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Abstract

Estimating redshifts from broadband photometry is often limited by how accurately we can map the colors of
galaxies to an underlying spectral template. Current techniques utilize spectrophotometric samples of galaxies or
spectra derived from spectral synthesis models. Both of these approaches have their limitations: either the sample
sizes are small and often not representative of the diversity of galaxy colors, or the model colors can be biased
(often as a function of wavelength), which introduces systematics in the derived redshifts. In this paper, we learn
the underlying spectral energy distributions from an ensemble of ∼100 K galaxies with measured redshifts and
colors. We show that we are able to reconstruct emission and absorption lines at a significantly higher resolution
than the broadband filters used to measure the photometry for a sample of 20 spectral templates. We find that our
training algorithm reduces the fraction of outliers in the derived photometric redshifts by up to 28%, bias up to
91%, and scatter up to 25%, when compared to estimates using a standard set of spectral templates. We discuss the
current limitations of this approach and its applicability for recovering the underlying properties of galaxies. Our
derived templates and the code used to produce these results are publicly available in a dedicated Github
repository: https://github.com/dirac-institute/photoz_template_learning.

Unified Astronomy Thesaurus concepts: Galaxy photometry (611); Photometry (1234); Astronomical techniques
(1684); Spectral energy distribution (2129); Redshifted (1379); Cosmology (343); Redshift surveys (1378);
Computational methods (1965); Astronomical methods (1043); Astronomy data analysis (1858)

1. Introduction

Studies of galaxy evolution, galaxy clusters, large-scale
structure, weak lensing, and so on all rely on the determination
of galaxy redshift. Spectroscopic surveys of galaxies can
provide very accurate redshifts by measuring the shifted
wavelengths of sharp spectral features such as emission and
absorption lines. Despite advancements in multiobject spectro-
graphs, spectroscopic measurements are expensive and time-
consuming, and we can only collect spectra for a small fraction
of the galaxies that can be imaged by modern surveys, such as
the Dark Energy Survey (DES; The Dark Energy Survey
Collaboration 2005) and the Kilo-Degree Survey (KiDS; de
Jong et al. 2013). This problem will only increase in magnitude
as the next generation of surveys, such as the Vera Rubin
Observatory Legacy Survey of Space and Time (LSST; LSST
Science Collaboration et al. 2009) and the Wide-Field Infrared
Survey Telescope (WFIRST; Green et al. 2012), image orders
of magnitude more galaxies at fainter magnitudes than are
present in current data sets. As a result, rather than rely on
spectroscopic redshifts (spec-z’s), modern surveys increasingly
rely on photometric redshifts (photo-z’s; see Salvato et al. 2019
for a review).

Photo-z’s are estimates of galaxy redshifts derived from
changes in the colors of galaxies as their spectral energy
distributions (SEDs) redshift through a series of broadband
filters. This estimation is typically done using one of two
approaches: machine learning (ML) or template fitting (see,
e.g., Schmidt et al. 2020 for an evaluation of many examples of
the two).

Machine learning approaches train on a data set of
photometry with spec-z’s and attempt to directly learn an

empirical relationship between galaxy colors and redshift (e.g.,
Connolly et al. 1995, TPZ Kind & Brunner 2013, FlexZ-
Boost Izbicki & Lee 2017, CMNN Graham et al. 2018). Once
trained, they can predict galaxy redshifts given photometry
alone. The advantage of ML methods is that the effects of dust,
galaxy evolution, and other relevant variables are encoded in
the training set, and thus it is possible for ML methods to
account for these in the derived mapping from colors to redshift
if the data encapsulate these effects. The success of this
mapping depends on the choice and complexity of the ML
model and the corresponding hyperparameters. The downside
of ML methods is that their success relies on how
representative and well controlled the training set is, and that
they are unable to extrapolate beyond that set.
Template fitting of photo-z estimators (e.g., LePhare,

Arnouts et al. 1999; BPZ, Benitez 2000; EAZY, Brammer et al.
2008) works on the assumption that galaxy photometry is
sampled from a relatively small set of underlying spectral
types, characterized by the eponymous SED templates. These
estimators calculate photo-z’s by selecting the template and
redshift with simulated fluxes most similar to the observed
fluxes. In order for this method to work, the underlying SED
templates from which the galaxies are sampled must be known.
Common methods for generating these templates include
simulating galaxy SEDs from spectral synthesis models (e.g.,
Bruzual & Charlot 1993) and deriving templates from the
observed spectra of local galaxies (e.g., Benitez et al. 2004).
The primary advantage of the template fitting method is that

it is not limited to the bounds of a training set. A key limitation
is that it does not guarantee that the SED templates will span
the full distribution of galaxy spectra in a given data set, nor
that it will properly account for the effects of dust or spectral
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evolution. In addition, spectral synthesis models are only able
to generate spectra with a discrete set of physical parameters
(e.g., temperature, age, metallicity), and obtaining real galaxy
spectra is expensive, especially at the redshifts and magnitudes
that will be observed by LSST.

Several previous works have attempted to combine the
advantages of these two approaches by deriving SED templates
from a photometric training set, and then using the derived
templates for photo-z estimation (Budavári et al. 2000; Csabai
et al. 2000; Assef et al. 2008). These approaches leverage a
large set of galaxy photometry, which amount to low-resolution
spectra, to sample a smaller set of SED templates across a
broad range of rest wavelengths. This effectively oversamples
the template SEDs, allowing us to reconstruct spectral features
at a resolution much higher than that of the broadband filters
used to measure the photometry. This is analogous to the
Drizzle technique used to reconstruct higher resolution images
for the Hubble Space Telescope (HST; Fruchter & Hook 2002)
and the reconstruction of SEDs using differential chromatic
refraction (DCR; Lee et al. 2019).

This template learning approach retains the physical
motivation and extensibility of the template fitting method,
while taking advantage of learning the systematics and
confounding variables implicit in the training set. In addition,
it opens the possibility of learning a smooth continuum of
galaxy spectra, in contrast to the discrete set offered by the
limited galaxy observations and galaxy modeling codes.

While previous works attempt to learn galaxy templates from
data using a set of eigenspectra, we adapt the algorithm of
Budavári et al. (2000) to directly learn a set of templates from
the data. We extend these earlier works by applying our
methods to a large data set of 102,476 galaxies with spec-z’s
and photometry in 19 bands. In this manner, we are able to
learn a variable number of SED templates with clear spectral
features, and with simple postprocessing, we are able to further
reconstruct emission lines in the bluest templates.

