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Abstract

We propose and analyze a class of robust, uniformly high-order accurate discontin-
uous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics
(RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-
preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint
on the fluid velocity and the positivity of density, pressure, and internal energy. This is
the first time that provably PCP high-order schemes are achieved for multidimensional
RMHD. Developing PCP high-order schemes for RMHD is highly desirable but remains
a challenging task, especially in the multidimensional cases, due to the inherent strong
nonlinearity in the constraints and the effect of the magnetic divergence-free condition.
Inspired by some crucial observations at the PDE level, we construct the provably PCP
schemes by using the locally divergence-free DG schemes of the recently proposed sym-
metrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP
property of the DG solutions, and the strong-stability-preserving methods for time dis-
cretization. We rigorously prove the PCP property by using a novel “quasi-linearization”
approach to handle the highly nonlinear physical constraints, technical splitting to offset
the influence of divergence error, and sophisticated estimates to analyze the beneficial
effect of the additional source term in the symmetrizable RMHD system. Several two-
dimensional numerical examples are provided to further confirm the PCP property and

to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.
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1 Introduction

In this paper, we explore robust and high-order accurate numerical schemes for solving rela-
tivistic magnetohydrodynamics (RMHD) equations, which are widely used for the description
of the dynamics of electrically conducting fluids moving close to the speed of light in the
presence of the magnetic field. The RMHD equations play an important role in many fields,
such as astrophysics and high energy physics, and have been used to investigate a number
of astrophysical scenarios from stellar to galactic scales, e.g., gamma-ray bursts, formation of
black holes, astrophysical jets, blast waves of supernova explosions, gravitational collapse and
accretion, etc.

The special RMHD equations are often formulated as a nonlinear system of hyperbolic

conservation laws

U,+ V- -FU) =0, (1)

where V- = 3¢ 895 is the divergence operator with d € {1, 2,3} denoting the spatial dimen-
sionality. Here the geometrized unit system is used so that the speed of light ¢ = 1. In (1), the

conservative vector U = (D,m, B, E)", and the flux F = (Fy,...,Fy) is defined by
Fz(U) = (DU,‘, v;m — Bz (W_2B + (V . B)V) + Dtot€i, UZ‘B — Biv, mi)T s

with the mass density D = pW, the momentum vector m = (pHW? + |B|?)v — (v - B)B,
the magnetic field B = (By, By, Bs), the energy E = pHW? — p;x + |BJ|?, and the vector e;
being the i-th row of the unit matrix of size 3. In addition, p denotes the rest-mass density,
v = (v1, v, v3) is the velocity field of the fluid, W = 1/4/1 — |v|? denotes the Lorentz factor,
H=1+4+e+ % stands for the specific enthalpy with e being the specific internal energy. pio
represents the total pressure consisting of the thermal pressure p and the magnetic pressure
Pm =5 (W™2B|? + (v - B)?). In order to close the system (1) an equation of state (EOS) is
needed. A general EOS can be expressed as

H = H(p,p). (2)

A simple widely-used one is the ideal EOS

I'p
H=14———7, (3)
(I'=1)p
with a constant I' € (1,2] denoting the adiabatic index, for which the restriction I' < 2 is
required by the compressibility assumptions and the relativistic causality [15]. Given a specific

EOS, the conservative vector U and the flux F can be explicitly expressed by the primitive
variables {p,p,v,B}. However, unlike the non-relativistic case, there are no explicit formulas
for either the flux F or the primitive variables {p, v,p} in terms of U, due to the appearance
of the Lorentz factor and other relativistic effects.

The magnetic field should also satisfy an additional divergence-free condition

Z (931:Z 0 (4)




which reflects the fact that there are no magnetic monopoles and also appears in the non-
relativistic ideal MHD system. In fact, if the initial magnetic field is divergence-free, then the
exact solution of the equations (1) always maintains zero divergence. In the design of numeri-
cal RMHD schemes, the divergence-free condition (4) should be also accommodated carefully,
which causes challenges in addition to the standard difficulties in solving the nonlinear hyper-
bolic systems. It is widely realized that the condition (4) is important for robust computations,
since large divergence error in the magnetic field may cause nonphysical structures or numer-
ical instabilities, see, for example, [12, 3, 37, 22]. In the one-dimensional case (d = 1), By is
constant so that the condition (4) can be easily enforced in numerical computations. However,
in the multidimensional cases (d > 2), numerical preservation of (4) is indeed nontrivial, and
various techniques have been proposed to reduce the divergence error or numerically enforce
the condition (4) in some discrete sense; see e.g., [12, 29, 37, 9, 1, 7, 36, 22, 23, 27, 50, 13, 1]
and the references therein.

In physics, the density, internal energy and thermal pressure are positive, and the fluid
velocity must be slower than the speed of light in the vacuum ¢ = 1. In other words, the
physically admissible conservative variables U must stay in the following set

G:={U=(D,mB,E) : p(U) >0, p(U) >0, eU) >0, [v(U)| <1}, (5)

where the functions p(U), p(U), e(U) and v(U) are highly nonlinear and cannot be explicitly
formulated in terms of U, due to the relativistic effect. The satisfaction of the constraints (5) is
not only necessary for the physical nature of the solution, but also highly desirable and crucial
for the robustness of numerical computations. In fact, when any physical constraints in (5) are
violated numerically, the discrete problem would become ill-posed because the hyperbolicity is
lost, and numerical instability can develop so as to cause the blowup of the numerical solutions
and the termination of the simulation. In the past several decades, various numerical schemes
were developed for the RMHD, e.g., [20, 10, 26, 38, 17, 51, 2, 57]. However, none of them
were rigorously proven to preserve all these constraints, even though they have been applied to
successfully simulate some RMHD flows. In fact, most of the existing RMHD schemes do not
always maintain these constraints, and thus may suffer from a risk of failure when simulating
RMHD problems with large Lorentz factor, low density or pressure, or strong discontinuity.
It is therefore highly significant and desirable to develop physical-constraint-preserving (PCP)
numerical methods' that always keep the solutions in the admissible state set G.

During the past decade, significant progress has been made for constructing bound-preserving
high-order accurate schemes for solving hyperbolic partial differential equations, with the aid
of two types of limiters. One is a simple scaling limiter for the solution polynomials recon-
structed in finite volume methods or evolved by discontinuous Galerkin (DG) methods; see,
e.g., [03, 54, 52, 4243, 58]. Another one is a flux-correction limiter, see, e.g., [19, 18, 24, 5].

!The PCP property defined in this paper refers only to the preservation of the subluminal constraint on
fluid velocity and the positivity of density, pressure, and internal energy. Our PCP definition does not include
the divergence-free constraint (4). The numerical schemes proposed in this paper only maintain a locally
divergence-free property for the magnetic field.



For more developments, we refer interested readers to the survey [33] and references therein.
With these limiting approaches, several PCP methods were developed for the special rela-
tivistic hydrodynamics (RHD) without the magnetic field, including high-order accurate PCP
finite difference schemes [15], PCP DG schemes [30], PCP central DG schemes [17], and PCP
Lagrangian finite volume schemes [25]. It is nontrivial to extend the PCP methods from spe-
cial to general RHD. An earlier effort [32] was made in this direction but only enforced the
positivity of density. Recently, frameworks were established in [39] for designing provably PCP
high-order accurate finite volume, finite difference and DG methods for the general RHD. All
of the aforementioned PCP methods were restricted to the RHD without the magnetic field B.

Yet, it is still a highly challenging task to seek the provably PCP numerical schemes for
the RMHD, mainly due to the effect of the numerical divergence error of B, the intrinsically
complicated coupling of the RMHD equations, and the highly nonlinear physical constraints
in (5). As mentioned above, there are no explicit expressions of the highly nonlinear functions
p(U), p(U), e(U) and v(U) for the RMHD. Taking the ideal EOS case (3) as example, in order
to obtain the values of {p, v, e, p} from a given vector U = (D, m,B, E)", one needs to solve
a nonlinear algebraic equation [20]:

0+IB|2—E+F_1< D f )—1<<m'B>2+ |B|2>:o, (6)

r \Tu®) 7Ti0)) 2 2 TZ,(6)

for the unknown 6 € (0, +00). Here the function Yy () is defined by

old) 02(6 + B2)* — [0*/m|* + (20 + [B[)(m - B)*] |
v 02(0 + [BJ2)’ '

Assume that an admissible solution of the equation (6) exists for the given state U, and denote
it by 6 = §(U), then we can compute the primitive variables in (5) by

H—1 A 2 _ D
v(U) = (m+7m - BJB) /6 +[BF).  p(U) = = ;
T 5 o) = PU)
p<U>—m%<é)<9 DTy(d)). (V) = F25,0

As clearly shown in the above procedure, checking the admissibility of a given state U is al-
ready a very difficult task. On the other hand, in most of the numerical RMHD schemes, the
evolution of the conservative quantities {D, m, B, E'} are generally based on their own con-
servation laws in (1), while the discrete evolution equations are seemingly not directly related
to the constraints in (5) and do not necessarily ensure the desired bounds of the computed
primitive variables {p, p,e,v}. In theory, it is quite difficult to prejudge whether a numerical
RMHD scheme is always PCP under all circumstances or not. The study of PCP schemes for
the RMHD has remained blank until the recent work in [16], where several important math-
ematical properties of the set G were first derived, and PCP schemes were developed for the

conservative RMHD equations (1) in one space dimension. Moreover, for the multidimensional
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conservative RMHD equations, the theoretical analysis in [10] revealed that the PCP property
of standard DG and finite volume methods is closely connected with a discrete divergence-
free condition on the numerical magnetic field. This finding was further extended on general
meshes in [18] and was also observed in the non-relativistic ideal MHD case [10]. Moreover,
it was shown in [10, 48] that the multidimensional first-order Lax-Friedrichs scheme for (1)
is generally not PCP, if that discrete version of divergence-free condition is violated slightly.
Unfortunately, the required discrete divergence-free condition relies on certain combination of
the numerical solution information on adjacent cells, so that it could not be naturally enforced
by any existing divergence-free techniques that also work in conjunction with the standard
local scaling PCP limiter [16]. Therefore, the design of multidimensional PCP schemes for the
RMHD has challenges essentially different from the one-dimensional case. As a result, provably
PCP high-order schemes have not yet been obtained for the conservative RMHD system (1) in
the multidimensional cases.

