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Abstract. In this paper, we construct high order energy dissipative and conservative
local discontinuous Galerkin methods for the Fornberg-Whitham type equations. We
give the proofs for the dissipation and conservation for related conservative quanti-
ties. The corresponding error estimates are proved for the proposed schemes. The
capability of our schemes for different types of solutions is shown via several numer-
ical experiments. The dissipative schemes have good behavior for shock solutions,
while for a long time approximation, the conservative schemes can reduce the shape
error and the decay of amplitude significantly.
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1 Introduction

The Fornberg-Whitham type equation we study in this paper is given by

ut+ f (u)x+(1−∂2
x)

−1ux=0, I∈ [a,b], t>0 (1.1)

or its equivalent form

ut−uxxt+ f (u)x+ux = f (u)xxx, (1.2)
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by operating (1−∂2
x) on (1.1). We consider the nonlinear term f (u)= 1

p up, where p≥2 is

an integer. When the parameter p=2, Eq. (1.1) becomes the Fornberg-Whitham equation
derived in [21] as a nonlinear dispersive wave equation. There are three conservative
quantities for the Fornberg-Whitham type equation

E0=
∫

I
udx, E1=

∫

I
(u−uxx)dx, E2=

∫

I
u2dx, (1.3)

where the quantity E0 is called mass, and E2 is energy.
Many mathematical properties of the Fornberg-Whitham equation have been dis-

cussed, this equation was first proposed for studying the qualitative behavior of wave
breaking in [21]. Some investigation of wave breaking conditions can be found in [12,14].
Note that the Fornberg-Whitham equation is also called Burgers-Poisson equation in [8].
There has been lots of work focusing on finding the traveling wave solutions in [41, 42].
It admits a wave of greatest height, as a peaked limiting form of the traveling wave so-
lution [7]. Recently, some well-posedness results are proposed in [10, 11]. There are not
many numerical schemes for the Fornberg-Whitham type equation. In [13], the finite dif-
ference method is adopted to solve the shock solution. The authors did some valuable
numerical analysis by the discontinuous Galerkin method in [16], in which the compar-
isons has been made between the conservative scheme and dissipative scheme, as well
as theoretical analysis.

The discontinuous Galerkin (DG) method was first introduced by Reed and Hill in
1973 [18] for solving steady-state linear hyperbolic equations. The key point of this
method is the design of suitable inter-element boundary treatments (so-called numer-
ical fluxes) to obtain highly accurate and stable schemes in several situations. Within
the DG framework, the local discontinuous Galerkin (LDG) method can be obtained by
extending to handle derivatives of order higher than one. The first LDG method was
introduced by Cockburn and Shu in [5] for solving the convection-diffusion equation.
Their work was motivated by the successful numerical experiments of Bassi and Re-
bay [1] for compressible Navier-Stokes equations. The LDG methods can be applied
in many equations, such as KdV type equations [15, 26–28, 32, 39], Camassa-Holm equa-
tions [24, 35], Degasperis-Procesi equation [31], Schrödinger equations [23, 25], and more
nonlinear equations or system [17, 24, 30, 33, 34].

There are also many conservative DG schemes that are proposed to “preserve struc-
ture”, such as KdV equation [2, 15, 39], Zakharov system [22], Schrödinger-KdV sys-
tem [23], short pulse equation [40], etc. Usually, the structure preserving schemes can
help reduce the shape error of waves along with long time evolution. For example
in [2, 15, 16, 39], compared with dissipative schemes, the energy conservative or Hamil-
tonian conservative numerical schemes for the KdV equation have less shape error or
amplitude damping for long time approximations, especially in the low-resolution cases.

In this paper, we adopt the LDG method as a spatial discretization to construct high
order accurate numerical schemes for the Fornberg-Whitham type equations. Through
the two equivalent forms of this type of equation, we develop dissipative and conserva-
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tive schemes, respectively. The corresponding conservative quantities can be proved as
dissipative or conservative for the semi-discrete schemes. For the dissipative schemes,
the theoretical results are confirmed as the (k+1)-th order of accuracy if p is odd, and
(k+ 1

2)-th order of accuracy if p is even. Here and in what follows, k is the polynomial
degree of the finite element space. The proof for the dissipative schemes is motivated by
the work on conservation laws [37, 38]. Since the numerical fluxes are different from the
work [37, 38], there exist technical obstacles to derive the a priori error estimates due to
the lack of control on some jump terms at interfaces. The error estimate results for the
Fornberg-Whitham type equations can not achieve the same optimal order as in [37, 38]
for the upwind flux. For the conservative schemes, we prove the k-th order of accuracy
in a different way from [2]. Numerically, the dissipative schemes have good behavior
for shock solutions, while for a long time approximation, the conservative schemes can
reduce the shape error and the decay of amplitude significantly. The two proposed LDG
schemes vary slightly on efficiency which will be explained in the numerical experiments.

The paper is organized as follows. Through the two equivalent forms of the Fornberg-
Whitham type equations, we construct two dissipative, conservative DG schemes in Sec-
tion 2 and Section 3, respectively. We demonstrate the dissipation and conservation cor-
respondingly. Additionally, some results of the error estimate are stated. Subsequently,
several numerical experiments are presented in Section 4 to show the capability of the
methods. This paper is concluded in Section 5. Some more technical proofs of relevant
lemmas are listed in the appendix.

2 The LDG scheme for Eq. (1.1)

2.1 Notations

We denote the mesh Th by Ij = [xj− 1
2
,xj+ 1

2
] for j = 1,··· ,N, where x 1

2
= a,xN+ 1

2
= b with

the cell center denoted by xj =
1
2(xj− 1

2
+xj+ 1

2
). The cell size is ∆xj = xj+ 1

2
−xj− 1

2
and h=

max1≤j≤N ∆xj. The finite element space as the solution and test function space consists
of piecewise polynomials

Vk
h ={v : v|Ij

∈Pk(Ij); 1≤ j≤N},

where Pk(Ij) denotes the set of polynomials of degree up to k defined on the cell Ij. No-

tably, the functions in Vk
h are allowed to be discontinuous across cell interfaces. The

values of u at xj+ 1
2

are denoted by u−
j+ 1

2

and u+
j+ 1

2

, from the left cell Ij and the right cell

Ij+1, respectively. Additionally, the jump of u is defined as

[[u]]=u+−u−,

the average of u as

{{u}}= 1

2
(u++u−).
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To simplify expressions, we adopt the round bracket and angle bracket for the L2 inner
product and boundary term on cell Ij

(u,v)Ij
=

∫

Ij

uvdy,

< û,v>Ij
= ûj+ 1

2
v−

j+ 1
2

−ûj− 1
2
v+

j− 1
2

(2.1)

for the one dimensional case.

2.2 The LDG scheme

We consider the Fornberg-Whitham type equations

ut+ f (u)x+(1−∂2
x)

−1ux =0, (2.2)

where f (u)= 1
p up, and p≥ 2 is an integer. The periodic boundary condition is adopted

here, which is not essential. The LDG methods we propose here or later can be designed
for non-periodic boundary condition easily.

First, we split Eq. (2.2) into a first-order system

ut+ f (u)x+v=0,

v−qx =ux,

q=vx.

Then the semi-discrete LDG scheme is formulated as: Find numerical solutions uh,vh,qh∈
Vk

h , such that





((uh)t,φ)Ij
+< f̂ (uh),φ>Ij

−( f (uh),φx)Ij
+(vh,φ)Ij

=0, (2.3a)

(vh,ϕ)Ij
−< q̂h,ϕ>Ij

+(qh,ϕx)Ij
=< ûh,ϕ>Ij

−(uh,ϕx)Ij
, (2.3b)

(qh,ψ)Ij
=< v̂h,ψ>Ij

−(vh,ψx)Ij
, (2.3c)

for any test function φ,ϕ,ψ∈Vk
h . Here, the “hat” terms in (2.3) are the so-called “numerical

fluxes”, which are functions defined on the cell boundary from integration by parts and
should be designed based on different guiding principles for different PDEs to ensure
the stability and local solvability of the intermediate variables. The main distinctions
between dissipative and conservative schemes are the choices of numerical fluxes. We
have two LDG methods as follows:

Scheme D1: For the dissipative numerical flux of the nonlinear term f (u) here, we take
the Godunov flux to prepare the optimal convergence rate subsequently,

f̂ (uh)≡ f̂ (u−
h ,u+

h )=

{
minu−

h ≤uh≤u+
h

f (uh), u−
h <u+

h ,

maxu+
h ≤uh≤u−

h
f (uh), u+

h ≤u−
h ,

(2.4)
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which is called an upwind numerical flux satisfying the following property,

f̂ (uh)=

{
f (u−

h ), if f ′(u)≥0, u∈ [min(u−
h ,u+

h ),max(u−
h ,u+

h )],

f (u+
h ), if f ′(u)<0, u∈ [min(u−

h ,u+
h ),max(u−

h ,u+
h )].