We show that templates can be learned from scratch or as
perturbations of preexisting templates. We use these learned
templates to estimate photo-z’s with BPZ and find that the
training reduces the bias and scatter of the redshift estimates,
with little impact on the fraction of catastrophic outliers. In
addition, we find that both bias and scatter decrease with the
number of SED templates used in the photo-z estimation.

The outline of the paper is as follows. In Section 2 we
describe the template training algorithm, including how to
match photometry to templates, how to perturb templates to
better match the photometry, and how to select the hyperpara-
meters for training. In Section 3, we describe the spec-z and
photometric data sets used in the template training and redshift
estimation. In Section 4, we apply the template training
algorithm to sets of naive templates and to a preexisting set of
templates derived from galaxy observations and spectral
synthesis models. We discuss the performance of the algorithm,
including its convergence and the accuracy of the reconstruc-
tions. In Section 5, we use our templates to estimate photo-z’s
for a training set of galaxies and analyze the results. We discuss
our results and future goals in Section 6 and conclude in
Section 7.

2. Template Training Algorithm

In this section, we will present an approach for learning SED
templates directly from broadband photometry, using a

modified version of the algorithm developed in Budavári
et al. (2000). If we assume that the galaxies in our data set are
sampled from a small set of underlying spectra, the SED
templates, and we know the spectroscopic redshift for each
galaxy, we can shift the photometry to the rest frame and treat
each observation of a redshifted galaxy as a rest-frame
observation of one of the templates with a different set of
effective filters. With a large enough data set, the wavelengths
of the effective filters will overlap substantially. This over-
sampling allows us to recover higher resolution features in the
templates, even though the data are low-resolution observations
of different galaxies.
Let us assume we have a set of SED templates as a starting

point, which can represent rudimentary guesses and need not
resemble true galaxy spectra. In the first part of this section, we
describe a method by which we create a training set of
broadband photometry for each template from a large data set
of galaxy photometry. In the second part, we derive the
perturbation algorithm that is used to train each SED template
on its corresponding photometry set. The full training
algorithm is an expectation maximization that consists of
iterating these two steps: matching photometry to templates,
and perturbing templates to better match the photometry. This
process is iterated until the SED templates converge. In the
final part, we discuss a heuristic for selecting the training
hyperparameters.

2.1. Matching Photometry Sets

Assume we have a set of naive SED templates and a large set
of observed fluxes, {fm}, with known spectroscopic redshifts,
zm. Our goal is to train each template on an appropriate subset
of the fm{ } so that the naive templates better represent the
colors of the galaxies. To assemble these training sets, we
consider subsets Ìf fn m{ } { }, corresponding to the observed
fluxes of a single galaxy at redshift z, where the subscript n
denotes different filters. We compare these observed fluxes
with the template fluxes fn{ ˆ }, where

ò
l

l l=
+

f S
z

R d
1

, 1n
n

⎛
⎝⎜
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S(λ) is an SED template, and Rn(λ) is the normalized response
function of the filter used to measure the flux fn. For photon
counting detectors,

ò
l

l l
l l l

=R
T
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, 2( ) ( )
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where lT ( ) is the system response function that captures the
transmittance of the atmosphere and the response of the
detector (Bessell 2005).
The observed fluxes are assigned to the template whose

colors are most similar, which is determined by normalizing the
observed and template fluxes in the same band and picking the
template that minimizes the squared differences of the fluxes.
The normalization band is chosen by selecting the band for
which the ratio f fn n

ˆ is the median of the flux ratios for that
galaxy. By performing this matching and renormalization for
each galaxy in the photometry set, we associate a subset of the
galaxies (and the corresponding photometry) to each template.
Examining how the galaxies are assigned to the individual

templates is helpful in selecting the initial set of templates. The
initial templates should be chosen so that the matching
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algorithm roughly divides the galaxies by their colors. It is also
important that each set contains a sufficient number of fluxes
distributed across the wavelengths of interest, as the perturba-
tion algorithm derived in the next section relies on over-
sampling to reconstruct higher resolution features of the SED
templates.

2.2. The Perturbation Algorithm

Assume we have a set of photometry, {fn}, which constitute
observations of the same underlying SED template, S(λ), at
various known redshifts, zn. These observed fluxes should
approximately match the template fluxes calculated via
Equation (1). However, we can also calculate the template
fluxes by imagining that we are observing the template in its
rest frame using a set of effective, blueshifted filters:

ò l l l= + +f S R z d z1 1 3n
n

n nˆ ( ) [( ) ] [( ) ] ( )

å l= D¢ ¢s r , 4
k

k k
n

k ( )

where in the second line sk and rk
n are the discrete

representations of S(λ) and Rn(λ), respectively, parameterized
by the wavelength bins {λk} with widths {Δλk}. Primed
indices indicate redshifted wavelengths, that is,
λk’=(1+zn)λk and l lD = + D¢ z1k n k( ) .

We wish to perturb the template so that the template fluxes,
fn̂, better match the observed fluxes, fn. Letting sk̂ be a new
template resulting from a perturbation of sk, we define the cost
function (Budavári et al. 2000, Equation (7)):

å åc
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The optimum perturbation is found via a multidimensional
minimization of the cost function. The first term in Equation (5)
penalizes differences between the observed fluxes and the
perturbed template fluxes, weighted according to σn (the
fractional error of the measured flux). The second term in
Equation (5) penalizes large perturbations, weighted by the
hyperparameters Δk. This parameter controls the learning rate
and also helps stabilize the results. See the next section for
more details.

We follow Budavári et al. (2000) by introducing the
simplifying perturbation and constant terms:
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which can be analytically minimized:
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where δlk is the Kronecker delta. One can then solve for x̃ . The
perturbed spectrum is then x= +s sk k kˆ ˜ .
Iterating the perturbation changes the shape of the template

SED to better match the measured photometry, as shown in
Budavári et al. (2000). An example of this process can be seen
in Figure 1. Fluxes in the ugrizY filters listed in Table 2 were
calculated for a starburst galaxy template at 1000 random

Figure 1. Perturbing a naive template, in this case a flat line, to better match a
photometry set. Top: The orange points are simulated observations of the
5 Myr starburst template from Coe et al. (2006) at 1000 random redshifts in the
range z=0 to z=3 using the ugrizY filters listed in Table 2. The simulated
photometry has a 10% Gaussian error. The template is shown after various
stages of the training. Bottom: The learned template is plotted with the original
starburst template.
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redshifts z<3. Starting with an S(λ)=0 template SED, the
perturbation algorithm is applied iteratively. After 100 itera-
tions, the trained template closely matches the original template
in the wavelength range for which photometry exists. While the
trained template is a smoothed version of the original, high-
resolution features have been recovered, despite the relatively
low resolution of the filters. In practice, a higher Δk can be
chosen so that fewer iterations are required in the training; a
lower value was chosen here so that the effects of successive
iterations can be more clearly seen. See Section 2.3 for further
discussion of selecting the hyperparameters.

