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Abstract

We propose and analyze a class of robust, uniformly high-order accurate discontin-

uous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics

(RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-

preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint

on the fluid velocity and the positivity of density, pressure, and internal energy. This is

the first time that provably PCP high-order schemes are achieved for multidimensional

RMHD. Developing PCP high-order schemes for RMHD is highly desirable but remains

a challenging task, especially in the multidimensional cases, due to the inherent strong

nonlinearity in the constraints and the effect of the magnetic divergence-free condition.

Inspired by some crucial observations at the PDE level, we construct the provably PCP

schemes by using the locally divergence-free DG schemes of the recently proposed sym-

metrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP

property of the DG solutions, and the strong-stability-preserving methods for time dis-

cretization. We rigorously prove the PCP property by using a novel “quasi-linearization”

approach to handle the highly nonlinear physical constraints, technical splitting to offset

the influence of divergence error, and sophisticated estimates to analyze the beneficial

effect of the additional source term in the symmetrizable RMHD system. Several two-

dimensional numerical examples are provided to further confirm the PCP property and

to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.
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1 Introduction

In this paper, we explore robust and high-order accurate numerical schemes for solving rela-

tivistic magnetohydrodynamics (RMHD) equations, which are widely used for the description

of the dynamics of electrically conducting fluids moving close to the speed of light in the

presence of the magnetic field. The RMHD equations play an important role in many fields,

such as astrophysics and high energy physics, and have been used to investigate a number

of astrophysical scenarios from stellar to galactic scales, e.g., gamma-ray bursts, formation of

black holes, astrophysical jets, blast waves of supernova explosions, gravitational collapse and

accretion, etc.

The special RMHD equations are often formulated as a nonlinear system of hyperbolic

conservation laws

Ut +∇ · F(U) = 0, (1)

where ∇· =
∑d

i=1
∂
∂xi

is the divergence operator with d ∈ {1, 2, 3} denoting the spatial dimen-

sionality. Here the geometrized unit system is used so that the speed of light c = 1. In (1), the

conservative vector U = (D,m,B, E)>, and the flux F = (F1, . . . ,Fd) is defined by

Fi(U) =
(
Dvi, vim− Bi

(
W−2B + (v ·B)v

)
+ ptotei, viB− Biv,mi

)>
,

with the mass density D = ρW , the momentum vector m = (ρHW 2 + |B|2)v − (v · B)B,

the magnetic field B = (B1, B2, B3), the energy E = ρHW 2 − ptot + |B|2, and the vector ei

being the i-th row of the unit matrix of size 3. In addition, ρ denotes the rest-mass density,

v = (v1, v2, v3) is the velocity field of the fluid, W = 1/
√

1− |v|2 denotes the Lorentz factor,

H = 1 + e + p
ρ

stands for the specific enthalpy with e being the specific internal energy. ptot

represents the total pressure consisting of the thermal pressure p and the magnetic pressure

pm := 1
2

(W−2|B|2 + (v ·B)2). In order to close the system (1) an equation of state (EOS) is

needed. A general EOS can be expressed as

H = H(p, ρ). (2)

A simple widely-used one is the ideal EOS

H = 1 +
Γp

(Γ− 1)ρ
, (3)

with a constant Γ ∈ (1, 2] denoting the adiabatic index, for which the restriction Γ ≤ 2 is

required by the compressibility assumptions and the relativistic causality [45]. Given a specific

EOS, the conservative vector U and the flux F can be explicitly expressed by the primitive

variables {ρ, p,v,B}. However, unlike the non-relativistic case, there are no explicit formulas

for either the flux F or the primitive variables {ρ,v, p} in terms of U, due to the appearance

of the Lorentz factor and other relativistic effects.

The magnetic field should also satisfy an additional divergence-free condition

∇ ·B :=
d∑
i=1

∂Bi

∂xi
= 0, (4)
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which reflects the fact that there are no magnetic monopoles and also appears in the non-

relativistic ideal MHD system. In fact, if the initial magnetic field is divergence-free, then the

exact solution of the equations (1) always maintains zero divergence. In the design of numeri-

cal RMHD schemes, the divergence-free condition (4) should be also accommodated carefully,

which causes challenges in addition to the standard difficulties in solving the nonlinear hyper-

bolic systems. It is widely realized that the condition (4) is important for robust computations,

since large divergence error in the magnetic field may cause nonphysical structures or numer-

ical instabilities, see, for example, [12, 3, 37, 22]. In the one-dimensional case (d = 1), B1 is

constant so that the condition (4) can be easily enforced in numerical computations. However,

in the multidimensional cases (d ≥ 2), numerical preservation of (4) is indeed nontrivial, and

various techniques have been proposed to reduce the divergence error or numerically enforce

the condition (4) in some discrete sense; see e.g., [12, 29, 37, 9, 1, 7, 36, 22, 23, 27, 50, 13, 4]

and the references therein.

In physics, the density, internal energy and thermal pressure are positive, and the fluid

velocity must be slower than the speed of light in the vacuum c = 1. In other words, the

physically admissible conservative variables U must stay in the following set

G :=
{
U = (D,m,B, E)> : ρ(U) > 0, p(U) > 0, e(U) > 0, |v(U)| < 1

}
, (5)

where the functions ρ(U), p(U), e(U) and v(U) are highly nonlinear and cannot be explicitly

formulated in terms of U, due to the relativistic effect. The satisfaction of the constraints (5) is

not only necessary for the physical nature of the solution, but also highly desirable and crucial

for the robustness of numerical computations. In fact, when any physical constraints in (5) are

violated numerically, the discrete problem would become ill-posed because the hyperbolicity is

lost, and numerical instability can develop so as to cause the blowup of the numerical solutions

and the termination of the simulation. In the past several decades, various numerical schemes

were developed for the RMHD, e.g., [20, 10, 26, 38, 17, 51, 2, 57]. However, none of them

were rigorously proven to preserve all these constraints, even though they have been applied to

successfully simulate some RMHD flows. In fact, most of the existing RMHD schemes do not

always maintain these constraints, and thus may suffer from a risk of failure when simulating

RMHD problems with large Lorentz factor, low density or pressure, or strong discontinuity.

It is therefore highly significant and desirable to develop physical-constraint-preserving (PCP)

numerical methods1 that always keep the solutions in the admissible state set G.

During the past decade, significant progress has been made for constructing bound-preserving

high-order accurate schemes for solving hyperbolic partial differential equations, with the aid

of two types of limiters. One is a simple scaling limiter for the solution polynomials recon-

structed in finite volume methods or evolved by discontinuous Galerkin (DG) methods; see,

e.g., [53, 54, 52, 42, 43, 58]. Another one is a flux-correction limiter, see, e.g., [49, 18, 24, 5].

1The PCP property defined in this paper refers only to the preservation of the subluminal constraint on

fluid velocity and the positivity of density, pressure, and internal energy. Our PCP definition does not include

the divergence-free constraint (4). The numerical schemes proposed in this paper only maintain a locally

divergence-free property for the magnetic field.
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For more developments, we refer interested readers to the survey [33] and references therein.

With these limiting approaches, several PCP methods were developed for the special rela-

tivistic hydrodynamics (RHD) without the magnetic field, including high-order accurate PCP

finite difference schemes [45], PCP DG schemes [30], PCP central DG schemes [47], and PCP

Lagrangian finite volume schemes [25]. It is nontrivial to extend the PCP methods from spe-

cial to general RHD. An earlier effort [32] was made in this direction but only enforced the

positivity of density. Recently, frameworks were established in [39] for designing provably PCP

high-order accurate finite volume, finite difference and DG methods for the general RHD. All

of the aforementioned PCP methods were restricted to the RHD without the magnetic field B.

Yet, it is still a highly challenging task to seek the provably PCP numerical schemes for

the RMHD, mainly due to the effect of the numerical divergence error of B, the intrinsically

complicated coupling of the RMHD equations, and the highly nonlinear physical constraints

in (5). As mentioned above, there are no explicit expressions of the highly nonlinear functions

ρ(U), p(U), e(U) and v(U) for the RMHD. Taking the ideal EOS case (3) as example, in order

to obtain the values of {ρ,v, e, p} from a given vector U = (D,m,B, E)>, one needs to solve

a nonlinear algebraic equation [26]:

θ + |B|2 − E +
Γ− 1

Γ

(
D

ΥU(θ)
− θ

Υ2
U(θ)

)
− 1

2

(
(m ·B)2

θ2
+
|B|2

Υ2
U(θ)

)
= 0, (6)

for the unknown θ ∈ (0,+∞). Here the function ΥU(θ) is defined by

ΥU(θ) =

(
θ2(θ + |B|2)

2 −
[
θ2|m|2 + (2θ + |B|2)(m ·B)2]
θ2(θ + |B|2)2

)−1/2

.

Assume that an admissible solution of the equation (6) exists for the given state U, and denote

it by θ̂ = θ̂(U), then we can compute the primitive variables in (5) by

v(U) =
(
m + θ̂−1(m ·B)B

)
/(θ̂ + |B|2), ρ(U) =

D

ΥU(θ̂)
,

p(U) =
Γ− 1

ΓΥ2
U(θ̂)

(
θ̂ −DΥU(θ̂)

)
, e(U) =

p(U)

(Γ− 1)ρ(U)
.

(7)

As clearly shown in the above procedure, checking the admissibility of a given state U is al-

ready a very difficult task. On the other hand, in most of the numerical RMHD schemes, the

evolution of the conservative quantities {D,m,B, E} are generally based on their own con-

servation laws in (1), while the discrete evolution equations are seemingly not directly related

to the constraints in (5) and do not necessarily ensure the desired bounds of the computed

primitive variables {ρ, p, e,v}. In theory, it is quite difficult to prejudge whether a numerical

RMHD scheme is always PCP under all circumstances or not. The study of PCP schemes for

the RMHD has remained blank until the recent work in [46], where several important math-

ematical properties of the set G were first derived, and PCP schemes were developed for the

conservative RMHD equations (1) in one space dimension. Moreover, for the multidimensional

4



conservative RMHD equations, the theoretical analysis in [46] revealed that the PCP property

of standard DG and finite volume methods is closely connected with a discrete divergence-

free condition on the numerical magnetic field. This finding was further extended on general

meshes in [48] and was also observed in the non-relativistic ideal MHD case [40]. Moreover,

it was shown in [46, 48] that the multidimensional first-order Lax-Friedrichs scheme for (1)

is generally not PCP, if that discrete version of divergence-free condition is violated slightly.

Unfortunately, the required discrete divergence-free condition relies on certain combination of

the numerical solution information on adjacent cells, so that it could not be naturally enforced

by any existing divergence-free techniques that also work in conjunction with the standard

local scaling PCP limiter [46]. Therefore, the design of multidimensional PCP schemes for the

RMHD has challenges essentially different from the one-dimensional case. As a result, provably

PCP high-order schemes have not yet been obtained for the conservative RMHD system (1) in

the multidimensional cases.

The focus of this paper is to develop a class of provably PCP high-order DG schemes for the

multidimensional RMHD with a general EOS on general meshes. This will be the first time

that provably PCP high-order schemes are obtained for multidimensional RMHD. Towards

achieving this goal, we will make the following efforts in this paper:

1. First, we investigate the PCP property of the exact solutions of the conservative RMHD

system (1) at the PDE level. We observe that, if the condition (4) is violated slightly, then

the set G is generally no longer an invariant region for the exact solution of (1), i.e., even the

exact solution may fail to be PCP. This is consistent with our previous finding in the non-

relativistic ideal MHD case [42]. Therefore, before seeking provably PCP numerical schemes,

our first task is to reformulate the RMHD equations so as to accommodate the PCP property

at the PDE level. We consider a symmetrizable formulation of the RMHD equations, which

we recently proposed in [44], by building the condition (4) into the equations via adding a

source term. We show that, for the exact smooth solutions of the new RMHD equations,

the PCP property always holds even if B is not divergence-free.

2. Based on the symmetrizable formulation, we construct provably PCP high-order accurate

DG schemes on general meshes for the multidimensional RMHD equipped with a general

EOS. The key is to properly discretize the symmetrizable RMHD equations so as to elimi-

nate the influence of the numerical divergence error on the PCP property of the resulting

DG schemes. We adopt the locally divergence-free DG elements, which enforce zero di-

vergence within each cell, and a suitable discretization of the symmetrization source term,

which brings some crucial discrete divergence terms into our schemes and exactly offsets the

influence of the divergence error on the PCP property.