(2.5)

For the numerical fluxes q̂h,v̂h,ûh, we select

q̂h =q−h , v̂h =v+h , ûh=u−
h (2.6)

to maintain the energy stability. Numerically, the dissipative scheme (2.3) with fluxes
(2.4), (2.6) can achieve (k+1)-th order of accuracy.

Scheme C1: For the conservative scheme C1, the numerical flux for the nonlinear term
f (u) is given by

f̂ (uh)≡ f̂ (u−
h ,u+

h )=





[[F(uh)]]

[[uh]]
, [[uh]] 6=0,

f ({{uh}}), [[uh]]=0,
(2.7)

where F(u)=
∫ u

f (τ)dτ, especially for f (u)= 1
p up,p≥2,

f̂ (uh)=
1

p(p+1)

p

∑
m=0

(u+
h )

p−m(u−
h )

m

as in [2]. Then we choose the central fluxes for q̂h,v̂h,ûh,

q̂h ={{qh}}, v̂h ={{vh}}, ûh={{uh}}. (2.8)

For the conservative scheme (2.3) with fluxes (2.7), (2.8) on uniform meshes, we obtain
the k-th order for odd k, and (k+1)-th order for even k numerically.

2.3 Dissipation and conservation

In this section, we provide proof of energy dissipation or energy conservation for the
proposed LDG schemes in Section 2.2. The proposition demonstrates the conservative
quantities based on which we construct the proposed numerical schemes D1 and C1,
including mass E0, and energy E2 in (1.3).

Before the proposition, we define some bilinear operators to simplify our expressions.

Definition 2.1. We define bilinear operators L±,c
j as

L±,c
j (ω,φ)=−(ω,φx)Ij

+< ω̂,φ>Ij
, (2.9)

where the direction of ŵ determines the operator L+, L− or Lc. Wherein L± denotes the
cases with ω± correspondingly, and Lc is for ω̂=ωc.
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Definition 2.2. The operators N c,d
j for the nonlinear term f (u) are defined as

N c,d
j (ω,φ)=−( f (ω),φx)Ij

+< f̂ (ω),φ>Ij
. (2.10)

The distinction between the dissipative form N d
j and the conservative form N c

j lies in the

numerical flux f̂ , which are taken in (2.4) or (2.7), respectively.

Lemma 2.1. Let L±,c=∑
N
j=1L±,c

j , N c,d=∑
N
j=1N c,d

j , there hold the following properties,

Lc(ω,ω)=0, L+(ω,ω)=−1

2

N

∑
j=1

[[ω]]2
j+ 1

2
;

L+(ω,φ)+L−(φ,ω)=0, Lc(ω,φ)+Lc(φ,ω)=0;

L−(ω,φ)+L−(φ,ω)=
N

∑
j=1

[[ω]][[φ]]j+ 1
2
;

N d(ω,ω)≥0, N c(ω,ω)=0

(2.11)

for ∀ω, φ∈Vk
h .

The properties in Lemma 2.1 can be easily derived by algebraic manipulation which
had already been proved in [2, 27], so we do not give the details here.

Proposition 2.1. For periodic problems, we have

• Scheme D1

d

dt
E0(uh)=

d

dt

∫

I
uhdx=0,

d

dt
E2(uh)=

d

dt

∫

I
u2

hdx≤0. (2.12)

• Scheme C1

d

dt
E0(uh)=

d

dt

∫

I
uhdx=0,

d

dt
E2(uh)=

d

dt

∫

I
u2

hdx=0. (2.13)

Proof. First, we can obtain the mass E0 conservation after summing up equations (2.3a),
(2.3b) with test functions φ=1,ϕ=1.

Next, we prove the L2 stability by taking the test functions as

φ=uh, ϕ=−uh, ϕ=−qh, ψ=vh

in scheme (2.3). After summing up corresponding equations over all intervals,
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• For the dissipative scheme D1

((uh)t,uh)I+N d(uh,uh)+L−(qh,uh)+L−(uh,qh)

+L−(uh,uh)+L−(qh,qh)−L+(vh,vh)

=((uh)t,uh)I+N d(uh,uh)+
1

2

N

∑
j=1

(
([[uh]]+[[qh]])

2
j+ 1

2
+[[vh]]

2
j+ 1

2

)
=0.

• For the conservative scheme C1

((uh)t,uh)I+N c(uh,uh)+Lc(qh,uh)+Lc(uh,qh)

+Lc(uh,uh)+Lc(qh,qh)−Lc(vh,vh)

=((uh)t,uh)I =0.

Here we have used the results in Lemma 2.1. Then we obtain the final dissipation or
conservation in (2.12) and (2.13).

2.4 Error estimates

In this section, we provide error estimates of the LDG schemes in Section 2.2 for the
sufficiently smooth periodic solution of the Fornberg-Whitham type equations.

2.4.1 Notations, projections, and auxiliary results

First, we make some conventions for different constants. For any time t in [0,T], we
assume that the exact solution and its spatial derivatives are all bounded. We use the
notation C to denote a positive constant which is independent of h, but depends on | f ′|
and the exact solution of the problem considered in this paper. Additionally, the notation
C∗ is used to denote the constants which are relevant to the maximum of | f ′′|. Under
different circumstances, these constants will have different values.

Next, we will introduce some projection properties to be used later. The standard L2

projection of a function ζ with k+1 continuous derivatives into space Vk
h , is denoted by

P , i.e., for each Ij

(Pζ−ζ,φ)Ij
=0, ∀φ∈Pk(Ij),

and the Gauss Radau projections P± into Vk
h satisfy, for each Ij,

(P+ζ−ζ,φ)Ij
=0, ∀φ∈Pk−1(Ij), and P+ζ(x+

j− 1
2

)= ζ(xj− 1
2
),

(P−ζ−ζ,φ)Ij
=0, ∀φ∈Pk−1(Ij), and P−ζ(x−

j+ 1
2

)= ζ(xj+ 1
2
).

For the projections mentioned above, it is easy to show [3] that

‖ζe‖L2(I)+h
1
2 ‖ζe‖∞+h

1
2 ‖ζe‖L2(∂I)≤Chk+1, (2.14)



328 Q. Zhang, Y. Xu and C.-W. Shu / Commun. Comput. Phys., 30 (2021), pp. 321-356

where ζe = ζ−Pζ or ζ−P±ζ, and the positive constant C only depends on ζ.

Then some inverse inequalities of the finite element space Vk
h will be applied in the

subsequent proofs.

Lemma 2.2. [3] For ∀ω∈Vk
h , there exists a positive constant C which is independent on ω,h,

such that

(i)‖ωx‖L2(I)≤Ch−1‖ω‖L2(I) , (ii)‖ω‖L2(∂I)≤Ch−
1
2 ‖ω‖L2(I) , (iii)‖ω‖∞≤Ch−

1
2 ‖ω‖L2(I) ,

(2.15)
where

‖ω‖L2(∂I)=

√√√√
N

∑
j=1

(ω−
j+ 1

2

)2+(ω+
j− 1

2

)2.

2.4.2 The main error estimate results

Theorem 2.1. It is assumed that the Fornberg-Whitham type equations (2.2) with periodic bound-
ary condition has a sufficiently smooth exact solution u. The numerical solution uh satisfies the
semi-discrete LDG scheme (2.3). For regular partitions of I =(a,b), and the finite element space
Vk

h , there hold the following error estimates for small enough h

• Scheme D1:
{

‖u−uh‖L2(I)≤Chk+1, if p is odd,

‖u−uh‖L2(I)≤Chk+ 1
2 , if p is even,

k≥1; (2.16)

• Scheme C1:

‖u−uh‖L2(I)≤Chk, k≥2, (2.17)

where the integer p is in the nonlinear term f (u)= 1
p up. The constant C depends on the final time

T, k, ‖u‖k+2 and the bounds of derivatives up to second order of the nonlinear term f (u). Here,
‖u‖k+2 is the maximum of the standard Sobolev k+2 norm over [0,T].