The perturbation algorithm changes the shape of the template
SEDs so that rerunning the photometry matching will now
result in different subsets of galaxies assigned to each template.
The full training algorithm is iterated until the SED templates
converge.

2.3. Selecting Hyperparameters

The success of the training algorithm depends on the chosen
hyperparameters. The first is the number of templates. As
discussed in Section 2.1, this choice can be made by using the
photometry matching algorithm and choosing the appropriate
number of templates to approximately separate out the different
spectral shapes displayed in the photometry. For further
discussion of how the number of templates affects photo-z
results, see Section 5.3.

The rest of the hyperparameters consist of the set of Δk.
These parameters, which set the relative weighting of the
regularization term in Equation (5), determine the stability and
speed of the training algorithm. If the Δk are too large, training
will be very slow and a large number of iterations will be
required. If the Δk are too low, the training becomes unstable
and the final templates will be overfit. Here we present a
heuristic for selecting an appropriate value to balance these two
extremes.

For the work presented below, the index k is dropped, so Δ
≡Δk has a single value for each training set that is independent
of wavelength. In choosing the appropriate value of Δ for each
training set, it is desirable to select a value that corresponds to a
constant ratio, w, of the flux and regularization terms in
Equation (5). The necessary value of Δ will vary by training
set, as the number of terms in the sum over fluxes (i.e., the sum
over n in Equation (5)) will vary by training set. To this end, we

make the following approximation:
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where s s= å Nn n n¯ . Then, for a desired ratio w, the requisite
Δ can be approximated:
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In practice, we have found that = 'w 1( ) works well. The
results of the training are relatively robust to the selection of w,
in that changing w by, for example, a factor of two yields
similar results.

3. Data

We collect a set of galaxy spectroscopic redshifts, paired
with broadband photometry, from various surveys to test our
training algorithm. Our set consists of 102,476 galaxies with
redshifts z<4.54 and i-band magnitudes4 in the range
13.8<i<25.7. For all surveys, we use galaxies with highly
reliable spec-z’s, photometry in one of the i-bands, and
photometry in at least three bands with signal-to-noise ratio
S/N>20. The entire data set is summarized in Table 1, the
filters used to measure the photometry are listed in Table 2, and
the redshift distributions are shown in Figure 2.

3.1. zCOSMOS-bright

zCOSMOS (Lilly et al. 2009) is a redshift survey of 1.7 deg2

of the COSMOS field, conducted with the VIMOS
spectrograph mounted on the European Southern Observatory’s
(ESO) Very Large Telescope (VLT). The survey is divided into
two parts, bright and deep. We make use of the former,
consisting of approximately 20,000 galaxies with redshifts
z<1.2. We use galaxies recommended in the ESO data release

Table 1
Summary of the Spectrophotometric Data Sets

Data Set Ngal fgal zmean zmax i-band Range imean si¯ Link to Catalog

zCOSMOS 14298 0.14 0.57 2.52 16.87�i�24.18 21.19 0.022 http://cesam.lam.fr/hstcosmos/
VVDS 6915 0.07 0.67 4.54 13.84�i�24.97 20.86 0.014 https://cesam.lam.fr/vvds/index.php
VIPERS 69415 0.68 0.70 2.15 17.66�i�23.08 21.38 0.017 http://vipers.inaf.it:8080/
DEEP2/3 10695 0.10 0.71 1.91 15.30�i�25.36 21.42 0.020 http://d-scholarship.pitt.edu/36064/
3D-HST 1153 0.01 1.46 3.32 19.10�i�25.74 23.56 0.027 http://d-scholarship.pitt.edu/36064/

Training 81980 0.80 0.69 4.54 13.84�i�25.74 21.32 0.018
Test 20496 0.20 0.69 3.61 16.46�i�25.69 21.34 0.018

Total 102476 1.00 0.69 4.54 13.84�i�25.74 21.33 0.018

Note. Ngal is the total number of galaxies in the set, fgal is the fraction of all galaxies in the set, and si¯ is the mean fractional flux error in the i-band.

4 The i-band magnitudes quoted in this section denote the magnitude in one of
i, i2, I, or i

+ as listed in Table 2. For galaxies with photometry in multiple i-
bands, the magnitude used is the first to appear in that list.

4
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description5 determined to have 99% spectroscopic verification
(i.e., zflag=3.x, 4.x, 2.5, 2.4, 1.5, 9.5, 9.3, 18.5, 18.3).

The zCOSMOS redshifts are matched to photometry from
Ilbert et al. (2009). The photometry is measured from the
ultraviolet to the near-infrared in 10 broadband filters: NUV on
GALEX (Martin et al. 2005); u and i on CFHT-Megacam; B
and V on CFHT-CFH12k; g+, r+, i+, and z+ on Subaru; and J
on UKIRT. The final set consists of 14,298 galaxies with
redshifts z<2.52 and i-band magnitudes in the range
16.9<i<24.2.

3.2. VVDS

The VIMOS VLT Deep Survey (VVDS; Le Fèvre et al.
2013) is a redshift survey consisting of three component
surveys: Wide, Deep, and Ultra-Deep. The Wide survey covers
8.7 deg2, with approximately 25,000 galaxies in the range
17.5<i<22.5; the Deep survey covers 0.74 deg2, with
approximately 11,000 galaxies in the range 17.5<i<24; and
the Ultra-Deep survey covers 512 arcmin2, with approximately
900 galaxies in the range 23<i<24.75. We use redshifts
with quality flags 3 and 4, indicating a 98% spec-z confidence.
The photometry was measured in nine filters: u g r i z, , , , on
CFHT-Megacam (Hudelot et al. 2012) and B V R I, , , on
CFHT-CFH12k (Le Fèvre et al. 2004). The final set contains
6,915 galaxies out to redshifts z<4.5, with magnitudes
13.8<i<25.0.

