Noname manuscript No.
(will be inserted by the editor)

The Dirichlet problem for elliptic operators having a
BMO anti-symmetric part

Steve Hofmann - Linhan Li - Svitlana
Mayboroda - Jill Pipher

Received: date / Accepted: date

Abstract The present paper establishes the first result on the absolute conti-
nuity of elliptic measure with respect to the Lebesgue measure for a divergence
form elliptic operator with non-smooth coefficients that have a BMO anti-
symmetric part. In particular, the coeflficients are not necessarily bounded.
We prove that the Dirichlet problem for elliptic equation div(AVu) = 0 in
the upper half-space (z,t) € RQL_H is uniquely solvable when n > 2 and the
boundary data is in L?(R"™,dz) for some p € (1,00). This result is equivalent
to saying that the elliptic measure associated to L belongs to the A, class
with respect to the Lebesgue measure dz, a quantitative version of absolute
continuity.
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1 Introduction and statement of main results

Motivated by questions about the behavior of solutions of elliptic and parabolic
equations with low regularity drift terms, Seregin, Silvestre, Sverdk, and Zlatos
(I22]) investigated equations such as —Au+c-Vu = 0 and d,u+c-Vu—Au = 0,
where ¢ is a divergence-free vector field in R™. They discovered that the
divergence-free condition can be utilized to relax the regularity assumptions on
c under which one can obtain the Harnack inequality and other regularity re-
sults for solutions. It turns out that the interior regularity theory of De Giorgi,
Nash, and Moser can be carried over to elliptic equations with ¢ € BMO™*,
and to parabolic equations with ¢ € L>(BMO™!). Generalizing to elliptic or
parabolic equations in divergence form, this condition is equivalent to assuming
that the coefficient matrix A of the operator L = —div(AV) can be decom-
posed into an L*° elliptic symmetric part and an unbounded anti-symmetric
part in a certain function space. To be precise, the anti-symmetric part should
belong to the John-Nirenberg space BMO (bounded mean oscillation) in the
elliptic case, and to L°°(BMO) in the parabolic case. The space BMO plays a
key role in two ways. First, this space has the right scaling properties which
arise naturally in the iterative arguments of De Giorgi-Nash-Moser. Secondly,
the BMO condition on the anti-symmetric part of the matrix enables one to
properly define weak solutions. This latter fact follows essentially from the
div-curl lemma appearing in the theory of compensated compactness ([6]),
and the details can be found in [22] or [18].

The interior regularity results of Seregin, Silvestre, Sverak, and Zlatos lead
naturally to questions about boundary regularity. In [I8], the second and the
fourth authors studied the boundary behavior of weak solutions. It turns out
that many results for elliptic operators with bounded, measurable coefficients
can be extended to this setting. For example, they proved the boundary Holder
regularity of the solution, established the existence of the elliptic measure w
associated to these operators, and offered multiple characterizations of the
mutual absolute continuity of the elliptic measure and the surface measure
in Lipschitz domains. This work laid out the background necessary to launch
the investigation into boundary value problems for elliptic operators having a
BMO anti-symmetric part.

In the present paper we establish the first result pertaining to absolute
continuity of the elliptic measure for operators with BMO anti-symmetric part
and well-posedness of the Dirichlet boundary value problem with LP data.

