelength of the propagating wave
is sufficiently larger (typically by, at least, a factor of
2) than the characteristic dimension of the microstruc-
tural features [16, 19, 20]. This shortcoming was
addressed by high-frequency approaches where an
asymptotic multiple scale expansion of the homoge-
nized material properties is used to capture some
aspects of the microstructural features [17, 18].
Despite providing a very successful approach to
broadband homogenization (apparently covering both
material regimes), some limitations of the high-
frequency approach follows from its theoretical for-
mulation and the associated computational cost.
Independently of the specific approach, homoge-
nization formulations intrinsically perform averaging
operations of the spatially varying material properties
and leverage specifically designed convoluted kernels
to obtain either the homogenized material properties
(in low-frequency approaches) or corrections to the
first-order homogenized properties (in the high-fre-
quency approaches). It is indeed this underlying
convolution approach that motivated the present
investigation and the corresponding reformulation of
the homogenization approach via a class of differ-
integral operators, known as fractional-order opera-
tors. As discussed in the following, fractional order
operators are based on convolutions with power-law
kernels, hence suggesting a natural application to
homogenization problems. In recent years, fractional
calculus has emerged as a powerful mathematical tool



Meccanica

to model a variety of complex physical phenomena.
Fractional-order operators allow for the differentiation
and integration to any real or complex order, are
intrinsically multiscale, and provide a natural way to
account for several complex physical mechanisms
(e.g. nonlocal effects, medium heterogeneity, and
memory effects) [21]. These characteristics of frac-
tional operators have led to a surge of interest in
fractional calculus and its application to the simulation
of several physical problems. Areas that have seen the
largest number of applications include the formulation
of constitutive equations for viscoelastic materials
[22, 23], model-order reduction of lumped parameter
systems [24], modeling of nonlocal elasticity [25-36],
phenomenological homogenized models [37—40], and
transport processes in complex media [41-45].

As mentioned above, the differ-integral nature of
fractional-order operators allows them to model
spatial and temporal scale effects. While time frac-
tional operators enable memory effects (i.e., the
response of a system is a function of its past history),
space fractional operators can account for medium
heterogeneity, nonlocal effects and scale effects. In
other terms, while temporal fractional derivatives
physically represent damping and dissipation that
occur in lossy or viscoelastic materials, spatial frac-
tional derivatives are indicative of attenuation in
systems that potentially are still conservative. That is,
space fractional derivatives are ideal tools to capture
frequency band-gaps in which attenuation is due to
multiple back scattering and not to energy dissipation.
This discussion suggests that fractional calculus can
serve as a powerful mathematical tool for the homog-
enization and analysis of complex heterogeneous and
periodic structures. In fact, recently, a handful of
studies have started exploring this application of
fractional calculus [38, 41]. In [38], Hollkamp et al.
used space-fractional operators to obtain the homog-
enized equations governing the dynamic response of
heterogeneous bi-material rods. The most notable re-
sult of this study was the validity of these equations
beyond the classical homogenization (long wave-
length) limit and their resulting ability to capture the
response within, at least, the first frequency band-gap.
In [38], the governing equations were numerically
solved using a finite difference scheme that, while
effective, was sensitive to instabilities due to the
complex valued order of the fractional operators.

In this work, we perform a preliminary assessment
on the use of fractional calculus as a homogenization
technique to periodic systems while concurrently
developing accurate and stable numerical techniques
for complex valued fractional-order differential equa-
tions (which describe the resulting fractional-order
homogenized media). The proposed fractional-order
technique is more akin to the class of low-frequency
approaches, in the sense that it replaces the spatially-
varying material properties (or equivalently, the
elastodynamic equation with spatially-varying coeffi-
cients) with homogenized material properties (or
equivalently, constant coefficient elastodynamic equa-
tion). From a high level perspective, this study focuses
on the generalization of the approach presented in [38]
by pursuing two main objectives: (1) the extension of
the underlying theoretical formulation to model the
flexural response of periodic Euler—Bernoulli beams,
particularly within the frequency band-gaps, and (2)
the development of more efficient computational
approaches for the solution of fractional complex-
order differential equations. To achieve these two
objectives we will first derive the fractional-order
governing equations of an Euler-Bernoulli periodic
beam by means of variational principles. Then, we will
derive the dispersion relations of the fractional-order
beam and use it to obtain the equivalent fractional
order capable of capturing the response of the
heterogeneous system. Finally, we will present a Ritz
fractional-order finite element method (f-FEM) for
complex-order equations and use it to simulate the
steady-state response of the fractional-order beam.
Fractional-order FEMs have been developed in the
literature using Galerkin [46], Petrov—Galerkin [47]
and very recently, Ritz-based methods [48]. However,
it appears that none of these studies have addressed the
solution of complex valued fractional-order equations.
We anticipate that the f-FEM developed in this study is
robust and capable of admitting both real and complex
valued fractional-orders. The results obtained via the
f-FEM establish that the fractional-order homogeniza-
tion technique presents excellent predictions for the
response of the periodic beam in the first band-gap and
fairly good predictions within the second band-gap.
Further, we also use these results to compare the
fractional-order approach with classical low-fre-
quency and high-frequency homogenization tech-
niques. The proposed fractional-order technique is
more akin to the classical low-frequency approach, in
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the sense that it replaces the spatially-varying material
properties (or equivalently, the elastodynamic equa-
tion with spatially-varying coefficients) with homog-
enized material properties (or equivalently, constant
coefficient elastodynamic equation).