3.3. VIPERS

The VIMOS Public Extragalactic Redshift Survey (VIPERS;
Scodeggio et al. 2018) is a dense, large-volume redshift survey
focusing on redshifts 0.5<z<1.2. We use VIPERS galaxies

with spec-z’s reliable at the 95% confidence level (zflag=2.
X, 3.X, 4.X) and with photoMask and spectroMask=1.
The redshifts are matched to photometry measured in NUV on
GALEX (Martin et al. 2005) and u g r i i z, , , , ,2 on CFHT-
Megacam6 (Hudelot et al. 2012). The final set contains 71,951
galaxies with redshifts z<2.15 and magnitudes
17.7<i<23.3.

Table 2
List of Broadband Filters

Filter Telescope Instrument λ0 Weff

NUV GALEX 2343.1 767.3
u CFHT Megacam 3817.7 525.4
B CFHT CFH12k 4342.5 873.6
BJ Subaru Suprime 4478.4 763.9
+g Subaru Suprime 4808.5 1043.1

g CHFT Megacam 4899.9 1293.8
V CFHT CFH12k 5393.7 882.7
VJ Subaru Suprime 5493.0 862.4
r CHFT Megacam 6278.2 1120.2
+r Subaru Suprime 6314.8 1211.4
R CFHT CFH12k 6603.5 1138.5
i2 CHFT Megacam 7584.5 1409.4
i CHFT Megacam 7676.6 1307.6
+i Subaru Suprime 7709.1 1361.7
I CFHT CFH12k 8277.3 1816.7
z CHFT Megacam 8857.6 1040.1
+z Subaru Suprime 9054.5 1012.3
Y Subaru Suprime 10216.0 996.2
J UKIRT WFCAM 12508.5 1476.8

Notes. Mean wavelength, òl l l l= R d0 ( ) , and effective width,
l= -W RMaxeff

1[ ( )] , are given in angstroms. Filters are listed in order of
increasing λ0. The response functions for each filter were obtained from the
Spanish Virtual Observatory (SVO) Filter Profile Service.

Figure 2. Redshift distribution of the galaxy surveys. The top panel shows the
distributions of each of the constituent surveys. The bottom panel shows the
redshift distributions of the training and test sets used for template training and
photo-z estimation, respectively.

5 https://www.eso.org/sci/observing/phase3/data_releases/zcosmos_dr3_
b2.pdf

6 The i2 band is the replacement to the Megacam i-band installed in 2007.
This filter is named y in the CFHTLS catalogs (Hudelot et al. 2012), but we
follow Zhou et al. (2019) in naming it i2 to avoid confusion with the longer y
bands used in Subaru and LSST.
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3.4. DEEP2 and DEEP3

DEEP2 and DEEP3 are redshift surveys conducted with the
DEIMOS spectrograph on the Keck II telescope. DEEP2
(Newman et al. 2013) consists of four fields; we use galaxies
from the first field in the Extended Groth Strip (EGS), which
had no redshift preselection. DEEP3 (Cooper et al. 2011)
expanded on the DEEP2 survey of the EGS. Redshifts from
these surveys are matched with aperture-corrected photometry
provided by Zhou et al. (2019). We use galaxies with CFHTLS
flag 0, SExtractor flags less than 4 in every band, and redshift
quality flag �3. Photometry was measured in u g r i i z, , , , ,2 on
CFHT-Megacam6 and Y on Subaru (Miyazaki et al. 2002). The
final set contains 10,695 galaxies with redshifts z<1.91 and
magnitudes 15.3<i<25.74.

3.5. 3D-HST

In addition to the spectroscopic surveys above, we include
grism redshifts from the 3D-HST survey (Newman et al. 2013;
Momcheva et al. 2016). Redshifts for this survey were
analyzed and matched with aperture-corrected photometry by
Zhou et al. (2019). We select the galaxies with CFHTLS flag 0,
SExtractor flags less than 4 in every band, and the flag
use_zgrism1=1. For galaxies in both the DEEP2/3 and
3D-HST sets, we use DEEP2/3 redshifts instead. Photometry
was measured in u, g, r, i2, i, z on CFHT-Megacam and Y on
Subaru. After these cuts, the 3D-HST set contains 1153
galaxies with redshifts <z 3.32 and magnitudes
23.6<i<25.7.

4. Application to Data

Using the training algorithm described in Section 2, we will
learn galaxy SED templates directly from the broadband
photometry described in Section 3. We divide the data set into
a training and a test set, consisting of random 80% and 20%
samples of the entire data set. The training set will be used to
train the SED templates, while the test set will be used to
evaluate the learned templates via photo-z estimation (see
Section 5). The training set consists of 81,980 galaxies with
mean redshift zmean=0.69, max redshift zmax=4.54, and
magnitudes 13.8<i<25.7. A full summary of the set can be
seen in Table 1, and the redshift distribution can be seen in
Figure 2.

Eight naive templates were chosen to represent the under-
lying SED shapes of the photometry set according to the
principles described at the end of Section 2.1. We chose the
number eight to allow a direct comparison to the standard
template set described below. They are “naive” because they
are simply chosen by eye to roughly divide the photometry into
groups by spectral shape, but otherwise they are not based on
any theoretical models or observed SEDs. Each of the naive
templates is a log-normal function,
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normalized at λ=5000Å, with mode (λ) in the range
1000–5500Å and η in the range 0.35–0.9. The templates
extend to 15000Å with 100Å resolution. These eight
templates (hereafter N8) can be seen together with their
original training sets in Figure 3.

The training algorithm with w=0.5 is applied to the N8
templates. The convergence of the templates is evaluated via
the weighted mean square error:

å
s

= -f s fwMSE
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. 14
n n

n k n2
2( ˆ ({ˆ }) ) ( )