3. One key innovation in this paper is the rigorous proof of the PCP property of the proposed

high-order accurate DG schemes for the multidimensional RMHD, without requiring any

discrete divergence-free condition. There are two main technical challenges in the proof.

One is how to explicitly and analytically verify the admissibility of any given conservative

5



state U, without solving the nonlinear equation (6). This difficulty has been addressed

in [46] based on two equivalent forms of the admissible state set G. The other is how to

take the advantages of the locally divergence-free property of the numerical magnetic field

and our suitable discretization of the source term in the symmetrizable RMHD formula-

tion, to eliminate the influence of the divergence error on the PCP property. Due to the

divergence-involving source term and the locally divergence-free DG solutions, the limiting

values of the numerical solution on the boundaries of each mesh cell are coupled intrinsi-

cally, leading to some standard analysis techniques ([54]) inapplicable in our case. We will

overcome this difficulty by using a novel “quasi-linearization” approach to handle the highly

nonlinear constraints in (5), technical splitting to offset the influence of divergence error,

and sophisticated estimates to analyze the beneficial effect of the symmetrization source

term.

4. We implement the proposed PCP DG schemes on two-dimensional Cartesian meshes and

demonstrate their accuracy, effectiveness and robustness for several numerical examples. We

will show that our PCP schemes, without any artificial treatments, are able to successfully

simulate several challenging problems, including a strongly magnetized bast problem with

extremely low plasma-beta (2.5 × 10−10) and two highly supersonic RMHD jets, which

are very demanding test cases and their successful simulations were rarely reported in the

literature.

The study in this paper is also motivated by our recent work [42, 43] on exploring the

positivity-preserving DG methods for the non-relativistic ideal MHD. Compared to the non-

relativistic case, the present study is much more challenging, due to the highly nonlinear cou-

pling of the RMHD equations and the complicated mapping from the conservative to primitive

variables. Additional technical challenges also arise from the suitable discretization of the sym-

metrization source term and especially some novel estimate techniques have to be developed

to analyze its beneficial effect on the PCP property.

This paper is organized as follows. In Section 2, we introduce some auxiliary observations

on the PCP property at the PDE level. In Section 3, some key techniques for the PCP analysis

are presented. We discuss the construction and the provably PCP property of our DG schemes

in Section 4, and conduct the numerical tests in Section 5. Section 6 concludes the paper.

2 Auxiliary observations on the PCP property at the

PDE level

This section introduces our observations on the PCP property for the strong solutions of

the conservative formulation (1) and a symmetrizable formulation of the RMHD equations,

respectively, with the ideal EOS (3). The findings will provide some insights that guide us to

successfully construct the PCP schemes for the RMHD.
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We observe that, if ∇ ·B 6= 0, then the set G is generally no longer an invariant region for

the exact solution of (1) because p < 0 may appear. Let us consider the following initial data

ρ(x, 0) = 1, v(x, 0) = (0.01, 0.01, 0.01), p(x, 0) = 1− e−
1
2
|x|4 ,

B(x, 0) = (2, 2, 2) + ε(arctan x1, arctan x2, arctan x3),
(8)

where x = (x1, . . . , xd), and 0 < ε � 1 indicates a very small nonzero divergence in the

magnetic field. Notice that the initial solution (8) is infinitely differentiable and bounded. We

then study the Cauchy problem of (1) with (8), by assuming that the exact solution of this

problem exists and is smooth for the time t belonging to a small interval [0, t∗), 0 < t∗ � 1.

Since |v(0, 0)| − 1 = −0.97 < 0 and ρ(0, 0) = 1 > 0, by the sign-preserving property for

continuous functions, there exists a neighborhood Ω of 0 in Rd and t0 ∈ (0, , t∗) such that

ρ(x, t) > 0 and |v(x, t)| − 1 < 0, ∀(x, t) ∈ Ω × [0, t0). We now compute the initial temporal

derivative of pρ−Γ at (x, t) = (0, 0). It can be derived from the equations (1) that

∂

∂t

(
pρ−Γ

)
+ v · ∇

(
pρ−Γ

)
+ (Γ− 1)ρ−Γ(v ·B)∇ ·B = 0. (9)

At (x, t) = (0, 0), we have ∇
(
pρ−Γ

)
= 0 and ∇ · B = dε > 0, which imply

∂(pρ−Γ)
∂t

(0, 0) =

−0.06d(Γ−1)ε < 0. Besides, one can observe that pρ−Γ(0, 0) = 0. Thus there exists t1 ∈ [0, t0)

such that pρ−Γ(0, t) < 0, ∀t ∈ (0, t1). Because ρ(x, t) > 0, ∀(x, t) ∈ Ω × [0, t0), we have

p(0, t) < 0, ∀t ∈ (0, t1).

The above analysis infers that if the condition (4) is violated slightly, G is no longer an

invariant region for the exact solution of the equations (1), i.e., the exact solution may fail to

be PCP. This observation, along with the results in [46] at the numerical level, demonstrate the

unity of continuous and discrete objects, and clearly reveal the intrinsic connection between

the PCP property and divergence-free condition.

We remark that (8) is merely a mathematical example and indeed has no practical relevance,

because of a vanishing pressure at the origin and the nonzero divergence of the magnetic field.

Nevertheless, such a nonphysical situation may appear in numerical solutions — the local

pressure can be very close to zero and the magnetic field can be not divergence-free. According

to the analysis above, when the condition (4) is violated numerically at t = tn, even an exact

PDE solver (suppose we have) of the equations (1) for the subsequent simulation (t > tn) may

also fail to be PCP. Unfortunately, in most of the multidimensional RMHD schemes including

the standard DG methods, the numerical divergence error is generally unavoidable. Although

a few globally divergence-free numerical techniques were proposed (see e.g. [23, 27, 50, 13, 4]),

the standard local scaling limiter (cf. [54, 46]) for bound preservation can destroy the globally

divergence-free property. It is therefore difficult to find a numerical technique which can enforce

the globally divergence-free property and meet the PCP requirement at the same time.

In order to address the above issue, we propose to consider a symmetrizable formulation of

the RMHD equations [44]

Ut +∇ · F(U) = −S(U)∇ ·B, (10)
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where

S(U) :=
(
0, (1− |v|2)B + (v ·B)v, v, v ·B

)>
. (11)

The system (10) is analogous to the Godunov–Powell system [14, 28] for the non-relativistic

ideal MHD. It is first proposed in [44] recently for the entropy symmetrization of the RMHD

equations. For convenience, we refer to the additional term at the right-hand-size of (10) as

“symmetrization source term”. Under the condition (4), this source term vanishes, so that the

two formulations (10) and (1) are equivalent at the continuous level. However, the inclusion of

this source term changes some characters of the equations. As a result, the modified RMHD

system (10) becomes symmetrizable, admits a convex thermodynamic entropy pair, and plays

a key role in designing entropy stable schemes [44]. These beneficial properties do not hold for

the conservative RMHD system (1).

For the PCP point of view, we discover another beneficial property of the symmetrizable

RMHD system (10). Specifically, we observe that, at the PDE level, the strong solutions of the

symmetrizable equations (10) always maintain the PCP property, even if B is not divergence-

free. Let us study the Cauchy problem of the equations (10), for x ∈ Rd and t > 0, with the

initial condition

(ρ,v,B, p)(x, 0) = (ρ0,v0, p0,B0)(x), (12)

where the magnetic field is not necessarily divergence-free. Then we can prove the following

result by the method of characteristics.

Proposition 2.1. Assume the initial data (12) are in C1(Rd) with ρ0(x) > 0, p0(x) > 0,

and |v0(x)| < 1, ∀x ∈ Rd. If the Cauchy problem of (10) with (12) has a C1 solution

(ρ,v,B, p)(x, t) for x ∈ Rd and 0 ≤ t ≤ T , then

ρ(x, t) > 0, |v(x, t)| < 1, p(x, t) > 0, e(x, t) > 0, ∀x ∈ Rd, ∀t ∈ [0, T ].

In addition, if assuming the solution is C2, then it holds

min
x∈Rd

∇ ·B
ρW

(x, 0) ≤ ∇ ·B
ρW

(x, t) ≤ max
x∈Rd

∇ ·B
ρW

(x, 0), ∀t ∈ [0, T ], (13)

which implies that the “relative” divergence ‖ρ−1W−1∇ ·B(·, t)‖L∞ does not grow with t.

Proof. The proof is straightforward and is given in Appendix A for completeness. �

As we have already seen, the inclusion of the source term S(U)∇ ·B in the symmetrizable

RMHD system (10) helps eliminate the effect of nonzero divergence on the PCP property at the

PDE level. Now, it is very natural to ask: For the PCP property at the numerical level, can we

get a similar benefit from the system (10)? Can we also eliminate the effect of divergence error

to achieve PCP schemes by proper discretization of the new equations (10)? These questions

will be answered by the efforts in the subsequent sections, for which some important analysis

techniques are required.
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Remark 2.1. Analogous to the Powell source term for the non-relativistic ideal MHD system

[29, 42, 43], the source term in the symmetrizable RMHD system (10) is non-conservative,

but is necessary to accommodate the PCP property at the PDE level when the condition (4) is

not exactly satisfied. Therefore, in order to achieve the PCP property at the discrete level, our

schemes in this paper will be constructed using the symmetrizable formulation (10), which poses

additional technical challenges in discretizing the source term properly to ensure its compatibility

with the PCP property. As mentioned in [42, 43] on the non-relativistic MHD, there is a

conflict between the PCP property which requires the non-conservative source term, and the

conservation property which is lost due to the source term. The loss of conservation property

leaves the possibility that it may lead to incorrect resolutions for some discontinuous problems,

which will be investigated carefully in a separate study. It would be also interesting to explore

PCP high-order schemes via the conservative formulation (1) and with an exactly divergence-

free numerical technique that can work in conjunction with a bound-preserving limiter.

Remark 2.2. For smooth solutions, if the divergence-free condition (4) is met, then equation

(9), derived from the conservative system (1), reduces to

St + v · ∇S = 0 (14)

with S := pρ−Γ being the specific entropy. This equation can also be directly derived from

the symmetrizable RMHD system (10), without using the divergence-free condition (4). See

(60) in the proof of Proposition 2.1. The equation (14) actually describes an entropy transport

which “drives” the positivity of p and e, given that ρ > 0. For non-smooth solutions, this

equation is replaced with the entropy inequality (ρS)t +∇ · (vρS) ≥ 0, which implies Tadmor’s

minimum entropy principle [35]: S(x, t) ≥ minx S(x, 0). Several high-order schemes satisfying

this principle were developed, e.g., for the (non-relativistic) Euler equations [55, 16, 19] and

recently for the RHD equations [41] without magnetic field.

3 Numerical analysis techniques

In this section, we will introduce several important properties of G and derive some technical

estimates, which will be useful in the PCP analysis of the proposed numerical schemes.

3.1 Properties of admissible states

Throughout the rest of this paper, we consider a general causal EOS (2) satisfying
The function H(p, ρ) in (2) is differentiable in R+ × R+,

H(p, ρ) ≥
√

1 + p2/ρ2 + p/ρ, ∀p, ρ > 0,

H(p, ρ)
(

1
ρ
− ∂H(p,ρ)

∂p

)
< ∂H(p,ρ)

∂ρ
< 0, ∀p, ρ > 0,

(15)
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where the second condition is revealed by the relativistic kinetic theory, and the third condition

can be derived from the relativistic causality and assuming that the coefficient of the thermal

expansion of the fluids is positive [47]. These assumptions are reasonable because they are

valid for most compressible fluids, e.g., the gases. One can verify that the conditions in (15)

hold for the ideal EOS (3) and some other commonly used EOSs; see [47].

In order to overcome the challenges arising from the lack of explicit formulas of the functions

in (5), the following two equivalent forms of G were rigorously derived in [46] for the ideal EOS

(3) and in [48] for a general EOS (2) satisfying (15).

Lemma 3.1 (First equivalent form). The set G define in (5) is equivalent to the set

G1 :=
{
U = (D,m,B, E)> : D > 0, q(U) > 0, Ψ(U) > 0

}
,

where q(U) := E −
√
D2 + |m|2 and

Ψ(U) :=
(
Φ(U)− 2(|B|2 − E)

)√
Φ(U) + |B|2 − E −

√
27

2

(
D2|B|2 + (m ·B)2

)
,

with Φ(U) : =
√

(|B|2 − E)2 + 3(E2 −D2 − |m|2).