2.4.3 The error equation

Since the exact solution also satisfies the numerical scheme (2.3), doing subtraction can
bring us the error equations. Due to the different choices of test functions in the error
equations, we define the bilinear form Bj as

Bj(u−uh,v−vh,q−qh;φ,ϕ,ψ)

=((u−uh)t,φ)Ij
+(v−vh,φ)Ij

+(q−qh,ψ)Ij

−L+
j (v−vh,ψ)+(v−vh,ϕ)Ij

−L−
j (q−qh,ϕ)−L−

j (u−uh,ϕ)
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and the form for the nonlinear term f (u), which is linear with respect to its second argu-
ment, is

Hj( f ;u,uh,φ)=( f (u)− f (uh),φx)Ij
−< f (u)− f̂ (uh),φ>Ij

.

Here, the notations ϕ=(ϕ1,ϕ2,ϕ3), ψ=(ψ1,ψ2,ψ3) are vectors consisting of test functions
in the finite element space Vk

h . We also define

(u,ϕ)Ij
=

3

∑
i=1

(u,ϕi)Ij
, L±,c

j (u,ϕ)=
3

∑
i=1

L±,c
j (u,ϕi)

for writing convenience. After applying summation over all cells Ij, the error equation is
expressed by

N

∑
j=1

Bj(u−uh,v−vh,q−qh;φ,ϕ,ψ)=
N

∑
j=1

Hj( f ;u,uh,φ). (2.18)

Here, for the dissipative scheme D1, we define

ξu =P−u−uh, ηu =P−u−u,

ξv =P+v−vh, ηv=P+v−v,

ξq =P−q−qh, ηq =P−q−q.

(2.19)

Without causing misunderstanding, the notations in (2.19) are still used to represent the
analogs for the conservative scheme. For conservative scheme C1, we replace the Gauss-
Radau projections by the standard L2 projections

ξu =Pu−uh, ηu =Pu−u,

ξv =Pv−vh, ηv=Pv−v,

ξq =Pq−qh, ηq =Pq−q.

Taking test functions

φ= ξu, ϕ=ξ1, (−ξu,−ξq,ξv), ψ=ξ2, (ξu,ξq,ξv),

we have the energy equality as

N

∑
j=1

Bj(ξ
u−ηu,ξv−ηv,ξq−ηq;ξu,ξ1,ξ2)=

N

∑
j=1

Hj( f ;u,uh,ξu).

2.4.4 The proof of the main results in Theorem 2.1

Next, we analyze Bj and Hj, respectively. Some primary estimate results will be provided
in the following lemmas.
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Estimates for the linear terms

Lemma 2.3. The following energy equality holds,

‖vh‖2
L2(I)+‖qh‖2

L2(I)+(qh,uh)I =0. (2.20)

Proof. The proof is provided in Appendix A.1.

Lemma 2.4. For the bilinear form Bj, the following equations hold by projection properties

• Scheme D1

N

∑
j=1

Bj(ξ
u−ηu,ξv−ηv,ξq−ηq;ξu,ξ1,ξ2)

=(ξu
t ,ξu)I+‖ξv‖2

L2(I)+‖ξq‖2
L2(I)+

N

∑
j=1

1

2
(([[ξu ]]+[[ξq ]])2

j+ 1
2
+[[ξv]]2

j+ 1
2
)+(ξu,ξq)I

−(ηq+ηu
t ,ξu)I−(ηq−ηv,ξq)I−(ηq+ηv,ξv)I ; (2.21)

• Scheme C1

N

∑
j=1

Bj(ξ
u−ηu,ξv−ηv,ξq−ηq;ξu,ξ1,ξ2)

=(ξu
t ,ξu)I+‖ξv‖2

L2(I)+‖ξq‖2
L2(I)+(ξu,ξq)I

−
N

∑
j=1

(< η̂q+ η̂u− η̂v,ξu+ξq
>Ij

−< η̂q+ η̂u+ η̂v,ξv
>Ij

). (2.22)

Proof. The proof is provided in Appendix A.2.

Estimates for the nonlinear terms

Subsequently, our attention is turned to Hj involving the nonlinear term f (u),

N

∑
j=1

Hj( f ;u,uh,ξu)=
N

∑
j=1

( f (u)− f (uh),ξ
u
x)Ij

+( f (u)− f (u
re f
h ))[[ξu ]]j+ 1

2

+
N

∑
j=1

( f (u
re f
h )− f̂ (uh))[[ξ

u ]]j+ 1
2
,T1+T2. (2.23)

The index “re f ” denotes the direction of the value on each element interface depending
on the flow direction of the exact solution u in the adjacent elements. For the dissipative
scheme D1,

χre f ,





χ+, if f ′(u)<0 on Ij∪xj+ 1
2
∪ Ij+1,

χ−, if f ′(u)>0 on Ij∪xj+ 1
2
∪ Ij+1,

{{χ}}, otherwise.

(2.24)
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For the conservative scheme C1, the direction of the boundary value is considered as
{{χ}} for simplicity of the proof.

Lemma 2.5. If the dissipative flux is taken as f (u)= 1
p up,p≥2, we have

T1+T2≤C∗‖ξu‖2
L2(I)+Ch2k+µ+Ch−

3
2 ‖ξu‖3

L2(I) (2.25)

for sufficient small h and k≥1, where µ=1 for even p, and µ=2 for odd p.

Proof. The proof is provided in Appendix A.3.

Lemma 2.6. If the conservative flux is taken as f (u)= 1
p up,p≥2, then

T1+T2≤C∗‖ξu‖2
L2(I)+Ch2k+Ch−

3
2 ‖ξu‖3

L2(I) (2.26)

for sufficient small h and k≥2.

Proof. The proof is provided in Appendix A.4.

Lemma 2.7. Let v∈Vk
h , if it satisfies

d

dt
‖v‖2

L2(I)≤C∗‖v‖2
L2(I)+Ch2k+µ̃+Ch−

3
2 ‖v‖3

L2(I) , (2.27)

then there holds

‖v‖2
L2(I)≤Ch2k+µ̃, (2.28)

where µ̃ is a constant and k≥ 3−µ̃
2 .

Proof. The proof is provided in Appendix A.5.

Final error estimates in Theorem 2.1

Finally, we are ready to get the error estimates in Theorem 2.1. We divide the final error
‖u−uh‖L2(I) into two parts: the projection error ηu and the approximation error ξu. Once
we prove the order of the approximation errors, the results of Theorem 2.1 is derived by
triangle inequality and the interpolation inequality (2.14) straightforwardly. Therefore,
we mainly focus on ‖ξu‖L2(I).

Estimates in (2.16)

Gathering together the estimates (2.21), (2.25), the final error estimate for Scheme D1 is
listed as follows,

(ξu
t ,ξu)I+‖ξv‖2

L2(I)+‖ξq‖2
L2(I)≤−(ξu,ξq)I+(ηq+ηu

t ,ξu)I+(ηq−ηv,ξq)I+(ηq+ηv,ξv)I

+C∗‖ξu‖2
L2(I)+Ch2k+µ+Ch−

3
2 ‖ξu‖3

L2(I) ,

where µ=1 for even p, and µ=2 for odd p.



332 Q. Zhang, Y. Xu and C.-W. Shu / Commun. Comput. Phys., 30 (2021), pp. 321-356

Estimates in (2.17)

Lemma 2.4 and Lemma 2.6 lead us to the error estimate for Scheme C1

(ξu
t ,ξu)I+‖ξv‖2

L2(I)+‖ξq‖2
L2(I)≤C∗‖ξu‖2

L2(I)+Ch2k+Ch−
3
2 ‖ξu‖3

L2(I)−(ξu,ξq)I

+
N

∑
j=1

< η̂q+ η̂u− η̂v,ξu+ξq
>Ij

−
N

∑
j=1

< η̂q+ η̂u+ η̂v,ξv
>Ij

.

Using the Young’s inequality with weights as

|a1||a2|=
∣∣∣
√

2a1

∣∣∣
∣∣∣∣

1√
2

a2

∣∣∣∣≤ a2
1+

1

4
a2

2,

and inverse inequality (ii) in (2.15), we get

1

2

d

dt
‖ξu‖2

L2(I)≤C∗‖ξu‖2
L2(I)+Ch2k+µ̃+Ch−

3
2 ‖ξu‖3

L2(I) , (2.29)

where µ̃=µ for Scheme D1, i.e. the parity of p determines the different convergence rates,
and µ̃= 0 for Scheme C1. Subsequently, we apply Lemma 2.7 and finally get the results
of Theorem 2.1.

Remark 2.1. There is a further result for the conservative scheme with even k and odd
N, i.e. the optimal order of accuracy can be proved in [16].

3 The LDG scheme for Eq. (1.2)

Based on the form
ut−uxxt+ f (u)x+ux = f (u)xxx, (3.1)

we construct another two LDG schemes, including a dissipative scheme and a conser-
vative scheme named by Scheme D2, and Scheme C2, respectively. The conservation or
dissipation and the corresponding error estimate are also provided in this section.