In order to frame our results in the context of the currently existing el-
liptic theory, let us review some historical milestones. In the middle of the
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20th century the theory of boundary value problems mainly concentrated on
the case when coefficients of the underlying equations and domains exhibit
some amount of smoothness. The past 30-40 years have brought great devel-
opments in the study of elliptic measure and boundary value problems for
operators with non-smooth bounded measurable coefficients. The background
theory of weak solutions, Green function estimates, maximum principle, and
similar results were extended to all divergence form elliptic operators with
bounded measurable coefficients. It turned out, however, that the question
of absolute continuity of the resulting elliptic measure with respect to the
Lebesgue measure on the boundary, or, equivalently, of well-posedness of the
Dirichlet boundary value problem with boundary data in LP, is much more
delicate. First of all, examples have been found that show such results can
not be expected for all elliptic operators and some regularity of the coeffi-
cients in the transversal direction to the boundary is, in fact, necessary [5],
[20]. In light of these examples, the initial efforts concentrated on the study
of operators whose coefficients are constant in the transverse direction to the
boundary. Later results have extended the theory to the optimal regularity
of the coefficients, expressed in terms of a Carleson measure condition. In
this survey, and in this paper, we shall concentrate on the fundamental case
where the domain is the upper half-space Rt = {(z,t) € R" x (0,00)} and
the coefficients of the operator are independent of the transverse direction,
that is, t-independent. The first breakthrough in this direction was the 1981
paper of Jerison and Kenig [14] which established well-posedness of the Dirich-
let problem and the absolute continuity of the elliptic measure for operators
with symmetric bounded measurable t-independent coefficients on Riﬂ and,
by a change of variables, above a graph of a Lipschitz function. A seemingly
innocent assumption of symmetry turned out to be critical and it took 20
years to extend these results to non-symmetric operators in dimension 2 [16]
and more than 30 years to non-symmetric operators in any dimension [I0].
The 1981 work of Jerison and Kenig relied on the beautiful and powerful
Rellich identity which roughly speaking says that the L? norms of the nor-
mal and tangential derivatives of solutions on the boundary are comparable.
It is proved by an integration by parts argument invoking the symmetry of
the coefficients. However, not only the method of the proof of the Rellich
identity, but the L? equivalence of the norms of the normal and tangential
trace of the solution itself fails when the coefficients are not necessarily sym-
metric. This has been demonstrated in [16], where the authors established
extremely useful characterizations of solvability of the Dirichlet problem in
L? in terms of the square function/non-tangential maximal function estimates
(in any dimension), a method that made possible many later developments
including the present paper, and resolved the question of absolute continuity
of elliptic measure with respect to the Lebesgue measure for t-independent
non-symmetric operators in dimension 2. Unfortunately, many ingredients in
the argument in [I6] rely heavily on the space being 2 dimensional. For exam-
ple, the 2-d case relies on a change of variable argument that does not carry
forward to higher dimensions. Only 15 years later these results have been fi-
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nally extended to multidimensional setting. In [I0] the authors established
the square function/non-tangential maximal function estimates for solutions
to the t-independent, non necessarily symmetric, operators on RT‘l for all
n, and as a result, absolute continuity of the elliptic measure with respect
to the Lebesgue measure and well-posedness of the Dirichlet boundary value
problem in LP. The method involved a new pull-back/push-forward sequence
based on the Hodge decomposition of the coefficients, the celebrated solution
to the Kato problem [2], the square function/non-tangential maximal function
estimates for the heat semigroup, and many other elements. The method has
later been streamlined in [I] to avoid an explicit pull-back/push-forward on
Lipschitz domain — an important development in our context.

As we mentioned above, all of these results as well as many elements of
the surrounding elliptic theory have been restricted to the context of bounded
measurable coefficients. The present paper pioneers the consideration of the
BMO anti-symmetric part, an optimal structural assumption on the coeffi-
cients. The lack of boundedness invalidates many of the arguments that we
have described above. We shall discuss all the new difficulties and some critical
junctures of our proof in Section [2] after the statement of Theorem [3] These
new difficulties include a new Hodge decomposition beyond L?, and new esti-
mates for the Riesz transforms, square functions and non-tangential maximal
functions associated to the heat semigroup. Changes of variables and other
techniques that preserved the boundedness properties of coefficients are lost
in the presence of BMO coefficients. There are many other issues which require
a more technical discussion and we refer an interested reader to Section Bl

We now rigorously state our results. Let A = A(x) be an (n+1) x (n+1)
matrix of real, t-independent coefficients such that

1. The symmetric part A® = 3(A+ AT) = (A$;(x)) is L>(R"), and satisfies
the ellipticity condition

n+1

X l€)? < (A*()6,€) = Y A5j(2)&¢; forall e R™ z € R™, W)
i,j=1 .

and  [|A®| oo (gny < Aot
for some 0 < A\g < 1.

2. The anti-symmetric part A* =
BMO(R"), with

F(A—AT) = (Af;(x)) is in the space

Af = sup ][ Al — (A% gl dx < Ag (1.2)
H ]HBMO OCR» Q’ J J Q’
for some Ag > 0. Here (f)q denotes the average ﬁ fQ f(x)dx.

We define in R™*! a second order divergence form operator

L= —div(A(@) V), (1.3)
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which is interpreted in the sense of maximal accretive operators via sesquilin-
iear form. We say that u is a weak solution to the equation Lu = 0 in Ri“ if
u e W2 (R and

loc

/ AVu-Vv =0 (1.4)
Ry

for all v € C§(RH).

We consider the LP Dirichlet problem (D), for the equation div(AVu) =0
in the upper half-space Ri‘“ when n > 2. We shall denote by p the Lebesgue
measure in R™. Sometimes we simply denote it by dx, and the meaning should
be clear from context. For p € (1,00), we say the Dirichlet problem for
LP(R™, du) data is solvable if for each f € LP(R™,du), there is a solution
we W2 (R'*") such that

loc

Lu=0 in R’j_ﬂ,
(D), u — f € LP(R™, du) non-tangentially p-a.e. on R™
Nu € LP(R™, dp).