The remainder of the paper is structured as follows:
first, we obtain the dispersion relations for a periodic
beam using the classical Euler-Bernoulli theory. Next,
we present a fractional-order theory for modeling the
response of heterogeneous beams. Finally, we obtain
the fractional model parameters for the periodic beam
and use these parameters in the f-FEM to obtain the
response of the periodic beam at different forcing
frequencies.

2 Governing equations and dispersion relations
of the periodic beam

In this study, we use the dispersion relation obtained
using the classical (integer-order) beam theory in
order to obtain the fractional model parameters for the
periodic beam. Note that the strategy to determine the
fractional order in a fractional mechanics representa-
tion can follow different avenues depending on the
underlying physics being captured. This topic is still
an object of extensive research and a widespread
consensus on general methodologies has not been
reached yet. Nevertheless, the focus of this study is on
the formulation and performance of the fractional
order approach to model periodic systems, hence the
generality of this method will not be affected by the
strategy employed for the order determination.

In order to implement the approach mentioned
above, we first derive the dispersion relations for the
periodic beam by using the classical (integer-order)
Euler—Bernoulli beam formulation. Recall that the
Euler-Bernoulli formulation is valid only for slender
beams, that is for beams with a length to thickness
ratio greater than or equal to approximately 100 [49].
Consider an infinite periodic beam consisting of two
isotropic sections #1 and #2 with different properties,
as shown in Fig. 1. The length of the two layers are
denoted L; and L,, such that the lattice constant d of
the beam is given by d = L; + L, (see Fig. 1). The
coordinate system is chosen such that the origin lies on
the interface between the two layers. It is immediate
that layer #1 appears for x € [—L; + Nd, Nd|, while
layer #2 appears for x € [Nd, L, + Nd|, where N =
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Fig. 1 Schematic of the periodic beam consisting of two
sections having different material properties. Some character-
istic dimensions are also shown

{0,+£1,£2...} is a set of integers. The Young’s
modulus, quadratic moment of inertia, density and
area of cross-section of the layers are denoted by
E,,I,,p, and A,, respectively. In the above
m € {1,2}, where m = 1 denotes the first layer, while
m = 2 denotes the second layer within the periodic
beam.

The governing equation of the Euler-Bernoulli
beam in integer-order form is given by:
0* *w(x, 1 *w(x, 1)

a2 [E(x)l(x) T’)} + p(x)A(x) a0 = 0
(1)

where w(x, f) is the deflection of the mid-plane of the
beam at a spatial location x and at the time instant ¢. In
a periodic beam, the Young’s modulus E(x), the
quadratic moment of inertia I(x), the density p(x), and
the area of the cross-section A(x) are periodic func-
tions of the spatial location x with a period
d = L; + L,, as discussed above. Although the beam
properties are a periodic function of the spatial
location x, they are isotropic within each individual
section. This latter consideration allows for the
simplification of Eq. (1) to the following:

o*w(x, 1) *w(x, 1)
Epl,——2 Ap——22 =0 2
a5 =
where m = 1Vx € [-L, + Nd, Nd| and

m = 2¥x € [Nd, L, + Nd|. Using the method of sepa-
ration of variables we decompose w(x, f) in the
standard form w(x,¢) = W(x)e " involving the pro-
duct of decoupled spatial and temporal functions. Note
that o is the angular frequency and i= v/—1. Substi-
tuting w(x, ) in Eq. (2) results in the following
expression for W(x):

W(x) :Amleﬁmx +Amze_ﬁ’”x +Am3ei/)’,“x +Am4e_i/3m"
(3a)
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where m € {1,2} and A,;1,Aum, A, and A,y are
either real or complex constants. Further, it appears
from Eq. (2) that the coefficients of the beam
governing differential equations are periodic in nature.
Using the Floquet theorem for the periodic beam, it
can be shown that the displacement, slope, bending
moment, and shear force are quasi-periodic across
adjoining cells. It follows that:

W(x) = eMW(x —d)Vx € (—00,00) (4)

where A is the Floquet wave number which can be
either real or complex.

The dispersion relations for the periodic beam can
now be derived by establishing a relationship between
the set of eight constants A,,A;2,Ans, and Apyg.
Imposing the continuity of displacement, slope,
bending moment, and shear force at x = O (i.e. at the
interface between the two layers within a unit cell)
results in the following set of four equations:

A +An+As+Au

(5a)
=Ay +An +Ap+ Ay
BiAn — BiAn +iB A1 —if A1 (5b)
= BrA21 — BrAn +ifrA2 —ifrAn
EL AL + B A — BAis — fAu] (50)
=E [ﬂ%Au + B3An — f3Ar — 5§A24]
ro1 1 1 1
1 —1 i —i
1 1 —1 —1
7] = 1 -1 —'i .i
ke Pili efila ke hik relfils
ke Pl —gebilt e Al jgelhil
ke Pl gefila — kel yelfil
Le Pl —gefilt —ige Al il

EL [BiA1 — BiA1 — iBjA13 +iB1A 4]

. . (5d)
= Ex1r [f3 A2 — ByAn — if3A2s +1B3An4)

An additional set of four relations are established by
using the Floquet relations in Eq. (4) in order to relate
the different physical variables at x = —L; and at
x = L,. This gives:

Allekdfﬁ]L] +A1267xd+/51L1 +A]3e7xd7iﬁ]L1 +A14e7\.d+iﬁlL1
:AZIC/}sz +A2267ﬂ2L2 +A23ei/321~2 +A24e*i/fz]~:
(6a)
BrAne It — g Attt