3.1 The LDG scheme

Referring to [29, 31], we split the above equation (3.1) into

w=u−uxx, (3.2)

wt+ f (u)x+ux = f (u)xxx, (3.3)

with periodic boundary condition. Then we first rewrite the above equation (3.2) into a
first-order system

u−rx =w,

r−ux =0.
(3.4)
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By this standard elliptic equation (3.2), we can solve u from a known w. Then the LDG
method for (3.4) is formulated as follows: Find numerical solutions uh, rh ∈Vk

h such that

{
(uh,φ)Ij

−< r̂h,φ>Ij
+(rh,φx)Ij

=(wh,φ)Ij
, (3.5a)

(rh,ψ)Ij
−< ûh,ψ>Ij

+(uh,ψx)Ij
=0, (3.5b)

for all test functions φ,ψ∈Vk
h .

For (3.3), we can also rewrite it into a first-order system:

wt+s= px ,

p= sx−u,

s= f (u)x.

(3.6)

Subsequently, we define the LDG scheme for (3.6) as: Find numerical solutions wh,uh,
ph,sh ∈Vk

h such that





((wh)t,ϕ)Ij
+(sh,ϕ)Ij

=< p̂h,ϕ>Ij
−(ph,ϕx)Ij

, (3.7a)

(ph,ϑ)Ij
=< ŝh,ϑ>Ij

−(sh,ϑx)Ij
−(uh,ϑ)Ij

, (3.7b)

(sh,σ)Ij
=< f̂ (uh),σ>Ij

−( f (uh),σx)Ij
, (3.7c)

for all test functions ϕ,ϑ,σ∈Vk
h .

Scheme D2: The dissipative numerical flux for the nonlinear term f (u) is again taken as
the Godunov flux (2.4). The remaining numerical fluxes are considered to guarantee L2

stability as
ûh=u+

h , r̂h = r−h , ŝh = s+h , p̂h = p−h . (3.8)

Numerically, Scheme D2 can obtain the optimal order of accuracy for the variable u.

Scheme C2: The conservative numerical flux for the nonlinear term f (u) is the same as
(2.7), and then we choose the central fluxes for uh,rh,sh,ph,

ûh={{uh}}, r̂h ={{rh}}, ŝh ={{sh}}, p̂h ={{ph}}. (3.9)

Numerically, Scheme C2 can obtain the k-th order when piecewise polynomials of odd
degree k are used, and (k+1)-th order for even degree k.

3.2 Dissipation and conservation

In this section, a proposition demonstrating dissipation or conservation for the proposed
LDG schemes in Section 3.1 is stated, including E1 conservation and energy E2 dissipation
or conservation.

Proposition 3.1. For periodic problems, we have
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• Scheme D2

d

dt
E1(uh)=

d

dt

∫

I
whdx=0,

d

dt
E2(uh)=

d

dt

∫

I
u2

hdx≤0. (3.10)

• Scheme C2

d

dt
E1(uh)=

d

dt

∫

I
whdx=0,

d

dt
E2(uh)=

d

dt

∫

I
u2

hdx=0. (3.11)

Proof. Owing to the form of conservation law we give in Eq. (3.3), we can have the E1

conservativeness with periodic boundary conditions for Scheme D2,C2 trivially.

Subsequently, we will begin the proof of E2 dissipation or conservation. First, for the
two equations in (3.5), we take a first-order temporal derivative as





((uh)t,φ)Ij
−< (̂rh)t,φ>Ij

+((rh)t,φx)Ij
=((wh)t,φ)Ij

, (3.12a)

((rh)t,ψ)Ij
−< (̂uh)t,ψ>Ij

+((uh)t,ψx)Ij
=0. (3.12b)

Since the numerical schemes (3.12), (3.7) hold for any test function in test space Vk
h , we

choose

ϕ=φ=−ph and −(rh)t, ϑ=ψ=(uh)t and sh,σ=−uh.

After summation of corresponding equalities over all intervals, Lemma 2.1 leads us to
the energy stability

• For the dissipative scheme D2

((uh)t,uh)I+N d(uh,uh)+L−(ph,ph)+L−((rh)t,(rh)t)−L+(sh,sh)

−L+((uh)t,(uh)t)+L−((rh)t,ph)+L−(ph,(rh)t)−L+((uh)t,sh)−L+(sh,(uh)t)

=((uh)t,uh)I+N d(uh,uh)+
1

2

N

∑
j=1

(
([[(rh)t]]+[[ph ]])

2
j+ 1

2
+([[(uh)t]]+[[sh ]])

2
j+ 1

2

)
=0;

• For the conservative scheme C2

((uh)t,uh)I+N c(uh,uh)+Lc(ph,ph)+Lc((rh)t,(rh)t)−Lc(sh,sh)−Lc((uh)t,(uh)t)

+Lc((rh)t,ph)+Lc(ph,(rh)t)−Lc((uh)t,sh)−Lc(sh,(uh)t)

=((uh)t,uh)I =0,

i.e. the results in (3.10) and (3.11).
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3.3 Error estimates

In this section, we will provide error estimates of the LDG schemes in Section 3.1 for the
sufficiently smooth exact solution of the Fornberg-Whitham type equations with periodic
boundary conditions. With the preparations in Section 2.4.1, we directly give the theorem
of the error estimates.

3.3.1 The main error estimate results

Theorem 3.1. It is assumed that the Fornberg-Whitham type equations (3.1) with periodic bound-
ary condition has a sufficiently smooth exact solution u. The numerical solution uh satisfies the
semi-discrete LDG scheme (3.5) and (3.7). For regular partitions of I = (a,b), and the finite
element space Vk

h , there hold the following error estimates for small enough h,

• Scheme D2

{
‖u−uh‖L2(I)≤Chk+1, if p is odd,

‖u−uh‖L2(I)≤Chk+ 1
2 , if p is even,

k≥1; (3.13)

• Scheme C2

‖u−uh‖L2(I)≤Chk, k≥2, (3.14)

where the integer p is in the nonlinear term f (u)= 1
p up. The constant C depends on the final time

T, k, ‖u‖k+2 and the bounds of derivatives up to second order of the nonlinear term f (u). Here,
‖u‖k+2 is the maximum of the standard Sobolev k+2 norm over [0,T].

3.3.2 The error equation

Combining the error equations with different test functions, we define the bilinear form
B̄j as

B̄j(u−uh,v−vh,w−wh,p−ph,s−sh;φ,ψ,ϕ,ϑ,σ)

=((u−uh)t,φ)Ij
−((w−wh)t,φ)Ij

−L−
j (rt− (̂rh)t,φ)+((r−rh)t,ψ)Ij

−L+
j (ut− (̂uh)t,ψ)

+((w−wh)t,ϕ)Ij
+(s−sh,ϕ)Ij

−L−
j (p− p̂h,ϕ)+(p−ph,ϑ)Ij

−L+
j (s− ŝh,ϑ)

+(u−uh,ϑ)Ij
+(s−sh,σ)Ij

−< f (u)− f̂ (uh),σ>Ij
+( f (u)− f (uh),σx)Ij

.

After applying summation over all cells Ij, the error equation is expressed by

N

∑
j=1

B̄j(u−uh,r−rh,p−ph,s−sh;φ,ψ,ϕ,ϑ,σ)=
N

∑
j=1

Hj( f ;u,uh,σ).
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In the same way as Section 2.4.3, we define

ξu =P+u−uh, ηu =P+u−u, ξr =P−r−rh, ηr =P−r−r,

ξs =P+s−sh, ηs =P+s−s, ξp =P−p−ph, ηp=P−p−p,

for the dissipative scheme D2. The Gauss-Radau projections are changed into the stan-
dard L2 projections for the conservative scheme C2

ξu =Pu−uh, ηu =Pu−u, ξr =Pr−rh, ηr =Pr−r,

ξs =Ps−sh, ηs =Ps−s, ξp =P p−ph, ηp =P p−p.

Taking test functions

σ= ξu, φ=ϕ=ξ3, (−ξp,−ξr
t ,ξu

t ,ξs), ϑ=ψ=ξ4, (ξp,ξr
t ,ξu

t ,ξs),

we have the energy equality as

N

∑
j=1

B̄j(ξ
u−ηu,ξr−ηr,ξp−ηp,ξs−ηs;ξ3,ξ4,ξ3,ξ4,ξu)=

N

∑
j=1

Hj( f ;u,uh,ξu).

3.3.3 The proof of the main results in Theorem 3.1

The relevant estimates for Hj have already been stated in Section 2.4.4. We just give the
estimate results for B̄j.