Here, N(u) denotes the non-tangential maximal function of u:

N(u)(z) = N lu(y, )], (1.5)

and u converges to f non-tangentially means

lim u(y,t) = f(x),
(y,t)—=(2,0),(y,t) €I (x) w,8) = f(=)
where I'(z) = {(y,t) e R x Ry : |y — x| < t}.
The main result of this paper is that the LP Dirichlet problem for L in
RT‘l is uniquely solvable for some p € (1, 00) sufficiently large:

Theorem 1 Let A be a matriz of real, t-independent coefficients satisfying
and . Then for some p € (1,00), for each f € LP(R™, u), there
exists a unique u that solves (D), for L = —div(AV) in the upper half-space
R’frﬂ when n > 2.

This result is equivalent to quantitative absolute continuity of elliptic mea-
sure with respect to the Lebesgue measure, the A, property - see the next
Section.

For the uniqueness part of the statement, we actually prove the following
Fatou-type result.

Theorem 2 Let A be an (n+ 1) X (n + 1) matriz of real coefficients. As-
sume that the symmetric part of A is bounded and elliptic, and that the anti-
symmetric part is in the space BMO(R}™). Assume that (D), is solvable for
L =—div(AV) in RQLH for some p € (1,00). Suppose that u satisfies

Lu=0 in R’ffl,
Nu € LP(R™, dp).
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Then, the non-tangential limit of u exists a.e. in R™ (and is denoted by u\gkz:'ﬂ),
v

ul}i%hs € V(R dp), and

u) = [ W R )nG)

where k(X,y) is defined in (2.2)).

One can see that this result is stronger than uniqueness. Notice that in this
theorem, we do not assume that A is t-independent. Moreover, for u, in con-
trast to a solution to (D),, we do not assume a priori that it converges non-
tangentially.

2 An overview of the proof of Theorem

As mentioned in the introduction, it is shown in [I5] that some Carleson mea-
sure estimate implies some quantitative mutual absolute continuity, namely,
the Ao, condition, between the elliptic measure associated to an elliptic oper-
ator with real, L coefficients and the Lebesgue measure. In [I§], it is verified
that this result also holds for elliptic operators having a BMO anti-symmetric
part. To understand the precise statement and its connection to Theorem
we first need some notations and definitions.

For a set E C R™, we denote its Lebesgue measure p(E) by |E|. For any
cube @ C R™, let zg and I(Q) be the center and side length of @, respectively.
Let X¢ := (7¢,1(Q)) denote the corkscrew point in R’ relative to Q. For
z € R" and r > 0, we use T(z,r) :={Y € R} : |[Y — (z,0)] < r} to denote
half balls in R7 !, and A(z,r) := {y € R" : |y — x| < r} to denote balls in R".
We shall simply write T and Ag for T'(0, R) and A(0, R), respectively. We
use Cy(£2) to denote the set of continuous functions with compact support on
Q. Wy 2(£2) is defined to be the closure of C5°(£2) in W12(£2).

In a bounded Lipschitz domain 2, for each X € (2, the elliptic measure w
is constructed in [I8] to be the measure on 92, such that u(X) = [, hdw™
solves the Dirichlet problem for continuous boundary data h € C'(92) in the
sense that div(AVu) = 0 in 2, with u € W,5*(2) N C(2), and u = h on dN.

The elliptic measure on R™ can be defined as follows. Let f € Cp(R™) with
supp f C Apg, for some Ry > 0. We define an extension of f (still denoted by
f) which is equal to 0 on R\ T, . Then for all R > Ry, f* € C(0Tr), where
f* :=max {£f,0}. For each X € T, let wi be the elliptic measure on dT.
Then uf(X) = |, orn | *dwx solves the Dirichlet problem in Tx with boundary
data f* for all R > Ry. For any Ry < Ry < Ry and X € Tr,, the maximum
principle ([I8] Lemma 4.7) implies that uﬁl (X) < uﬁz (X) < ||fi||Loc(Rn).
Therefore, we can define u as the monotone limit

X

u(X) = lim (uf(X)—uzr(X)) VX e R

R—o0
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And we have
HUHLOO(]RKJA) S ||fHL°°(]R") . (21)

The mapping f — u(X) is a positive bounded linear functional on Cy(R™),
and thus can be extended to a positive bounded linear functional on the set
of all continuous functions on R" that converge to 0 uniformly at infinity.
The Riesz Representation Theorem implies that there exists a regular Borel
measure w™ on R such that u(X) = [, fdw™. This w® is defined to be
the elliptic measure on R™. One can show, by Hoélder continuity of solutions
and Caccioppoli’s inequality, that u € VVﬁ)C2 (RT‘l) and solves the Dirichlet
problem in R?*" with boundary data f € Co(R™).