The focus of this paper is to develop a class of provably PCP high-order DG schemes for the
multidimensional RMHD with a general EOS on general meshes. This will be the first time
that provably PCP high-order schemes are obtained for multidimensional RMHD. Towards
achieving this goal, we will make the following efforts in this paper:

1. First, we investigate the PCP property of the exact solutions of the conservative RMHD
system (1) at the PDE level. We observe that, if the condition (4) is violated slightly, then
the set G is generally no longer an invariant region for the exact solution of (1), i.e., even the
exact solution may fail to be PCP. This is consistent with our previous finding in the non-
relativistic ideal MHD case [12]. Therefore, before seeking provably PCP numerical schemes,
our first task is to reformulate the RMHD equations so as to accommodate the PCP property
at the PDE level. We consider a symmetrizable formulation of the RMHD equations, which
we recently proposed in [11], by building the condition (4) into the equations via adding a
source term. We show that, for the exact smooth solutions of the new RMHD equations,
the PCP property always holds even if B is not divergence-free.

2. Based on the symmetrizable formulation, we construct provably PCP high-order accurate
DG schemes on general meshes for the multidimensional RMHD equipped with a general
EOS. The key is to properly discretize the symmetrizable RMHD equations so as to elimi-
nate the influence of the numerical divergence error on the PCP property of the resulting
DG schemes. We adopt the locally divergence-free DG elements, which enforce zero di-
vergence within each cell, and a suitable discretization of the symmetrization source term,
which brings some crucial discrete divergence terms into our schemes and exactly offsets the
influence of the divergence error on the PCP property.

3. One key innovation in this paper is the rigorous proof of the PCP property of the proposed
high-order accurate DG schemes for the multidimensional RMHD, without requiring any
discrete divergence-free condition. There are two main technical challenges in the proof.

One is how to explicitly and analytically verify the admissibility of any given conservative



state U, without solving the nonlinear equation (6). This difficulty has been addressed
in [16] based on two equivalent forms of the admissible state set G. The other is how to
take the advantages of the locally divergence-free property of the numerical magnetic field
and our suitable discretization of the source term in the symmetrizable RMHD formula-
tion, to eliminate the influence of the divergence error on the PCP property. Due to the
divergence-involving source term and the locally divergence-free DG solutions, the limiting
values of the numerical solution on the boundaries of each mesh cell are coupled intrinsi-
cally, leading to some standard analysis techniques ([54]) inapplicable in our case. We will
overcome this difficulty by using a novel “quasi-linearization” approach to handle the highly
nonlinear constraints in (5), technical splitting to offset the influence of divergence error,
and sophisticated estimates to analyze the beneficial effect of the symmetrization source

term.

4. We implement the proposed PCP DG schemes on two-dimensional Cartesian meshes and
demonstrate their accuracy, effectiveness and robustness for several numerical examples. We
will show that our PCP schemes, without any artificial treatments, are able to successfully
simulate several challenging problems, including a strongly magnetized bast problem with
extremely low plasma-beta (2.5 x 107!%) and two highly supersonic RMHD jets, which
are very demanding test cases and their successful simulations were rarely reported in the
literature.

The study in this paper is also motivated by our recent work [12, 43] on exploring the
positivity-preserving DG methods for the non-relativistic ideal MHD. Compared to the non-
relativistic case, the present study is much more challenging, due to the highly nonlinear cou-
pling of the RMHD equations and the complicated mapping from the conservative to primitive
variables. Additional technical challenges also arise from the suitable discretization of the sym-
metrization source term and especially some novel estimate techniques have to be developed
to analyze its beneficial effect on the PCP property.

This paper is organized as follows. In Section 2, we introduce some auxiliary observations
on the PCP property at the PDE level. In Section 3, some key techniques for the PCP analysis
are presented. We discuss the construction and the provably PCP property of our DG schemes

in Section 4, and conduct the numerical tests in Section 5. Section 6 concludes the paper.

2 Auxiliary observations on the PCP property at the
PDE level

This section introduces our observations on the PCP property for the strong solutions of
the conservative formulation (1) and a symmetrizable formulation of the RMHD equations,
respectively, with the ideal EOS (3). The findings will provide some insights that guide us to
successfully construct the PCP schemes for the RMHD.



We observe that, if V - B # 0, then the set G is generally no longer an invariant region for

the exact solution of (1) because p < 0 may appear. Let us consider the following initial data

p(x,0) =1, v(x,0)=(0.01, 0.01, 0.01), p(z,0)=1—e 2"

B(xz,0) = (2,2,2) 4 e(arctan x1, arctanzs, arctanzs),

(8)

where € = (21,...,24), and 0 < ¢ < 1 indicates a very small nonzero divergence in the
magnetic field. Notice that the initial solution (8) is infinitely differentiable and bounded. We
then study the Cauchy problem of (1) with (8), by assuming that the exact solution of this
problem exists and is smooth for the time ¢ belonging to a small interval [0,t,), 0 < t* < 1.
Since |v(0,0)] —1 = —0.97 < 0 and p(0,0) = 1 > 0, by the sign-preserving property for
continuous functions, there exists a neighborhood Q of 0 in R? and t, € (0,,t,) such that
p(x,t) > 0 and |v(z,t)] — 1 < 0, V(x,t) € Q x [0,%5). We now compute the initial temporal
derivative of pp" at (z,t) = (0,0). It can be derived from the equations (1) that

% (pp ) +v-V(pp ") +T—1)p " "(v-B)V-B=0. (9)
At (z,t) = (0,0), we have V (pp™") = 0 and V - B = de > 0, which imply a(pg—t_F)(O,O) =
—0.06d(T" — 1)e < 0. Besides, one can observe that pp=(0,0) = 0. Thus there exists ¢; € [0, %)
such that pp~1(0,t) < 0, V¢t € (0,t;). Because p(x,t) > 0, V(x,t) € Q x [0,ty), we have
p(0,t) <0, Vt € (0,11).

The above analysis infers that if the condition (4) is violated slightly, G is no longer an
invariant region for the exact solution of the equations (1), i.e., the exact solution may fail to
be PCP. This observation, along with the results in [16] at the numerical level, demonstrate the
unity of continuous and discrete objects, and clearly reveal the intrinsic connection between
the PCP property and divergence-free condition.

We remark that (8) is merely a mathematical example and indeed has no practical relevance,
because of a vanishing pressure at the origin and the nonzero divergence of the magnetic field.
Nevertheless, such a nonphysical situation may appear in numerical solutions — the local
pressure can be very close to zero and the magnetic field can be not divergence-free. According
to the analysis above, when the condition (4) is violated numerically at ¢ = t,,, even an exact
PDE solver (suppose we have) of the equations (1) for the subsequent simulation (¢ > t¢,,) may
also fail to be PCP. Unfortunately, in most of the multidimensional RMHD schemes including
the standard DG methods, the numerical divergence error is generally unavoidable. Although
a few globally divergence-free numerical techniques were proposed (see e.g. [23, 27, 50, 13, 4]),
the standard local scaling limiter (cf. [54, 40]) for bound preservation can destroy the globally
divergence-free property. 1t is therefore difficult to find a numerical technique which can enforce
the globally divergence-free property and meet the PCP requirement at the same time.

In order to address the above issue, we propose to consider a symmetrizable formulation of
the RMHD equations 1]

U;+V-FU)=-S(U)V:B, (10)



where
S(U):= (0, (1—|[v?)B+(v-B)v, v, v-B)'. (11)

The system (10) is analogous to the Godunov—Powell system [11, 28] for the non-relativistic
ideal MHD. It is first proposed in [11] recently for the entropy symmetrization of the RMHD
equations. For convenience, we refer to the additional term at the right-hand-size of (10) as
“symmetrization source term”. Under the condition (4), this source term vanishes, so that the
two formulations (10) and (1) are equivalent at the continuous level. However, the inclusion of
this source term changes some characters of the equations. As a result, the modified RMHD
system (10) becomes symmetrizable, admits a convex thermodynamic entropy pair, and plays
a key role in designing entropy stable schemes [11]. These beneficial properties do not hold for
the conservative RMHD system (1).

For the PCP point of view, we discover another beneficial property of the symmetrizable
RMHD system (10). Specifically, we observe that, at the PDE level, the strong solutions of the
symmetrizable equations (10) always maintain the PCP property, even if B is not divergence-
free. Let us study the Cauchy problem of the equations (10), for £ € R? and ¢ > 0, with the
initial condition

(p,v,B,p)(.’B,O) = (IOO>V0>pO>B0)(w)7 (12)

where the magnetic field is not necessarily divergence-free. Then we can prove the following

result by the method of characteristics.

Proposition 2.1. Assume the initial data (12) are in CY(R?) with po(x) > 0, po(xz) > 0,
and |vo(x)| < 1, V& € Re. If the Cauchy problem of (10) with (12) has a C* solution
(p,v,B,p)(x,t) forx € R and 0 <t < T, then

plx,t) >0, |v(z,t)| <1, p(x,t) >0, e(x,t) >0, VYxcRY Vte|0,T).
In addition, if assuming the solution is C?, then it holds

B -B B
min 2 (2,0) < 2 (1) < max D (x,0),  Vtel0,T], (13)

zerd pW pW zcR? P

which implies that the “relative” divergence ||p~'W =1V - B(-,t)||r~ does not grow with t.
Proof. The proof is straightforward and is given in Appendix A for completeness. |

As we have already seen, the inclusion of the source term S(U)V - B in the symmetrizable
RMHD system (10) helps eliminate the effect of nonzero divergence on the PCP property at the
PDE level. Now, it is very natural to ask: For the PCP property at the numerical level, can we
get a similar benefit from the system (10)? Can we also eliminate the effect of divergence error
to achieve PCP schemes by proper discretization of the new equations (10)? These questions
will be answered by the efforts in the subsequent sections, for which some important analysis
techniques are required.