Lemma 3.2 (Second equivalent form). The set G or G1 is equivalent to the set

G2 :=
{
U = (D,m,B, E)> : D > 0, U · ξ∗ + p∗m > 0, ∀B∗ ∈ R3, ∀v∗ ∈ B1(0)

}
,

where B1(0) := {x ∈ R3 : |x| < 1} denotes the open unit ball centered at 0 in R3, and

ξ∗ =

(
−
√

1− |v∗|2, − v∗, − (1− |v∗|2)B∗ − (v∗ ·B∗)v∗, 1

)>
, (16)

p∗m =
(1− |v∗|2)|B∗|2 + (v∗ ·B∗)2

2
. (17)

Remark 3.1. The auxiliary variables B∗ and v∗ are “free parameters” mathematically. Specifi-

cally, in Lemma 3.2 we require that U·ξ∗+p∗m > 0 holds for any B∗ ∈ R3 and any v∗ ∈ B1(0),

where ξ∗ and p∗m are functions of these auxiliary variables as defined in (16)–(17). Geomet-

rically, B∗ and v∗ represent the corresponding magnetic field and velocity of the states on the

boundary (Ψ(U) = 0) of the domain G in the space R8; see [46] for some details.

Remark 3.2. Note that all the constraints in the above two equivalent forms are explicit with

respect to U. This is a very helpful feature. The first equivalent form G1 is particularly useful

for checking the admissibility of a given state U and constructing the limiter for developing PCP

high-order accurate RMHD schemes. Moreover, the two constraints in the second equivalent

form G2, are both linear with respect to U, although two (additional) auxiliary variables B∗

and v∗ are introduced. Such linearity makes G2 quite suitable for analytically verifying the

PCP property of RMHD schemes. It will provide a novel quasi-linearization approach to handle

nonlinear physical constraints and is a key to our analysis techniques, which are significantly

different from the standard bound-preserving analysis techniques (cf. [54]).

It is proven in [46] that the admissible state set is convex.

Lemma 3.3. The admissible state set G1 is convex.
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3.2 Technical estimates

In order to handle the effect of the source term in the symmetrizable RMHD system (10) on the

PCP property of numerical schemes, we derive the following inequality (18), whose discovery

is highly nontrivial.

Lemma 3.4. For any U ∈ G, any B∗ ∈ R3 and any v∗ ∈ B1(0), it holds

|S(U) · ξ∗ + v∗ ·B∗| ≤ 1√
ρH

(U · ξ∗ + p∗m) , (18)

where ρ and H = 1 + e + p
ρ

are the density and specific enthalpy corresponding to U; and ξ∗

and p∗m are functions of (v∗,B∗) as defined in (16) and (17), respectively.

Proof. Notice that, due to the relativistic effect, the function S(U), defined by v and B in

(11), also cannot be explicitly formulated in terms of U. Therefore, we have to work on the

primitive variables {ρ,v, p,B} of U, which satisfy ρ > 0, |v| < 1 and p > 0 because U ∈ G.

We observe that

S(U) · ξ∗ + v∗ ·B∗ = (v − v∗) ·
(

(1− |v|2)B + (v ·B)v − (1− |v∗|2)B∗ − (v∗ ·B∗)v∗
)
.

Let Π1 := U · ξ∗ + p∗m and

Π2 :=
√
ρH(v − v∗) ·

(
(1− |v|2)B + (v ·B)v − (1− |v∗|2)B∗ − (v∗ ·B∗)v∗

)
.

Then, we need to prove

Π1 ≥ |Π2|. (19)

We reformulate Π1 and decompose it into two parts as follows:

Π1 = ρHW 2(1− v · v∗)− p− ρW
√

1− |v∗|2

+
(

(1− |v∗|2)B∗ + (v∗ ·B∗)v∗
)
· (−B) +

(
|B|2v − (v ·B)B

)
· (−v∗)

+
(1 + |v|2)|B|2 − (v ·B)2

2
+

(1− |v∗|2)|B∗|2 + (v∗ ·B∗)2

2

=
[
ρHW 2(1− v · v∗)− p− ρW

√
1− |v∗|2

]
+

[
(1− |v∗|2)|B−B∗|2

2
+

(v∗ · (B−B∗))2

2
+
|v − v∗|2|B|2

2
− ((v − v∗) ·B)2

2

]
=: Π

(1)
1 + Π

(2)
1 .

According to the second condition in (15), the first part Π
(1)
1 satisfies

Π
(1)
1

ρH
= W 2(1− v · v∗)− p

ρH
− 1

H
W
√

1− |v∗|2 ≥ W 2(1− v · v∗)−
H2−1

2H
ρ

ρH
− 1

H
W
√

1− |v∗|2

=
1

2

(
1

H
−W

√
1− |v∗|2

)2

+W 2(1− v · v∗)− 1

2
− W 2(1− |v∗|2)

2

≥ W 2(1− v · v∗)− 1

2
− W 2(1− |v∗|2)

2
=

1

2
W 2|v − v∗|2.

11



It follows that

Π1 ≥
1

2
ρHW 2|v − v∗|2 + Π

(2)
1 := Π3.

Therefore, in order to prove (18) or (19), it suffices to show

Π3 ≥ |Π2|.

Let us introduce the vector Z = (B∗,B,
√
ρH)> ∈ R7. We observe that both Π3 and Π2 can

be formulated into quadratic forms in the variables Z. This highly nontrivial observation

is a key of our proof. Specifically, we discover that

Π3 =
1

2
Z>A3Z, Π2 =

1

2
Z>A2Z

with

A3 =

 G −G 0>

−G H 0>

0 0 W 2|v − v∗|2

 , A2 =

O O b>1
O O b>2
b1 b2 0

 ,

where 0 = (0, 0, 0), O is 3× 3 zero matrix, and (note that v and v∗ are row vectors)

G = (1− |v∗|2)I3 + (v∗)>v∗,

H =
(
1 + |v − v∗|2 − |v∗|2

)
I3 + (v∗)>v∗ − (v − v∗)>(v − v∗),

b1 = (1− |v∗|2)(v∗ − v) + (|v∗|2 − v · v∗)v∗,
b2 = (1− |v|2)(v − v∗) + (|v|2 − v · v∗)v.

Then, it suffices to show that both A3 + A2 and A3 −A2 are positive semi-definite.

Note that G is symmetric, and its eigenvalues are given by {1−|v∗|2, 1−|v∗|2, 1}. Because

all of its eigenvalues are positive, the matrix G is positive definite. Define a nonsingular matrix

P1 =

 I3 O 0>

I3 I3 0>

−b1G
−1 0 1

 ,

where −b1G
−1 = v − v∗. Then

P1(A3 + A2)P>1 =

G O 0>

O H−G b>1 + b>2
0 b1 + b2 W 2|v − v∗|2 − b1G

−1b>1

 , (20)

where

b1 + b2 = (|v|2 − v · v∗)v∗ + (|v∗|2 − v · v∗)v,

and the matrix H−G is symmetric and given by

H−G = |v − v∗|2I3 − (v − v∗)>(v − v∗).

The eigenvalues of H−G are {0, |v−v∗|2, |v−v∗|2}, which are all nonnegative, implying that

H−G is positive semi-definite.

Now, we would like to show that P1(A3 + A2)P>1 is positive semi-definite. Let us first

consider two trivial cases:

12



� If v = v∗, then P1(A3 + A2)P>1 = O, which is positive semi-definite.

� If v = 0, then b1 = v∗ = −b2 and W 2|v − v∗|2 − b1G
−1b>1 = 0. In this case, P1(A3 +

A2)P>1 = diag{G,H−G, 0}, which is positive semi-definite.

In the following, we shall focus on the nontrivial case that v 6= v∗ and v 6= 0. For any ε > 0,

we define

Qε =

(
H−G + εI3 b>1 + b>2

b1 + b2 W 2|v − v∗|2 − b1G
−1b>1

)
.

Some algebraic manipulations yield that

det(Qε) =
ε

1− |v|2
(ε+ |v − v∗|2)

(
εΠ4 + |v|2|v − v∗|4

)
,

where

Π4 := (1− |v|2)
(

(v1v
∗
2 − v2v

∗
1)2 + (v2v

∗
3 − v3v

∗
2)2 + (v3v

∗
1 − v1v

∗
3)2
)

+ |v|2|v − v∗|2.

It is evident that Π4 ≥ |v|2|v−v∗|2. For any ε > 0, the matrix H−G+εI3 is positive definite,

and when v 6= v∗ and v 6= 0, it holds

det(Qε) ≥
ε

1− |v|2
(ε+ |v − v∗|2)|v − v∗|2|v|2

(
ε+ |v − v∗|2

)
> 0.

This implies that the leading principal minors of Qε are all positive, and thus Qε is positive

definite for any ε > 0, v 6= v∗ and v 6= 0. Taking the limit ε → 0, we obtain that Q0 is

positive semi-definite, which further yields that P1(A3 + A2)P>1 = diag{G,Q0} is positive

semi-definite, for the nontrivial case (v 6= v∗ and v 6= 0). In conclusion, for all the cases,

P1(A3 + A2)P>1 is positive semi-definite.

Because A3 + A2 and P1(A3 + A2)P>1 are congruent, A3 + A2 is positive semi-definite.

Similar arguments imply that A3 −A2 is also positive semi-definite. Hence

Π3 ± Π2 =
1

2
Z>(A3 ±A2)Z ≥ 0,

which yields Π1 ≥ Π3 ≥ |Π2|. The proof is complete. �

We will also need the following technical inequality (21), which was derived in [46], to

handle the effect of the flux in numerical PCP analysis.

Lemma 3.5. If U ∈ G, then for any λ ∈ [−1, 1], any B∗ ∈ R3 and any v∗ ∈ B1(0), it holds(
U + λFi(U)

)
· ξ∗ + p∗m ≥ −λ

(
v∗i p
∗
m − Bi(v

∗ ·B∗)
)
, (21)

where i ∈ {1, 2, · · · , d}, and ξ∗ and p∗m are defined in (16) and (17), respectively.

For any vector n = (n1, · · · , nd) ∈ Rd, we introduce the following inner product notations

〈n,v〉 :=
d∑

k=1

nkvk, 〈n,B〉 :=
d∑

k=1

nkBk, 〈n,F〉 :=
d∑

k=1

nkFk, (22)

which will be frequently used in this paper. Then we can generalize Lemma 3.5.
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Lemma 3.6. If U ∈ G, then for any λ ∈ [−1, 1], any B∗ ∈ R3, any v∗ ∈ B1(0), and any unit

vector n ∈ Rd, one has(
U + λ

〈
n,F(U)

〉)
· ξ∗ + p∗m ≥ −λ

(
〈n,v∗〉p∗m − 〈n,B〉(v∗ ·B∗)

)
. (23)

Proof. Let Qn ∈ R3×3 be a rotational matrix associated with the unit vector n and satisfying

e1Qn = (n,03−d), (24)

where e1 = (1, 0, 0), and 03−d denotes the zero vector in R3−d. The rotational invariance of the

RMHD system implies 〈
n,F(U)

〉
= Q−1F1(QU), (25)

where Q = diag{1,Qn,Qn, 1}. As a rotational matrix, Qn is orthogonal. Define B̂∗ := B∗Q>n
and v̂∗ := v∗Q>n , then one can verify that v̂∗ ∈ B1(0) and

v̂∗ · B̂∗ = v∗ ·B∗, p̂∗m :=
(1− |v̂∗|2)|B̂∗|2 + (v̂∗ · B̂∗)2

2
= p∗m, (26)

ξ̂∗ =

(
−
√

1− |v̂∗|2, − v̂∗, − (1− |v̂∗|2)B̂∗ − (v̂∗ · B̂∗)v̂∗, 1

)>
= Qξ∗. (27)

For U ∈ G, using the first equivalent form in Lemma 3.1 we obtain Û := QU ∈ G1 = G. Let

B̂ be the magnetic field corresponding to Û. It satisfies B̂ = BQ>n . Let v̂∗1 and B̂1 denote the

first components of v̂∗ and B̂, respectively. Then, we have

v̂∗1 = e1 · v∗ = e1 · (v∗Q>n ) = (e1Qn) · v∗ = 〈n,v∗〉, B̂1 = 〈n,B〉, (28)

where equation (24) has been used. Lemma 3.5 for Û ∈ G, B̂∗ ∈ R3 and v̂∗ ∈ B1(0) implies

0 ≤
(
Û + λF1(Û)

)
· ξ̂∗ + p̂∗m + λ

(
v̂∗1 p̂
∗
m − B̂1(v̂∗ · B̂∗)

)
=
(
QU + λF1(QU)

)
·
(
Qξ∗

)
+ p∗m + λ

(
〈n,v∗〉p∗m − 〈n,B〉(v∗ ·B∗)

)
=
(
U + λ

〈
n,F(U)

〉)
· ξ∗ + p∗m + λ

(
〈n,v∗〉p∗m − 〈n,B〉(v∗ ·B∗)

)
,

where we have used the equations (26)–(28) in the first equality, and the equation (25) and the

orthogonality of Q in the second equality. The proof is complete. �

4 Provably PCP DG Schemes

In this section, we construct PCP high-order DG schemes for the multidimensional RMHD

based on the symmetrizable form (10). For the purpose of clarity, we will mainly focus on the

spatially 2D case (d = 2). Our PCP methods and theoretical analyses can be extended to the

spatially 3D case (d = 3).