For any X, X, € Riﬂ, the Harnack principle implies that w® and wXo
are mutually absolute continuous. Define the kernel function K (Xy, X,y) to

be the Radon-Nikodym derivative K (Xg, X,y) : et (y). And define

= dwX0
d X
k(X,y) = ——(y), foryeR" (2.2)
dp
Note that
k(X,y) = K(Xo, X,y)k(Xo,y)  for any X, Xy € RT™, y e R,

Definition 1 (Ay) For any cube Qo C R™, we say that a non-negative Borel
measure w belongs to As(Qo) (or Aso(dp)) with respect to the Lebesgue mea-
sure dy, if there are positive constants C and 6 such that for every cube @ C Qg
(or Q C R™, respectively), and every Borel set E C Q,

|E|

w(B) < C (@')ew@),

where C' and 6 are independent of E and Q.
We note that in the sequel, we shall actually establish this local A, property

in a scale-invariant way, that is, with constants that are independent of Qg
(see Theorem [3).

Lemma 1 ([I5] Corollary 3.2, [18] Theorem 8.5) Assume that A satis-
fies (1) and (L2) in R, and define L as in (L.3). Assume that there is

some uniform constant C < oo such that for all Borel sets H C R™, the weak
solution u to the Dirichlet problem

Lu=0 in R?fl
U= XH on 8RT—1
satisfies the following Carleson bound
1 Q) 9
sup —/ / [Vu(z,t)|"tde < C. (2.3)
QCR™ |Q| 0 Q

Here I(Q) denotes the side length of the cube Q. Then for any cube Qo C R™,
wXeo € AOO(Q())
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It is well-known from the general theory of weights that the A, condition
wX@ € Ay (Qo) implies that there is some ¢ € (1,00) such that k(Xgq,,")
satisfies the following reverse Holder inequality: for any A C Qo,

1 . 1/q 1
<|A|/Ak(XQo»y) du(y)> S M/Ak(XQO,y)dﬂ(y), (2.4)

where the implicit constant depends only on A, A and n. Moreover, by esti-
mates for the kernel function K, one can show that

for any X = (z,t) € RTT k(X,) € LYR™, dp), (2.5)

where ¢ is the same as in (2.4). The proof can be found in [12], where these
results are proved for degenerate elliptic operators in the upper half-space. The
argument of [I2] applies to the operators under discussion. We also remark that
for bounded (Lipschitz) domains, the kernel function estimates used to prove
for operators with L coefficients can be found in [I7] and [4], while for
elliptic operators with BMO anti-symmetric part these are verified in [I§].

It is known that yields the solvability of L? Dirichlet problem, with
p = ¢ = 5. Seee.g. [I7] Theorem 1.7.3, or [12] for this argument. Therefore,
to prove the existence part of Theorem [l} it suffices to show the Carleson
measure estimate . Indeed, we prove the following:

Theorem 3 Let A be a matrixz of real, t-independent coefficients satisfying

(1.1) and (1.2)). Let L be defined as (L.3). Then any bounded weak solution u

to L in R with ||lul| - <1 satisfies the estimate

Q)
/ / Vaulz, )2 tdr < Q] (2.6)
0 Q

for any cube Q C R™, and the implicit constant depends only on the ellipticity
constants and the BMO semi-norm. And thus for any cube Qo C R™, the ellip-
tic measure wXQ0 € A, (Qo) with constants depending only on the ellipticity
constant and the BMO semi-norm.

There are many difficulties when the coefficients are not L>°. We illustrate
them by first taking a closer look at the structure of the matrix A. We write

where A|| denotes the n x n submatrix of A with entries (AH)i)j, 1<j<
n, b denotes the column vector (A;.,+41)i<i<n, ¢ denotes the row vector
(Ant14)1<j<n, and d = Apjinir.

We observe that if the coefficients are in L*°, and in addition, div, ¢ = 0,
then the Carleson measure estimate follows simply from an integration
by parts argument. But even in this case, when having BMO coefficients,
difficulties arise. For example, when the coefficients could be in BMO, we
cannot bound the integrals ffRiﬂ AVu- V¥ (u? t)dzdt and ffRTl ¢V, ¥u?y,
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which appear from integration by parts. Here, ¥ is a cutoff function that is
supported in the box 2Q X (¢, 1(Q)) and equals to 1 in @ x (¢,1(Q)). To deal with
this issue, we shall work with weak solutions to the operator Ly = — div AgV,
where Ay is defined in . We observe in Lemma that a weak solution of
L is also a weak solution of Lg. This observation enables us to work with the
equation Lou = 0 in ]RT'I, for which we can control the BMO coefficients by
the John-Nirenberg inequality.