+ iﬁlABe?\.d—i/},Ll _ iﬁ1A14e7\d+i/}|L|

= BrAnel™ — frAne P 1 if,Anelt —ifAze R

(6b)

E\L [ﬁ%AneM*ﬁ'L‘ + BrA et thi

2 Ad—if, L 2 Ad+ip, Ly

— piA3e 1= — BTA 4 1
ﬁ] 13 ) s ﬂ1 214 " } (60)

= Ex Ly [f5A01e" + BrAze P

_ ﬁ§A23eiﬁ2L2 _ ﬁ%A24e*iﬁ2Lz]

Elll [ﬁ?Allekd—/ﬁLl _ B?AlzekdﬂL[)’lLl
_ iﬁ?A]:;ekd_iﬂlL] 4 iﬂ:;)Al4eM+i/flL]] (6d)

= E2[2 [ﬁ%AZIGﬁsz — ﬁ;Azzeiﬁsz
_ iﬁgABeiﬁsz + iﬁ%A%e*iﬁsz]

The Egs. (5,6) are combined to form a set of eight
homogeneous equations of the form [T]{X} =0,

X ={A11ApABAL — Ay — Ay — Ay —
A24}T is a vector containing the eight constants. The
matrix [7] is obtained as:

where

1 1 1 1 T

p —B if —if
P 7
zp? —Zp —izp? iZp?
ehla e hla eifala e ifla
[}eﬁsz _ ﬁe*/}zl—z iﬁeiBsz _ i[}e*iﬁsz
Zprelle  ZBPe Pl _ Zp%eifla _ Zf%eifle
Z[}3e/szz _ Zﬁ3e—/52Lz _ iZﬁ3ei/szz iZ[;’3e—i/52Lz ]

(7)
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where k = ™ = f,/,, and Z = E,I, /E\I,. For a
nontrivial solution to the displacement field of the
periodic beam the determinant of the matrix [7] must
be set to zero. This yields the dispersion relation for
the periodic beam as a fourth degree polynomial of the
variable x given as:

P(i) = asc* + a3 + aryk® +ajk +ag =0 (8)

where a; are either real or complex constants. The
roots of the above polynomial give the value of x and
subsequently the Floquet wave number A.

Given the complex nature of the matrix [7], we did
not obtain explicit expressions for the wave number A
and instead adopted a numerical approach. We make a
remark here pertaining to the numerical procedure of
finding the roots of the above polynomial P(k). Given
the presence of exponentials within the matrix [T], the
coefficients of the characteristic polynomial P(x) are
highly conditioned, i.e., ratios of the coefficients of
P(i) are large. In such a case it was found that the use
of numerical root-finding solvers results in erroneous
solutions for x. In order to extract the roots accurately,
we exploit a certain symmetry within the periodic
beam in order to factorize P(k) into two quadratic
polynomials.

Note that the continuity and the Floquet relations
remain unchanged when the layers within the periodic
beam are interchanged. More specifically, the formu-
lation remains unchanged under the transformation:
L, — —Ly and Ly — —L,. Under this transformation
p, — B, and B; — P,. Using these transformations
within the determinant leads to the fact that ag = ay
and a; = az. Now, on dividing the polynomial P(i)
by the leading order coefficient ay, it is immediate that
P(i) can be factorized into two quadratic polynomials
in the following fashion:

Ple)= (1 +pic+ D) (K> +pac+1) =0 9)

where the coefficients p; and p, are given as:

Table 1 Properties of the layers within the periodic beam

1 as as 2 as
=—|—= — ] —4l—=-2 10
Py |2 ¢ (2) -+(= (10)
Using the factorized quadratic polynomials, the solu-
tions for x can now be found by using the standard

results for obtaining the roots of quadratic
polynomials:

K,ﬁzzé[_pl i\/ﬁ} (11a)
s =y [_pz + \/p%7—4:| (11b)

The Floquet wave number can be found by taking the
logarithm of the obtained values of x:

)\'n = llOg(Kn) (12)
d
where n = {1,2,3,4}. It follows from Eq. (11) that
ki =1 and k3x4 = 1. Thus, in principle, A, =
—A1 +iNyn/d and Ay = —X3 4 iN,7/d where Ny and
N, are integers. We choose N; = 0 and N, = 0 here
and hence we take the principal logarithm in Eq. (12).
Note that this does not affect the generality of the
results and we will show that this results in a folding of
the dispersion curves across the first (irreducible)
Brillouin zone of the periodic beam. In the subsequent
analysis, we consider a periodic beam consisting of
aluminum and brass. The specific properties of the
layer #1: Aluminum and layer #2: Brass are given in
Table 1. The dispersion of flexural waves in this
periodic beam is obtained using the above presented
formalism and is shown in Fig. 2. Figure 2a plots the
wave number versus frequency folded across the first
Brillouin zone while Fig. 2b is the unfolded dispersion
curve for the aluminum-brass rod. The frequency
regions where R(L) # 0, highlighted in the plots with
a gray area, are the frequency band-gaps of the
periodic aluminum-brass beam; that is, these are the
frequency ranges where wave propagation will not

Material Young’s modulus (GPa) Density (kg/m?) Length (m) Thickness (m) Width (m)
Aluminum 70 2700 1 0.005 0.005
Brass 110 8100 1 0.005 0.005
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Fig.2 Plot of the dispersion curve of the aluminum-brass periodic beam. a The dispersion curve is folded across the first Brillouin zone

b The unfolded dispersion curve of the periodic beam

F R
VA >
L

Fig. 3 Schematic of a linear elastic beam subject to a
distributed transverse load F;(x, 1)

persist due to the scattering effects taking place on the
local features of the unit cell.