Remark 2.1. Analogous to the Powell source term for the non-relativistic ideal MHD system
[29, 12, J5], the source term in the symmetrizable RMHD system (10) is non-conservative,
but is necessary to accommodate the PCP property at the PDE level when the condition (4) is
not exactly satisfied. Therefore, in order to achieve the PCP property at the discrete level, our
schemes in this paper will be constructed using the symmetrizable formulation (10), which poses
additional technical challenges in discretizing the source term properly to ensure its compatibility
with the PCP property. As mentioned in []2, /3] on the non-relativistic MHD, there is a
conflict between the PCP property which requires the mon-conservative source term, and the
conservation property which s lost due to the source term. The loss of conservation property
leaves the possibility that it may lead to incorrect resolutions for some discontinuous problems,
which will be investigated carefully in a separate study. It would be also interesting to explore
PCP high-order schemes via the conservative formulation (1) and with an ezxactly divergence-

free numerical technique that can work in conjunction with a bound-preserving limaiter.

Remark 2.2. For smooth solutions, if the divergence-free condition (4) is met, then equation
(9), derived from the conservative system (1), reduces to

with S = pp~' being the specific entropy. This equation can also be directly derived from
the symmetrizable RMHD system (10), without using the divergence-free condition (4). See
(60) in the proof of Proposition 2.1. The equation (14) actually describes an entropy transport
which “drives” the positivity of p and e, given that p > 0. For non-smooth solutions, this
equation is replaced with the entropy inequality (pS), + V - (vpS) > 0, which implies Tadmor’s
minimum entropy principle [55]: S(x,t) > min, S(x,0). Several high-order schemes satisfying
this principle were developed, e.q., for the (non-relativistic) Euler equations [55, 10, 19] and
recently for the RHD equations [/ 1] without magnetic field.

3 Numerical analysis techniques

In this section, we will introduce several important properties of G and derive some technical
estimates, which will be useful in the PCP analysis of the proposed numerical schemes.

3.1 Properties of admissible states

Throughout the rest of this paper, we consider a general causal EOS (2) satisfying

The function H(p, p) in (2) is differentiable in R* x R,

H(p,p) > \/1+p*/p*+p/p, Vp,p >0, (15)

H(p, p) <% - aHéﬁ””) < PR <0, p.p >0,




where the second condition is revealed by the relativistic kinetic theory, and the third condition
can be derived from the relativistic causality and assuming that the coefficient of the thermal
expansion of the fluids is positive [17]. These assumptions are reasonable because they are
valid for most compressible fluids, e.g., the gases. One can verify that the conditions in (15)
hold for the ideal EOS (3) and some other commonly used EOSs; see [17].

In order to overcome the challenges arising from the lack of explicit formulas of the functions
in (5), the following two equivalent forms of G were rigorously derived in [10] for the ideal EOS
(3) and in [18] for a general EOS (2) satisfying (15).

Lemma 3.1 (First equivalent form). The set G define in (5) is equivalent to the set

G ={U=(DmB,E) : D>0, ¢q(U)>0, ¥(U) >0},
where ¢(U) := E — \/D? + |m|? and

W(U) = (2(U) - 2(|B - £))/5(U +rBr2—E—\/227(D21B\2 <m-B>2),

with ®(U) : = /(|B]2 — E)2 + 3(E2 — D2 — |m|?).

Lemma 3.2 (Second equivalent form). The set G or G, is equivalent to the set
Go:={U=(D,mB,E) : D>0, U-£ +p; >0VB* € R v €B(0)},
where B1(0) := {x € R : |x| < 1} denotes the open unit ball centered at 0 in R, and

-
5* = (—\/ 1-— ‘V*‘27 - V*> - (1 - ‘V*‘2>B* - (V* ’ B*>V*7 1) ) <16)

(1= v[)B*]” + (v* - B)?

5 .
Remark 3.1. The auxiliary variables B* and v* are “free parameters” mathematically. Specifi-
cally, in Lemma 3.2 we require that U-£€*+p?, > 0 holds for any B* € R3 and any v* € B,(0),
where € and pk, are functions of these auziliary variables as defined in (16)—(17). Geomet-

P = (17)

rically, B* and v* represent the corresponding magnetic field and velocity of the states on the
boundary (¥(U) = 0) of the domain G in the space R®; see [/0] for some details.

Remark 3.2. Note that all the constraints in the above two equivalent forms are explicit with
respect to U. This is a very helpful feature. The first equivalent form Gy is particularly useful
for checking the admissibility of a given state U and constructing the limiter for developing PCP
high-order accurate RMHD schemes. Moreover, the two constraints in the second equivalent
form G, are both linear with respect to U, although two (additional) auziliary variables B*
and v* are introduced. Such linearity makes Gy quite suitable for analytically verifying the
PCP property of RMHD schemes. It will provide a novel quasi-linearization approach to handle
nonlinear physical constraints and is a key to our analysis techniques, which are significantly
different from the standard bound-preserving analysis techniques (cf. [5/]]).

It is proven in [16] that the admissible state set is convex.

Lemma 3.3. The admissible state set Gy is convex.
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3.2 Technical estimates

In order to handle the effect of the source term in the symmetrizable RMHD system (10) on the
PCP property of numerical schemes, we derive the following inequality (18), whose discovery

is highly nontrivial.

Lemma 3.4. For any U € G, any B* € R® and any v* € B1(0), it holds

S(U)- € +v B <~ (U-€ 400, (18)

where p and H =1+ e + f—z are the density and specific enthalpy corresponding to U; and &*
and pt, are functions of (v*,B*) as defined in (16) and (17), respectively.

Proof. Notice that, due to the relativistic effect, the function S(U), defined by v and B in

(11), also cannot be explicitly formulated in terms of U. Therefore, we have to work on the

primitive variables {p, v, p, B} of U, which satisfy p > 0, |v| < 1 and p > 0 because U € G.
We observe that

S(U) € +v' B = (v—v')- (1= [VF)B+ (V- Bjv - (1= |V'[)B" ~ (v - B)v"),
Let I :=U - &* + p;, and

My = /pH(v — v*) - ((1 V2B + (v-B)v — (1 — [V)B" — (v* - B*)v*).
Then, we need to prove
I1; > |Iy]. (19)
We reformulate II; and decompose it into two parts as follows:
I, = pHW?*(1 = v -v*) —p — pW /1 — |v*|2
+ (= VBB + (v BV - (-B) + (Blv — (v-B)B) - (-v")
L+ vP)BP—(v-B)?  (1-NP)B P+ (v -B)
+ +
2 2
[pHWQ(l —v-v" — pWH/1 \V*P}
1— * B_B*2 . (B = B* o *2B2 _ *'B2
 [alvPyp-B +<v (B_BYP, vovFIBE _ (v=v).BF]

=: Hgl) + H?).

According to the second condition in (15), the first part Hgl) satisfies

H(l) H2_1 1
=W?*(1 - P Lyoac 2> W1 - P W T— v
Wy ) e BT vV - 2l v
L/l 1 wW21-
:§(E—W 1—|v*|2> +W2(1—V'V*)————( 2|V|)
1 W21 — |v*|? 1
ZW2(1—V.V*)___&:_WZ‘V_V*F'

2 2 2
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It follows that ]
I, > §pHW2|V — v P+ =11,

Therefore, in order to prove (18) or (19), it suffices to show
3 > |1,

Let us introduce the vector Z = (B*,B,/pH)" € R”. We observe that both II; and II, can
be formulated into quadratic forms in the variables Z. This highly nontrivial observation
1s a key of our proof. Specifically, we discover that

1 1
II; = ézTAgz, I, = §ZTAQZ

with
G -G o' O O blT
A;=|-G H 0" , Ay=]0 O b]|,
0 0 VV2|V—V*|2 b1 b2 0

where 0 = (0,0,0), O is 3 x 3 zero matrix, and (note that v and v* are row vectors)
G=(1- P+ ) v,
H=(1+|v-v = |[v'P )L+ ) v —(v-v)(v-v,
by = (1= [V[)(v' = v) + (V[ = v vV,
b = (1= [V[2)(v = v) + (V] — v v)v.
Then, it suffices to show that both Az + Ay and A3z — A, are positive semi-definite.
Note that G is symmetric, and its eigenvalues are given by {1 —|v*|?,1— |v*|?,1}. Because
all of its eigenvalues are positive, the matrix G is positive definite. Define a nonsingular matrix

1 O o'
P1 - Ig Ig OT y
—-b,Gt 0 1
where —b;G™! = v — v*. Then
G Q) 0"
P (As+A)P/ =10 H-G b +b) : (20)
0 b;+ Dby ‘/VQ‘V—V*‘2 —blG_lb]—

where
by + by = (|[v]? = v- v )V + (V] — v - vV,
and the matrix H — G is symmetric and given by
H-G=|v-—v]Is—(v-v)(v-v.
The eigenvalues of H— G are {0, |[v —v*|?,|v —v*|?}, which are all nonnegative, implying that
H — G is positive semi-definite.

Now, we would like to show that P;(Az + A,)P] is positive semi-definite. Let us first

consider two trivial cases:

12



e If v=v* then Pi(A3 + A,)P] = O, which is positive semi-definite.
e If v=0, then by = v = —by and W?|v — v*|> = b;G~'b] = 0. In this case, P;(A3z +
A,)P| = diag{G,H — G, 0}, which is positive semi-definite.

In the following, we shall focus on the nontrivial case that v # v* and v # 0. For any ¢ > 0,

we define

Qs:

H—G‘f‘EIg bir—f—b;
b1+b2 VV2|V—V*|2 —bl(}_lblT

Some algebraic manipulations yield that

det(Q.) = ——— (e + [v = v*[) (Tl + v v = v'[*),

€
1—|v|
where

= (1= o) ((orus = vao))? + (0205 — vgu3)? + (vgef — 0105)?) + Vv = v*[2

It is evident that 11, > |v[*|v —v*|%. For any € > 0, the matrix H — G + ¢l is positive definite,
and when v # v* and v # 0, it holds

det(Q.) >

> 1——|v|2(€ + v —v**)|v — v*|2]v|2<5 + v — V*|2> > 0.

This implies that the leading principal minors of Q. are all positive, and thus Q. is positive
definite for any € > 0, v # v* and v # 0. Taking the limit ¢ — 0, we obtain that Qg is
positive semi-definite, which further yields that Py(As + Ay)P| = diag{G, Qo} is positive
semi-definite, for the nontrivial case (v # v* and v # 0). In conclusion, for all the cases,
Pi(A; + A,)P] is positive semi-definite.

Because Az + A, and Py(Aj + Ag)PlT are congruent, Az + Ay is positive semi-definite.
Similar arguments imply that A3z — A, is also positive semi-definite. Hence

1
Il; + 11, = §ZT(A3 + Ay)Z > 0,
which yields I1; > I3 > |II|. The proof is complete. |

We will also need the following technical inequality (21), which was derived in [1(], to
handle the effect of the flux in numerical PCP analysis.