When div,c # 0, the situation is more complicated, even when coef-
ficients are in L*°. We define an n-dimensional divergence form operator
L) = divA;V, and its adjoint L‘*‘ = —div A*‘V. We highlight three in-
gredients in the proof of the A, condition for eﬂiptic measure associated to
operators with L, t-independent coefficients in [10]:

1. An adapted Hodge decomposition of ¢ and b.

2. LP estimates for square functions involving the “ellipticized” heat semi-
group P; := e~"Lil associated to Ly, and P, := e V"Ll Some of these
estimates reply heavily on the solution to the Kato problem.

3. LP estimates for the non-tangential maximal function involving P; and P},

which enables one to construct a set F' with desired properties.

None of these ingredients comes for free when we move to the elliptic operators
having a BMO anti-symmetric part. But fortunately, in a recent paper ([13]),
we were able to obtain the desired LP estimates for square functions involving
P, and P;. The arguments for the LP estimates rely on the LP estimate for
the square root operator v/L, which is also derived in [I3]. We note here that
in [7], the Kato problem, or the L? estimate for VL, was solved for elliptic
operators having a BMO anti-symmetric part. Previously, the Kato conjecture
was proved for operators having the Gaussian property ([I1]) and for elliptic
operators in divergence form with complex, bounded coefficients ([2]).

In Section [3:3] we deal with the Hodge decomposition. We point out that
we need a W12+¢ Hodge decomposition because the BMO coefficients require
higher integrability, while for L> coefficients, a W2 Hodge decomposition
suffices (see [12]). The L? estimates for the non-tangential maximal function
involving P; and P; are presented in Section

2.1 Further reductions of the statement

Recall that our goal is to derive the Carleson measure estimate (2.6)). Note
that this formulation allows us to assume that A is smooth as long as the
bounds do not depend on the regularity of the coefficients.

It turns out that we do not need to show holds for integral over all of
the cube @, but only on a subset F' of @ that has a big portion of the measure
of Q. To be precise, we have the following lemma.

Lemma 2 Let u be a weak solution to L in Riﬂ. Assume that there is a
uniform constant c, and, for each cube, Q C R™ there is a Borel set F C Q,



10 Steve Hofmann et al.

with |F| > ¢|Q|, such that

Q) 9
/ / Oule, )2t dz < |Q), (2.7)
0 F

with the implicit constant depending on ¢, ||u||;« , the ellipticity constants and
the BMO semi-norm only, in particular, independent of Q and F.
Then u satisfies the Carleson measure estimate (2.6)).

The proof of Lemma [2] requires two steps of reduction. First, one can show
by integration by parts and the Caccioppoli inequality on Whitney cubes that

Q) 9 2U(Q) 9
/ /|Vu(:v,t)\ tdxdtg/ / |Bpu(x, t))* tdedt + Q. (2.8)
0 Q 0 2Q

The details can be found in [10].

Secondly, since the coefficients are independent of ¢, J;u is also a weak
solution of L (see Appendix Remark , and thus Oyu satisfies Harnack
Principle and interior Holder estimates (see [I8]). This allows us to apply a
well-known result for Carleson measures (see, e.g., [3] Lemma 2.14), to deduce
from an apparently stronger bound

Q) )
/ /|8tu(x,t)| tdz < 0|,
0 Q

Combining this with , Lemmafollows. This lemma gives us the freedom
to choose the set F'.

The construction of the set F' is presented in Section Basically, we
will construct F' such that on the set F', the non-tangential maximal function
involving Py = eIl and P = eftQL\*l, as well as some other maximal
functions are small (see ) We will exploit this property of the set F' in
the proof of the Carleson measure estimate. Namely, as long as a term can be
bounded by maximal functions showing up in the definition of F', then there
is hope to control that term with desired bounds.

It turns out that to prove the Carleson measure estimate (2.7)), it suffices
to prove the following main lemma (see Section .

Lemma 3 (Main Lemma) Let o, n € (0,1). Then there exists some finite
constant ¢ = c¢(Ag, Ag,n) > 0, and some finite constant ¢ = ¢(o,n, Ao, Ag,n) >
0, such that

Ine < (04 en)dye+¢l@Q].