3 Fractional-order model of the periodic beam

In this section, we develop the fractional-order model
for the analysis of the periodic beam. As discussed in
[38, 41], the fractional-order approach can be consid-
ered as a homogenization technique where the space-
fractional operators capture the effect of inhomo-
geneities. Under the slender beam assumptions, a
fractional-order analogue of the Euler—Bernoulli beam
theory can be developed to model the displacement

field of the homogenized beam subjected to transverse

loads. The dimensions of the beam are L x b X h,
where L is the length, b is the width, and 4 is the height,
as illustrated in Fig. 3. The nonlocal axial strain (€) in
the fractional-order beam is defined as [34, 48]:

€(x,z) = —zDj [M}

o (13)

where w is the fractional-order homogenized trans-
verse response of the beam. In this study, we consider
only slender beams (L/h = 200). Recall that, for
slender beams (L/h > 50), the rigidity to transverse
shear forces is much higher when compared to the
bending rigidity, therefore the contribution of the
shear deformation is essentially
[34, 48, 49].

In the above equation, D’(-) is a space-fractional
Riesz-Caputo (RC) derivative with order o € (0, 1)
defined on the interval x € (0, L) as [34, 48]:

negligible

DiY¥(x) = %Z‘N“’l [ngc“P(x) — fDZ‘P(x)] (14)
where Y is an arbitrary function, and lisa length-scale
factor introduced to ensure dimensional consistency of
the fractional-order derivative. {D%(-) and CD¥ are the
left- and right-handed Caputo derivatives to the order
o, respectively. The interval of the RC fractional
derivative (0, L) defines the horizon of nonlocality of
the fractional-order beam, i.e., the distance beyond
which information is no longer accounted for within

the fractional derivative. Note that the horizon of
nonlocality in this study coincides with the length of
the beam, which is different from [41] where a finite
dimensional nonlocal horizon was defined. This
difference in the selection of the size of the nonlocal
horizon is consistent with the fact that this study deals
with the response of an infinite heterogeneous beam
(as opposed to [48] that focused on the response of
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homogeneous and finite nonlocal beams). It follows
that, while analysing an infinite beam the horizon of
nonlocality would correspondingly extend over the
entire beam, i.e., it would be infinite in nature. In this
case, the nonlocal convolution (corresponding to the
intervals of the RC derivative) would be performed
over the interval (—oo,00). While it is possible to
assume a finite length for the horizon of the fractional-
order beam, we decided to choose the entire length of
the beam as the horizon in order to reduce the number
of fractional model parameters to one, that is the
fractional-order . As we will show in Sect. 4, the
equivalence of the dispersion relations of the frac-
tional-order model and integer-order model allows
determining the value of a single parameter. We use
this equivalence to fix the value of o. We merely note
that this assumption on the infinite extent of the
nonlocal horizon matches closely with the formulation
proposed by Eringen et al. [50]. Note also that
classical integer-order homogenization theories often
result in integral averaging expressions over the entire
domain of the solid [19]. Further, we emphasize here
that, the use of the Caputo fractional derivatives in
Eq. (13) leads to a frame-invariant formulation. Recall
that the Caputo derivative of a constant function is
zero, as for classical integer-order derivatives. This
property does not hold true for all definitions of
fractional derivatives [21]. In the context of frame
invariance, this is a key point that ensures that no strain
is accumulated in the 1D solid under translation
[25, 30].

Further, the axial stress (6) in the homogenized
fractional-order beam is defined as:

G(x,z) = Eé(x,z) (15)

where E is the Young’s modulus of the fractional-
order beam. The thermodynamic consistency of the
above constitutive equations has been discussed in
detail in [51]. Using the above defined strain and stress
fields, the total nonlocal potential energy of the
fractional-order beam of volume Q is obtained as:

1 :% /Q &(x, 2)é(x, 2)dV — / Fr(x, 0)(x)dx

(16)

where the second integral in the above expression
corresponds to the work done by the transverse force
Fr(x,t) which is applied externally on a plane
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perpendicular to the mid-plane of the beam. We have
also assumed that no body forces are applied. The
kinetic energy of the beam is given as:

T:%Lﬁ(%)zdv (17)

Using the expressions for the potential and kinetic
energy, the governing differential equations (GDE),
the associated boundary conditions (BC), and the
initial conditions (IC) necessary to determine the
response of the fractional-order beam are obtained by
using the generalized Hamilton’s principle as:

0 [ o[, (O _ - 0h

=Fr(x,r) Vx € (0,L) Uz € (0,00)

Ef[z;m; (awg’))] —Oors [ang ’q

=0atxe {0,L} U re(0,00)
s g (O, )\ ] _
E [EXDX( o )] =0 or ow(x,1)
=0atxe {0,L} U te(0,00)

BC:

(18b)

IC: 3 (x,1) = 0 and 0 (awg ’ t))

=0atr=0U x€e(0,L)

(18¢)

where I, p, and A are the quadratic moment of inertia,
density, and cross-sectional area of the fractional-
order beam, respectively. The detailed steps leading to
the above simplification can be found in [48] where a
similar variational approach has been used in the
context of slender fractional-order nonlocal structures.
In Eq. (18), D}(-) is a Riesz-type Riemann-Liouville
(R-RL) derivative of order « defined on the interval
x€ (0,L) as:

D) = 3P BN - FDpR)] (19)

where W is an arbitrary function, and X“D%(-) and
RLp¥(.) are the left- and right-handed Riemann
Liouville fractional-order derivatives, respectively.
T!7%(.) is a Reisz-type fractional integral defined in
the following fashion:
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Ilfallj(x) = l~a71 [OI)lcialP(x) + xIlllialP(x)] (20)

N =

where (Z!7*(-) and ,Z; *(-) are the left- and right-
handed Riemann Liouville fractional-order integrals,
respectively. Note that classical beam governing
equations are recovered for o = 1.