Lemma 3.5. If U € G, then for any A € [—1,1], any B* € R3 and any v* € B1(0), it holds
(U +AFi(U)) - & +pj, = =A(vfp;, — Bi(v" - BY)), (21)
where i € {1,2,--- ,d}, and & and p}, are defined in (16) and (17), respectively.

For any vector n = (nq,--- ,ng) € R% we introduce the following inner product notations

d d d
(n,v) = ngop,  (0,B):=> mBr,  (n,F):=) nFy, (22)
k=1 k=1 k=1

which will be frequently used in this paper. Then we can generalize Lemma 3.5.
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Lemma 3.6. If U € G, then for any A\ € [—1,1], any B* € R3, any v* € B1(0), and any unit

vector n € R%, one has

(U + A, F(U))) - € + 55 > —A((n,v")piy — (0, B)(v* - BY)). (23)
Proof. Let Q, € R3*? be a rotational matrix associated with the unit vector n and satisfying
elQn = (Il, 03—d)7 (24)

where e; = (1,0,0), and 03_4 denotes the zero vector in R3~¢. The rotational invariance of the
RMHD system implies

(n,F(U)) = Q"'Fi(QU), (25)
where Q = diag{1, Qn, Qn, 1}. As a rotational matrix, Q,, is orthogonal. Define B* = B*Q/

and Vv* := v*Q], then one can verify that v* € B;(0) and

R Y 1_A*2]§*2 A*_ﬁ*Q
B v, g ACFPBEEEBY 20

.
g*:<_,/1_|v*|2, —V, — (1= )BT - (B 1) Q¢ (@)

For U € G, using the first equivalent form in Lemma 3.1 we obtain U= QU € G; = G. Let
B be the magnetic field corresponding to U. It satisfies B = BQ,. Let 07 and B; denote the

first components of v* and EAB, respectively. Then, we have

vj=e -V =e;- (V*QD = (e1Qn) - V" = (n,Vv"), El = (n,B), (28)

where equation (24) has been used. Lemma 3.5 for U € G, B* € R? and v* € By(0) implies
0< (U+AF(0)) - & + 5y, + A(015, — Bi(¥* - BY))
= (QU+AF1(QU)) - (Q€") + pj, +A((n, V)], — (n, B)(v" - B))
= (U+Xn,F(U))) - & +p, + A0, v)p], — (0, B)(v* - B)),

where we have used the equations (26)—(28) in the first equality, and the equation (25) and the
orthogonality of Q in the second equality. The proof is complete. [

4 Provably PCP DG Schemes

In this section, we construct PCP high-order DG schemes for the multidimensional RMHD
based on the symmetrizable form (10). For the purpose of clarity, we will mainly focus on the
spatially 2D case (d = 2). Our PCP methods and theoretical analyses can be extended to the
spatially 3D case (d = 3).

Assume that the physical domain €2 in the 2D space is discretized by a mesh 7. In general,
the mesh may be unstructured and consists of polygonal cells. We also partition the time
interval into a mesh {ty = 0,t,41 = t, + At,,0 < n < N;}, where At,, denotes the time step-
size and will be determined by some suitable CFL condition. In this section, we will frequently
use the capital letter K to denote an arbitrary cell in 7, and the lower-case letter k£ will always
stand for the DG polynomial degree.
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4.1 Outline of the PCP schemes

Let £ € R? be the spatial coordinate vector. We define the locally divergence-free DG finite

element space [7]:

d

8’& i
W = {u_(ul,... Jug) ' |, € PF(K), VY, Z 8::

=0, VKEE},

K

i=1

where P*(K) denotes the space of polynomials, in cell K, of total degree up to k. To define
the PCP DG schemes, we also introduce the following two subsets of W¥:

G,, = {uEWfL: L/ u(x)dx € G, VKG’E}, (29)
K| Jx
GF = {u c G, : u|, (x) €G, Vx €Sk, VK € 72}, (30)

where |K| denotes the area of the cell K, and Sk denotes the set of some critical points in K
which will be specified later.

Definition 4.1. A DG scheme is defined to be PCP if its solutions always stay in G¥. For
clarity, if a DG scheme preserves the numerical solutions in @z, then we say it satisfies a
“weak” PCP property.

Lemma 4.1. The sets @Z and G¥ are both convex. In addition, for any vector function
u € [L*(Q)]® satisfying u(z) € G, Ve € Q, we have P, (u) € @Z, where P, denoting the
L%-projection into W5 .

Proof. According to Lemmas 3.1 and 3.3, G = G is a convex set. For any u;(x), us(x) € @Z
and any A € [0,1], we have

|—[1(|/ (/\ul—l—(l—)\)uQ)da::)\(%/ 111dil3> +(1=2) (|_[1(|/ u2d:c> €gG, VK e,
K K K

which implies Au; + (1 —Auy € @:. Thus @2 is a convex set. Similar argument shows that G}
is convex. For any u(zx) € [L*(Q)]® satisfying u(x) € G,Vx € Q, we have ‘_11(‘ S Pu(u)de =
ﬁ /, - udx, which belongs to G due to the convexity of G. It follows that P, (u) € @: [ ]

We aim at constructing PCP high-order accurate DG schemes that always preserve the DG
solution function Uy, (z,t) in the set GF for all ¢ € {t,, : 0 < n < N;}. This goal will be achieved
by following three steps:

1. First, we will seek in Section 4.2 a suitable spatial discretization of symmetrizable RMHD
system (10), such that the resulting discrete equation, which can be put in ODE form as

%Uh = L, (Uy,), satisfies the “weak” PCP property
if UyeGE,  then U, + AL, (U,) € Gy, (31)
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under some CFL condition on At. The property (31) is very important. It is extremely
nontrivial to find a DG discretization for the RMHD that can be proven to satisfy (31).
Some traditional methods including standard DG schemes for the conservative RMHD
equations (1) do not satisfy (31) in general.

2. Then, we further discretize the ODE system %Uh = L,(Uy,) in time using a strong-
stability-preserving (SSP) explicit Runge-Kutta method [15].

3. Finally, a local scaling PCP limiting procedure, which will be introduced in Section 4.3, is
applied to the intermediate solutions of the Runge-Kutta discretization. This procedure
corresponds to an operator Iy : @]Z — GY¥, which maps the numerical solutions from
@: to G and satisfies

1 1 —k
W/}(Hh(u)dw = W/KUdZB, VK € 7;” Yu € Gh' (32)

The PCP limiter is required only for high-order DG methods with & > 1; for the first-
order DG method (k = 0), IT;, becomes the identity operator.

Let U} denote the numerical solution at time ¢ = ¢,,. The resulting fully discrete PCP DG
methods, with a NV,-stage SSP Runge-Kutta method, can be written in the following form:

e Set UY =1I,P,,(U(x,0));
e Forn=0,...,N; — 1, compute U} as follows:

(i) set U%O) = Up;

(i) for i =1,..., N, compute the intermediate solutions:
_ i—1
Ul =11, {Z [aw (Ug@ + ﬁwanh(Uf))) } } : (33)
=0

(iii) set UMt = UM,

where the SSP Runge-Kutta method has been written into a convex combination of formally for-
ward Euler methods, and the associated parameters «a;, and [, are all non-negative and satisfy
2;(1) a;e = 1. Some SSP Runge-Kutta methods can be found in [15, 31], e.g., a commonly-used

three-stage third-order version is given by
arg =1, axn =3/4, an=1/4, az=1/3, az =0, azx =2/3,
Prio=1, Paw=0, Par=1, Bs0=0, P31 =0, Pz =1

Remark 4.1. At each Runge-Kutta stage, the PCP property of the above fully discrete DG
schemes is enforced by the operator I1;, which can only act on functions in @:. That 1s, we
require the convex combination Zz;é [&M (Ug) + BigAtnLh(U%)))} € @:, which is guaranteed

(34)
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by the weak PCP property (31) and the convexity of @:. On the other hand, the PCP limiting
operator Il enforces Ugf) € G, 0 < ¢ < i, which, in turn, meets the condition required by
the weak PCP property (31) for the next Runge-Kutta stage evolution. Therefore, the weak
PCP property (31) and the PCP limiting operator I, work in conjunction with each other and
become two key ingredients of the proposed PCP schemes.

In what follows, we shall describe in detail the operators L, and II;, and also specify the
point set Sk in the definition (30) of G¥. We will prove the weak PCP property (31) of the DG
spatial discretization in Theorem 4.1 and the PCP property of the fully discrete DG schemes
in Theorems 4.3 and 4.4.

4.2 The operator L; and the weak PCP property

We now derive a suitable spatial discretization such that the resulting operator L, satisfies
the weak PCP property (31). Following our previous work on the non-relativistic ideal MHD
[12, 43], we consider a special locally divergence-free DG discretization for the symmetrizable
RMHD system (10):

d . . .
_/ Uh(m7 t) .udx = / F(Uh) -YVudx — Z / ulnt(K) . |:F <Ul}?t(K), UZX(’,(K); n(,§”7K>
dt Jx K &

EcOK

- % < e, B B}ft(K)> s(Ui,ft(’Q)} ds, YueW} (35
where 0K denotes the boundary of the cell K; ng x is the outward unit normal to the edge
& of K; the inner product (-,-) is defined in (22); the superscripts “ext(K)” and “int(K)”
indicate that the corresponding limits of Uy(x) at the cell edges are taken from the exterior
and interior of K, respectively. In (35), F denotes the numerical flux. Our PCP framework
is applicable to any suitable numerical flux provided it ensures the “weak” PCP property in
(31). In this paper, we take the numerical flux as the global Lax-Friedrichs flux

- in ex 1 in ex ex in
F <Uht(K)aUh t(K), n£7K> — << £7K,F(Uht(K)) + F(Uh t(K))> _ a(Uh t(K) . Uht(K))> ’

2

(36)
where a denotes the numerical viscosity parameter. We choose a as the speed of light in vacuum
¢ = 1, which a simple upper bound of all wave speeds in the theory of special relativity. This
choice is merely for ease of conducting rigorous theoretical analysis. By numerical experiments,
we observed that the local or global Lax-Friedrichs flux with suitably smaller numerical viscosity
should also satisfy the “weak” PCP property, although a rigorous PCP proof in that case is

yet not available due to some technical challenges in theory.
The term (ng g, BZXt(K) —Bihnt(K)>S (Uihnt(K)) in (35) is derived from a suitable discretization
of the source term in the symmetrizable RMHD system (10), with the locally divergence-free
property of By being taken into account. This term is proportional to the jump of the normal

component of the magnetic field across cell boundaries. Since this jump is zero for the exact
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solution, it is very small (at the level of truncation error) for numerical solutions in smooth
region. However, the inclusion of this term is crucial for achieving the property (31), as
demonstrated by our theoretical analysis later.