Here,
Ty = // AoV - Vu Wt dzdt
Ry

where u is a bounded weak solution to Lu = 0 (and thus also a weak solution
to Lou = 0) in R} with |luf, < 1, and & = ¥, is a cut-off function
defined in Section
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The main lemma is proved in Section [5| In the proof, a typical way to deal
with the BMO coefficients is to use the anti-symmetry, Holder’s inequality, and
John-Nirenberg’s inequality. This method inevitably increases the exponent
of the integrand, and thus requires some L?1¢ estimates. Besides the W1:2+¢
Hodge decomposition we mentioned earlier, it is crucial to have an LP estimate
for the cut-off function ¥ (see Lemma [10)), and L? estimates for the non-
tangential maximal functions and square functions that involve semigroups,
for p > 2.

3 Technical tools
3.1 Some useful results in PDE

We shall frequently use two results from [9]. We include them here for reader’s
convenience.
The first one is useful in proving reverse Holder type inequalities.

Lemma 4 ([9] Chapter V Proposition 1.1) Let Q be a cube in R™. Let
g € LYQ), ¢ > 1, and f € L*(Q), s > q, be two nonnegative functions.
Suppose

q
][ gldxr <b f gdr | + ][ fidx + 9][ gldx
Qr(xo) Q2r (o) Q2r(x0) Q2r(x0)

for each Ty € Q and each R < min {% dist(xoﬁQ),Ro}, where Rg, b, 6 are
constants with b > 1, Ry >0, 0<60 < 1. Then g € L}, . (Q) for p € [q,q + €)
and

(f war) " <e((foa) s (f par)™)

for Qar C Q, R < Ry, where ¢ and € are positive constants depending only on
b, 0, q, n (and s).

In applications, if one can show that

][ \Vul? da
Qr(zo0)

1/r
<b ][ |Vu|*" dz +][ |f|? dz+ 0 |Vul? da
Q2r(wo) Q2r(wo) Q2r(wo)

for each 29 € Q and each R < min {1 dist(zo,Q), Ry }, where b > 1,7 € (0,1)
and 0 € [0, 1) are some constants, then by letting g = |Vu|2r, qg=1and f be
/> in Lemma one obtains that |[Vu| € LI (Q) for p € [2,2 + €) and

loc

(][R |Vu|de>1/p <e <<][R Vu|2dx>1/2 N <][R f|”dz>1/p>
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for Q2r C @Q, R < Ry, where ¢ and € are positive constants depending only on
b, 6, r and n.

Lemma 5 ([9] Chapter V Lemma 3.1) Let f(t) be a nonnegative bounded
function defined in [ro,m1], ro > 0. Suppose that for ro <t < s < r; we have

f(t) < (A(s =)™+ B) +6f(s)

where A, B, a, 0 are nonnegative constants with 0 < 8 < 1. Then for all ro <
p < R <ry we have
flp) < e (AR~ p)~" + B)

where ¢ is a constant depending on a and 6.

3.2 Hardy Norms
Definition 2 We say f € L*(R") is in the real Hardy space H*(R™) if

Hf”yl(]Rn) = < 00,

sup [ x f|
t>0 L1 (R™)

where hy(x) = t%h (%), and h is any smooth non-negative function on R",

with supp h C By(0) such that [, h(z)dz = 1.

Proposition 1 Let 1 < p < co. Let u € W'P(R™), v € WHP (R™). Then
djudiv — dud;v € HYR™) for any 1 <1i,j <n, and

105000 = Ditdy s oy S [Vl 1Vl (3.1)
where the implicit constant depends only on p and dimension.
We refer to [18] and [22] for its proof.

Proposition 2 Let 1 < p < co. Let u € WP(R"), v € WHP (R"). Then
9;(uv) € HY(R™) for any 1 < i < n with

10: (o)l @y S Ml Lo VOl or + VUl o [0 o (3.2)
where the implicit constant depends only on p and dimension.

Proposition 3 Let u, v € WY2(R"), and ¢ be a Lipschitz function in R™.
Then 0;(uv)d;p — di(uv)djp € HY(R™) for any 1 <i,j <n, and

105 (u0)itp = Bi(u)OsPllys oy S e[ Vel 2 90112 + oll o 9] [Vl
or
|05 (uv)0;0 — ai(uv)8j<p||w(w)
S Il ey (Nl 2 1970112 + ol 2 97w 2 ),

where the implicit constant depends only on dimension.