Assume that the physical domain Ω in the 2D space is discretized by a mesh Th. In general,

the mesh may be unstructured and consists of polygonal cells. We also partition the time

interval into a mesh {t0 = 0, tn+1 = tn + ∆tn, 0 ≤ n < Nt}, where ∆tn denotes the time step-

size and will be determined by some suitable CFL condition. In this section, we will frequently

use the capital letter K to denote an arbitrary cell in Th, and the lower-case letter k will always

stand for the DG polynomial degree.
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4.1 Outline of the PCP schemes

Let x ∈ Rd be the spatial coordinate vector. We define the locally divergence-free DG finite

element space [7]:

Wk
h =

{
u = (u1, · · · , u8)> : u`

∣∣
K
∈ Pk(K), ∀`,

d∑
i=1

∂u4+i

∂xi

∣∣∣∣
K

= 0, ∀K ∈ Th

}
,

where Pk(K) denotes the space of polynomials, in cell K, of total degree up to k. To define

the PCP DG schemes, we also introduce the following two subsets of Wk
h:

Gk

h :=

{
u ∈Wk

h :
1

|K|

∫
K

u(x)dx ∈ G, ∀K ∈ Th
}
, (29)

Gk
h :=

{
u ∈ Gk

h : u
∣∣
K

(x) ∈ G, ∀x ∈ SK , ∀K ∈ Th
}
, (30)

where |K| denotes the area of the cell K, and SK denotes the set of some critical points in K

which will be specified later.

Definition 4.1. A DG scheme is defined to be PCP if its solutions always stay in Gk
h. For

clarity, if a DG scheme preserves the numerical solutions in Gk

h, then we say it satisfies a

“weak” PCP property.

Lemma 4.1. The sets Gk

h and Gk
h are both convex. In addition, for any vector function

u ∈ [L2(Ω)]8 satisfying u(x) ∈ G, ∀x ∈ Ω, we have Pw(u) ∈ Gk

h, where Pw denoting the

L2-projection into Wk
h.

Proof. According to Lemmas 3.1 and 3.3, G = G1 is a convex set. For any u1(x),u2(x) ∈ Gk

h

and any λ ∈ [0, 1], we have

1

|K|

∫
K

(
λu1 + (1− λ)u2

)
dx = λ

(
1

|K|

∫
K

u1dx

)
+ (1− λ)

(
1

|K|

∫
K

u2dx

)
∈ G, ∀K ∈ Th,

which implies λu1 +(1−λ)u2 ∈ Gk

h. Thus Gk

h is a convex set. Similar argument shows that Gk
h

is convex. For any u(x) ∈ [L2(Ω)]8 satisfying u(x) ∈ G, ∀x ∈ Ω, we have 1
|K|

∫
K

Pw(u)dx =

1
|K|

∫
K

udx, which belongs to G due to the convexity of G. It follows that Pw(u) ∈ Gk

h. �

We aim at constructing PCP high-order accurate DG schemes that always preserve the DG

solution function Uh(x, t) in the set Gk
h for all t ∈ {tn : 0 ≤ n ≤ Nt}. This goal will be achieved

by following three steps:

1. First, we will seek in Section 4.2 a suitable spatial discretization of symmetrizable RMHD

system (10), such that the resulting discrete equation, which can be put in ODE form as
d
dt

Uh = Lh(Uh), satisfies the “weak” PCP property

if Uh ∈ Gk
h, then Uh + ∆tLh(Uh) ∈ Gk

h, (31)
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under some CFL condition on ∆t. The property (31) is very important. It is extremely

nontrivial to find a DG discretization for the RMHD that can be proven to satisfy (31).

Some traditional methods including standard DG schemes for the conservative RMHD

equations (1) do not satisfy (31) in general.

2. Then, we further discretize the ODE system d
dt

Uh = Lh(Uh) in time using a strong-

stability-preserving (SSP) explicit Runge-Kutta method [15].

3. Finally, a local scaling PCP limiting procedure, which will be introduced in Section 4.3, is

applied to the intermediate solutions of the Runge-Kutta discretization. This procedure

corresponds to an operator Πh : Gk

h −→ Gk
h, which maps the numerical solutions from

Gk

h to Gk
h and satisfies

1

|K|

∫
K

Πh(u)dx =
1

|K|

∫
K

udx, ∀K ∈ Th, ∀u ∈ Gk

h. (32)

The PCP limiter is required only for high-order DG methods with k ≥ 1; for the first-

order DG method (k = 0), Πh becomes the identity operator.

Let Un
h denote the numerical solution at time t = tn. The resulting fully discrete PCP DG

methods, with a Nr-stage SSP Runge-Kutta method, can be written in the following form:

� Set U0
h = ΠhPw(U(x, 0));

� For n = 0, . . . , Nt − 1, compute Un+1
h as follows:

(i) set U
(0)
h = Un

h;

(ii) for i = 1, . . . , Nr compute the intermediate solutions:

U
(i)
h = Πh

{
i−1∑
`=0

[
αi`

(
U

(`)
h + βi`∆tnLh(U

(`)
h )
)]}

; (33)

(iii) set Un+1
h = U

(Nr)
h ;

where the SSP Runge-Kutta method has been written into a convex combination of formally for-

ward Euler methods, and the associated parameters αi` and βi` are all non-negative and satisfy∑i−1
`=0 αi` = 1. Some SSP Runge-Kutta methods can be found in [15, 34], e.g., a commonly-used

three-stage third-order version is given by

α10 = 1, α20 = 3/4, α21 = 1/4, α30 = 1/3, α31 = 0, α32 = 2/3,

β10 = 1, β20 = 0, β21 = 1, β30 = 0, β31 = 0, β32 = 1.
(34)

Remark 4.1. At each Runge-Kutta stage, the PCP property of the above fully discrete DG

schemes is enforced by the operator Πh, which can only act on functions in Gk

h. That is, we

require the convex combination
∑i−1

`=0

[
αi`
(
U

(`)
h + βi`∆tnLh(U

(`)
h )
)]
∈ Gk

h, which is guaranteed
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by the weak PCP property (31) and the convexity of Gk

h. On the other hand, the PCP limiting

operator Πh enforces U
(`)
h ∈ Gk

h, 0 ≤ ` < i, which, in turn, meets the condition required by

the weak PCP property (31) for the next Runge-Kutta stage evolution. Therefore, the weak

PCP property (31) and the PCP limiting operator Πh work in conjunction with each other and

become two key ingredients of the proposed PCP schemes.

In what follows, we shall describe in detail the operators Lh and Πh, and also specify the

point set SK in the definition (30) of Gk
h. We will prove the weak PCP property (31) of the DG

spatial discretization in Theorem 4.1 and the PCP property of the fully discrete DG schemes

in Theorems 4.3 and 4.4.

4.2 The operator Lh and the weak PCP property

We now derive a suitable spatial discretization such that the resulting operator Lh satisfies

the weak PCP property (31). Following our previous work on the non-relativistic ideal MHD

[42, 43], we consider a special locally divergence-free DG discretization for the symmetrizable

RMHD system (10):

d

dt

∫
K

Uh(x, t) · udx =

∫
K

F(Uh) · ∇udx−
∑

E∈∂K

∫
E

uint(K) ·
[
F̂
(
U

int(K)
h ,U

ext(K)
h ; nE ,K

)
+

1

2

〈
nE ,K ,B

ext(K)
h −B

int(K)
h

〉
S
(
U

int(K)
h

)]
ds, ∀u ∈Wk

h, (35)

where ∂K denotes the boundary of the cell K; nE ,K is the outward unit normal to the edge

E of K; the inner product 〈·, ·〉 is defined in (22); the superscripts “ext(K)” and “int(K)”

indicate that the corresponding limits of Uh(x) at the cell edges are taken from the exterior

and interior of K, respectively. In (35), F̂ denotes the numerical flux. Our PCP framework

is applicable to any suitable numerical flux provided it ensures the “weak” PCP property in

(31). In this paper, we take the numerical flux as the global Lax-Friedrichs flux

F̂
(
U

int(K)
h ,U

ext(K)
h ; nE ,K

)
=

1

2

(〈
nE ,K ,F(U

int(K)
h ) + F(U

ext(K)
h )

〉
− a(U

ext(K)
h −U

int(K)
h )

)
,

(36)

where a denotes the numerical viscosity parameter. We choose a as the speed of light in vacuum

c = 1, which a simple upper bound of all wave speeds in the theory of special relativity. This

choice is merely for ease of conducting rigorous theoretical analysis. By numerical experiments,

we observed that the local or global Lax-Friedrichs flux with suitably smaller numerical viscosity

should also satisfy the “weak” PCP property, although a rigorous PCP proof in that case is

yet not available due to some technical challenges in theory.

The term 〈nE ,K ,B
ext(K)
h −B

int(K)
h 〉S

(
U

int(K)
h

)
in (35) is derived from a suitable discretization

of the source term in the symmetrizable RMHD system (10), with the locally divergence-free

property of Bh being taken into account. This term is proportional to the jump of the normal

component of the magnetic field across cell boundaries. Since this jump is zero for the exact
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solution, it is very small (at the level of truncation error) for numerical solutions in smooth

region. However, the inclusion of this term is crucial for achieving the property (31), as

demonstrated by our theoretical analysis later.

Of course, we have to replace the element and boundary integrals in (35) by some quadrature

rules with the at least 2k algebraic degree of accuracy. For example, we can approximate the

boundary integral by the Gauss quadrature with Q = k + 1 points:∫
E

uint(K) ·
[
F̂
(
U

int(K)
h ,U

ext(K)
h ; nE ,K

)
+

1

2

〈
nE ,K ,B

ext(K)
h −B

int(K)
h

〉
S
(
U

int(K)
h

)]
ds

≈ |E |
Q∑
q=1

ωqu
int(K)(x

(q)
E ) ·

[
F̂
(
U

int(K)
h (x

(q)
E , t),U

ext(K)
h (x

(q)
E , t); nE ,K

)
+

1

2

〈
nE ,K ,B

ext(K)
h (x

(q)
E , t)−B

int(K)
h (x

(q)
E , t)

〉
S
(
U

int(K)
h (x

(q)
E , t)

)]
,

where |E | denotes the length of the edge E , {x(q)
E }1≤q≤Q are the quadrature points on E , and

{ωq}1≤q≤Q are the associated weights with
∑Q

q=1 ωq = 1. The element integral
∫
K

F(Uh)·∇udx

can also be approximated by some 2D quadrature |K|
∑Q̆

q=1 ω̆qF(Uh(x̆
(q)
K , t)) · ∇u(x̆

(q)
K ), where

x̆
(q)
K and ω̆q denote the quadrature points and weights, respectively.