Of course, we have to replace the element and boundary integrals in (35) by some quadrature
rules with the at least 2k algebraic degree of accuracy. For example, we can approximate the
boundary integral by the Gauss quadrature with ) = k£ + 1 points:

i - in ex 1 ex in in
/(pumt(K) . |:F (Uht(K)v Uh t(K); rlgg[() + 5 <n£’K’ Bh t(K) Bht(K)> S(Uht(K))‘| ds

Q
~ 6] wu™ () {F (U@, 0,07 O @, 1) i)
q=1

1 . .
+ 5 (o BY @) - B O @) s (U@, 1) ] ,

where |&'| denotes the length of the edge &, {a:g?)}lquQ are the quadrature points on &, and
{wq }1<4<q are the associated weights with Zle wq = 1. The element integral [, F(U,)- Vude

can also be approximated by some 2D quadrature | K| Z§:1 (I)qF(Uh(s“cg), t)) - Vu(fi:gg)), where

3“3(13) and @, denote the quadrature points and weights, respectively.

Finally, we obtain the following weak DG formulation:
d
G [ U ude = U, vae W (37)
K

where Jx (Up,u) = 322 79U, u) with

Q
jf((l) - Z {‘g‘ quF (U;:lt(K)(még)>’ UZXt(K)<w((g?))7 n£7K) . ulnt(K) (wé?))} ,
q=1

Ee0K

Q

1 x in in in

TP=—3 3 {|£|§ g (00, B (@) - B V(@) s (U7 (@) - “K><wi:f>>},
EcOK g=1

Q
T = K> 0 F (U (&) - Va(@?),

g=1

and for notational convenience, we suppress the ¢ dependence of all quantities hereafter, unless

confusion arises otherwise. As the standard DG methods (cf. [3, 0]), the weak form (37) can
be rewritten in the ODE form as d
—U, =L,(U 38
77 Un = Lu(Uy), (38)
after choosing a suitable basis of WX and representing Uy, as a linear combination of the basis
functions; see [3, 6] for details. Note that the cell average of Uy,, denoted by U := \_Ilq | x Unde,
satisfies the following time evolution equation
d ~
EUK = JK(U}L), VK € 77“ (39)
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where T i (Up) = T2 (Un) + T2 (U,) with

1 1n ex
jK (Uh —‘— Z {’g’qu ( (K mg}))7Uh t(K)(;v((g)%ng,K)},
cOK

q=1

T (Uy) = M, Z{|£|qu<nm B; 0 (2?) — Bz“““<w5;>>>s(U?“%E;B)}.

Ee0K

We are now in a position to rigorously prove that the above DG spatial discretization
satisfies the weak PCP property (31). To this end, we first need to specify the point set S in
the definition (30) of GF. Assume that there exists on each cell K € T, a special 2D quadrature
satisfies the following requirements:

(i) The quadrature rule is exact for integrals of all the 2D polynomials of total degree k on
the cell K.

(ii) The quadrature weights are all positive.
(iii) The quadrature nodes must include all the Gauss points cc(()@), 1<¢<Q, V& e dK.

Let {a: P } 1 Q > 0, denote the other (possible) quadrature points that exclude all the edge
Gauss points {a: P } We define the set of all quadrature nodes by

Sk = {2 1<q<Q,v&6 c K} U{EW, 1< q< Q).

According to the above requirement, this special quadrature satisfies

i e = Y Y =it ”+qu #Y), VuePH(K),  (40)

EcOK q=1

where {wg)} and {@,} denote the quadrature weights, which are all positive. Such a quadra-
ture was first constructed in [53, 54] on rectangular cells by tensor products of Gauss—Lobatto
and Gauss quadratures. It can also be designed on triangular cells and more general poly-
gons, see, e.g., [0, 11]. Notice that we will not use this special quadrature for computing any
integrals, but only employ it for the following theoretical PCP analysis and the PCP limiter
presented later.

Given this special quadrature, we define the point set Sg required in (30) as

Sk = Sk USk, (41)

where Sg = {:ﬁg),l <gq< Q} are the quadrature points involved in 7. [((3). The inclusion
of Sk means that we require U, (& %)) € G. This special requirement is not involved in the
non-relativistic case; it is used here to ensure the existence and uniqueness of the physically
admissible solution of the nonlinear equation (6) and thus to obtain the physical primitive

variables from Uh( ) by (7), so as to successfully compute F(Uh(mK )) in jK . Such a
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consideration is due to the fact that the flux F(U) and the source S(U) cannot be explicitly
formulated in terms of U for the RMHD and thus must be computed using the corresponding
primitive variables. Note that the edge quadrature points {az((g?)}, involved in 7, I((l) and Jy (2)
are already included in S\K.

Based on the point set Sk defined above, we establish the weak PCP property (31) for the

high-order semi-discrete DG scheme (38) as follows.

Theorem 4.1. Let G be the set defined by (30) with Sk specified in (41). Then, the weak
PCP property (31) holds under the following CFL condition on the time step-size At:

& (fl)
At|‘K‘| (a+ O'K7g7q(Uh)> <=L 1<qg<Q, V& €K, VK €T, (42)
Wy
where ors.4(Un) := %‘@&Ka B — By K)>‘/ SO ) with the shortened notations

U= U (W) and USHY .= U‘ZX“ (z
Proof. In order to prove U, + AtL,(Uy,) € @: in (31), it suffices to show
U = Uk + AtT (Uy) € G, VK € T, (43)

under the CFL condition (42) and the condition that U, € Gf. Substituting the formula of

~ (1 ~ (1
the numerical flux (36) into J ﬁ() (Up), we reformulate J %)(Uh) and decompose it into three
parts:

=)
(Up)
T =557 2

Ee0K

1n 1 in
Y (02 o r(025) )
ex 1 ex
é’EZOK |§|Z ( t(K a<n£’K’F<U5’;(K))>)]
P (!5!2 U2 ) T+ 7+ T

0K

!KI

Then U%! can be rewritten as
U =5, 4+ By + B3 + &y, (44)
. _— - (177:) . — - - (1’3)
with B, == AtT  ,1=1,2, 83 :=Ug + AtT , and
4] qu (nes B~ BEO) S (U?ﬁf’)] -
Since G = G, as shown in Lemma 3.2, it remains to prove I_J'At € Gy, VK € T,

We first show D%! > 0. Because U;, € GF and Sk C Sk, we have Uth € G and
U?ZK eGforalll < g<Q,& € 0K and K € T,. Note that the first component of

=(2)
=, = At =

Ee0K
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int(K) 1 int(K) int(K) 1 int(K) 1nt(K) 1. int(K
U&q —E<ng,K,F(U&q )>equalsD (1—E<ngﬁK7vgq >) > D, (1——| ‘) > 0,
which implies that the first component of =, is positive. Similarly, we know that the first
component of Ey is also positive. Notice that the first component of =, is zero. Therefore, the

first component of U%! is larger than that of Z5. It gives
K

_ _ alAt in
N (|£|Z o)

€K
— Z iw(ég) mt(K)—I—Z Dmt(K )) al Z |é@|z Dlnt (K)
Ee€0K q=1 | | fc
ZZ[ mt(K( () At|®@|>]>0
EE€IK q=1 “q K] o

where the equation (40) and the condition (42) have been used.
We then prove that U2 - £* + p¥, > 0 for any auxiliary variables B* € R? and v* € B,(0).
It follows from (44) that

U - +ph, =1+ I+ I3+ I, (45)
with Il = 515*4‘77, 12 = E1 €*+777 [3 = ES€*+p:n_2777 [4 = E4'£*a and
aAt
EE0K

Next we estimate suitable lower bounds of I; for 1 <17 < 4. Using Lemma 3.6 and noting that
for polynomials of degree k the Q-point (@) = k+ 1) Gauss quadrature rule is exact, we deduce
that

o 5 (o L) o]
3 ZK{ i e = (e B O B*)>}
- AR p [ (e B as = - 20 B g, (46)

Similarly, we obtain

At(V* : B*) / ext(K) At(V* : B*) . t
Lz ——FF7— <Ilg7K, B >ds = ———————=divy By, (47)
K 2 ), 2 T

Note that

Q .
L= Uk-€+p — C“ﬁ‘t 3 (|g|§ w (U g +p;“n)) :
q=1

EcoK
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and a lower bound of Ug - £€* + p, can be derived using (40) as follows:

U - & + 1l = Ziwé?)( e ) + qu( U @) € )

£e0K q=1
9 K)
mt
> 3 Y (UR g ).
E€0K ¢=1

where U‘““K)(N(I?) € G = Gy, which implies Uj t(K)( D). ¢* 4+ pt. > 0, has been used. It

follows that
© (i) ]
I3 > Z Z (U & +pm> wg, — aAtwq|K| (48)

&cOK q=1

Thanks to the inequality (18) constructed in Lemma 3.4, we have

_ 18

HS(U) &) 2

(U-& +p,)—B(v"-B), VBeR, vUeG

It follows that

(e B2 = BEW) S(UZY) € 2 (mew BES - BEY) (v B)
int int int ext int * *
—(qu( )i )) <ng7K’Bg’q< ) B )>‘<qu< )¢ +pm>.