Estimates for the linear terms

Lemma 3.1. The following energy equality holds,

‖sh+(uh)t‖2
L2(I)+‖ph+(rh)t‖2

L2(I)+(uh,ph+(rh)t)I =0. (3.15)

Proof. The proof is provided in Appendix A.6.

Lemma 3.2. For the bilinear forms B̄j, the following equations hold by projection properties

• Scheme D2

N

∑
j=1

B̄j(ξ
u−ηu,ξr−ηr,ξp−ηp,ξs−ηs;ξ3,ξ4,ξ3,ξ4,ξu)

=(ξu
t ,ξu)I+‖ξs+ξu

t ‖2
L2(I)+‖ξp+ξr

t‖2
L2(I)+

N

∑
j=1

1

2
([[ξp]]+[[ξr

t ]])
2
j+ 1

2

+
N

∑
j=1

1

2
([[ξs ]]+[[ξu

t ]])
2
j+ 1

2
+(ξu,ξp+ξr

t )I−(ηu+ηp+ηs+ηu
t +ηr

t ,ξu
t +ξs)I

−(ηu+ηp−ηs−ηu
t +ηr

t ,ξr
t +ξp)I−(ηs,ξu)I ; (3.16)
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• Scheme C2

N

∑
j=1

B̄j(ξ
u−ηu,ξr−ηr,ξp−ηp,ξs−ηs;ξ3,ξ4,ξ3,ξ4,ξu)

=(ξu
t ,ξu)I+‖ξs+ξu

t ‖2
L2(I)+‖ξp+ξr

t‖2
L2(I)−

N

∑
j=1

< η̂r
t + η̂p− η̂s− η̂u

t ,ξr
t +ξp

>Ij

+(ξu,ξp+ξr
t )I+

N

∑
j=1

< η̂r
t + η̂p+ η̂s+ η̂u

t ,ξu
t +ξs

>Ij
. (3.17)

Proof. The proof is provided in Appendix A.7.

Final error estimates in Theorem 3.1

After the above preparations, the proof of Theorem 3.1 can be provided. We still pay our
attention to the approximation error ξu. After the triangle inequality and interpolation
property (2.14), we complete the proof for Theorem 3.1.

Estimates in (3.13)

Combining (3.16) and (2.25), the error estimate for the dissipative scheme D2 is given by

(ξu
t ,ξu)I+‖ξs+ξu

t ‖2
L2(I)+‖ξp+ξr

t‖2
L2(I)

≤−(ξu,ξp+ξr
t )I+Ch2k+µ+C∗‖ξu‖2

L2(I)+(ηu+ηp+ηs+ηu
t +ηr

t ,ξu
t +ξs)I

+(ηu+ηp−ηs−ηu
t +ηr

t ,ξr
t +ξp)I+(ηs,ξu)I+C∗‖ξu‖2

L2(I)+Ch2k+µ+Ch−
3
2 ‖ξu‖3

L2(I) ,

where µ=1 for even p, and µ=2 for odd p.

Estimates in (3.14)

Together with the estimates (3.17) and (2.26), we have the following inequality for the
conservative scheme C2,

(ξu
t ,ξu)I+‖ξs+ξu

t ‖2
L2(I)+‖ξp+ξr

t‖2
L2(I)

≤−(ξu,ξp+ξr
t )I

+
N

∑
j=1

(
< η̂r

t + η̂p− η̂s− η̂u
t ,ξr

t+ξp
>Ij

−< η̂r
t + η̂p+ η̂s+ η̂u

t ,ξu
t +ξs

>Ij

)

+C∗‖ξu‖2
L2(I)+Ch2k+Ch−

3
2 ‖ξu‖3

L2(I) .

The Young’s inequality and inverse inequality (ii) in (2.15) imply

1

2

d

dt
‖ξu‖2

L2(I)≤C∗‖ξu‖2
L2(I)+Ch2k+µ̃+Ch−

3
2 ‖ξu‖3

L2(I) , (3.18)

where µ̃ = µ for Scheme D2, and µ̃ = 0 for Scheme C2. Through Lemma 2.9, we can
straightforwardly obtain the results of Theorem 3.1.
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4 Numerical experiments

In this section, we present several numerical experiments to illustrate the capability of
our numerical schemes, including the errors, convergence rate tables, and some plots
of numerical solutions. For the time discretization, we adopt the explicit third-order
methods in [9, 20]. Under the situation of degree k (k ≥ 2) polynomial approximation

space, we take the time step as ∆t= α∆x(k+1)/3,α= 0.1 to unify orders of temporal and
spatial discretization. Without a specific explanation, the periodic boundary condition
and uniform meshes are used. All examples were performed on a Windows desktop
system using an Intel Core i5 processor, and programmed in Intel Visual Fortran.

Example 4.1. Smooth solution.

For the Fornberg-Whitham type equation with p=3, we test the accuracy of our nu-
merical schemes by a tectonic smooth traveling solution

u(x,t)=sin(x−t), x∈ [0,2π]. (4.1)

Here a source term is needed to add in Eq. (2.2) to make sure the equation holds. The L2

and L∞ errors and orders of accuracy for the four LDG schemes are contained in Tables
1 and 2, respectively. The L2 and L∞ errors for the dissipative schemes D1 and D2 are
similar, so do the conservative schemes. The convergence rates of both norms for the
dissipative schemes are (k+1)-th order which are both optimal. Notably, these results
are identical to the theoretical proof. Even for even p, the numerical tests still show the
optimal error order of accuracy. Owing to the choices of the central fluxes, the conserva-
tive schemes C1 and C2 have (k+1)-th order of accuracy for even k, and only k-th order
of accuracy for odd k. All above conclusion is on the basis of uniform meshes. A slight
perturbation of uniform meshes does not affect the error order of accuracy.

Table 1: Example 4.1, accuracy test for smooth solution (4.1) at T=0.1.

N ‖u−uh‖L2 order ‖u−uh‖∞ order ‖u−uh‖L2 order ‖u−uh‖∞ order

Scheme D1 Scheme C1

P2 20 4.23E-05 – 1.46E-04 – 3.49E-05 – 1.24E-04 –

40 6.24E-06 2.76 2.60E-05 2.49 4.26E-06 3.03 1.57E-05 2.98

80 8.54E-07 2.87 4.93E-06 2.40 5.30E-07 3.01 1.98E-06 2.99

160 1.12E-07 2.93 7.09E-07 2.80 6.61E-08 3.00 2.49E-07 2.99

P3 20 9.68E-07 – 4.08E-06 – 2.68E-06 – 1.44E-05 –

40 7.29E-08 3.73 3.28E-07 3.64 3.41E-07 2.97 1.57E-06 3.19

80 4.18E-09 4.13 1.91E-08 4.11 4.28E-08 3.00 2.16E-07 2.86

160 2.71E-10 3.95 1.21E-09 3.98 5.47E-09 2.97 2.61E-08 3.05
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Table 2: Example 4.1, accuracy test for smooth solution (4.1) at T=0.1.

N ‖u−uh‖L2 order ‖u−uh‖∞ order ‖u−uh‖L2 order ‖u−uh‖∞ order

Scheme D2 Scheme C2

P2 20 4.83E-05 – 2.07E-04 – 3.66E-05 – 1.57E-04 –

40 6.78E-06 2.83 3.45E-05 2.58 4.16E-06 3.14 1.45E-05 3.44

80 8.80E-07 2.95 5.47E-06 2.66 5.22E-07 2.99 1.79E-06 3.02

160 1.13E-07 2.96 7.38E-07 2.89 6.57E-08 2.99 2.36E-07 2.92

P3 20 1.40E-06 – 5.74E-06 – 3.43E-06 – 1.43E-05 –

40 9.32E-08 3.91 4.00E-07 3.84 4.20E-07 3.03 1.99E-06 2.85

80 5.21E-09 4.16 2.29E-08 4.13 5.30E-08 2.99 2.33E-07 3.09

160 3.37E-10 3.95 1.43E-09 4.00 6.68E-09 2.99 2.89E-08 3.01

Example 4.2. Shock solutions.
This example is devoted to test two shock solutions. The initial datums are given as

follows

data 1: u(x,0)=cos(2πx+0.5)+1, (4.2)

data 2: u(x,0)=0.2cos(2πx)+0.1cos(4πx)−0.3sin(6πx)+0.5, (4.3)

where the computational domain is [0,1]. However, there is no exact solution for these
two initial datums. Compared with the results in [13], our dissipative scheme D1 and D2
with a TVB limiter [4] can capture the shock without oscillation, see Fig. 2. We further
extend to the situation with parameter p= 4 in Fig. 1. Because of the lack of dissipation
for the nonlinear term f (u), the conservative schemes fail to model these shock solutions.