The proofs for Proposition [2| and [3| can be found in [L3].
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3.3 Hodge Decomposition

Recall that we write the matrix A = A(z) as follows

where A is the n X n submatrix of A, b is a n x 1 vector, ¢ is a 1 x n vector,
d is a scalar function. We consider the symmetric part A® and anti-symmetric
part A® of A:

We assume that A® is L°° and elliptic, with the ellipticity constant A\¢ and
[A%]l . < Ag', and that A® is in BMO(R™), with the BMO semi-norm

||afj||BMO = Sgﬂg"]é |a§‘j - (a’fj)Q’ dx < Ay.

Proposition 4 For any cube Q C R"™, there exist p, p € W§’2(5Q) that solve

— divy (4] Vo) = dive(clsg — (c¥)20), (3.3)
div, (A V@) = div,(blsq — (b)2q), (3.4)
respectively. Moreover, there exists some €y = eg(n, Ao, Ag) > 0 and C =

C(n, Ao, Ag) > 0 such that for all p € [2,2 + €],
][ V() dz < C, ][ VG () da < C. (3.5)
5Q 5Q

Proof We only prove fsQ |[Vo|” < C, as the estimate for Vo can be derived
similarly. We will identify ¢ with its zero extension outside of 5Q).

Let Qg, be a cube in R™ with Qgr, N 5Q # (. For any x € Qg, and
0<R< %dist(x, 0QR,), we have three possibilities:

(i) Q%R(x) ns5Q =0,
(i) Q3 () N (Qry \5Q) = 0.
(i) Q4 () N5Q £ 0 and Qg (x) N (Qr, \ 5Q) £0.
In case (ii), @ 3 r(x) C 5Q, by the interior Caccioppoli inequality and
Poincaré-Sobolev inequality, we have

2

/ V@I dy < CR
Qr(x) Q%R(m)

2/r

<C / V| + CR",
Q3 p(2)
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where r = 22

In case (iii), we also have
2/r

/ leczygc/ vl | +come
Qr(x) Q%R(x)

which follows from the boundary Caccioppoli inequality,

/ Ve[ dy < CR? / 3 dy + CR™, (3.7)
QRr(x) Q%R(ﬂc)ﬂ5Q

and a Sobolev-Poincaré theorem. The proof for (3.7)) is postponed until the
end.
Now we can apply Lemma 4| to get

/2
f Vel < f v +c f 1.
Q% n5@Q QRryN5Q Qr,

Choose Q r, 2 5Q then
2

/2
f |V<Z|”§O(][ W?) e
5Q 5Q

f V32 < Cn, Ao, Ao), (3.8)
5Q

We claim that

which would imply the desired bound for f5Q [V@|”. In fact, taking ¢ €
WO1 -2 (5Q) as a test function, equation (3.4]) and ellipticity of A% imply

)\0/ \vzﬁﬁg/ Aflvgz.vga:/ A,‘va-w:/ b- V3.
5Q 5Q 5Q 5Q

We have

/ b V§
5Q

=| [ w0 - 00 037
5Q

A -
<20 |V<p|2+C/ |bjf(b;)5Q|2+C/ 1.
2 Jsq 5Q 5Q
Then (3.8)) follows from the John-Nirenberg inequality.

It remains to prove (3.6) and (3.7).
Proof of (3.7)
For any R <t < s < 3R, define ¢ € Cg(QHTs(ZL')) and n € C2(Qs(z)) such

that 0 < €&n <1, €=11inQi(z), n=11in Qup (x), and |VE[, |V S 2

s—t°
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Choose €% € Wol’2 (5Q) as a test function, then ([3.4]) gives

/ AVE- V(362 = / blsg - V(5E2). (3.9)
QHTS(I)

Qrys ()
2

To estimate the left-hand side of (3.9]), we split the matrix into the symmetric
and anti-symmetric part. For the first one we have

o Ao L c .
ANVG - V(pE?) > f/ lEvel” — 7/ @
/cms @ 2 Jauy.@ (5=1)% JQup. @

2

For the second one, we can write
~ ~ 1 a e~ —n i~
[ avevee =5 [ ab (08066 - 0:50,(5¢)
Q ts (=) Q s (z)

1
= — ac.l, a ~2 67, 2 _ al ~9 aj 2
4/Qt+25(x) la( J(‘P )0:(€7) (©7)9;(& ))

1
= _ a® (0. (o 281‘ 2 _82‘ ~ 28j 9 .
4/Qt+25<x) & (0:(em)?0i(€%) — 9:(Pm)?0;(€7))