Let

Z Z quKzf q mt(K E + pm)

é”EBK q=1
With the help of (49), we then obtain a lower bound for I :

Iz 2 K Z |£|qu <n<@K’ eXt(K) B?L(K)> (v -BY)| + I
\ | deoc
At(v* - B* .
== (;,|—K’) (diV?tBh - diVlllétBh) + I5. (50)

Thanks to the locally divergence-free property of By (x), we have
divi'B, = ) / ngK,Blm(K >ds —/ V- B (g)de = 0, (51)
E€OK K

where Green’s theorem has been used. Combining the estimates (46)—(50) and using (51) and
(45), we obtain

&
U & +ph, > > Z(U‘“”” ¢ +pm>< §3>—aqu%) +Is

SeOK q=1

Q (a) &
= > qu< U ey ) kf —At”K”(a+0K7g,q)] >0,

EcOK q=1 q
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where the condition (42) has been used in the last inequality. Therefore, we have
UR - & +p:, >0, VB*e€R3 W € By0),
which, along with D2 > 0, yield U%! € G = G. The proof is complete. ]

Remark 4.2. The quantities divyy By, and div$s' By, defined in the lower bounds in (46) and
(47) respectively, denote the discrete divergence. They are also defined in [/0] to quantify the
influence of the divergence error on the PCP property of the standard DG methods, for which
the discrete divergence-free condition divy'By, = divieiBy, = 0 is required. However, the present
DG schemes are proven to be PCP without requiring that additional condition, thanks to two
key technical ingredients. The first is to use a locally divergence-free DG discretization, which
leads to zero divergence within each cell, so that the term divirB, vanishes. The second is a
suitable discretization of the source term in the symmetrizable RMHD system (10) which gives
jl((Z)(Uh,u) in (37). It brings some new divergence terms, as shown in the lower bound in
(50), which ezxactly offset the divergence term in (47). As a result, the influence of nonzero
divergence error on the PCP property is fully eliminated. This feature is analogous to the
continuous case that the inclusion of the source S(U)V - B in the RMHD equations (10) helps
eliminate the effect of nonzero divergence V - B on the PCP property at the PDE level. Again,
these results demonstrate the unity of discrete and continuous objects.

For the first-order DG method (k = 0), we have Uh}K(w) = Uk and G} = @2 so that
the PCP and weak PCP properties are equivalent in this case, and the PCP property can be
proven under a milder CFL condition as shown in Theorem 4.2,

Theorem 4.2. For the first-order (k = 0) semi-discrete DG scheme (38), the PCP property
(31) holds under the following CFL type condition

|d1VKBh‘)
Ed <1, VK €T, (52)
( &;:K VhxHg

where divg By, denotes a discrete divergence of By, on the cell K defined by

By + Bg
divgB), := & %:K{éj <ngK,Tg>, (53)

with Kg denoting the adjacent cell that shares the edge & with the cell K. In (52)—(53), the
notations px, Hyx and By denote the rest-mass density, specific enthalpy, and magnetic field

corresponding to Uy, respectively.

For better legibility, the proof of Theorem 4.2 is presented in Appendix B.
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4.3 The PCP limiting operator 11,

We now present the PCP limiting operator II, : @Z — G¥, which limits the numerical

solutions from @: to G¥ via a simple scaling PCP limiter [10, 18] as extension of the positivity-

S —k o . ~
preserving limiter [54]. For any U, € G,, we construct the limited solution IT, U, =: U, € G¥
as follows.

Let Uh|K =: Ug(x). Note Ux € G = Gy, VK € T,. To avoid the effect of the rounding
error, a sufficiently small positive number € is introduced such that U € G, for all K € Tj,

where G, = {U=(D,m,B,E)": D>¢, q(U)>¢ ¥ (U)>0} is a convex set [10], with
U, (U) := ¥(U,) and U, := (D, m,B,E —¢) .
For each K, to construct U () := Uy| x> We proceed as follows [10]. First, we define

A~

Uk(a) = (Dx(@), mx(@), Bx(@), Ex(x))

with ﬁ[((ill) = 01<DK($) — DK) + DK, and 01 = mln{l,(DK — 6)/<DK — l'IliSIl DK(.’L‘))}
TESK
Then, we define

UK(w) = (QQ(BK(w)—DK)+DK, 92(mK(w)—rhK)+IhK, BK(iU), QQ(EK(QZ)—EK)—FEK)T

with 6, = min {1, (¢(Ux) — €)/(q(Ux) — min ¢(Ug(x)))}. Finally, we define

rESK
Uk (z) = 63(Uk(z) — Ug) + Uk, (54)

where 63 = min f(x). Here O(x) = 1 if U (Ug(x)) > 0; otherwise A(x) € [0,1) solves

rESK

T ((1- 0)Ug + éf,TK(az)) = 0, which has a unique solution for the unknown 8 € [0, 1).
Lemma 4.2. For any U, € @:, one has T, U, = U,, € GF.

Proof. The above procedure indicates that, for VK € Tp,, the limited solution defined by (54)
satisfies Ug(x) € G. C G = G, Vo € Sk, and ﬁfK Ukdx = Ug. Besides, the limited

magnetic field B k(@) keeps locally divergence-free within K. ]

Remark 4.3. Notice that the PCP limiter is valid only when the numerical solutions are
preserved in @: This requirement is guaranteed by the weak positivity property of our DG
methods proven in Theorem /.1, which does not hold for the standard DG methods for the
conservative RMHD system (1) as shown in [/0, /5] due to the effect of nonzero divergence
error. The PCP limiting operator I1,, keeps both the conservativeness (32) and the high-order
accuracy as shown in [53, 5/, 52].

4.4 The PCP property of fully discrete schemes

The PCP property of our fully discrete Runge-Kutta DG schemes (33) is proven in the following
theorems.
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Theorem 4.3. Assume that UEZO) = U7 € G}, then the solutions UE:) at the ith Runge-Kutta
stage, 1 <i < N,, computed by the proposed DG schemes (33), belong to G, under the CFL
condition

o |K|

G , 1 <q¢<Q,VE €K, VK €Ty (55)
6zéwq <a+ UKgq(U ' )) |éa’

At,, < mm

Proof. We prove it by the second principle of mathematical induction for ¢. The hypothesis
implies U € G for i = 0. Assume that U(Z GF, 1 < ¢ <i—1. Thanks to the weak PCP
property (31) in Theorem 4.1, we have U( + BieAt, Ly (U e)) € Gh, 1< E < ¢—1 under the CFL
condition (55). The convexity of Gh in Lemma 4.1 implies 3 j_{ [ozug( i —l—ﬁZgAtnLh(Uh ))] €

@Z. Since the operator IT;, maps the numerical solutions from @i to GY, we obtain Ugf) e GY
by (33). Using the principle of induction, we have U,(z) € G foralli e {0,1,...,N,}. [ |

Theorem 4.4. Under the CFL condition (55), the proposed fully discrete Runge-Kutta DG
schemes (33) always preserves U} € G for all n € N.

Proof. Since P, (U(x,0)) € @Z as indicated by Lemma 4.1, we known U} € Gf. With the
help of Theorem 4.3, we obtain the conclusion by induction for n. |

4.5 Illustration of some details on Cartesian meshes

Assume that the mesh consists of rectangular cells {[z;_1/2, Tit1/2] X [Ye—1/2, Ye11/2]}, and define
Az = xiy1/2 — Tim172 and Ayp = Yey1/2 — Ye—1/2 as the spatial step-sizes. Let S7 = {xl(q)}qul
and Sj = {yéq)}qul be the set of Gauss quadrature nodes in [@;_1/2, Zi11/2) and [ye—1/2, Yot1/2]
respectively. For a rectangular cell K = [%;_12, Tiy1/2] X [Ye—1/2, Ye41/2], the point set Sk
involved in (41) is S ® Sj, and the set Sk is given by (cf. [53])

Sk = (ST ®SY) U (St ®SY), (56)

where S7 = {z\" }L  and SV = {5 )}bzl denote the L-point (L > £13) Gauss-Lobatto quadra-
ture nodes in the intervals [@;_1/2, Ti11/2] and [ye_1/2, Yes1/2] respectively. With Sk in (56), a
special quadrature [53] satisfying (40) can be constructed:

Q —~
1 Az;0w
I ACEED vzl CERTRESCLRTN)

Ayl w
* Z Amlz—l—lAz/e <u($"*%’y§q)) + (i ’yé(ﬁ))

SN (57)
.TCUCU
+ZZ iWpg x(q))%u))
=2 g—1 Amz—'—AyZ
1 Q
_|_Lz:z Ay@wqu A() ()) V% EPk(K)
3 7?/@ 9 Uu )

AQ?Z + Ayg
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where {@u}hzl denote the quadrature weights of the L-point Gauss—Lobatto quadrature rule.
If we label the top, left, bottom and right edges of K as &7, &, &3 and &4, respectively, then

() _ Azibiwg (@) _ Aypbrwg . _ .
& = Ariiig = Aeihy ) = 2 4. According to Theorem 4.3, we

rewrite the CFL condition (55) for the proposed PCPDG schemes on Cartesian meshes as

(57) implies w i=13 w

1 1 ®
At,, (— + —) < min 1 e VK€ Tn, 1 <j <A, (58)
Az Aye)  msa B, (a+ oggq,(U™))
where W, = ﬁ Since JKV@@J.VQ(Ugm)) depends on the numerical solutions at intermediate

Runge-Kutta stages, it can be difficult to rigorously enforce the condition (58). However, note
that aK,gj,q(Ugm)) is proportional to the jump of the normal component of the magnetic field
on the edge &;. Since the jump is zero for the exact solution, o ¢, , is small and at the level
of truncation error in smooth region; while, for problems involving shocks or contact discon-
tinuities, some numerical evidence in Sections 5.2-5.4 indicates that o g, , is small compared
to a. Therefore, the theoretical CFL condition (58) is acceptable. In practical computations,

evaluating oy ¢, 4 is computationally expensive and unnecessary; we suggest

C. 1 1 \*!
At, = 1 +
amaXy, s Bms \Az; Ay,

with the CFL number C¢q (slightly) smaller than @;, which works robustly in our numerical
tests. For the third-order SSP Runge-Kutta method (34), max,, s fms = 1.

Remark 4.4. Notice that the equations (39) can also be derived from a semi-discrete finite
volume method for the system (10), if the approzimate solution function Uy(x), or its values at
the quadrature points, are reconstructed from the cell averages {Ug} using some high-order re-
construction techniques such as the ENO (essentially non-oscillatory) and the WENO (weighted
ENO) approaches with the locally divergence-free property being taken into account. Therefore,
our numerical PCP framework and analyses can be directly used to design PCP high-order
finite volume methods for (10).