Example 4.3. Interaction of two solitons.
The similarity between the KdV equation and the Fornberg-Whitham equation makes

the interaction of solitons evolved by the Fornberg-Whitham equation worth exploring.
Using the initial condition of the KdV equation in [6] as

u(x,t)=12
κ2

1eθ1 +κ2
2eθ2 +2(κ2−κ1)

2eθ1+θ2+a2(κ2
2eθ1 +κ2

1eθ2)eθ1+θ2

(1+eθ1 +eθ2 +a2eθ1+θ2)2
, (4.4)

where

κ1=0.4, κ2 =0.6, a2=
(κ1−κ2

κ1+κ2

)2
,

θ1=κ1x−κ3
1t+4, θ2=κ2x−κ3

2t+15,

we model the interaction of two solitons in Fig. 3. Here, the computational domain is
set to [−50,200]. The process is similar to the KdV case: the two peakons travel from left
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(a) t=0.1 (b) t=0.2

(c) t=0.3 (d) t=0.4

Figure 1: Example 4.2, different terminal time for initial data 1 (4.2) in computational domain [0,1], p= 4,

N=160, P2 elements.

to right, the speed of the taller one is larger than the shorter one. Finally, the taller one
passes the shorter one and then they go further along with the opposite directions. The
numerical solutions in Fig. 3 is consistent with the results in [16].

Example 4.4. Single peakon solution.
Our numerical schemes also work for the peakon solution whose first derivative is

finite discontinuous. The exact solution for the case p=2 is

u(x,t)=
4

3
exp

(
−1

2
|x−st|

)
+s− 4

3
, (4.5)

where s is a constant denoting the speed of the wave. Because of the exponential decay
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(a) t=0.0 (b) t=0.2

(c) t=0.4 (d) t=0.6

(e) t=0.8 (f) t=1.0

Figure 2: Example 4.2, different terminal time for initial data 2 (4.3) in computational domain [0,1], p = 2,

N=320, P2 elements.
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(a) t=0.0 (b) t=40.0

(c) t=80.0 (d) t=120.0

Figure 3: Example 4.3, interaction of two solitons (4.4) with cells N=160, P2 elements.

of the solution, we can treat it as a periodic problem in the domain [−25,25]. We provide
the sketches of this peakon solution at terminal time T = 6 with the speed s = 2. The
approximations of the conservative schemes C1 and C2 have some oscillation at cells
N=160. Refining the spatial meshes or using higher order schemes can fix the oscillation,
see Fig. 4. From the limit value of the amplitude, it is noticed that the corner of the peakon
solution is resolved better in the plots (c) and (d) of Fig. 4 by higher order schemes.

Example 4.5. Periodic peakon solutions.

For the Fornberg-Whitham equation i.e. p= 2, we try to get the approximations for
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(a) P2, N=320 (b) P2, N=320

(c) P4, N=160 (d) P4, N=160

Figure 4: Example 4.4, single peakon solution (4.5) at T=6.0 in the computational domain [−25,25].

periodic peakon solutions [13] with period 2Tp,

u(x,t)= ϕ(x−st−2nTp), for (2n−1)Tp < x−st< (2n+1)Tp, (4.6)

ϕ(ζ)=d+exp
(
− 1

2
|ζ|

)
+d−exp

(1

2
|ζ|

)
+s− 4

3
, ζ= x−st,

where

d±=
1

6

(
4±3

√
4g+4s−2s2

)
,

Tp=2

∣∣∣∣ln
(

φ−s+
4

3

)
−ln(2d−)

∣∣∣∣ with φ=
1

3

(
−4+3s+

√
2(9s2−18s+8−18g)

)
.
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(a) g=0.3 (b) g=0.4 (c) g=0.4444444

Figure 5: Example 4.5, periodic peakon solutions (4.6) with different g at T= 1 in the computational domain

[−3Tp,3Tp], N=160, P2 elements.

Table 3: Example 4.5, CPU time of the proposed LDG schemes for periodic peakon solution (4.6) at T= 300,
N=80 cells.

Scheme C1 Scheme C2 Scheme D1 Scheme D2

P2 41.7 72.3 30.5 67.8

P4 494.2 925.7 378.8 898.5

The parameters s,g are constants where s denotes the speed of the wave, and g concerns
the shape of the wave. We give three different cases in Fig. 5. When we take the speed
s=2, the peakon solution will tend to the cuspon solution, as the parameter g→ 4

9 . Our
proposed schemes have accurate numerical solutions for the different values of g.

For a long time approximation, we use s= 2, g= 0.3 in solution (4.6) as an example
to illustrate the differences among the four numerical schemes. In Fig. 6, we take the de-
gree of piecewise polynomial space k=2. It can be seen that the dissipative schemes D1
and D2 become inaccurate due to the error of shape and decay of amplitude over a long
temporal interval. The conservative schemes have more accurate approximation results
than the dissipative ones. In Fig. 7, we show the results when the degree k=4. It tells that
high order discretization methods can reduce shape error of waves effectively. The con-
servative property we prove is a semi-discrete property for our schemes, which implies
the fully discretization has energy fluctuation, see Table 4. However, the conservative-
ness can reduce the dissipation of energy so that the conservative schemes have better
approximation over a long temporal interval. The shape error caused by dispersion error
and phase speed error can be reduced by conservativeness or higher order accuracy, the
detailed analysis can be accomplished by Fourier expansion and error dynamics [19, 36].

In Table 3, we make a comparison of the CPU time for the four proposed LDG schemes.
It is indicated that the dissipative scheme costs less time than the conservative scheme
owing to the minimal stencils we choose, similar to [39]. On the other hand, Schemes D1,
C1 in Section 2 are more effective than Schemes D2, C2 in Section 3, correspondingly.
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(a) t=0.0 (b) t=100.0

(c) t=200.0 (d) t=300.0

Figure 6: Example 4.5, periodic peakon solution (4.6), N=80, P2 elements.

Table 4: Example 4.5, energy fluctuation of the proposed LDG schemes for periodic peakon solution (4.6) at
T=300, N=80 cells.

Scheme C1 Scheme C2 Scheme D1 Scheme D2

P2 1.14E-02 1.14E-02 3.34E-02 3.36E-02

P4 1.44E-03 1.44E-03 3.87E-03 4.27E-03

Remark 4.1. In summary, the numerical experiments demonstrate that the LDG scheme
for (1.2) in Section 3 is similar to the LDG scheme for (1.1) in Section 2 on the accuracy,
convergence rate numerically or theoretically, and the capability for shock solutions. And
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(a) t=0.0 (b) t=100.0

(c) t=200.0 (d) t=300.0

Figure 7: Example 4.5, periodic peakon solution (4.6), N=80, P4 elements.

the LDG scheme for (1.2) is inferior in the behavior for a long time approximation and
efficiency. However, the LDG scheme for (1.2) can handle the cases with different f (u)
on the two sides of the equation, such as the modified Fornberg-Whitham equation

ut−uxxt+
(1

3
u3

)
x
+ux =

(1

2
u2
)

xxx
.

The LDG scheme for (1.2) can be applied more widely. More details will be given in our
future work which is out of the scope of this paper.
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5 Conclusion

In this paper, for the two different forms of the Fornberg-Whitham type equations, we
construct dissipative LDG schemes D1 and D2, and conservative DG schemes C1 and
C2. For the dissipative schemes, the optimal order of accuracy can be achieved numeri-
cally, which are identical to the theoretical proof for odd p. While for even p, suboptimal
convergence rate can be proved. The conservative schemes have only k-th accuracy order
for odd degree polynomial space, and (k+1)-th order for even k numerically. In theory,
both k-th order can be verified. Different solutions, including shock solutions and peakon
solutions, can be resolved well with our proposed LDG schemes. For a long time approx-
imation, conservative schemes can reduce the dissipation significantly, and high-order
accurate schemes can achieve the same improvement.
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Appendix: Proof of several lemmas

A.1 Proof of Lemma 2.3

In scheme (2.3), we take test functions as

ϕ=vh, ψ=qh, ψ=uh.

After summing up (2.3a) and (2.3c) (twice with different test functions) over all intervals,
we obtain

(vh,vh)I+(qh,qh)I−L−(qh,vh)−L+(vh,qh)−L−(uh,vh)−L+(vh,uh)=−(qh,uh)I ,

for the dissipative scheme D1, then Lemma 2.1 can be used to derive the equality (2.20).
Notably, we can replace all operators L+,L− with Lc in the above equation to get the
same equality for the conservative scheme C1.