The above presented fractional-order beam model
deserves a few additional remarks. First, note that the
fractional-order formulation presented in this study
follows from that presented in [48]. While this study is
concerned with the homogenization of heterogeneous
structures using fractional calculus, the study con-
ducted in [48] focused primarily on the modeling of
nonlocal beams. With regards to the latter remark and
given the differ-integral definition of the fractional-
order operators, we emphasize that the fractional-
order formulation is capable of modeling both nonlo-
cal elasticity as well as homogenized response of
heterogeneous structures. We merely note that the
modeling of the long-range cohesive forces in nonlo-
cal elasticity can also be interpreted as a homogeniza-
tion approach wherein the effect of a large number of
points within a prescribed distance, known as the
horizon of nonlocality, is accounted for in the
continuum governing equations. Further, in contrast
to [48] which focuses primarily on the static response
of beams, this study focuses on the dynamic analysis
of the fractional-order beam.

Next, we also emphasize that the set of linear
operators describing the governing differential equa-
tions (18a—18c) of the beam are self-adjoint. This
ensures that the system is positive definite indepen-
dently of the boundary or loading conditions. Thus, the
fractional-order approach presents a way to homoge-
nize the response of heterogeneous structures while
ensuring a self-adjoint positive definite system. As
mentioned previously, this property leads to well-
posed formulations free from boundary effects and
inaccurate predictions, hence enabling the use of
variational-principles to develop FE techniques for
numerical simulations. This latter observation is of
particular interest because the classical integral for-
mulations of nonlocal beams available in literature
have been shown to be ill-posed and leading to
inaccurate (also called “paradoxical”) predictions for
certain boundary conditions [48, 52]. In conclusion,
the proposed fractional-order approach is mathemat-
ically well-posed [48], causal [25, 41], frame-invariant

[41], thermodynamically consistent [51], and satisfies
strain compatibility [41]. These characteristics suggest
that the proposed fractional-order approach is physi-
cally and mathematically consistent. The latter com-
ment is critical because the literature on fractional
continuum mechanics shows that not every fractional-
order elastodynamic formulation is mathematically
and physically consistent. Notably, there can be
reformulations to the present approach based on
recently proposed A—fractional derivatives. The
interested reader can find detailed discussions on
these operators in [53-55].

4 Fractional model parameters for the periodic
beam

In order to apply the fractional-order beam model to
the analysis of the dynamic response of the periodic
beam, we must obtain the fractional model parameters,
namely the order o and length scale I, corresponding to
the periodic beam. While different strategies could be
envision to accomplish this step, in this study we insist
that the dispersion in the periodic beam obtained using
the classical approach and the fractional-order
approach are equivalent. The dispersion relations for
the integer-order periodic beam were derived in Sect.
2. To obtain the dispersion relation of the fractional-
order beam, we substitute the following ansatz in the
homogeneous part of the fractional-order beam gov-
erning equation:

vf/(x7 1‘) = Ale(fx—iwt) +Aze(7:x+iwt) (21)

where A; and A, are the amplitudes of the wave
propagating in the positive and in the negative X
direction, respectively. Further, A is the wave number
of the wave and w is the angular frequency. Note that
the wave number A can be real or complex. Given the
wave solution assumed in Eq. (21), the real and

complex parts of the complex wave number A
correspond to the attenuating and propagating com-
ponent of the wave. Note that, the ansatz assumed in
Eq. (21) is contrary to the standard form:
AjelP=ot) 4 A, eimtot)  We agsumed the former
expression in order to remain consistent with
the form of the Floquet wave number assumed in
Sect. 2.
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It appears that the derivation of the dispersion
relations requires the operation of the R-RL derivative
and the RC derivative in Eq. (18) on the exponential
functions in the assumed solution in Eq. (21). As
mentioned previously, the R-RL and the RC deriva-
tives in Eq. (18) have lower and upper bounds at the
boundaries of the beam. When the fractional-order
derivative (either RL or Caputo) has a lower bound of
—oo the solution kernel of the fractional wave
equation can be chosen in the form of exponential
functions and we have [38]:

DY) = be™ (22)

‘When lower bounds other than —oco are chosen, then
solution kernels based on Mittag—Leffler functions are
appropriate. However, under proper assumptions for
the interval of the fractional derivative both kernels
satisfy the same dispersion relations [38]. Similar
comment holds for the upper bound. In this study, we
choose the exponential kernels given their simplicity
and computational efficiency. Using the fractional-
order derivative of the exponential given in Eq. (22),
we obtain the complete form of the dispersion
relations for transverse waves in the fractional-order
beam as:

~ L
T = et {m'—w f’;{} (23)
EI

The fractional-order o for the periodic beam can now
be obtained by insisting that the wave number
obtained through Eq. (23), for a given frequency, is
equal to the wave number A obtained using the
classical beam theory in Sect. 2, at the same frequency.
Recall that the constant [ is introduced to ensure
dimensional consistency of the formulation and hence,
we assume that /= lm similar to [38]. These
assumptions lead to the following expression for o:
Rpape
o= [log (@7 AéEI) —1 (24)
log (—1%)