5 Numerical tests

In this section, we present the numerical tests on 2D uniform Cartesian meshes for several
demanding RMHD problems, which involve either small plasma-beta 8 := p/p,,, strong dis-
continuities, or low p or p, to validate the theoretical PCP property and the effectiveness of our
PCP methods. We only show the numerical results of the PCP third-order accurate (k = 2)
DG scheme, which is representative and without loss of generality, with the third-order SSP
Runge-Kutta method (33)—(34) for time discretization. We set the CFL number as 0.15, and
unless otherwise stated, the ideal EOS (3) with I' = 5/3 will be used.
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5.1 Smooth problems

To verify the accuracy of our method we test two smooth problems. The first is analogous to

those tested in [15, 30], and it involves very low density and low pressure; the exact solution is
(p,v,B,p)(z,y,t) = (14 0.9999999sin (27 (z +y — 1.1¢)),0.9,0.2,0,1,1,1,1072),

describing the propagation of a RMHD sine wave in the computational domain 2 = [0,1]?
with a large velocity |v| ~ 0.922¢. The second problem describes Alfvén waves propagating
periodically in Q = [0, v/2]? with a speed of 0.9¢ much higher than that in [57], and the exact

solution is

plx,y,t) =1, p(z,y,t)=0.1, v (zr,y,t) =—0.9sin(27(s+t/k))sina,
vo(z,y,t) = 0.9sin(27(c +t/Kk)) cosar, wz(x,y,t) = 0.9cos(2m(s + t/k)),
Bl('ru yvt) = cosa + /ﬂjl(x7 Y, t)v Bg(éU,iU,t) =sina+ KUQ(xvyv t)? Bg(l‘,y,t) = KU3(£7 Y t)v

where kK = \/1—i-p7HVV2 and ¢ = zcos o + ysin« with v = /4.

In the computations, the domain €2 is partitioned into N x N uniform rectangular cells with
N € {10, 20, 40, 80, 160, 320, 640}, and periodic boundary conditions are used. Fig. 1 shows the
errors at ¢ = 1 in the numerical solutions computed by the PCP third-order DG method on
meshes with several different V. It is seen that the magnitudes of the errors are reduced as we
refine the mesh. Moreover, the expected third-order convergence rate is observed, indicating
that our discretization of the added source term in the symmetrizable RMHD system (10) and
the PCP limiting procedure both maintain the desired accuracy, as expected.

1071 - _ 101 - i ]
—e—[" errors in p —e—1" errors in By

3 -+—-[2 errors in p -#—-1% errors in B,
10° 10°
10° 10°

S/Ope N
s

108¢ - 108¢ ‘

10’ 102 10°  10' 107 10°

Figure 1: Numerical errors in I! and I2 norms at ¢ = 1 for the first smooth problem (left) and the

second smooth problem (right). The horizontal axis corresponds the value of N.

In what follows, we will verify the capability of our PCP methods in resolving complicated
flow structures, by simulating an Orszag-Tang problem, three blast problems and two astro-
physical jets. Because these problems involve (strong) discontinuities, we need to apply some

nonlinear limiters to suppress the undesirable oscillations in the high-order DG solutions and
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enhance the numerical stability. To this end, we use a locally divergence-free WENO limiter
[31, 57] right before the PCP limiting procedure. The WENO limiter is applied only within
some “trouble” cells that are identified adaptively by the KXRCF shock detector [21].

5.2 Orszag-Tang problem

This test simulates an Orszag-Tang problem for the RMHD. We use a setup same as in
[38]. The computational domain is Q = [0,27])?> with periodic boundary conditions. It is
initially filled with hot gas with p = 1 and p = 10. The initial velocity field is v(z,y,0) =
(—Asin(y), Asin(z),0), where we set A = 0.99/4/2 such that the maximum velocity is 0.99¢
(corresponding to the Lorentz factor ~ 7.09). The adiabatic index is set as I' = 4/3 in this
example. The initial magnetic field is B(x,y,0) = (—siny,sin(2z),0). Although the initial
solution is very smooth, complex wave structures will develop as time increases, eventually pro-
ducing turbulence behavior. The numerical results computed by our PCP method on 600 x 600
uniform grids are presented Fig. 2. One can observe that the complicated flow structures are
correctly captured and agree with those presented in [38, 441]. In this test, we observe that it
is necessary to enforce the DG solution in G* by the PCP limiting procedure, otherwise the
code would break down at time ¢ ~ 1.98.

Figure 2: Schlieren images of log(p) at t = 2.818127 (left) and ¢t = 6.8558 (right) for the Orszag-Tang

problem.

We follow [7, 38] and quantitatively study the divergence error in the numerical magnetic
field By. For the DG finite element methods, a standard way to measure the global divergence

error was proposed in [7], as defined by

IV-Bills = 3 [ e Bllas+ Y [ 19-Byjda,

E€Th KeTy,
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where [(ng, By)] denotes the jump of the normal component of B, on the edge &. We then
define the global relative divergence error as
IV - Ballxn

Ediv 1= (59)
B l«n

with
IBilln =) / Bulds+ > / IB,| d.
E€Th ¢ KeT, VK
In Fig. 3(a), we plot eq;, against time ¢. It is observed that, at the initial stage (¢t < 1.5) eqiy 18
very small as the solution is initially smooth, and, during the entire simulation, the magnitude
of e4;y is kept at order O(1073).

To justify that the theoretically estimated CFL condition (58) is acceptable, we compute
the maximum value of o ¢, on the entire mesh and plot its temporal evolution in Fig. 3(b).
It indicates that, during the simulation, ok ¢, is relatively small compared to a = ¢ = 1, so
that its effect in (58) is small and does not lead to strict restriction on the time step-sizes.

xt00% 0.3
1+
0.2}
2 8
3 S
057
N LMW&
0 O . Weandl . . . I
o 1 0o 1 2 3 4 5 6 7
t
(a) global (relative) divergence error eqiy (b) 000 :=Mmaxg s 40K £ q

Figure 3: Time evolution of the (relative) divergence error egi, and the maximum value of o s 4 in
the CFL condition (58) for the Orszag-Tang problem.

5.3 Blast problems

This is a benchmark test for RMHD codes. Simulating a RMHD blast problem with strong
magnetic field is known to be difficult, because nonphysical quantities, e.g., negative thermal
pressure, can be produced easily in the numerical simulation. Our setup is similar to those in
[26, 10, 2, 51]. Initially, the fluid in the computational domain 2 = [—6,6]? is at rest. Let
r:= /22 + y2. The domain Q contains an internal cylindrical region (r < 0.8) centered at the
origin with p; = 1072 and p; = 1, and the ambient medium region (r > 1) with low density

(pa = 107*) and low pressure (p, = 5x 10~%). Between the two regions, the values of the density
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and pressure are reached by linear interpolation for r € [0.8, 1] as in [26, 10, 2, 51]. We take the
adiabatic index as I' = 4/3 in this test. The initial magnetic field is a uniform constant vector
(B4,0,0). As B, is set larger, the plasma beta 3, := p,/pm becomes lower, and the simulation
of this test is more challenging. In the literature [26, 10, 2], a moderately magnetized case with
B, = 1 (corresponding [, = 0.1) is widely simulated. Zanotti et al. tested a more strongly
magnetized case with B, = 0.5 (a lower plasma-beta 8, = 4 x 107%) in [71]. Many existing
methods in the literature require some artificial treatments for the strongly magnetized cases;
see e.g., [20, 26, 10]. Tt was reported in [10] that, if no ad hoc numerical strategy was employed,
the RMHD code, ECHO, could not run this test with B, > 0.1.

In order to examine the robustness and the PCP property of the proposed method, we
perform this test with different B, € {0.1,0.5,20, 100,2000}. These five configurations include
the two cases in the literature [20, 10, 2, 51] and three much more challenging cases. Our
computations are performed on the mesh of 400 x 400 uniform cells. It is observed that our
PCP methods are able to successfully simulate all these test cases without using any artificial
treatments. Fig. 4 shows our numerical results at t = 4, for three different magnetizations,
corresponding to a moderate magnetic field B, = 0.1, a relatively strong magnetic field B, =
0.5, and a extremely strong magnetic field B, = 2000, respectively. Our numerical results for
the first two cases are in good agreement with those reported in [51, 2, 16]. The wave patterns
for B, = 20 and B, = 100 are similar to that for B, = 2000 and thus omitted here.

As far as we know, successful simulations of such an extreme RMHD blast test with B, =
2000 and so low plasma-beta (83, = 2.5 x 1071%) have not been reported in the literature. We
also observe that, if we turn off the PCP limiter in the strongly magnetized tests (B, > 0.5),
nonphysical numerical solutions exceeding the set G* will appear in the simulations, and the
DG code will break down. We have also tried to perform the above simulations by dropping the
discrete symmetrization source term 7, I((Z)(Uh, u) in our scheme (37) while keeping the WENO
and PCP limiters employed. This actually corresponds to using the locally divergence-free DG
scheme [22, 57] with the WENO and PCP limiters for the conservative RMHD system (1). It
is noticed that this scheme, in theory, is not PCP [16], and, as expected, is not able to run the
tests with B, € {100,2000}. This demonstrates the importance and necessity of including the
suitably discretized symmetrization source term for achieving the desired PCP property of the
DG schemes.

Fig. 5 shows the temporal evolution of the global relative divergence error eg;, defined
in (59). It is seen, for such strong blast problems with shocks, that the relative divergence
errors remain at relatively small levels during the whole simulations, as desired. The temporal
evolution of the maximum value of ok ¢ 4 is displayed in Fig. 6 for the three blast problems. It
indicates that ok s, < a = 1. This, again, demonstrates that ok s, has a little effect in the

theoretical CFL condition (58) and thus does not cause strict restriction on the time step-sizes.
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Figure 4: Contour plots of log(p) (left) and |B| (right) for the blast problems at ¢ = 4. Forty equally
spaced contour lines are displayed. Top: the moderately magnetized case (B, = 0.1, 8, = 0.1);

middle: the relatively strongly magnetized case (B, = 0.5, 3, = 4 x 1073); bottom: the extremely

strongly magnetized case (B, = 2000, 3, = 2.5 x 10~10).
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Figure 5: Time evolution of the global (relative) divergence error eg4;, for the three blast problems.
Left: the moderately magnetized case (B, = 0.1); middle: the relatively strongly magnetized case
(Bs = 0.5); right: the extremely strongly magnetized case (B, = 2000).
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Figure 6: Time evolution of 0 := maxg ¢ 4 0k ¢ 4 for the three blast problems. Left: the moderately
magnetized case (B, = 0.1); middle: the relatively strongly magnetized case (B, = 0.5); right: the
extremely strongly magnetized case (B, = 2000).
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5.4 Astrophysical jets

In this test, we perform simulations of two relativistic jets, where the internal energy is ex-
ceedingly small compared to the kinetic energy so that negative thermal pressure can be easily
generated in numerical computations. Moreover, the high-speed jet flows may involve strong
shock wave, interface instability, and shear flow, leading to their successful simulation difficult;
see, e.g., [04, 45, 30, 47, 12].