Each template is perturbed until the change in wMSE is less
than 3%, which was chosen empirically to balance sufficient
template reconstruction and the algorithm’s run time. When
every template has converged to its current photometry set,
new photometry sets are generated. Only those templates
whose new photometry sets result in a greater than 3% change
in wMSE resume perturbation with their new sets. This process
is iterated until no template has a new photometry set that
results in a greater than 3% change in wMSE. This indicates
that the photometry is sorted into distinct sets, and that further
perturbation is unlikely to improve the photometry-matching
results.
The progress of the training algorithm is shown in Figure 4

for the template N8-1. The left panel shows the progress of the
perturbation algorithm as it deforms the originally smooth N8-1
template to better match the colors of the matched photometry
sets. In particular, N8-1 becomes redder and acquires higher
resolution structure, which will be discussed below. The middle
panel shows the wMSE, and the right panel shows the
fractional change in the wMSE throughout the training. Orange
points indicate values after a photometry-matching stage, and
blue points indicate values after a perturbation. You can see
that the wMSE drops as the template is perturbed, and
perturbation continues until the magnitude of the fractional
change in wMSE drops below 0.03, indicated by the dotted
black lines in the right panel. Once this occurs, new photometry
is matched, resulting in an increase in wMSE. This process is
iterated, with fewer and fewer perturbations needed per
iteration. Eventually, all of the points are orange, indicating
that after each new photometry matching, N8-1 is not
perturbed, as it already sufficiently matches its photometry set.
The training continues for 12 rounds and takes approxi-

mately 15 minutes. The final results for the N8 templates can be
seen in Figure 5. The templates are now a much better match to
the photometry and more closely resemble physical galaxy
spectra. Most of the templates have a Balmer break at 4000Å,
although this was essentially already present in the initial
templates. In addition, there are now emission and absorption
lines visible in the spectra at a much higher resolution than the
broadband filters used for the photometry (some of which are
labeled with gray lines in Figure 5). Template N8-1 displays
Mg and Na absorption lines, and template N8-4 contains the
beginnings of Hα and Hβ emission lines. Templates N8-6, N8-
7, and N8-8 contain what appear to be Hα, Hβ, Hγ, Hδ, O II,
and O III emission lines (see Section 4.1 for more analysis). The
emergence of these high-resolution features from a large
ensemble of low-resolution data is one of the defining features
of this method.
In addition to these eight templates, we double the template

number and train a set of 16 templates, in order to demonstrate
the algorithm’s ability to reconstruct templates with a more
gradual transition of the colors from red to blue. This set
(hereafter N16) was drawn from the same range of parameters
for the log-normal function and trained for 50 minutes over 26
rounds. The results of the training can be seen in Figure 6.
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These results closely resemble the N8 results, with the same
spectral features emerging. However, the N16 set shows a more
gradual transition in color.

In addition to starting from naive templates, one can start
with templates derived from spectral synthesis models or
observations of local galaxy spectra (Budavári et al. 2000;
Csabai et al. 2000). Here we apply the training algorithm to a
standard set of SED templates commonly used for photo-z
estimation (e.g., BPZ; see Section 5.1). This set (hereafter
CWW+SB4) consists of four templates from Coleman et al.
(1980) and two starburst templates from Kinney et al. (1996),
the latter of which were added to account for faint blue galaxies
in the HDF-N. These six templates were recalibrated by

Benitez et al. (2004) to correct for systematic differences
between the observed and predicted galaxy colors in the HDF-
N and other spectroscopic catalogs. In addition to these six,
CWW+SB4 contains two synthetic starburst templates from
Bruzual & Charlot (2003), added by Coe et al. (2006) to
account for even bluer galaxies in the UDF.
The CWW+SB4 templates were trained with w=2 for 46

minutes over 32 iterations. The results of the training can be
seen in Figure 7. The original templates are plotted in blue,
with the trained templates plotted in black, along with the final
photometry sets in orange. You can see that the El and Sbc
templates have barely been altered. The remaining templates
have all systematically become redder. The high-resolution

Figure 3. Untrained N8 templates (black lines) with their corresponding photometry sets (orange points), generated with the algorithm described in Section 2.1. N8-1
is the reddest template, with each successive template getting bluer.

Figure 4. Training of N8-1. Left: The initial (light blue) N8-1 template is iteratively perturbed to better represent the colors of its photometry set. The final (dark blue)
template is redder and has more structure. Middle: wMSE of the N8-1 template throughout the training process. Orange points represent the wMSE after a photometry
matching stage, while blue points represent the wMSE after a perturbation. Right: fractional change in the wMSE. Orange points represent the fractional change due to
a new photometry matching stage, while blue points represent a fractional change due to a perturbation. The dotted black lines show the±0.03 cutoff. When a
perturbation results in a fractional change of magnitude less than 0.03, perturbation is halted and new photometry is matched. After the sixth photometry match, the
template is not perturbed because it already sufficiently matches the photometry.
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structure that was originally present in the Im, SB3, and SB2
templates has been decreased in magnitude, while additional
structure has been added to the simulated 25 and 5Myr
templates, which were originally smooth. These new features
have been labeled in gray.

4.1. Reconstructing Spectral Lines

The template training algorithm allows the reconstruction of
high-resolution spectral features from low-resolution photo-
metry, due to the oversampling of the underlying SED
templates. This includes the emergence of spectral lines in
many of the templates (see Figures 5, 6, and 7). Knowledge of
these lines allows us to perform postprocessing of the learned
templates to deconvolve the lines from the broadband filters.
Here we perform a simple postprocessing of the N8-6, N8-7,
and N8-8 templates to reconstruct the emission lines labeled in
Figure 5. The templates are up-sampled to 10Å, and the
continuum of each is linearly interpolated around the emission
lines. The excess flux is attributed to the corresponding spectral
lines. The flux of the Hβ line is impossible to distinguish from
the O III line in our templates because they are so close to one
another. The same is true for the Hγ and Hδ lines. To overcome
this difficulty, we use the Balmer decrements of 104 K SDSS
galaxies from Groves et al. (2012): Hα/Hβ=2.86 and Hγ/
Hδ=1.81. We calculate the Hβ flux from Hα and subtract this
from the combined Hβ–O III flux, and we calculate Hγ and Hδ
from the combined Hγ–Hδ flux.

After calculating the flux of the emission lines, the final
templates are built by adding Gaussians of equivalent
amplitude and FWHM= 20Å to the continuum. The templates
with the reconstructed spectral lines can be seen in Figure 8.
For each line, we calculate the amplitude relative to Hβ and the
effective width, ò l= -l lW F F d1 0( ) , where Fλ is the total
flux and F0 is the continuum flux. These values can be seen in
Table 3. Note that the amplitudes of our reconstructed Hγ and

Hδ lines relative to Hβ are approximately three times greater
than those listed in Groves et al. (2012).

5. Estimating Photo-z’s

We evaluate the results of our template training algorithm by
using our learned templates to estimate photo-z’s for the test set
of galaxies using the software package BPZ (Benitez 2000),
and by comparing the results to the spec-z’s and the photo-z’s
estimated using the original CWW+SB4 templates. The test set
consists of 20,496 galaxies (20% of the total set) with mean
redshift zmean=0.69, max redshift zmax=3.61, and magni-
tudes 13.8<i<25.7. See Table 1 for a full summary and
Figure 2 for the redshift distribution.