Note that the propagating component of the wave
number for transverse waves in a beam relates to the
angular frequency as: 3(A) = wpU/ESJ. Using this
relation, the expression for o is simplified as:

_ L |log S|
a_4[—log(—7:2)1 1 (25)
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Fig.4 The plot of the fractional-order « for the aluminum-brass
periodic beam as a function of frequency. The fractional-order is
equal to 1 for frequencies in the pass-bands, while the order is
complex valued for frequencies within the band-gaps of the
periodic structure

It is immediate that the fractional-order formulation
for the periodic beam results in a variable-order «,
where « is a function of the angular frequency w. Note

that for obtaining the value of o, the wave number A
corresponding to the unfolded propagating wave
solution should be chosen. By using the properties of
the periodic beam given in Table 1, the numerically
obtained wave numbers in Fig. 2, and the expression
for the order given in Eq. (25), we obtain the
fractional-order for the periodic beam. The plot of
the fractional-order is given in Fig. 4.

We make a few remarks concerning the nature of
the fractional-order. First, as evident from Fig. 4, the
fractional-order model of the periodic beam results in
a complex frequency-dependent order. We emphasize
that this characteristic of the fractional-order formu-
lation is independent of the choice of the material and
geometric parameters of the periodic beam. Rather,
the nature of the order (real or complex) is dependent
on the dispersion characteristics of the beam. This
behavior of the fractional-order model is related to the
characteristics of differential operators with complex
orders. As shown in [38, 56, 57], a complex order
derivative enables a frequency-dependent modulation
of both phase and amplitude of the different harmonic
components, therefore allowing for virtually unre-
stricted matching capabilities for the dispersion rela-
tions. Further, it appears from Fig. 4 that the order is a
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complex number for band-gap frequencies while, the
order is a real number (o = 1) for band-pass frequen-
cies. This is consistent with the physics of the problem
since « = 1 is indicative of propagating waves [41]. In
the band-gaps, R(x) < and I(a) <. R(x) < indicates
that flexural waves in the periodic beam decay
spatially, which is again consistent with the fact that
this frequency is located within a band-gap. Addition-
ally, as shown in [38], 3() < indicates a frequency-
dependent modulation of the phase of the beam
response.

5 Steady-state response of the fractional-order
beam

We use the fractional model parameters derived in
Sect. 4 within the fractional-order beam model to
analyse the response of the periodic beam. Given the
complex differ-integral nature of the beam governing
equations in Eq. (18) we adopt a numerical strategy to
solve the governing equations. More specifically, we
use the fractional-order finite element method (f-
FEM) developed in [48] to simulate the response of the
periodic beam. However, certain modifications are
necessary because the definition of the RC derivative
adopted in this study (see Eq. (14)) is different from
[48]. Additionally, the f-FEM proposed in [48] was
developed for fractional differential equations (FDEs)
with real-valued orders, while the order of the
fractional-model for the periodic beam is complex
valued. In the following, we briefly discuss the main
features of the f-FEM and then the corresponding
numerical results.

5.1 Fractional finite element method (f-FEM)

Analogously to classical FEM, the f-FEM is formu-
lated starting from a discretized form of the total
potential energy functional given in Eq. (16). The
domain Q = [0, L] is divided into N, finite elements
denoted as Q¢ withi = {1,...,N,} such that U} Q¢ =
Q and Q' N = (V) # k. The transverse displace-
ment at any point x € Q is evaluated by interpolating
the corresponding nodal degrees of freedom of Qf as:

wix) = [N@HW!) (26)

where, [N(x)] is a matrix containing the interpolation

functions and {W¢} is a vector containing the nodal
displacement variables of the element Q7. From the
definition given in Eq. (13), the fractional-order axial
strain in the beam is expressed as [48]:

é(x,z) = —zDj (%) - ﬁz—a)

[/ A(x, ¥, o) )][(:’(x,x')}dx’}{W}
x){W}

where x’ is a dummy variable used for convolution
along the X axis, and {W} denotes the global degrees
of freedom vector. A(x,x’,a) = 1/|x — x'|" denotes
the kernel of the fractional-order derivative. Further,
the matrix [B(x')] is expressed as:

[N
S 28)

Further, [C(x,x')] is a connectivity matrix that is used
to attribute the nonlocal contributions from the
different elements in the horizon of x to the corre-
sponding nodes of those elements. In order to correctly
account for these nonlocal contributions from the
elements in the horizon, we transform the nodal values
{W¢} into {W} using connectivity matrices in the
following manner:

{Wi} = [Clx )Wy (29)

The connectivity matrix [C(x, x')] is designed such that
it is non-zero only if the point x’ lies in the nonlocal
horizon of x. It is immediate to see that these matrices
activate the contribution of the nodes enclosing x’ for
the numerical evaluation of the convolution integral in
Eq. (27).

The expression for the fractional-order strain in
Eq. (27) is used along with the nonlocal stress given in
Eq. (15) to obtain the total deformation energy of the
beam as:

(27)

[B(")] =

= WKWy (30)

where the nonlocal stiffness matrix [K] is given as:

= &7 [ (B (B0 (312)
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Note that the use of the connectivity matrix in Eq. (27)

results in the fact that the global stiffness matrix [K] is
obtained directly in the global form, hence not
requiring a separate assembly process for the element
stiffness matrices. As discussed in [48], owing to the
existence of cross-stiffness matrices, the assembly of
the element stiffness matrices in a nonlocal FEM
requires care and it is not as immediate as the case of a
local FEM. Although it might appear that this
assembly strategy would require the use of larger
(global) matrices, we emphasize that simple principles
of connectivity are used to avoid the multiplication of
large sparse matrices in Eq. (27), similar to what is
done in local FEM. Note that the FEM also involves
the numerical integration of the nonlocal stiffness
matrix [K]. The specific details of the numerical
integration procedure are extensive and can be found
in [48].