Finally, we obtain the following weak DG formulation:

d

dt

∫
K

Uh · udx = JK(Uh,u), ∀u ∈Wk
h, (37)

where JK(Uh,u) =
∑3

i=1 J
(i)
K (Uh,u) with

J (1)
K = −

∑
E∈∂K

{
|E |

Q∑
q=1

ωqF̂
(
U

int(K)
h (x

(q)
E ),U

ext(K)
h (x

(q)
E ); nE ,K

)
· uint(K)(x

(q)
E )

}
,

J (2)
K = −1

2

∑
E∈∂K

{
|E |

Q∑
q=1

ωq

〈
nE ,K ,B

ext(K)
h (x

(q)
E )−B

int(K)
h (x

(q)
E )
〉

S
(
U

int(K)
h (x

(q)
E )
)
· uint(K)(x

(q)
E )

}
,

J (3)
K = |K|

Q̆∑
q=1

ω̆qF(Uh(x̆
(q)
K )) · ∇u(x̆

(q)
K ),

and for notational convenience, we suppress the t dependence of all quantities hereafter, unless

confusion arises otherwise. As the standard DG methods (cf. [8, 6]), the weak form (37) can

be rewritten in the ODE form as
d

dt
Uh = Lh(Uh), (38)

after choosing a suitable basis of Wk
h and representing Uh as a linear combination of the basis

functions; see [8, 6] for details. Note that the cell average of Uh, denoted by ŪK := 1
|K|

∫
K

Uhdx,

satisfies the following time evolution equation

d

dt
ŪK = J̃ K(Uh), ∀K ∈ Th, (39)
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where J̃ K(Uh) = J̃
(1)

K (Uh) + J̃
(2)

K (Uh) with

J̃
(1)

K (Uh) = − 1

|K|
∑

E∈∂K

{
|E |

Q∑
q=1

ωqF̂
(
U

int(K)
h (x

(q)
E ),U

ext(K)
h (x

(q)
E ); nE ,K

)}
,

J̃
(2)

K (Uh) = − 1

2|K|
∑

E∈∂K

{
|E |

Q∑
q=1

ωq

〈
nE ,K ,B

ext(K)
h (x

(q)
E )−B

int(K)
h (x

(q)
E )
〉

S
(
U

int(K)
h (x

(q)
E )
)}

.

We are now in a position to rigorously prove that the above DG spatial discretization

satisfies the weak PCP property (31). To this end, we first need to specify the point set SK in

the definition (30) of Gk
h. Assume that there exists on each cell K ∈ Th a special 2D quadrature

satisfies the following requirements:

(i) The quadrature rule is exact for integrals of all the 2D polynomials of total degree k on

the cell K.

(ii) The quadrature weights are all positive.

(iii) The quadrature nodes must include all the Gauss points x
(q)
E , 1 ≤ q ≤ Q, ∀E ∈ ∂K.

Let {x̃(q)
K }

Q̃
q=1, Q̃ ≥ 0, denote the other (possible) quadrature points that exclude all the edge

Gauss points {x(q)
E }. We define the set of all quadrature nodes by

ŜK := {x(q)
E , 1 ≤ q ≤ Q, ∀E ∈ ∂K} ∪ {x̃(q)

K , 1 ≤ q ≤ Q̃}.

According to the above requirement, this special quadrature satisfies

1

|K|

∫
K

u(x)dx =
∑

E∈∂K

Q∑
q=1

$
(q)
E u(x

(q)
E ) +

Q̃∑
q=1

$̃qu(x̃
(q)
K ), ∀u ∈ Pk(K), (40)

where {$(q)
E } and {$̃q} denote the quadrature weights, which are all positive. Such a quadra-

ture was first constructed in [53, 54] on rectangular cells by tensor products of Gauss–Lobatto

and Gauss quadratures. It can also be designed on triangular cells and more general poly-

gons, see, e.g., [56, 11]. Notice that we will not use this special quadrature for computing any

integrals, but only employ it for the following theoretical PCP analysis and the PCP limiter

presented later.

Given this special quadrature, we define the point set SK required in (30) as

SK = ŜK ∪ S̆K , (41)

where S̆K := {x̆(q)
K , 1 ≤ q ≤ Q̆} are the quadrature points involved in J (3)

K . The inclusion

of S̆K means that we require Uh(x̆
(q)
K ) ∈ G. This special requirement is not involved in the

non-relativistic case; it is used here to ensure the existence and uniqueness of the physically

admissible solution of the nonlinear equation (6) and thus to obtain the physical primitive

variables from Uh(x̆
(q)
K ) by (7), so as to successfully compute F(Uh(x̆

(q)
K )) in J (3)

K . Such a
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consideration is due to the fact that the flux F(U) and the source S(U) cannot be explicitly

formulated in terms of U for the RMHD and thus must be computed using the corresponding

primitive variables. Note that the edge quadrature points {x(q)
E }, involved in J (1)

K and J (2)
K ,

are already included in ŜK .

Based on the point set SK defined above, we establish the weak PCP property (31) for the

high-order semi-discrete DG scheme (38) as follows.

Theorem 4.1. Let Gh
K be the set defined by (30) with SK specified in (41). Then, the weak

PCP property (31) holds under the following CFL condition on the time step-size ∆t:

∆t
|E |
|K|
(
a+ σK,E ,q(Uh)

)
<
$

(q)
E

ωq
, 1 ≤ q ≤ Q, ∀E ∈ ∂K, ∀K ∈ Th, (42)

where σK,E ,q(Uh) := 1
2

∣∣∣〈nE ,K ,B
int(K)
E ,q −B

ext(K)
E ,q

〉∣∣∣/√ρ
int(K)
E ,q H

int(K)
E ,q with the shortened notations

U
int(K)
E ,q := U

int(K)
h (x

(q)
E ) and U

ext(K)
E ,q := U

ext(K)
h (x

(q)
E ).

Proof. In order to prove Uh + ∆tLh(Uh) ∈ Gk

h in (31), it suffices to show

Ū∆t
K := ŪK + ∆tJ̃ K(Uh) ∈ G, ∀K ∈ Th, (43)

under the CFL condition (42) and the condition that Uh ∈ Gk
h. Substituting the formula of

the numerical flux (36) into J̃
(1)

K (Uh), we reformulate J̃
(1)

K (Uh) and decompose it into three

parts:

J̃
(1)

K (Uh) =
a

2|K|
∑

E∈∂K

[
|E |

Q∑
q=1

ωq

(
U

int(K)
E ,q − 1

a

〈
nE ,K ,F

(
U

int(K)
E ,q

)〉)]

+
a

2|K|
∑

E∈∂K

[
|E |

Q∑
q=1

ωq

(
U

ext(K)
E ,q − 1

a

〈
nE ,K ,F

(
U

ext(K)
E ,q

)〉)]

− a

|K|
∑

E∈∂K

(
|E |

Q∑
q=1

ωqU
int(K)
E ,q

)
=: J̃

(1,1)

K + J̃
(1,2)

K + J̃
(1,3)

K .

Then Ū∆t
K can be rewritten as

Ū∆t
K = Ξ1 + Ξ2 + Ξ3 + Ξ4, (44)

with Ξi := ∆tJ̃
(1,i)

K , i = 1, 2, Ξ3 := ŪK + ∆tJ̃
(1,3)

K and

Ξ4 := ∆tJ̃
(2)

K =
∆t

2|K|
∑

E∈∂K

[
|E |

Q∑
q=1

ωq

〈
nE ,K ,B

int(K)
E ,q −B

ext(K)
E ,q

〉
S
(
U

int(K)
E ,q

)]
.

Since G = G2 as shown in Lemma 3.2, it remains to prove Ū∆t
K ∈ G2, ∀K ∈ Th.

We first show D̄∆t
K > 0. Because Uh ∈ Gk

h and ŜK ⊂ SK , we have U
int(K)
E ,q ∈ G and

U
ext(K)
E ,q ∈ G for all 1 ≤ q ≤ Q, E ∈ ∂K and K ∈ Th. Note that the first component of
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U
int(K)
E ,q − 1

a

〈
nE ,K ,F

(
U

int(K)
E ,q

)〉
equals D

int(K)
E ,q

(
1− 1

a

〈
nE ,K ,v

int(K)
E ,q

〉)
≥ D

int(K)
E ,q

(
1− 1

a

∣∣vint(K)
E ,q

∣∣) > 0,

which implies that the first component of Ξ1 is positive. Similarly, we know that the first

component of Ξ2 is also positive. Notice that the first component of Ξ4 is zero. Therefore, the

first component of Ū∆t
K is larger than that of Ξ3. It gives

D̄∆t
K > D̄K −

a∆t

|K|
∑

E∈∂K

(
|E |

Q∑
q=1

ωqD
int(K)
E ,q

)

=
∑

E∈∂K

Q∑
q=1

$
(q)
E D

int(K)
E ,q +

Q̃∑
q=1

$̃qD
int(K)
h (x̃

(q)
K )− a∆t

|K|
∑

E∈∂K

(
|E |

Q∑
q=1

ωqD
int(K)
E ,q

)

≥
∑

E∈∂K

Q∑
q=1

[
ωqD

int(K)
E ,q

(
$

(q)
E

ωq
− a∆t

|E |
|K|

)]
≥ 0,

where the equation (40) and the condition (42) have been used.

We then prove that Ū∆t
K · ξ∗ + p∗m > 0 for any auxiliary variables B∗ ∈ R3 and v∗ ∈ B1(0).

It follows from (44) that

Ū∆t
K · ξ∗ + p∗m = I1 + I2 + I3 + I4, (45)

with I1 := Ξ1 · ξ∗ + η, I2 := Ξ1 · ξ∗ + η, I3 := Ξ3 · ξ∗ + p∗m − 2η, I4 := Ξ4 · ξ∗, and

η :=
a∆t

2|K|
∑

E∈∂K

|E |p∗m.

Next we estimate suitable lower bounds of Ii for 1 ≤ i ≤ 4. Using Lemma 3.6 and noting that

for polynomials of degree k the Q-point (Q = k+ 1) Gauss quadrature rule is exact, we deduce

that

I1 =
a∆t

2|K|
∑

E∈∂K

{
|E |

Q∑
q=1

ωq

[(
U

int(K)
E ,q − 1

a

〈
nE ,K ,F

(
U

int(K)
E ,q

)〉)
· ξ∗ + p∗m

]}

≥ a∆t

2|K|
∑

E∈∂K

{
|E |

Q∑
q=1

ωq

[
1

a

(
〈nE ,K ,v

∗〉 p∗m −
〈
nE ,K ,B

int(K)
E ,q

〉
(v∗ ·B∗)

)]}

=
∆t

2|K|
∑

E∈∂K

{
|E |

Q∑
q=1

ωq

(
−
〈
nE ,K ,B

int(K)
E ,q

〉
(v∗ ·B∗)

)}

= −∆t(v∗ ·B∗)
2|K|

∑
E∈∂K

∫
E

〈
nE ,K ,B

int(K)
h

〉
ds =: −∆t(v∗ ·B∗)

2|K|
divint

K Bh. (46)

Similarly, we obtain

I2 ≥ −
∆t(v∗ ·B∗)

2|K|
∑

E∈∂K

∫
E

〈
nE ,K ,B

ext(K)
h

〉
ds =: −∆t(v∗ ·B∗)

2|K|
divext

K Bh. (47)

Note that

I3 = ŪK · ξ∗ + p∗m −
a∆t

|K|
∑

E∈∂K

(
|E |

Q∑
q=1

ωq

(
U

int(K)
E ,q · ξ∗ + p∗m

))
,
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and a lower bound of ŪK · ξ∗ + p∗m can be derived using (40) as follows:

ŪK · ξ∗ + p∗m =
∑

E∈∂K

Q∑
q=1

$
(q)
E

(
U

int(K)
E ,q · ξ∗ + p∗m

)
+

Q̃∑
q=1

$̃q

(
U

int(K)
h (x̃

(q)
K ) · ξ∗ + p∗m

)

≥
∑

E∈∂K

Q∑
q=1

$
(q)
E

(
U

int(K)
E ,q · ξ∗ + p∗m

)
,

where U
int(K)
h (x̃

(q)
K ) ∈ G = G2, which implies U

int(K)
h (x̃

(q)
K ) · ξ∗ + p∗m > 0, has been used. It

follows that

I3 ≥
∑

E∈∂K

Q∑
q=1

(
U

int(K)
E ,q · ξ∗ + p∗m

)(
$

(q)
E − a∆tωq

|E |
|K|

)
. (48)

Thanks to the inequality (18) constructed in Lemma 3.4, we have

β(S(U) · ξ∗) ≥ − |β|√
ρH

(U · ξ∗ + p∗m)− β(v∗ ·B∗), ∀β ∈ R, ∀U ∈ G.

It follows that〈
nE ,K ,B

int(K)
E ,q −B

ext(K)
E ,q

〉
S
(
U

int(K)
E ,q

)
· ξ∗ ≥

〈
nE ,K ,B

ext(K)
E ,q −B

int(K)
E ,q

〉
(v∗ ·B∗)

−
(
ρ

int(K)
E ,q H

int(K)
E ,q

)− 1
2
∣∣∣〈nE ,K ,B

int(K)
E ,q −B

ext(K)
E ,q

〉∣∣∣ (U
int(K)
E ,q · ξ∗ + p∗m

)
.