5.1. Bayesian Photometric Redshifts

Bayesian Photometric Redshifts (BPZ; Benitez 2000) is a
template-based photo-z estimator. Template-based estimators
take a set of SED templates, assumed to be spanning and
exclusive, and calculate observed fluxes over a grid of redshift
values. For each template, BPZ evaluates a χ2 function at each
redshift on the grid:

åc
s

= -z T A A f z T f, ,
1

, , 15
n n

n n
2

2
2( ) ( ˆ ( ) ) ( )

where T denotes the template, z denotes the redshift, A is a
normalization, and fn̂, fn, and σn denote the calculated flux, the
observed flux, and the fractional error as in Equation (5). The
sum over n is a sum over the filters for the set of observed
fluxes. BPZ then evaluates the likelihood for producing the
observed galaxy fluxes: cµ -p f z T, exp 2n

2({ }∣ ) ( ). The
redshift posterior is then calculated by marginalizing over the

Figure 5. Trained N8 templates (black lines) with their final photometry sets (orange points). N8-1 is the reddest template, with each successive template getting bluer.
The templates now more closely resemble physical galaxy spectra and have acquired structure at a higher resolution than the broadband templates. The Balmer break,
Mg and Na absorption lines, and Hα, Hβ, Hγ, Hδ, O II, and O III emission lines are labeled in gray.
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set of templates:
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where p z T m, 0( ∣ ) is a prior over the apparent magnitude m0.
Work is underway to determine how best to use the full
information encoded in the redshift posterior generated by BPZ
and other photo-z codes (e.g., Schmidt et al. 2020). In this
work, however, only the mode of the posterior distribution is
used to estimate the photo-z.

We use BPZ -v1.99.37 to estimate photo-z’s. We turn off
template interpolation by setting INTERP=0. For simplicity,
we treat nondetections as nonobservations. We use the various
sets of SED templates described in Section 4 and use the prior
described in the following section. All other settings were left
as default.

5.2. Galaxy Magnitude Priors

Before estimating photo-z’s with BPZ, we must first
construct the magnitude priors, p z T m, 0( ∣ ), calibrated to the
galaxies in our training set. We separate the prior into two

Figure 6. Trained N16 templates (black lines) with their final photometry sets (orange points). N16-1 is the reddest template, with each successive template getting
bluer. These templates closely resemble the N8 templates and show the same emerging spectral features (see Figure 5), but consist of a more continuous transition
from red to blue spectra.

7 http://www.stsci.edu/~dcoe/BPZ/
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parts:

=p z T m p T m p z T m, , . 170 0 0( ∣ ) ( ∣ ) ( ∣ ) ( )

For the magnitude m0, we use one of the i-bands in the
following order of priority: i, i2, I, i

+. Instead of constructing a
different prior for each template, we follow Benitez (2000) in
dividing our templates into three broad classifications: elliptical
(El), spiral (Sp), or irregular/starburst (Im/SB). The CWW
+SB4 templates are already classified under this scheme. We
classify our new templates and each of the galaxies in the
training set by assigning the classification of the CWW+SB4
template with the most similar colors, determined by minimiz-
ing the mean square error of the fluxes.
The N8 templates are determined to have one elliptical, four

spiral, and three irregular/starburst galaxies; the N16 templates
are determined to have two elliptical, eight spiral, and six

Figure 7. Result of training the CWW+SB4 templates. The original templates are in blue, the trained templates in black, and the final training sets are displayed as
orange points. The 25 and 5 Myr templates have acquired emission lines that were not present in the initial templates. These are labeled in gray.

Figure 8. The N8-6, N8-7, and N8-8 templates with reconstructed emission lines (see Figure 5). The emission lines, left to right, are O II, Hδ, Hγ, Hβ, O III, and Hα.
The wavelengths, relative amplitudes, and effective widths of these lines are in Table 3.

Table 3
Reconstructed Emission Lines

N8-6 N8-7 N8-8

Line λ r Wλ r Wλ r Wλ

Hα 6563 2.86 132.7 2.86 103.3 2.86 115.2
Hβ 4861 1.00 32.9 1.00 26.4 1.00 30.3
Hγ 4340 1.18 36.5 1.31 31.6 1.28 37.1
Hδ 4102 0.65 19.6 0.72 16.7 0.71 20.7
O II 3727 2.04 58.1 1.27 32.0 0.74 24.4
O III 5007 2.08 68.0 2.42 66.1 0.86 27.3

Note. For each emission line, r is the amplitude relative to Hβ, and Wλ is the
effective width in angstroms.
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irregular/starburst galaxies. The fraction of each classification
as a function of magnitude for the training-set galaxies is
displayed in Figure 9.

We assume that the El and Im/SB galaxies have spectral
priors of the form

=
+

+
k- -

p T m
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e
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, 18T

m m T0
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while = - -p m p m p mSp 1 El Im SB0 0 0( ∣ ) ( ∣ ) ( ∣ ). The values
of kL m C, , ,T T T T{ } for the El and Im/SB galaxies are found
by fitting to the distributions in Figure 9. All three priors are
plotted in the same figure, and the parameter values are listed in
Table 4.

For the redshift prior, we use Equations (23) and (24) from
Benitez (2000):
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and the “median” redshift ZT is chosen to have the linear
dependence

= + -Z m z k m 20 . 21T T T0 0 0( ) ( ) ( )

Equation (19) reproduces the exponential cutoff at high
redshifts present in the training set and can reasonably
approximate any unimodal redshift distribution, from very
narrow (α ? 2) to very broad (α = 1). This flexibility reduces
the bias introduced by the functional form of the prior
(Benitez 2000). The nine parameters a z k, ,T T T0{ } are deter-
mined by maximizing the likelihood = �L p z T m,i i i i0( ∣ ),
where the product is over the galaxies in the training set. The
parameters and their bootstrapped uncertainties are listed in
Table 4.