The final algebraic equations describing the FE
model of the fractional-order Euler—Bernoulli beam
are now obtained by using the extended Hamilton’s
principle as:

[M{W} + [K[{W} = {Fr} (32)

where the mass-matrix ([M]) and the force vector
({Fr}) of the fractional-order beam are the same as
obtained in classical FEM for beams [48, 49]. The
solution of the above algebraic equations gives the
nodal generalized displacement coordinates. Regard-
ing the f-FEM for the equivalent fractional-order
system for the periodic beam, it is convergent for
complex orders. More specifically, it was observed
that convergence was achieved when the ratio
N,/L > 10. This is in contrast to the Grunwald-
Letnikov finite difference formula in [39], which was
divergent for fractional domains with a complex order.
Second, given that we obtain complex values of the
order for frequencies with the band-gaps, the f-FEM
would require the computation of a complex valued
Gamma function (see Eq. (27)). In order to compute
the complex valued Gamma function we adopted the
algorithm proposed in [58].

5.2 Numerical results and discussion
The f-FEM was applied to analyse the dynamic

response of the fractional-order beam. We consider
only the section of the infinite periodic beam in the
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Fig. 5 The infinite bi-layer periodic beam converted into a
homogeneous fractional-order beam. The right hand side of the
beam is treated with absorbing boundary conditions in order to
simulate the infinite beam during the steady state analysis. For
the steady state analysis, the response of the periodic beam and
its fractional-order counterpart are analyzed following the
application of a sinusoidal displacement applied at the left hand
side

positive portion of the X axis and apply a driving
condition consisting of a sinusoidal transverse dis-
placement w(0, #) = W sin (Qo7) at x = 0 as shown in
Fig. 5. At the steady-state, we assume a general
response in the form {W} = {W,} sin(Qot), where
{Wy} is the steady-state amplitude. By substituting the
previous ansatz for { W} in the FE Eq. (32), we obtain:

{(Wo} = [[K] - ¢M]]) " {Fr} (33)

Note that, given that the solution is obtained via
f-FEM, the initially infinite domain must be truncated.
In order to simulate an infinite domain, the truncated
end must be complemented with an absorbing bound-
ary condition (that prevents unwanted reflections).
The absorbing boundary condition was implemented
according to [59].

To demonstrate the capability of the fractional-
order formulation we considered the following loading
cases: (1) Loading #1: the driving angular frequency
Qy = 5 rad/s lies in the first pass-band; (2) Loading
#2: the driving angular frequency Qy = 15 rad/s lies in
the first band-gap; (3) Loading #3: the driving angular
frequency Qg = 40 rad/s lies in the second pass-band;
and (4) Loading #4: the driving angular frequency
Qo =61 rad/s lies in the second band-gap. The
fractional-order o for these cases are obtained using
Eq. (25) and are found to be 1, 0.97 — 0.19i, 1, and
0.99 — 0.05i, respectively. As expected, the order is an
integer for the frequency within the pass-band, while it
is complex for the frequency within the band-gap. We
expect that the response of the beam is periodic for
loading #1 and attenuated for loading #2. The results
obtained for the four loading cases defined above are
shown in Fig. 6 where they have been compared
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Fig. 6 The steady state response obtained obtained using the
fractional order governing equation for the aluminum-brass
periodic beam solved via the f-FEM method. For the different
cases, the forcing frequency of the external load is within the a

against numerical simulations obtained using the
commercial FE software COMSOL.

As evident from Fig. 6, the match between the
results obtained via the fractional-order formulation
and the classical results, when the driving angular
frequency lies within the first pass-band and first band-
gap frequencies (loading #1 and loading #2), are
excellent. The maximum error (¢*° norm) obtained
between the f-FEM and COMSOL results are 1% and
2% in the loading (1) and (2), respectively. For the
loading #3 where the driving angular frequency lies
within the second pass-band, the f-FEM result matches
the phase of the COMSOL result, but does not match
the amplitude locally. This type of behavior is not
unexpected because the frequency is near the long

(b) —

w (m)

80 100

z (m)
(d) 1 ‘
0.5 1
~ § .
£ ¥
'3
0
0.5 : : : :
0 20 40 60 80 100
z (m)

first pass-band: loading #1, b first band-gap: loading #2, ¢
second pass-band: loading #3, and d second band-gap: loading
#4. The inset in ¢ provides a zoomed in view of the response of
the beam fromx = 10 mto x = 30 m

wavelength limit and the response is increasingly
dominated by scattering effects. Further, recall that for
band-pass frequencies, the order of the fractional
system is o = 1 and for o = 1, the fractional-order
beam formulation reduces to the classical Euler—
Bernoulli beam formulation with homogenized mate-
rial properties (see Eq. (25)). Like other homogeniza-
tion  techniques, the  proposed  fractional
homogenization model cannot capture localized
effects due to wave scattering. In order to capture
the localized effects, the fractional methodology
would need to be modified. It is hypothesized that
the localized effects associated with the short wave-
length limit could be captured by utilizing a spatially-
variable fractional order. Note, however, the good
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agreement between the f-FEM and the COMSOL
results for loading #4 where the driving angular
frequency lies within the second band-gap. The
maximum error (/°° norm) obtained between the f-
FEM and COMSOL result is merely 7% in this case.
Again, the amplitudes of the two curves do not match
due to localization at high frequencies, but the
fractional model did successfully capture the attenu-
ating flexural displacement within the band-gap. This
is a key feature that most classical homogenization
approaches cannot capture accurately.