(49)

Let

I5 := − ∆t

|K|
∑

E∈∂K

Q∑
q=1

ωqσK,E ,q
(
U

int(K)
E ,q · ξ∗ + p∗m

)
.

With the help of (49), we then obtain a lower bound for I4:

I4 ≥
∆t

2|K|
∑

E∈∂K

[
|E |

Q∑
q=1

ωq

〈
nE ,K ,B

ext(K)
E ,q −B

int(K)
E ,q

〉
(v∗ ·B∗)

]
+ I5

=
∆t(v∗ ·B∗)

2|K|
(
divext

K Bh − divint
K Bh

)
+ I5. (50)

Thanks to the locally divergence-free property of Bh(x), we have

divint
K Bh =

∑
E∈∂K

∫
E

〈
nE ,K ,B

int(K)
h

〉
ds =

∫
K

∇ ·Bint(K)
h (x)dx = 0, (51)

where Green’s theorem has been used. Combining the estimates (46)–(50) and using (51) and

(45), we obtain

Ū∆t
K · ξ∗ + p∗m ≥

∑
E∈∂K

Q∑
q=1

(
U

int(K)
E ,q · ξ∗ + p∗m

)(
$

(q)
E − a∆tωq

|E |
|K|

)
+ I5

=
∑

E∈∂K

Q∑
q=1

ωq

(
U

int(K)
E ,q · ξ∗ + p∗m

)[$(q)
E

ωq
−∆t

|E |
|K|

(a+ σK,E ,q)

]
> 0,
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where the condition (42) has been used in the last inequality. Therefore, we have

Ū∆t
K · ξ∗ + p∗m > 0, ∀B∗ ∈ R3, ∀v∗ ∈ B1(0),

which, along with D̄∆t
K > 0, yield Ū∆t

K ∈ G2 = G. The proof is complete. �

Remark 4.2. The quantities divint
K Bh and divext

K Bh, defined in the lower bounds in (46) and

(47) respectively, denote the discrete divergence. They are also defined in [46] to quantify the

influence of the divergence error on the PCP property of the standard DG methods, for which

the discrete divergence-free condition divext
K Bh = divint

K Bh = 0 is required. However, the present

DG schemes are proven to be PCP without requiring that additional condition, thanks to two

key technical ingredients. The first is to use a locally divergence-free DG discretization, which

leads to zero divergence within each cell, so that the term divint
K Bh vanishes. The second is a

suitable discretization of the source term in the symmetrizable RMHD system (10) which gives

J (2)
K (Uh,u) in (37). It brings some new divergence terms, as shown in the lower bound in

(50), which exactly offset the divergence term in (47). As a result, the influence of nonzero

divergence error on the PCP property is fully eliminated. This feature is analogous to the

continuous case that the inclusion of the source S(U)∇ ·B in the RMHD equations (10) helps

eliminate the effect of nonzero divergence ∇ ·B on the PCP property at the PDE level. Again,

these results demonstrate the unity of discrete and continuous objects.

For the first-order DG method (k = 0), we have Uh

∣∣
K

(x) ≡ ŪK and Gk
h = Gk

h so that

the PCP and weak PCP properties are equivalent in this case, and the PCP property can be

proven under a milder CFL condition as shown in Theorem 4.2.

Theorem 4.2. For the first-order (k = 0) semi-discrete DG scheme (38), the PCP property

(31) holds under the following CFL type condition

∆t

(
a

2|K|
∑

E∈∂K

∣∣E ∣∣+
|divKBh|√
ρ̄KH̄K

)
< 1, ∀K ∈ Th, (52)

where divKBh denotes a discrete divergence of Bh on the cell K defined by

divKBh :=
1

|K|
∑

E∈∂K

∣∣E ∣∣ 〈nE ,K ,
B̄K + B̄KE

2

〉
, (53)

with KE denoting the adjacent cell that shares the edge E with the cell K. In (52)–(53), the

notations ρ̄K, H̄K and B̄K denote the rest-mass density, specific enthalpy, and magnetic field

corresponding to ŪK, respectively.

For better legibility, the proof of Theorem 4.2 is presented in Appendix B.
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4.3 The PCP limiting operator Πh

We now present the PCP limiting operator Πh : Gk

h −→ Gk
h, which limits the numerical

solutions from Gk

h to Gk
h via a simple scaling PCP limiter [46, 48] as extension of the positivity-

preserving limiter [54]. For any Uh ∈ Gk

h, we construct the limited solution ΠhUh =: Ũh ∈ Gk
h

as follows.

Let Uh

∣∣
K

=: UK(x). Note ŪK ∈ G = G1, ∀K ∈ Th. To avoid the effect of the rounding

error, a sufficiently small positive number ε is introduced such that ŪK ∈ Gε for all K ∈ Th,
where Gε =

{
U = (D,m,B, E)> : D ≥ ε, q(U) ≥ ε, Ψε(U) ≥ 0

}
is a convex set [46], with

Ψε(U) := Ψ(Uε) and Uε :=
(
D,m,B, E − ε

)>
.

For each K, to construct ŨK(x) := Ũh

∣∣
K

, we proceed as follows [46]. First, we define

ÛK(x) :=
(
D̂K(x),mK(x),BK(x), EK(x)

)>
with D̂K(x) = θ1

(
DK(x) − D̄K

)
+ D̄K , and θ1 = min

{
1, (D̄K − ε)/

(
D̄K − min

x∈SK
DK(x)

)}
.

Then, we define

ǓK(x) :=
(
θ2(D̂K(x)−D̄K)+D̄K , θ2

(
mK(x)−m̄K

)
+m̄K , BK(x), θ2

(
EK(x)− ĒK

)
+ ĒK

)>
with θ2 = min

{
1,
(
q(ŪK)− ε

)
/
(
q(ŪK)− min

x∈SK
q(ǓK(x))

)}
. Finally, we define

ŨK(x) = θ3

(
ǓK(x)− ŪK

)
+ ŪK , (54)

where θ3 = min
x∈SK

θ̃(x). Here θ̃(x) = 1 if Ψε(ǓK(x)) ≥ 0; otherwise θ̃(x) ∈ [0, 1) solves

Ψε

(
(1− θ̃)ŪK + θ̃ǓK(x)

)
= 0, which has a unique solution for the unknown θ̃ ∈ [0, 1).

Lemma 4.2. For any Uh ∈ Gk

h, one has ΠhUh = Ũh ∈ Gk
h.

Proof. The above procedure indicates that, for ∀K ∈ Th, the limited solution defined by (54)

satisfies ŨK(x) ∈ Gε ⊂ G1 = G, ∀x ∈ SK , and 1
|K|

∫
K

ŨKdx = ŪK . Besides, the limited

magnetic field B̃K(x) keeps locally divergence-free within K. �

Remark 4.3. Notice that the PCP limiter is valid only when the numerical solutions are

preserved in Gk

h. This requirement is guaranteed by the weak positivity property of our DG

methods proven in Theorem 4.1, which does not hold for the standard DG methods for the

conservative RMHD system (1) as shown in [46, 48] due to the effect of nonzero divergence

error. The PCP limiting operator Πh keeps both the conservativeness (32) and the high-order

accuracy as shown in [53, 54, 52].

4.4 The PCP property of fully discrete schemes

The PCP property of our fully discrete Runge-Kutta DG schemes (33) is proven in the following

theorems.
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Theorem 4.3. Assume that U
(0)
h = Un

h ∈ Gk
h, then the solutions U

(i)
h at the ith Runge-Kutta

stage, 1 ≤ i ≤ Nr, computed by the proposed DG schemes (33), belong to Gk
h, under the CFL

condition

∆tn < min
i,`

$
(q)
E |K|

βi`ωq

(
a+ σK,E ,q(U

(i)
h )
)
|E |

, 1 ≤ q ≤ Q, ∀E ∈ ∂K, ∀K ∈ Th. (55)

Proof. We prove it by the second principle of mathematical induction for i. The hypothesis

implies U
(i)
h ∈ Gk

h for i = 0. Assume that U
(`)
h ∈ Gk

h, 1 ≤ ` ≤ i− 1. Thanks to the weak PCP

property (31) in Theorem 4.1, we have U
(`)
h +βi`∆tnLh(U

(`)
h ) ∈ Gk

h, 1 ≤ ` ≤ i−1 under the CFL

condition (55). The convexity of Gk

h in Lemma 4.1 implies
∑i−1

`=0

[
αi`
(
U

(`)
h +βi`∆tnLh(U

(`)
h )
)]
∈

Gk

h. Since the operator Πh maps the numerical solutions from Gk

h to Gk
h, we obtain U

(i)
h ∈ Gk

h

by (33). Using the principle of induction, we have U
(i)
h ∈ Gk

h for all i ∈ {0, 1, . . . , Nr}. �

Theorem 4.4. Under the CFL condition (55), the proposed fully discrete Runge-Kutta DG

schemes (33) always preserves Un
h ∈ Gk

h for all n ∈ N.

Proof. Since Pw(U(x, 0)) ∈ Gk

h as indicated by Lemma 4.1, we known U0
h ∈ Gk

h. With the

help of Theorem 4.3, we obtain the conclusion by induction for n. �

4.5 Illustration of some details on Cartesian meshes

Assume that the mesh consists of rectangular cells {[xi−1/2, xi+1/2]× [y`−1/2, y`+1/2]}, and define

∆xi = xi+1/2 − xi−1/2 and ∆y` = y`+1/2 − y`−1/2 as the spatial step-sizes. Let Sxi = {x(q)
i }

Q
q=1

and Sy` = {y(q)
` }

Q
q=1 be the set of Gauss quadrature nodes in [xi−1/2, xi+1/2] and [y`−1/2, y`+1/2]

respectively. For a rectangular cell K = [xi−1/2, xi+1/2] × [y`−1/2, y`+1/2], the point set S̆K
involved in (41) is Sxi ⊗ Sy` , and the set ŜK is given by (cf. [53])

ŜK =
(
Ŝxi ⊗ Sy`

)
∪
(
Sxi ⊗ Ŝy`

)
, (56)

where Ŝxi = {x̂(µ)
i }Lµ=1 and Ŝy` = {ŷ(µ)

` }Lµ=1 denote the L-point (L ≥ k+3
2

) Gauss–Lobatto quadra-

ture nodes in the intervals [xi−1/2, xi+1/2] and [y`−1/2, y`+1/2] respectively. With ŜK in (56), a

special quadrature [53] satisfying (40) can be constructed:

1

|K|

∫
K

u(x)dx =

Q∑
q=1

∆xiω̂1ωq
∆xi + ∆y`

(
u
(
x

(q)
i , y`− 1

2

)
+ u
(
x

(q)
i , y`+ 1

2

))

+

Q∑
q=1

∆y`ω̂1ωq
∆xi + ∆y`

(
u
(
xi− 1

2
, y

(q)
`

)
+ u
(
xi+ 1

2
, y

(q)
`

))

+
L−1∑
µ=2

Q∑
q=1

∆xiω̂µωq
∆xi + ∆y`

u
(
x

(q)
i , ŷ

(µ)
`

)
+

L−1∑
µ=2

Q∑
q=1

∆y`ω̂µωq
∆xi + ∆y`

u
(
x̂

(µ)
i , y

(q)
`

)
, ∀u ∈ Pk(K),

(57)
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where {ŵµ}Lµ=1 denote the quadrature weights of the L-point Gauss–Lobatto quadrature rule.

If we label the top, left, bottom and right edges of K as E1, E2, E3 and E4, respectively, then

(57) implies $
(q)
Ej

= ∆xiω̂1ωq

∆xi+∆y`
, j = 1, 3; $

(q)
Ej

= ∆y`ω̂1ωq

∆xi+∆y`
, j = 2, 4. According to Theorem 4.3, we

rewrite the CFL condition (55) for the proposed PCPDG schemes on Cartesian meshes as

∆tn

(
1

∆xi
+

1

∆y`

)
< min

m,s,q

ω̂1

βms
(
a+ σK,Ej ,q(U

(m)
h )

) , ∀K ∈ Th, 1 ≤ j ≤ 4, (58)

where ω̂1 = 1
L(L−1)

. Since σK,Ej ,q(U
(m)
h ) depends on the numerical solutions at intermediate

Runge-Kutta stages, it can be difficult to rigorously enforce the condition (58). However, note

that σK,Ej ,q(U
(m)
h ) is proportional to the jump of the normal component of the magnetic field

on the edge Ej. Since the jump is zero for the exact solution, σK,Ej ,q is small and at the level

of truncation error in smooth region; while, for problems involving shocks or contact discon-

tinuities, some numerical evidence in Sections 5.2–5.4 indicates that σK,Ej ,q is small compared

to a. Therefore, the theoretical CFL condition (58) is acceptable. In practical computations,

evaluating σK,Ej ,q is computationally expensive and unnecessary; we suggest

∆tn =
Ccfl

amaxm,s βms

(
1

∆xi
+

1

∆y`

)−1

with the CFL number Ccfl (slightly) smaller than ω̂1, which works robustly in our numerical

tests. For the third-order SSP Runge-Kutta method (34), maxm,s βms = 1.