We simulate the RMHD jet flows by adding a magnetic field to a pressure-matched highly
supersonic RHD jet model from [17]. The domain [—12,12] x [0,25] is initially filled with a
uniform medium with v = 0 and p = 1. In the y-direction, a RMHD jet of Mach number
M, = 50 is injected into the domain with a density of p, = 0.1, a speed of v, = 0.99¢, and
a pressure equaling the ambient pressure. This inflow condition is enforced at the jet nozzle
{(z,y) : |x|] < 0.5,y = 0} on the bottom boundary, while the other boundary conditions are
outflow. For this problem, the corresponding initial Lorentz factor W = 7.09, and one can
compute the relativistic Mach number as M, := M,W /W, ~ 354.37, where W stands for the
Lorentz factor of the local sound speed. The exceedingly high Mach number and large Lorentz
factor cause the simulation of this problem very challenging. Along the y-direction, a magnetic
field (0, By, 0) is initialized. The presence of the magnetic field renders the simulation of this
test case more difficult. For comparison, we simulate a non-magnetized case with B, = 0 and
a strongly magnetized case with B, = 1/2000p (the corresponding plasma-beta 3, = 1073).
We set the computational domain as [0, 12] x [0, 25] and divide it into 240 x 500 uniform cells
with the reflecting boundary condition on {x = 0,0 <y < 25}.

Fig. 7 shows the numerical log(p) within the domain [—12,12] x [0,25] at three different
time instances for the non-magnetized case and the strongly magnetized case, respectively. The
dynamics of the relativistic jets are clearly shown in those images. We see that, during the
simulations, the Mach shock wave and the interfaces are well captured. The wave patterns for
the non-magnetized case agree with those computed in [17]. Due to the effect of the strong
magnetic field, the flow structures of the strongly magnetized case are obviously different
from those of the non-magnetized case. The good robustness of the proposed PCP method
is exhibited in such extreme tests. It is observed that if we turn off the PCP limiter, the
simulation code can only be run for a few time steps and then breaks down as nonphysical
numerical solutions are produced. In addition, when dropping the discrete symmetrization
source term 7, I(f)(Uh, u) in our scheme (37), we find the cell averages of the DG solutions will
exceed the admissible state set G and the scheme will fail in the strongly magnetized test.
Again, this demonstrates the importance of including the suitably discretized symmetrization
source term for achieving the PCP property.

We measure the global divergence error by (59) for the magnetized jet problem and plot
the error evolution in Fig. 8(a). It is observed that the global divergence error grows linearly
in time but remains below 1073 during the simulation. To demonstrate the theoretical CFL
condition (58) is acceptable, we measure the maximum value of ok ¢, on the entire mesh and

show its evolution in Fig. 8(b). One can see that o #, is small compared to a = ¢ = 1,
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Figure 7: Schlieren images of log(p) for the relativistic jets at ¢t = 10, 20, and 30 (from left to right).
Top: the non-magnetized case; bottom: the strongly magnetized case.
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Figure 8: Time evolution of the (relative) divergence error egi, and the maximum value of o s 4 in

the CFL condition (58) for the magnetized jet problem.

confirming that its effect in the CFL condition (58) does not lead to strict restriction on the

time step-sizes.

6 Conclusions

We have proposed a framework of constructing provably PCP high-order accurate DG schemes
for the multidimensional RMHD equations coupled with a general EOS on general meshes.
The schemes are built on a suitable, locally divergence-free DG discretization of the recently
proposed symmetrizable RMHD equations, which are discovered to accommodate the PCP
property at the PDE level no matter the divergence-free condition is satisfied or not. The re-
sulting DG schemes with SSP time discretizations are shown to satisfy a weak PCP property,
which implies that a simple limiter can enforce the PCP property without losing conservation
and high order accuracy. Most notably, we have rigorously proven the PCP property by us-
ing a novel “quasi-linearization” approach to handle the highly nonlinear physical constraints,
technical splitting to offset the influence of divergence error, and sophisticated estimates to
analyze the beneficial effect of the symmetrization source term. Several demanding numeri-
cal examples, including a strongly magnetized bast problem with extremely low plasma-beta
(2.5 x 10719) and two highly supersonic RMHD jets, have been tested and demonstrated the
robustness and effectiveness of the proposed PCP schemes. It is worth noting that our numeri-
cal PCP framework and analyses are also readily applicable for designing PCP high-order finite
volume methods, as mentioned in Remark 4.4. In the context of RMHD, our results provide
some new insights into eliminating the effect of nonzero divergence on the PCP property at

both the PDE and numerical levels, showing the unity of continuous and discrete objects.
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A Proof of Proposition 2.1

Due to the assumption that the exact smooth solution exists for £ € R? and 0 < ¢t < T, the
Lorentz factor W does not blow up, and then |v(x,t)| < 1 for V& € R? and 0 < t < T. For
any (2,1) € R? x R*, we denote by & = (t; &,1) the integral curve of ¢ = v(x,t) through
the point (&,t). Define xo(&,t) := x(0;&,t). It can be observed that the curve passes through
the point (x(x,t),0) at the initial time ¢ = 0. For strong solutions, we can reformulate the
continuity equation of (10) for pI¥ as % = —pWV v, where 2 := 2 4 v(z,{)V- denotes
the derivative along the integral curve. Integration of this reformulated continuity equation

from ¢t = 0 to ¢ along the curve implies
t
pW<§37t-) = pOWO(w0<§37t-)) eXp <_/ V- V(Cl}'(t, w’ﬂat>dt> > 07
0

which, along with W (&,t) > 1, imply p(&,t) > 0 for all (&,%) € R* x RT. For smooth solutions
of the modified RMHD system (10), one can derive that

D (pp’r) 0

B = e ) vV (o) =0, (60)

which implies pp~ " (2, ) = popy " (xo(2, %)) > 0. It follows that p(x,7) > 0, V (z,f) € R? x R*.
Using the ideal EOS (3) with " € (1, 2] gives e(&,t) = (&, 1)/p(Z,t) > 0,V (&,1) € R*xR™.
It has been shown in [11] that, for smooth solutions of (10), the quantity ZTVB satisfies

0 (V-B V-B
— | —— V|—— | =0,
8t<pW)+V <0W)
which implies that V—{; remains constant along the integral curve & = x(t; &, t), and further
p
yields (13). The proof is complete.

B Proof of Theorem 4.2

For the first-order DG method (k = 0), Up|x(x) = Uy, VK € Ty, and

TR0 =57 3 [41((ne F(0) + F(U)) ~ oV, ~ )]
1

2|K]

61((ner F(Ux,)) —a(Uk, ~ Un))| (61)
Ee0K

|
TR0 =~ 3 (161 (ne k. B, —Bi)S (U) )
(

=9 2 6] (05 B, ) S (Ux) ), (62)
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where the identity ) [&|ng x = 0 has been used. In order to prove the PCP property (31),
E€IK
it suffices to show

UL =Uxg + AtTx(U) €eG, VK €T, (63)

under the CFL type condition (52) and the condition that Ux € G, VK € Tj. In the following,
we prove (63) by using the second equivalent form G = G in Lemma 3.2 and verifying that
-[_J%t < g27 VK € 771

We first show that the mass density D% > 0. Recalling that the first component of S(U)

is zero, we know that the first component of 7, [(f) is zero. Then, we obtain

Dy’ = Di - M 2 [161(Drs . e} = oD = D)

aAt _
_< 2|K| Z i ) 2|K| Z [|g’| n‘pK’VKF>)DK(A;i| >0,

€K EeOK

where we have used the CFL condition (52) and (ng x,Vi,) < |[Vi.| <1=c=a.
We then prove that U2 - €* + p¥, > 0 for any auxiliary variables B* € R?® and v* € B,(0),
where £ and pf, are functions of (B*, v*) as defined in Lemma 3.2. Using the inequality (23)

in Lemma 3.6 gives

1

(O = S F(0)) ) € 4150 2 & (v — s, B, ) (v B).

a

It, along with (61), imply that

T (U0 & =55 > 161(Ux & +3,)

EcOK

5 {161 (Un - Lnea PO ) € 415}

A feik

> —2|“K| > 161 (k€ + )]

€K

Z { [ g i, V)P, — (s, B, (V7 - B*)} }

2|K| feok

*

A\
= 2|K| Z |éa| UK 5 +pm))_ 2|K| Z ’éd’ n5K7BKg>

E€OK &€OK

where the identity > |&|ng x = 0 has been used in the last equality. Combining (62) and
EcoK
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the above estimate, we obtain
FTAL * * = * * =) * =(2) *
Ui &+, =Uk & +p, + AtT i (Un) - & + AtT  (Uy) - €

alAt
& (Uk - & +p},
a7 2 141 (U €+ i)

2|K| Z |&(ns 1, Br,) (S (Uk) - & +v* - BY)

> Uk - & +p), —

EE0K
aAt
&l (Uk - & +p},
At _ _
- §j|£umwaBKg S (Uy) - € + v - B
2|K| Ee0K

Thanks to Lemma 3.4, we obtain

B * * G’At * *
U2 ¢ —|—me< R > |£’|) Uk - & + 15

E€OK
Al Z 1&)(ns x, Bk, ) ;_ (U_K'f*‘f‘an)
2IK] £EOK prHi
aAt |d1VKBh|
_(1- &l — At YESR) (G et 1t ) > 0,
( mmg%“ ﬁﬂk>( )

where the identity ) |&|ngx = 0 has been used in the equality, and the CFL condition (52)
EEOK
is used in the last inequality. Therefore, we have

U& ¢ +p, >0, VB eR’, W*eB0),

which, along with D2! > 0, yield U2 € G, = G. The proof is complete.
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