Recall that the proposed technique is effectively a
homogenization approach and like most homogeniza-
tion methods (except for some recently developed
high-frequency homogenization techniques), it is
locally accurate only for long wavelengths. When
approaching short wavelength regimes, local interfer-
ence effects due to forward propagating and back-
scattered waves cannot be accurately captured. Nev-
ertheless, this approach is able to correctly capture the
wave attenuation as well as the proper spatial phase for
band-gap frequencies. These results highlight the
robustness of the fractional-order formulation in
capturing the response of the periodic beam particu-
larly at band-gap frequencies, where classical homog-
enization techniques fail to capture the spatial
attenuation of the flexural waves [38]. The results
presented above for driving frequencies within the first
and second band-gap allow us to make some remarks
on the nature of the fractional-order model predictions
for higher-order band-gaps. For higher-order band-
gaps, it is expected that the fractional-order model
presented in this study will capture attenuation due to
the complex valued fractional-order (see Fig. 4).
However, there would be an increasing mismatch in
the amplitude of the response due to the inability of the
fractional-order model to capture the localized scat-
tering effects. In this regard, depending on the specific
application, the latter aspect may or may not be a
disadvantage. As an example, if the objective is to
simulate the response of a solid with an embedded slab
of the periodic medium (e.g. a periodic 1D beam
embedded in an otherwise homogeneous beam), the
detailed response inside the periodic medium might
not be of interest. Note that this comment is applicable
to homogenized models in general and it is neither a
consequence nor a peculiarity of the fractional order
modeling.
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We conclude observing that, in view of the above
described characteristics, the homogenized fractional
model may provide a powerful alternative route to
develop homogenization approaches. In this regard,
we note some advantages of the fractional-order
approach over classical (integer-order) high-fre-
quency homogenization techniques. Recall that the
location of the band-gaps in high-frequency homog-
enization approaches is computed by solving the
eigenvalue problem corresponding to a unit cell
subject to quasi-periodic boundary conditions,
obtained via asymptotic multiple scale representation
of the elastodynamic equation. The computation of
this eigenvalue problem is often limited by the
computational capabilities of the eigen solver and
becomes progressively more complex as a higher
number of terms is used within the multiscale expan-
sion. The combination of this aspect with the need for
a local approximation of the periodic structure’s
dispersion curves (near the band-gaps) leads to a
limitation on the accuracy of high-frequency homog-
enization approaches. On the other side, we note that
the high-frequency homogenization approach is the-
oretically more rigorous than the fractional-order
approach proposed in this work. Nevertheless, we
also highlight that this work was intended to explore
the feasibility and the potential of fractional-order
homogenization techniques for the simulation of
periodic systems, and it should not be considered as
indicative of optimal performance. Indeed, it is
possible to envision that the performance of the
proposed method could be further improved by taking
full advantage of the spectrum of opportunities offered
by fractional operators such as, for example, extending
the method using either variable-order [60] or dis-
tributed-order operators [25]. Variable-order operators
are well-equipped to capture spatially-varying
microstructures [60] and distributed-order operators
can capture multiscale response [25].

6 Conclusions

This study presented a preliminary assessment on the
application of fractional calculus to the homogeniza-
tion of heterogeneous structures. In particular, the
formulation of a fractional-order homogenization
technique for the analysis of 1D periodic beams was
presented and shown to be capable of overcoming the
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classical long wavelength limit typical of low-fre-
quency techniques. At a mathematical level, the differ-
integral nature of the space-fractional operators was
exploited to convert the classical integer-order differ-
ential equation with spatially-variable coefficients,
governing the flexural response of beams, into a
fractional differential equation with constant coeffi-
cients. By assuming a nonlocal horizon equal to the
length of the beam, the order of the fractional model
was derived by imposing the equivalence of the
dispersion behavior with the initial heterogeneous
beam. The procedure yielded a complex-valued and
frequency-dependent order whose real and imaginary
parts are related to the decay and to the frequency
modulation of the amplitude and phase of the wave
propagating in the medium. A fractional-order finite
element method (f-FEM) was developed in order to
numerically solve the complex-valued and fractional-
order governing equations. The consistency of this
numerical method was a direct result of the self-
adjoint, well-posed, and positive definite nature of the
fractional-order system. The f-FEM outperforms,
particularly in terms of stability, previously used
methods based on finite difference schemes. The
fractional-order framework was validated, at both
band-pass and band-gap frequencies, by direct com-
parison against the response of a periodic beam solved
via the traditional finite element method based on
integer-order equations. The ability of the fractional
order models to capture the attenuation within the first
few band-gaps is a strength of the proposed method
over classical low-frequency homogenization tech-
niques that cannot capture the spatial decay of waves
unless resorting to the addition of artificial and
unrealistic damping terms.

In conclusion, the fractional-order method provides
an interesting alternative route to extend the range of
applicability of homogenization techniques beyond
the classical long wavelength limit. This aspect
suggests that fractional-order mathematics could serve
as the basis to develop a new generation of high-
frequency homogenization methods, potentially cap-
able of combining the strengths of both low- and high-
frequency methods. We finally highlight that the
fractional-order homogenization technique developed
in this study is very general in nature. Although it was
applied to one-dimensional periodic structures, it is
anticipated that this technique could be extended to
higher dimensional periodic systems.
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