Remark 4.4. Notice that the equations (39) can also be derived from a semi-discrete finite

volume method for the system (10), if the approximate solution function Uh(x), or its values at

the quadrature points, are reconstructed from the cell averages {ŪK} using some high-order re-

construction techniques such as the ENO (essentially non-oscillatory) and the WENO (weighted

ENO) approaches with the locally divergence-free property being taken into account. Therefore,

our numerical PCP framework and analyses can be directly used to design PCP high-order

finite volume methods for (10).

5 Numerical tests

In this section, we present the numerical tests on 2D uniform Cartesian meshes for several

demanding RMHD problems, which involve either small plasma-beta β := p/pm, strong dis-

continuities, or low p or ρ, to validate the theoretical PCP property and the effectiveness of our

PCP methods. We only show the numerical results of the PCP third-order accurate (k = 2)

DG scheme, which is representative and without loss of generality, with the third-order SSP

Runge-Kutta method (33)–(34) for time discretization. We set the CFL number as 0.15, and

unless otherwise stated, the ideal EOS (3) with Γ = 5/3 will be used.
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5.1 Smooth problems

To verify the accuracy of our method we test two smooth problems. The first is analogous to

those tested in [45, 30], and it involves very low density and low pressure; the exact solution is

(ρ,v,B, p)(x, y, t) = (1 + 0.9999999 sin
(
2π(x+ y − 1.1t)

)
, 0.9, 0.2, 0, 1, 1, 1, 10−2),

describing the propagation of a RMHD sine wave in the computational domain Ω = [0, 1]2

with a large velocity |v| ≈ 0.922c. The second problem describes Alfvén waves propagating

periodically in Ω = [0,
√

2]2 with a speed of 0.9c much higher than that in [57], and the exact

solution is

ρ(x, y, t) = 1, p(x, y, t) = 0.1, v1(x, y, t) = −0.9 sin(2π(ς + t/κ)) sinα,

v2(x, y, t) = 0.9 sin(2π(ς + t/κ)) cosα, v3(x, y, t) = 0.9 cos(2π(ς + t/κ)),

B1(x, y, t) = cosα + κv1(x, y, t), B2(x, y, t) = sinα + κv2(x, y, t), B3(x, y, t) = κv3(x, y, t),

where κ =
√

1 + ρHW 2 and ς = x cosα + y sinα with α = π/4.

In the computations, the domain Ω is partitioned into N×N uniform rectangular cells with

N ∈ {10, 20, 40, 80, 160, 320, 640}, and periodic boundary conditions are used. Fig. 1 shows the

errors at t = 1 in the numerical solutions computed by the PCP third-order DG method on

meshes with several different N . It is seen that the magnitudes of the errors are reduced as we

refine the mesh. Moreover, the expected third-order convergence rate is observed, indicating

that our discretization of the added source term in the symmetrizable RMHD system (10) and

the PCP limiting procedure both maintain the desired accuracy, as expected.

10
1

10
2

10
3

10
-8

10
-5

10
-3

10
-1

10
1

10
2

10
3

10
-8

10
-5

10
-3

10
-1

Figure 1: Numerical errors in l1 and l2 norms at t = 1 for the first smooth problem (left) and the

second smooth problem (right). The horizontal axis corresponds the value of N .

In what follows, we will verify the capability of our PCP methods in resolving complicated

flow structures, by simulating an Orszag-Tang problem, three blast problems and two astro-

physical jets. Because these problems involve (strong) discontinuities, we need to apply some

nonlinear limiters to suppress the undesirable oscillations in the high-order DG solutions and
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enhance the numerical stability. To this end, we use a locally divergence-free WENO limiter

[31, 57] right before the PCP limiting procedure. The WENO limiter is applied only within

some “trouble” cells that are identified adaptively by the KXRCF shock detector [21].

5.2 Orszag-Tang problem

This test simulates an Orszag-Tang problem for the RMHD. We use a setup same as in

[38]. The computational domain is Ω = [0, 2π]2 with periodic boundary conditions. It is

initially filled with hot gas with ρ = 1 and p = 10. The initial velocity field is v(x, y, 0) =

(−A sin(y), A sin(x), 0), where we set A = 0.99/
√

2 such that the maximum velocity is 0.99c

(corresponding to the Lorentz factor ≈ 7.09). The adiabatic index is set as Γ = 4/3 in this

example. The initial magnetic field is B(x, y, 0) = (− sin y, sin(2x), 0). Although the initial

solution is very smooth, complex wave structures will develop as time increases, eventually pro-

ducing turbulence behavior. The numerical results computed by our PCP method on 600×600

uniform grids are presented Fig. 2. One can observe that the complicated flow structures are

correctly captured and agree with those presented in [38, 44]. In this test, we observe that it

is necessary to enforce the DG solution in Gk
n by the PCP limiting procedure, otherwise the

code would break down at time t ≈ 1.98.

Figure 2: Schlieren images of log(ρ) at t = 2.818127 (left) and t = 6.8558 (right) for the Orszag-Tang

problem.

We follow [7, 38] and quantitatively study the divergence error in the numerical magnetic

field Bh. For the DG finite element methods, a standard way to measure the global divergence

error was proposed in [7], as defined by

‖∇ ·Bh‖?,h :=
∑
E∈Th

∫
E

|J〈nE ,Bh〉K| ds+
∑
K∈Th

∫
K

|∇ ·Bh| dx,
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where J〈nE ,Bh〉K denotes the jump of the normal component of Bh on the edge E . We then

define the global relative divergence error as

εdiv :=
‖∇ ·Bh‖?,h
‖Bh‖?,h

(59)

with

‖Bh‖?,h :=
∑
E∈Th

∫
E

|Bh| ds+
∑
K∈Th

∫
K

|Bh| dx.

In Fig. 3(a), we plot εdiv against time t. It is observed that, at the initial stage (t < 1.5) εdiv is

very small as the solution is initially smooth, and, during the entire simulation, the magnitude

of εdiv is kept at order O(10−3).

To justify that the theoretically estimated CFL condition (58) is acceptable, we compute

the maximum value of σK,E ,q on the entire mesh and plot its temporal evolution in Fig. 3(b).

It indicates that, during the simulation, σK,E ,q is relatively small compared to a = c = 1, so

that its effect in (58) is small and does not lead to strict restriction on the time step-sizes.
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(a) global (relative) divergence error εdiv
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(b) σ∞ := maxK,E ,q σK,E ,q

Figure 3: Time evolution of the (relative) divergence error εdiv and the maximum value of σK,E ,q in

the CFL condition (58) for the Orszag-Tang problem.

5.3 Blast problems

This is a benchmark test for RMHD codes. Simulating a RMHD blast problem with strong

magnetic field is known to be difficult, because nonphysical quantities, e.g., negative thermal

pressure, can be produced easily in the numerical simulation. Our setup is similar to those in

[26, 10, 2, 51]. Initially, the fluid in the computational domain Ω = [−6, 6]2 is at rest. Let

r :=
√
x2 + y2. The domain Ω contains an internal cylindrical region (r < 0.8) centered at the

origin with ρi = 10−2 and pi = 1, and the ambient medium region (r > 1) with low density

(ρa = 10−4) and low pressure (pa = 5×10−4). Between the two regions, the values of the density
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and pressure are reached by linear interpolation for r ∈ [0.8, 1] as in [26, 10, 2, 51]. We take the

adiabatic index as Γ = 4/3 in this test. The initial magnetic field is a uniform constant vector

(Ba, 0, 0). As Ba is set larger, the plasma beta βa := pa/pm becomes lower, and the simulation

of this test is more challenging. In the literature [26, 10, 2], a moderately magnetized case with

Ba = 1 (corresponding βa = 0.1) is widely simulated. Zanotti et al. tested a more strongly

magnetized case with Ba = 0.5 (a lower plasma-beta βa = 4 × 10−3) in [51]. Many existing

methods in the literature require some artificial treatments for the strongly magnetized cases;

see e.g., [20, 26, 10]. It was reported in [10] that, if no ad hoc numerical strategy was employed,

the RMHD code, ECHO, could not run this test with Ba > 0.1.

In order to examine the robustness and the PCP property of the proposed method, we

perform this test with different Ba ∈ {0.1, 0.5, 20, 100, 2000}. These five configurations include

the two cases in the literature [26, 10, 2, 51] and three much more challenging cases. Our

computations are performed on the mesh of 400 × 400 uniform cells. It is observed that our

PCP methods are able to successfully simulate all these test cases without using any artificial

treatments. Fig. 4 shows our numerical results at t = 4, for three different magnetizations,

corresponding to a moderate magnetic field Ba = 0.1, a relatively strong magnetic field Ba =

0.5, and a extremely strong magnetic field Ba = 2000, respectively. Our numerical results for

the first two cases are in good agreement with those reported in [51, 2, 46]. The wave patterns

for Ba = 20 and Ba = 100 are similar to that for Ba = 2000 and thus omitted here.

As far as we know, successful simulations of such an extreme RMHD blast test with Ba =

2000 and so low plasma-beta (βa = 2.5× 10−10) have not been reported in the literature. We

also observe that, if we turn off the PCP limiter in the strongly magnetized tests (Ba ≥ 0.5),

nonphysical numerical solutions exceeding the set Gk
n will appear in the simulations, and the

DG code will break down. We have also tried to perform the above simulations by dropping the

discrete symmetrization source term J (2)
K (Uh,u) in our scheme (37) while keeping the WENO

and PCP limiters employed. This actually corresponds to using the locally divergence-free DG

scheme [22, 57] with the WENO and PCP limiters for the conservative RMHD system (1). It

is noticed that this scheme, in theory, is not PCP [46], and, as expected, is not able to run the

tests with Ba ∈ {100, 2000}. This demonstrates the importance and necessity of including the

suitably discretized symmetrization source term for achieving the desired PCP property of the

DG schemes.

Fig. 5 shows the temporal evolution of the global relative divergence error εdiv defined

in (59). It is seen, for such strong blast problems with shocks, that the relative divergence

errors remain at relatively small levels during the whole simulations, as desired. The temporal

evolution of the maximum value of σK,E ,q is displayed in Fig. 6 for the three blast problems. It

indicates that σK,E ,q � a = 1. This, again, demonstrates that σK,E ,q has a little effect in the

theoretical CFL condition (58) and thus does not cause strict restriction on the time step-sizes.
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Figure 4: Contour plots of log(ρ) (left) and |B| (right) for the blast problems at t = 4. Forty equally

spaced contour lines are displayed. Top: the moderately magnetized case (Ba = 0.1, βa = 0.1);

middle: the relatively strongly magnetized case (Ba = 0.5, βa = 4 × 10−3); bottom: the extremely

strongly magnetized case (Ba = 2000, βa = 2.5× 10−10).
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Figure 5: Time evolution of the global (relative) divergence error εdiv for the three blast problems.

Left: the moderately magnetized case (Ba = 0.1); middle: the relatively strongly magnetized case

(Ba = 0.5); right: the extremely strongly magnetized case (Ba = 2000).
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Figure 6: Time evolution of σ∞ := maxK,E ,q σK,E ,q for the three blast problems. Left: the moderately

magnetized case (Ba = 0.1); middle: the relatively strongly magnetized case (Ba = 0.5); right: the

extremely strongly magnetized case (Ba = 2000).
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5.4 Astrophysical jets

In this test, we perform simulations of two relativistic jets, where the internal energy is ex-

ceedingly small compared to the kinetic energy so that negative thermal pressure can be easily

generated in numerical computations. Moreover, the high-speed jet flows may involve strong

shock wave, interface instability, and shear flow, leading to their successful simulation difficult;

see, e.g., [54, 45, 30, 47, 42].