5.3. Photo-z Results

We estimate photo-z’s for the test-set galaxies using BPZ
with the settings and priors described in the previous two
sections. We used four template sets: the original CWW+SB4
templates, the trained CWW+SB4 templates, and the trained
N8 and N16 templates.
BPZ provides two metrics for the photo-z estimates: ODDS

and cmod
2 . ODDS measures how narrowly peaked the posterior

distribution p z f m,n 0( ∣{ } ) is around the estimated photo-z.
Galaxies with low ODDS have either broad redshift posteriors
or posteriors with multiple peaks. Here, cmod

2 measures how
well the best-fit template at the predicted redshift matches the
observed fluxes. For more about these metrics, see Section 4 of
Benitez (2000) and Section 4.3 of Coe et al. (2006). In this
work, photo-z estimates with ODDS < 0.95 or c > 1mod

2 are
excluded from the analysis, and the fraction excluded on this
basis is reported as fcut.
To further evaluate the results of BPZ, we calculate the

scatter, bias, and outlier fraction of the photo-z estimates.
Photo-z estimates are known to be contaminated with a
significant number of outliers. This is largely driven by a
degeneracy wherein the 1000Å Lyman break in a high-redshift
galaxy spectrum has optical colors similar to the 4000Å
Balmer break in a low-redshift galaxy spectrum. BPZ attempts
to break this degeneracy with the galaxy magnitude prior (i.e.,
galaxies with brighter apparent magnitudes are more likely to
be at a lower redshift), yet there are still a large number of
outliers.
To address this issue, we evaluate the statistics of the

interquartile range (IQR) of the data, as these measures are
robust to the presence of outliers. We follow Graham et al.
(2018) in introducing the quantity
D = - ++z z z z1z1 spec phot phot( ) ( ). The numerator quantifies
the photo-z error, and the denominator compensates for the
larger uncertainty at high redshifts. We define the scatter of the
photo-z estimates, σIQR, as the width of the IQR in D +z z1 ,
divided by 1.349 to convert to the equivalent of a Gaussian
standard deviation. We define the bias of the photo-z estimates
as the mean value of D +z z1 for galaxies within the IQR. The
uncertainties of these two values are bootstrapped by calculat-
ing the values on 1000 random samples with replacement.

Figure 9. Fraction of each spectral class as a function of apparent magnitude.
The histograms represent the fractions in the training set, and the curves are the
spectral type priors fit to the data.

Table 4
Parameters for the Priors, p z T m, 0( ∣ )

Spectral Type LT κT mT CT αT z0T kT

El 0.448± 0.017 −1.45± 0.16 21.0± 0.1 0.007± 0.009 3.88± 0.04 0.484± 0.003 0.119± 0.002
Sp K K K K 3.40± 0.04 0.493± 0.003 0.124± 0.002
Im/SB 0.845± 0.031 1.20± 0.11 22.6± 0.1 0.089± 0.013 2.22± 0.03 0.361± 0.009 0.130± 0.008
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Outliers are identified as photo-z’s with sD >+z 3z1 IQR, and
the fraction of outliers is reported as fout.

The photo-z results can be seen in Figure 10. The photo-z
estimates that passed the cuts on ODDS and cmod

2 are displayed
as points: the inliers in blue, the outliers in orange. The values
of the photo-z statistics for each template set are printed in each
panel. For all four template sets, the photo-z estimation is
reasonably accurate for spec-z’s z<1.5. For higher redshifts,
there appears to be a systematic bias toward higher photo-z’s.
Reduced photo-z accuracy is generally expected for spec-z’s
greater than 1.5, as the Balmer break leaves the optical bands at
around z=1.4 and the Lyman break does not enter the
ultraviolet bands until z=2.5.

For the CWW+SB4 templates, the training algorithm
decreased the fraction of photo-z’s cut by 25%, the bias by
63%, and the scatter by 23%, but it did not improve the outlier
fraction. We were able to achieve similar photo-z results using
the trained N8 and N16 template sets, demonstrating that our

training algorithm can be used to generate photo-z templates
without any a priori information about galaxy spectra.
Compared to the CWW+SB4 templates, N8 templates
decreased fcut by 31%, bias by 59%, and scatter by 25%. The
N16 templates decreased fcut by 35%, bias by 84%, and scatter
by 30%. In all cases, the training algorithm decreases the
fraction of bad photo-z’s ( +f fcut out), the bias, and the scatter.
Comparing the results for the N8 and N16 template sets

indicates that increasing the number of templates can reduce
the fraction cut and the bias and scatter of the photo-z
estimates. To further investigate this relationship, we calculate
the photo-z statistics for a range of template numbers, the
results of which are in Figure 11. We find that increasing the
number of templates decreases the fraction cut and the bias, as
well as slightly decreasing the scatter. The trend for outlier
fraction is less clear.

Figure 10. Results of photo-z estimation with BPZ, using the four different template sets. Photo-z estimates are displayed as points: inliers are blue and outliers are
orange. The black line represents perfect estimation (i.e., photo-z=spec-z). The statistics printed in each panel are for the entire data set.
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Figure 11. Photo-z statistics as a function of template number. Statistics are for the full redshift range.

Figure 12. Photo-z metrics for the various template sets as a function of redshift bin. LSST science requirements are shown as dashed gray lines.
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The N20 set has fcut=0.188 (a 33% decrease compared to
CWW+SB4), fout=0.040 (a 20% decrease), bias=0.003 (a
91% decrease), and scatter=0.039 (a 26% decrease).

The value of the metrics as a function of photo-z can be seen
in Figure 12. In addition to the template sets plotted above, we
add the N20 set. For comparison, plotted in gray are the LSST
science requirements for the metrics as listed in the LSST
Science Requirement Document (SRD; Ivezić & LSST Science
Collaboration 2018). The SRD lists the following minimum
requirements to enable the envisioned LSST cosmological
studies: root-mean-square error< + z0.02 1 ;phot( ) <f 10%;out
average bias < 0.003(1+zphot). The SRD lists these
requirements for an i<25, magnitude-limited sample of four
billion galaxies in 0.3<z<3.0. For comparison, our test set
consists of 20,496 galaxies with i<25.7 in the range z<3.6,
including 19,391 galaxies with i<25 in the range
0.3<z<3.0. In Figure 12, we show that for redshifts
0.3<z<1.2 we are able to achieve an appropriate outlier
fraction, and that our training algorithm makes great progress
on the bias, almost reaching the threshold required for LSST.
We also make modest progress on the scatter, but reduction by
another factor of two is still required. Beyond redshift z=1.2,
all of our metrics fail the LSST science requirements.

6. Discussion

In Section 2, we demonstrated that our training algorithm
could learn galaxy SED templates from photometry at a high
resolution relative to the filters used to make the observations.
We are able to learn a set of templates over twice the size of the
standard CWW+SB4, showing a smooth progression of galaxy
colors from red to blue. The spectra contain relatively high-
resolution spectral features, and postprocessing can further
reconstruct emission and absorption lines. The bluer templates
contain more structure as they represent star-forming galaxies
and thus have stronger emission lines. In addition, the bluer
templates have a larger number of high-redshift galaxies
compared to the red templates, which aids the reconstruction of
high-resolution features. While the high-redshift galaxies
number in the hundreds instead of thousands, our results
indicate that high-resolution features can be reliably recon-
structed with only a few hundred galaxies.