A.2 Proof of Lemma 2.4

There are two terms for Bj,

Bj(ξ
u−ηu,ξv−ηv,ξq−ηq;ξu,ξ1,ξ2)

=Bj(ξ
u,ξv,ξq;ξu,ξ1,ξ2)−Bj(η

u,ηv,ηq;ξu,ξ1,ξ2). (A.1)
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• For (2.21) of the dissipative scheme D1: Via the proof of L2 dissipation and Lemma
2.3, we get

Bj(ξ
u,ξv,ξq;ξu,ξ1,ξ2)=(ξu

t ,ξu)Ij
+‖ξv‖2

L2(Ij)
+‖ξq‖2

L2(Ij)

+(ξu,ξq)Ij
+

1

2
([[ξu ]]+[[ξq ]])2

j+ 1
2
+

1

2
[[ξv ]]2

j+ 1
2
.

As for the second term of (A.1), it can be derived by the properties of Gauss-Radau
projection which causes the boundary terms to vanish, as well as the integral terms
with spatial derivatives.

• For (2.22) of the conservative scheme C1: The first term of Bj is obtained by the L2

conservation and Lemma 2.3, i.e.

Bj(ξ
u,ξv,ξq;ξu,ξ1,ξ2)=(ξu

t ,ξu)Ij
+‖ξv‖2

L2(Ij)
+‖ξq‖2

L2(Ij)
+(ξu,ξq)Ij

.

The second term of Bj is derived by the property of L2 projection, orthogonality to
all polynomials of degree up to k. Thus the remaining is some boundary terms as
we state in (2.22).

Therefore, we have the results (2.21) and (2.22) for the bilinear term Bj.

A.3 Proof of Lemma 2.5

For the part T1, we use Taylor expansion on f (u)− f (uh), f (u)− f (u
re f
h ) respectively,

f (u)− f (uh)=− f ′(u)(uh−u)− 1

2
f ′′u (uh−u)2,

f (u)− f (u
re f
h )=− f ′(u)(ure f

h −u)− 1

2
f̃ ′′u (u

re f
h −u)2,

where f ′′u , f̃ ′′u are the mean values. Substituting the above equations into Eq. (2.23), we
obtain

T1=−
N

∑
j=1

f ′(u)ηre f [[ξu ]]−( f ′(u)ηu,ξu
x)+

N

∑
j=1

f ′(u)ξre f [[ξu ]]+( f ′(u)ξu,ξu
x)

−
N

∑
j=1

(
1

2
f̃ ′′u (u

re f
h −u)2[[ξu ]]−

(1

2
f ′′u (uh−u)2,ξu

x

))
,O1+O2+O3. (A.2)

For writing convenience, we omit the subscripts j+ 1
2 for the boundary terms, Ij for the

integral terms. And we need to explain the notations we have used in the above equation.
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We have already defined ηu =P−u−u, ξu =P−u−uh. Due to the different directions of

u
re f
h , the value on the boundary point xj+ 1

2
for u−u

re f
h ,ξre f −ηre f can be represented by

u−u−
h =(P−u−uh)

−−(P−u−u)−,ξre f −ηre f ,

u−u+
h =(P+u−uh)

+−(P+u−u)+,ξre f −ηre f , (A.3)

u−{{uh}}={{Pu−uh}}−{{Pu−u}},ξre f −ηre f .

Notably, the value of ξ,η varies with the direction “re f ”. This setting is for the following
estimates.

• O1 term: For the cases ηre f =η+ or η−, according to the definition in (A.3), we have
ηre f =0. Now we check the case ηre f ={{η}}, i.e. the f ′(u) change its sign on Ij∪ Ij+1.
There is an extra h by | f ′(u)|≤C∗h, thus the estimate for the O1 term can be written
as

O1≤
∣∣∣∣∣

N

∑
j=1

f ′(u){{η}}[[ξu ]]j+ 1
2
+(( f ′(u)− f ′(uj))η

u,ξu
x)Ij

∣∣∣∣∣

≤C∗h‖η‖∞‖ξu‖L2(∂I)+C∗h‖ηu‖L2(I)‖ξu
x‖L2(I)≤C∗hk+1‖ξu‖L2(I) .

Owing to the property of projection, notice that ( f ′(uj)η
u,ξu

x)Ij
=0, this is the reason

for the first inequality. Because of the estimate f ′(u)− f ′(uj)=O(h), we obtain the
second inequality. And then the inverse inequalities (2.15) are applied for deriving
the final result.

• O2 term: After a simple integration by parts, the O2 term becomes

O2=
N

∑
j=1

1

2
( f ′(u)xξu,ξu)Ij

+ f ′(u)(ξre f −{{ξu}})[[ξu ]]j+ 1
2
,O1

2+O2
2.

The first term O1
2 can be easily controlled by C∗‖ξu‖2

L2(I). We mainly focus on the

second term O2
2. Due to the classification of the sign of f ′(u), it needs to be dis-

cussed separately. For the case f ′(u)> 0 on Ij∪ Ij+1, we have the negative term

− 1
2 f ′(u)[[ξu ]]2

j+ 1
2

in O2
2, which can be ignored. For the case f ′(u)≤0 on Ij∪ Ij+1, the

second term O2
2 is simplified as

f ′(u)(ξ+−{{ξu}})[[ξu ]]j+ 1
2
= f ′(u)(ξ+−ξu,++

1

2
[[ξu ]])[[ξu ]]j+ 1

2

=
1

2
f ′(u)([[ξu ]]+(ξ+−ξu,+))2− 1

2
f ′(u)(ξ+−ξu,+)2

≤−1

2
f ′(u)(η+−ηu,+)2

≤C(‖ηu‖2
L2(∂Ij)

+‖η‖2
L2(∂Ij)

).
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Because of the negative term f ′(u)([[ξu ]]+(ξ+−ξu,+))2, we can omit it directly. The
fact ξ−ξu=(P+u−P−u)=(η−ηu) derives the final estimate in the above inequality.

For the last case, i.e. f ′(u) change its sign, the term f ′(u) can provide an extra h,
and then the situation becomes

N

∑
j=1

f ′(u)({{ξ}}−{{ξu}})[[ξu ]]j+ 1
2
≤Ch(‖ηu‖∞+‖η‖∞)‖ξu‖L2(∂I)

≤Ch2k+2+C‖ξu‖2
L2(I) .

Hence we conclude that for f (u) with all non-negative derivative f ′(u), there is

O2≤Ch2k+2+C‖ξu‖2
L2(I) .

However, if there exist some points satisfying f ′(u)<0, then we have

O2≤C(‖ξu‖2
L2(I)+‖ηu‖2

L2(∂I)+‖η‖2
L2(∂I))≤C(‖ξu‖2

L2(I)+Ch2k+1).

Therefore, for the specific form f (u)= 1
p up, the estimate for term O2 is finished.

• O3 term: With the definition e=u−uh,

O3≤C∗‖e‖∞ (‖e‖L2(∂I)‖ξu‖L2(∂I)+‖e‖L2(I)‖ξu
x‖L2(∂I))

≤C∗‖e‖∞ (‖ξu−ηu‖L2(∂I)‖ξu‖L2(∂I)+‖ξu−ηu‖L2(I)‖ξu
x‖L2(I))

≤C∗h−1‖e‖∞ (‖ξu‖L2(I)+Ch2k+2)

≤C∗h−1(‖ξu‖∞+‖ηu‖∞)(‖ξu‖2
L2(I)+Ch2k+2)

≤Ch−
3
2 ‖ξu‖3

L2(I)+C‖ξu‖2
L2(I)+Ch2k+2,

where the last inequality requires small enough h and k≥1.

Subsequently, we divide the term T2 into O4,O5

T2=
N

∑
j=1

( f (u
re f
h )− f (u∗

h))[[ξ
u ]]j+ 1

2
+

N

∑
j=1

( f (u∗
h)− f̂ (uh))[[ξ

u ]]j+ 1
2
,O4+O5,

where u∗
h depends on the sign of f ′(·) between (u+

h )j+ 1
2

and (u−
h )j+ 1

2
,

u∗
h|j+ 1

2
=





(u+
h )j+ 1

2
, if f ′(·)<0 between (u+

h )j+ 1
2

and (u−
h )j+ 1

2
,

(u−
h )j+ 1

2
, if f ′(·)>0 between (u+

h )j+ 1
2

and (u−
h )j+ 1

2
,

{{uh}}j+ 1
2
, otherwise.