We simulate the RMHD jet flows by adding a magnetic field to a pressure-matched highly

supersonic RHD jet model from [47]. The domain [−12, 12] × [0, 25] is initially filled with a

uniform medium with v = 0 and ρ = 1. In the y-direction, a RMHD jet of Mach number

Mb = 50 is injected into the domain with a density of ρb = 0.1, a speed of vb = 0.99c, and

a pressure equaling the ambient pressure. This inflow condition is enforced at the jet nozzle

{(x, y) : |x| ≤ 0.5, y = 0} on the bottom boundary, while the other boundary conditions are

outflow. For this problem, the corresponding initial Lorentz factor W ≈ 7.09, and one can

compute the relativistic Mach number as Mr := MbW/Ws ≈ 354.37, where Ws stands for the

Lorentz factor of the local sound speed. The exceedingly high Mach number and large Lorentz

factor cause the simulation of this problem very challenging. Along the y-direction, a magnetic

field (0, Ba, 0) is initialized. The presence of the magnetic field renders the simulation of this

test case more difficult. For comparison, we simulate a non-magnetized case with Ba = 0 and

a strongly magnetized case with Ba =
√

2000p (the corresponding plasma-beta βa = 10−3).

We set the computational domain as [0, 12]× [0, 25] and divide it into 240× 500 uniform cells

with the reflecting boundary condition on {x = 0, 0 ≤ y ≤ 25}.
Fig. 7 shows the numerical log(ρ) within the domain [−12, 12] × [0, 25] at three different

time instances for the non-magnetized case and the strongly magnetized case, respectively. The

dynamics of the relativistic jets are clearly shown in those images. We see that, during the

simulations, the Mach shock wave and the interfaces are well captured. The wave patterns for

the non-magnetized case agree with those computed in [47]. Due to the effect of the strong

magnetic field, the flow structures of the strongly magnetized case are obviously different

from those of the non-magnetized case. The good robustness of the proposed PCP method

is exhibited in such extreme tests. It is observed that if we turn off the PCP limiter, the

simulation code can only be run for a few time steps and then breaks down as nonphysical

numerical solutions are produced. In addition, when dropping the discrete symmetrization

source term J (2)
K (Uh,u) in our scheme (37), we find the cell averages of the DG solutions will

exceed the admissible state set G and the scheme will fail in the strongly magnetized test.

Again, this demonstrates the importance of including the suitably discretized symmetrization

source term for achieving the PCP property.

We measure the global divergence error by (59) for the magnetized jet problem and plot

the error evolution in Fig. 8(a). It is observed that the global divergence error grows linearly

in time but remains below 10−3 during the simulation. To demonstrate the theoretical CFL

condition (58) is acceptable, we measure the maximum value of σK,E ,q on the entire mesh and

show its evolution in Fig. 8(b). One can see that σK,E ,q is small compared to a = c = 1,
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Figure 7: Schlieren images of log(ρ) for the relativistic jets at t = 10, 20, and 30 (from left to right).

Top: the non-magnetized case; bottom: the strongly magnetized case.
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Figure 8: Time evolution of the (relative) divergence error εdiv and the maximum value of σK,E ,q in

the CFL condition (58) for the magnetized jet problem.

confirming that its effect in the CFL condition (58) does not lead to strict restriction on the

time step-sizes.

6 Conclusions

We have proposed a framework of constructing provably PCP high-order accurate DG schemes

for the multidimensional RMHD equations coupled with a general EOS on general meshes.

The schemes are built on a suitable, locally divergence-free DG discretization of the recently

proposed symmetrizable RMHD equations, which are discovered to accommodate the PCP

property at the PDE level no matter the divergence-free condition is satisfied or not. The re-

sulting DG schemes with SSP time discretizations are shown to satisfy a weak PCP property,

which implies that a simple limiter can enforce the PCP property without losing conservation

and high order accuracy. Most notably, we have rigorously proven the PCP property by us-

ing a novel “quasi-linearization” approach to handle the highly nonlinear physical constraints,

technical splitting to offset the influence of divergence error, and sophisticated estimates to

analyze the beneficial effect of the symmetrization source term. Several demanding numeri-

cal examples, including a strongly magnetized bast problem with extremely low plasma-beta

(2.5 × 10−10) and two highly supersonic RMHD jets, have been tested and demonstrated the

robustness and effectiveness of the proposed PCP schemes. It is worth noting that our numeri-

cal PCP framework and analyses are also readily applicable for designing PCP high-order finite

volume methods, as mentioned in Remark 4.4. In the context of RMHD, our results provide

some new insights into eliminating the effect of nonzero divergence on the PCP property at

both the PDE and numerical levels, showing the unity of continuous and discrete objects.
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A Proof of Proposition 2.1

Due to the assumption that the exact smooth solution exists for x ∈ Rd and 0 ≤ t ≤ T , the

Lorentz factor W does not blow up, and then |v(x, t)| < 1 for ∀x ∈ Rd and 0 ≤ t ≤ T . For

any (x̄, t̄) ∈ Rd × R+, we denote by x = x(t; x̄, t̄) the integral curve of dx
dt

= v(x, t) through

the point (x̄, t̄). Define x0(x̄, t̄) := x(0; x̄, t̄). It can be observed that the curve passes through

the point (x0(x̄, t̄), 0) at the initial time t = 0. For strong solutions, we can reformulate the

continuity equation of (10) for ρW as D(ρW )
Dt = −ρW∇ · v, where D

Dt := ∂
∂t

+ v(x, t)∇· denotes

the derivative along the integral curve. Integration of this reformulated continuity equation

from t = 0 to t̄ along the curve implies

ρW (x̄, t̄) = ρ0W0(x0(x̄, t̄)) exp

(
−
∫ t̄

0

∇ · v(x(t; x̄, t̄), t)dt

)
> 0,

which, along with W (x̄, t̄) ≥ 1, imply ρ(x̄, t̄) > 0 for all (x̄, t̄) ∈ R3×R+. For smooth solutions

of the modified RMHD system (10), one can derive that

D
(
pρ−Γ

)
Dt

=
∂

∂t

(
pρ−Γ

)
+ v · ∇

(
pρ−Γ

)
= 0, (60)

which implies pρ−Γ(x̄, t̄) = p0ρ
−Γ
0 (x0(x̄, t̄)) > 0. It follows that p(x̄, t̄) > 0, ∀ (x̄, t̄) ∈ R3 ×R+.

Using the ideal EOS (3) with Γ ∈ (1, 2] gives e(x̄, t̄) = 1
Γ−1

p(x̄, t̄)/ρ(x̄, t̄) > 0, ∀ (x̄, t̄) ∈ R3×R+.

It has been shown in [44] that, for smooth solutions of (10), the quantity ∇·B
ρW

satisfies

∂

∂t

(
∇ ·B
ρW

)
+ v · ∇

(
∇ ·B
ρW

)
= 0,

which implies that ∇·B
ρW

remains constant along the integral curve x = x(t; x̄, t̄), and further

yields (13). The proof is complete.

B Proof of Theorem 4.2

For the first-order DG method (k = 0), Uh|K(x) ≡ ŪK , ∀K ∈ Th, and

J̃
(1)

K (Uh) = − 1

2|K|
∑

E∈∂K

[
|E |
(〈

nE ,K ,F(ŪK) + F(ŪKE
)
〉
− a(ŪKE

− ŪK)
)]

= − 1

2|K|
∑

E∈∂K

[
|E |
(〈

nE ,K ,F(ŪKE
)
〉
− a(ŪKE

− ŪK)
)]
, (61)

J̃
(2)

K (Uh) = − 1

2|K|
∑

E∈∂K

(
|E |
〈
nE ,K , B̄KE

− B̄K

〉
S
(
ŪK

) )
= − 1

2|K|
∑

E∈∂K

(
|E |
〈
nE ,K , B̄KE

〉
S
(
ŪK

) )
, (62)
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where the identity
∑

E∈∂K
|E |nE ,K = 0 has been used. In order to prove the PCP property (31),

it suffices to show

Ū∆t
K := ŪK + ∆tJ̃ K(Uh) ∈ G, ∀K ∈ Th, (63)

under the CFL type condition (52) and the condition that ŪK ∈ G, ∀K ∈ Th. In the following,

we prove (63) by using the second equivalent form G2 = G in Lemma 3.2 and verifying that

Ū∆t
K ∈ G2, ∀K ∈ Th.

We first show that the mass density D̄∆t
K > 0. Recalling that the first component of S(U)

is zero, we know that the first component of J̃ (2)
K is zero. Then, we obtain

D̄∆t
K = D̄K −

∆t

2|K|
∑

E∈∂K

[
|E |
(
D̄KE
〈nE ,K , v̄KE

〉 − a(D̄KE
− D̄K)

)]
=

(
1− a∆t

2|K|
∑

E∈∂K

|E |

)
D̄K +

∆t

2|K|
∑

E∈∂K

[
|E | (a− 〈nE ,K , v̄KE

〉) D̄KE

]
≥ 0,

where we have used the CFL condition (52) and 〈nE ,K , v̄KE
〉 ≤ |v̄KE

| < 1 = c = a.

We then prove that Ū∆t
K · ξ∗ + p∗m > 0 for any auxiliary variables B∗ ∈ R3 and v∗ ∈ B1(0),

where ξ∗ and p∗m are functions of (B∗,v∗) as defined in Lemma 3.2. Using the inequality (23)

in Lemma 3.6 gives(
ŪKE

− 1

a

〈
nE ,K ,F(ŪKE

)
〉)
· ξ∗ + p∗m ≥

1

a

(
〈nE ,K ,v

∗〉p∗m − 〈nE ,K , B̄KE
〉(v∗ ·B∗)

)
.

It, along with (61), imply that

J̃
(1)

K (Uh) · ξ∗ = − a

2|K|
∑

E∈∂K

[
|E |
(
ŪK · ξ∗ + p∗m

)]
+

a

2|K|
∑

E∈∂K

{
|E |
[(

ŪKE
− 1

a

〈
nE ,K ,F(ŪKE

)
〉)
· ξ∗ + p∗m

]}
≥ − a

2|K|
∑

E∈∂K

[
|E |
(
ŪK · ξ∗ + p∗m

)]
+

1

2|K|
∑

E∈∂K

{
|E |
[
〈nE ,K ,v

∗〉p∗m − 〈nE ,K , B̄KE
〉(v∗ ·B∗)

]}
= − a

2|K|
∑

E∈∂K

(
|E |
(
ŪK · ξ∗ + p∗m

))
− v∗ ·B∗

2|K|
∑

E∈∂K

|E |〈nE ,K , B̄KE
〉,

where the identity
∑

E∈∂K
|E |nE ,K = 0 has been used in the last equality. Combining (62) and
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the above estimate, we obtain

Ū∆t
K · ξ∗ + p∗m = ŪK · ξ∗ + p∗m + ∆tJ̃

(1)

K (Uh) · ξ∗ + ∆tJ̃
(2)

K (Uh) · ξ∗

≥ ŪK · ξ∗ + p∗m −
a∆t

2|K|
∑

E∈∂K

|E |
(
ŪK · ξ∗ + p∗m

)
− ∆t

2|K|
∑

E∈∂K

|E |〈nE ,K , B̄KE
〉
(
S
(
ŪK

)
· ξ∗ + v∗ ·B∗

)
≥

(
1− a∆t

2|K|
∑

E∈∂K

|E |

)(
ŪK · ξ∗ + p∗m

)
− ∆t

2|K|

∣∣∣∣∣ ∑
E∈∂K

|E |〈nE ,K , B̄KE
〉

∣∣∣∣∣ ∣∣S (ŪK

)
· ξ∗ + v∗ ·B∗

∣∣ .
Thanks to Lemma 3.4, we obtain

Ū∆t
K · ξ∗ + p∗m ≥

(
1− a∆t

2|K|
∑

E∈∂K

|E |

)(
ŪK · ξ∗ + p∗m

)
− ∆t

2|K|

∣∣∣∣∣ ∑
E∈∂K

|E |〈nE ,K , B̄KE
〉

∣∣∣∣∣ 1√
ρ̄KH̄K

(
ŪK · ξ∗ + p∗m

)
=

(
1− a∆t

2|K|
∑

E∈∂K

∣∣E ∣∣−∆t
|divKBh|√
ρ̄KH̄K

)(
ŪK · ξ∗ + p∗m

)
> 0,

where the identity
∑

E∈∂K
|E |nE ,K = 0 has been used in the equality, and the CFL condition (52)

is used in the last inequality. Therefore, we have

Ū∆t
K · ξ∗ + p∗m > 0, ∀B∗ ∈ R3, ∀v∗ ∈ B1(0),

which, along with D̄∆t
K > 0, yield Ū∆t

K ∈ G2 = G. The proof is complete.
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