Our method has a number of limitations. The success of our
algorithm relies on the ability to generate a naive set of
templates as a starting point that will reliably divide the
photometry by the spectral type of the galaxy. This is relatively
easy to accomplish for fewer than 20 templates, as was
demonstrated by our simple photometry-matching procedure
and the log-normal templates we used. This is a strength of the
algorithm as it is relatively robust to the starting templates. If,
however, you wish to derive more than 20 templates from the
photometry, care must be taken in the division of the
photometry set to ensure there are sufficient galaxies in each
subset to fully sample the entire wavelength range for the
templates. In addition, the inherently discretized way in which
we divide the photometry set stands in the way of generating a
truly continuous set of SED templates. For a more continuous
set of templates, one might imagine taking two “adjacent”
photometry sets and assembling a photometry set “between”
them by taking the bluer half of one set together with the redder
half of the other. Equally, we could construct a moving window
that progressively subdivides a sample based on color (with
galaxies allowed to be present in more than one subset).

Our data consists only of broadband photometry, but our
algorithm would work equally well with narrow bands as well.
Combining broadband and narrowband photometry would
expand the data set and further constrain the templates. In
particular, the addition of narrowband photometry should
increase the resolution of spectral features recovered, and it
may allow one to resolve features such as the Hγ and Hδ
emission lines that we had to treat as a single feature. One
could also include bands from a wider range of wavelengths to
increase the wavelength range over which the templates are
constrained. We attempted to include fluxes from the K-bands
included with the zCOSMOS and VIPERS catalogs to learn
infrared wavelengths for the templates, but there appeared to be
systematic calibration issues in the data that we could not
resolve. There is evidence that the inclusion of near-infrared
and near-ultraviolet photometry in photo-z estimation can
reduce outliers and scatter by up to 50% each (Graham et al.
2020).
In addition, for the results presented here, we used only

galaxy fluxes with S/N greater than 20. One can use galaxies
with lower S/N if outlier fluxes are removed from the
photometry sets before training (we had success using an
Isolation Forest; Liu et al. 2008; Liu et al. 2012). However,
lowering the S/N of the photometry generally reduces the
resolution of the structure that one can reconstruct.
The training algorithm itself could be made more sophisti-

cated by restoring the wavelength dependence of the
hyperparameter Δk. We also hope to move beyond an iterative
regression approach into deep learning, perhaps using gen-
erative adversarial networks (GANs; Goodfellow et al. 2014).
When constructing the BPZ prior, we sorted our templates

into broad spectral classes. In the N8 set, for example, we
determined that one template was elliptical, four were spiral,
and three were irregular/starburst. Each of our templates has
approximately the same number of galaxies matched to it, and
the photometry matched to the elliptical templates does not
display more variance than the photometry matched to other
templates. These observations indicate that our data set
contains a larger number of spiral and irregular/starburst
galaxies than elliptical galaxies, rather than suggesting that the
space of elliptical galaxy spectra is less finely sampled. For this
reason, we do not expect the imbalance of the template number
in each class to have a large impact on the photo-z quality, but
nevertheless we note that a more sophisticated prior could be
constructed without relying on this broad classification scheme,
which may provide better redshift estimates.
We found in Section 5.3 that our training algorithm can

improve the bias and scatter of photo-z estimates. We found
that increasing the number of templates enhances these
improvements, with the best results for 20 templates. As
mentioned above, with our current method for generating
photometry sets, we struggle to reliably reconstruct more than
20 templates, so whether these benefits continue to decrease
with template number is unknown.
We can compare our method for generating more SED

templates with BPZ’s method of linearly interpolating between
templates. N8 with INTERP=2 generates 22 total templates.
Table 5 compares the photo-z results using these templates with
the results using 22 templates learned from the photometry with
INTERP=0. It is clear that, as far as fout and bias, our method
for generating extra templates is superior to the linear
interpolation used by BPZ.
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The photo-z estimation with our learned template sets
outperforms the results of the standard CWW+SB4 templates.
However, more work needs to be done to reach the
requirements set for LSST, especially for redshifts z>1.
Templates can be trained for LSST science using the
substantial overlap of LSST photometry with the eBoss
(Dawson et al. 2016) and Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration et al. 2016) surveys,
which will provide hundreds of thousands of spec-z’s for LSST
photo-z training and calibration (Schmidt et al. 2014; Newman
et al. 2015).

Our training method can be extended to other domains (e.g.,
stellar spectral reconstruction) where one can take a large set of
incomplete data, segment that data into classes, and treat the set
of unique observations in each class as an ensemble of
observations of some class archetype, and thereby reconstruct
more complete information. We plan to adapt the method to
reconstruct supernova light curves from supernova photometry.

7. Conclusions

We have shown that galaxy SED templates can be learned
directly from a data set of broadband photometry. Large sets of
photometry at various redshifts can be leveraged to reconstruct
high-resolution features, such as the Hα, Hβ, Hγ, Hδ, O II, and
O III emission lines, as well as Na and Mg absorption lines.
Simple postprocessing can further improve the resolution of
these reconstructed lines. The number of templates learned is
variable and can be increased to more continuously sample the
space of galaxy spectra and to improve photo-z results.

We used our templates to estimate photo-z’s for a test set of
galaxies using BPZ. We found that training the standard set of
templates that comes with BPZ decreases the fraction of bad
photo-z’s by 21%, the bias by 63%, and the scatter by 23%.
Our own trained naive templates yielded better results. We
learned a set of 20 templates from the data that reduced the
fraction of bad photo-z’s by 31%, the bias by 91%, and the
scatter by 26%. These derived templates outperform the
interpolated spectra used by BPZ. The improvements in bias
are almost sufficient to meet the requirements set for LSST, but
another reduction by a factor of two is needed for the scatter.

The templates derived with our training algorithm demon-
strate that accurate galaxy spectra can be learned from
broadband photometry. Our SEDs could potentially be used
for applications other than photo-z’s, and our learning
algorithm can be extended to other applications, such as
learning supernova light curves from photometry.

Our derived templates and the code used to produce these
results are publicly available in a dedicated Github repository:
https://github.com/dirac-institute/photoz_template_learning.
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