(A.4)
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• O4 term: Compared with the classifications in (2.25) and (A.4), if the signs of deriva-
tives f ′(·) are consistent, then the term O4 vanishes. Otherwise, there must be a zero
point of f ′(·) in the interval covered by the (u+

h )j+ 1
2
, (u−

h )j+ 1
2

and the exact solution

u in Ij∪ Ij+1. Taking uj+ 1
2

as a start point, we can obtain an upper bound for the

length of this interval as Ch+‖e‖∞. Hence, we have f ′(ure f
h )≤C∗(Ch+‖e‖∞). Then

the following estimate holds

O4≤
N

∑
j=1

(∣∣∣ f ′(ure f
h )

∣∣∣
∣∣∣ure f

h −u∗
h

∣∣∣+C∗(u
re f
h −u∗

h)
2
)
[[ξu ]]j+ 1

2

≤
(

max
j=[1,N]

∣∣∣ f ′(ure f
h )

∣∣∣
∥∥∥u

re f
h −u∗

h

∥∥∥
L2(∂I)

+C∗
∥∥∥u

re f
h −u∗

h

∥∥∥
2

L2(∂I)

)
‖ξu‖2

L2(∂I)

≤C∗(Ch+‖e‖∞)‖ξu−ηu‖L2(∂I)‖ξu‖2
L2(∂I)

≤C∗(1+h−1‖e‖∞)(‖ξu‖2
L2(I)+Ch2k+2)

≤Ch−
3
2 ‖ξu‖3

L2(I)+C‖ξu‖2
L2(I)+Ch2k+2,

where we used
∣∣ure f

h −u∗
h

∣∣≤|[[uh]]|= |[[e]]| in the third inequality.

• O5 term: Due to the properties of the upwind flux (2.5), the O5 term will degenerate
to zero if the sign of f ′(u) does not change between (u+

h )j+ 1
2

and (u−
h )j+ 1

2
. For

the case with the changed sign, we can derive the following estimate form Taylor
expansion

O5=
N

∑
j=1

( f ({{uh}})− f (ζ))[[ξu ]]j+ 1
2

=
N

∑
j=1

( f ′({{uh}})({{uh}}−ζ)− 1

2
f ′′u ({{uh}}−ζ)2)[[ξu ]]j+ 1

2

≤
N

∑
j=1

(Ch|[[uh]]|+C∗ |[[uh]]|2)[[ξu]]j+ 1
2

≤C∗(1+h−1‖e‖∞)(‖ξu‖2
L2(I)+Ch2k+2)

≤Ch−
3
2 ‖ξu‖3

L2(I)+C‖ξu‖2
L2(I)+Ch2k+2,

where ζ is between (u+
h )j+ 1

2
and (u−

h )j+ 1
2
. The derivation of the above inequalities

has used |[[uh]]|= |[[uh−u]]|= |[[e]]| and the Young’s inequality.

We have now accomplished the proof for Lemma 2.5.

Remark A.1. In [37, 38], the authors have proved the optimal orders of accuracy for up-
wind fluxes in hyperbolic conservation laws. The differences between our cases and
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theirs are directions of the test functions, which cause suboptimal order of accuracy for
even p in the above term O2.

A.4 Proof of Lemma 2.6

First, along the same line of Lemma 2.5, we can divide the T1 into three analogs O1,O2,O3

as T1 in (A.2), where the “re f ” is considered as an average {{}}. The estimation for the
term O1 shows order of h2k since

O1≤
∣∣∣∣∣

N

∑
j=1

f ′(u){{ηu}}[[ξu ]]j+ 1
2
+(( f ′(u)− f ′(uj))η

u,ξu
x)Ij

∣∣∣∣∣

≤C‖ηu‖∞‖ξu‖L2(∂I)+C∗h‖ηu‖L2(I)‖ξu
x‖L2(I)

≤Ch2k+C∗‖ξu‖2
L2(I) .

After an integration by parts, the O2 term can be simplified as 1
2( f ′(u)xξu,ξu)≤C∗‖ξu‖2

L2(I).
As to O3, it is identical with the proof of Lemma 2.5 which we omit here. Therefore, we
have

T1≤Ch2k+C∗‖ξu‖2
L2(I)+C∗h−1‖e‖∞(‖ξu‖2

L2(I)+Ch2k+2)

≤Ch2k+C∗‖ξu‖2
L2(I)+Ch−

3
2 ‖ξu‖3

L2(I).

Next, the remaining term T2 is nothing but a residual term of midpoint formula for nu-
merical integration which can be obtained by Taylor expansion, thus

T2≤
N

∑
j=1

C∗[[uh]]
2[[ξu ]]j+ 1

2
≤C∗‖e‖∞‖uh−u‖L2(∂I)‖ξu‖L2(∂I)

≤C∗h−1‖e‖∞ (‖ξu‖2
L2(I)+Ch2k+2)≤Ch−

3
2 ‖ξu‖3

L2(I)+C‖ξu‖2
L2(I)+Ch2k+2.

Finally, combining the above estimates, Lemma 2.6 is verified.

Remark A.2. In [2], the authors have given the result of the k-th order of accuracy for
the nonlinear part f (u)= 1

p up,p≥2. Here in our proof, we draw the same conclusion by

another way to verify the above result.

A.5 Proof of Lemma 2.7

Referring to the technique in [16], integration of (2.27) gives

‖v(t,·)‖2
L2(I)≤CG(t), (A.5)

where

G(t)=h2k+µ̃+
∫ t

0
‖vu(τ,·)‖2

L2(I)+h−
3
2 ‖v(τ,·)‖3

L2(I)dτ.
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Since the following relation

G′(t)≤C(G(t)+h−
3
2 G(t)

3
2 )

holds, we obtain a significant estimate after integrating the above inequality

Q(G/G(0))<CT,

where

Q(y)=
∫ y

1

1

ζ+h−
3
2

√
G(0)ζ

3
2

dζ=
∫ y

1

1

ζ+hk− 3−µ̃
2 ζ

3
2

dζ.

Note that the derivatives Q′(y) is positive and bounded for all y≥1,k≥ 3−µ̃
2 . There must

exists C̃ such that

Q(C̃)=CT.

By the monotonicity of Q, we conclude that G≤ C̃G(0). With the aid of (A.5), the result
of Lemma 2.7 is obtained.

A.6 Proof of Lemma 3.1

We take test functions in Eqs. (3.7) and (3.12) as

ϕ=φ=(uh)t and sh, ψ=ϑ=(rh)t and ph.

Summed up these eight corresponding equalities over all intervals, it gives

((uh)t,(uh)t)I+((rh)t,(rh)t)I+(sh,sh)I+(qh,qh)I+2((uh)t,sh)I+2((rh)t,ph)I

−L−((rh)t,(uh)t)−L+((uh)t,(rh)t)−L−((rh)t,sh)−L+(sh,(rh)t)

−L−(ph,(uh)t)−L+((uh)t,ph)−L−(ph,sh)−L+(sh,ph)=−(uh,(rh)t+ph)I . (A.6)

By the properties of the operators L+,L−, we conclude that the energy equality (3.15)
can be established for the dissipative scheme D2. The same derivation works for the
conservative scheme C2 with the operator Lc in (A.6) as well.

A.7 Proof of Lemma 3.2

The bilinear term B̄j can be written as

B̄j(ξ
u−ηu,ξr−ηr,ξp−ηp,ξs−ηs;ξ3,ξ4,ξ3,ξ4,ξu)

= B̄j(ξ
u,ξr ,ξp,ξs;ξ3,ξ4,ξ3,ξ4,ξu)−B̄j(η

u,ηr,ηp,ηs;ξ3,ξ4,ξ3,ξ4,ξu).
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• For (3.16) of the dissipative scheme D2: By the same argument as that used for the
L2 dissipation and energy equality (3.15), the first term of the above equation is

B̄j(ξ
u,ξr ,ξp,ξs;ξ3,ξ4,ξ3,ξ4,ξu)

=(ξu
t ,ξu)Ij

+(ξu,ξp+ξr
t )Ij

+‖ξs+ξu
t ‖2

L2(Ij)
+‖ξp+ξr

t‖2
L2(Ij)

+
1

2
([[ξp]]+[[ξr

t ]])
2
j+ 1

2
+

1

2
([[ξs ]]+[[ξu

t ]])
2
j+ 1

2
.

Similarly, with the properties of Gauss-Radau projections, the second term of B̄j can
be obtained straightforwardly.

• For (3.17) of conservative scheme C2: The L2 conservation and energy equality
(3.15) implies

B̄j(ξ
u,ξr,ξp,ξs;ξ3,ξ4,ξ3,ξ4,ξu)

=(ξu
t ,ξu)Ij

+‖ξs+ξu
t ‖2

L2(Ij)
+‖ξp+ξr

t‖2
L2(Ij)

+(ξu,ξp+ξr
t )Ij

.

Owing to the L2 projection, all integral terms in the second term of B̄j vanish and
we are left with the remaining boundary terms.
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