By Proposition [3] the absolute value of this quantity is bounded by

c ~ Cy 2 2
Bl IV @l < 20 / B2+ 6 / v
s—t L L (S —t)2 Q:,(I) Q

S(z)

for any 0 < 0 < 1.
As for the right-hand side of (3.9)), we have

. ~ A . C 2w
/ b*lsq  V(€%)| < 2 / Vel + 5 / B +Cs™.
Qe (@) Qi (@) (5= Jou.@

Then, by Proposition

/ blsq - V(3€?)
Q45 (x)

2

1/2
C ~ ~
el O N i I 3 Y 0T
Q;%i(m)

Ao 2 C ~2
<o €V +—/ B2+ O
8 Jau.@ (5=1)%JQup. @)
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Combining these estimates with (3.9), we fix 0 < # < 1 to be sufficiently small
and obtain

[ovets [ evers o [ jprece | vateos
Qi(2) Qe (@) (s =1)? Jq.@) Qu(2)

Cy ~ 1 ~ ”
g—_“/ |¢\2+§/ IVE[* + CR™.
(5 =) Jay @) Q. (@)

Then (3.7)) follows from Lemma
The interior Caccioppoli (3.6) can be shown in the same manner if one

chooses (cﬁ — (@QSR(I)) €% as a test function in the beginning. O
2

Remark 1 Note that one can replace (c*)ag and (b%)a2q in the right-hand
side of (3.3)) and (3.4), respectively, by any constant vector C without changing
the result. This follows from the simple fact that f5Q C - Vv =0 for any test

function v € Wy (5Q).

Moser-type interior estimates for the weak solution to the homogeneous
equation —div, A V,u = 0 have been shown in [I8], or [22] for the parabolic
equations. We show that similar estimates hold for weak solutions to the non-
homogeneous equations.

Proposition 5 Let ¢ and @ be as in Proposition[} Let Bog = Bag(zo) C 5Q.
Then for any p > 1,

1/p
swlg-al<C(f F-al) 4 ORI~ + 16 yo). (310
BR B2R

where ¢o is any constant, and C = C(n, Ao, Ag,p). Moreover, a similar esti-
mate holds for ¢:

1/p
sup | — co| < C (][ lp — Colp) + CR(||c* | + lIc*]lgao)- (3-11)
Br Bar

Proof Fix any p > 1 and % < ko < %. Let % < k1 < min{1,ko} and k > ko.
Let a = 2 when n > 3, and let a € (1,2) when n = 2. Choose ¢ € (2, % ).
Set s = %.Notetha‘cl<so < ;%5 when n > 3 and 1 < s9 < a when
n=2.

Define as in [I§] Lemma 3.4, for any 6 > 0, N >> 1 and 8 > ko,

tﬁ, t €[4, N,
Hsn(t) =14 5 + BNB-ki(th — Nk ¢ > N

Then 4
Bttt e (4, N),
H:;,N(t) = {ﬂNﬁlﬂtkll, t> gv )
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Define, furthermore,
Gs.x(w) :/ H y (B)2dt, w > 6.
§

Then for w > 9,

H(w) < w?, (3.12)
wH' (w) < fu?, (3.13)

and
Glw) < %17 w (). (3.14)

Here and in the sequel we omit the subscripts in G5 n and H;s .

Let 6 = R(||b%|| L + I[P gpmo), and define ¥ = | — ¢o| + 9, where ¢ is an
arbitrary constant. Then ¥ is a subsolution to the equation div, (A4 Vo) =
div,(blsg — (b%)2q). Also, since ¥ > 6, one can define H(¥), G(¥) etc.

For any R <1’ <r < 2R, let n € C3(B,) with n = 1 in B,» and |Vy| <
(r — )71, Choose v = G(¥)n? > 0 as a test function. Then since ¥ is a
subsolution, one has

/ AV - Vu < / b V. (3.15)
B B

For the left-hand side of (3.15), we have (see the proof of Lemma 3.4 of
[18])

Ao 2 2 C(n,)\mko) B2rn f B 2
s . > — — !
Ajve-vo S /B VO - e e 1, )

B,

and
AW - Vo < Ao 2p2
I TVUS TS IVH()|"n
B, B,

+ C(n>>\07/107q’ ko) 527‘71 ][ W’ﬁq 2/q.
@ko—12  (r—m? \Jp,

The right-hand side of equals
/ b* -V (G(¥)n?) +/ b -V (G¥)n?)
B, B,
:/ bS-VH(W)\H’(W)|n2+2/ b* - VnG(¥)n
B, B,
[ 00— o) VH@) @) 42 [ (b8 (50)) - VaG@)y

T r

2111+IQ+13—|—I4.
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Using Cauchy-Schwartz inequality, (3.13]), as well as Young’s inequality, we
obtain

A
‘[1| < §0/|VH(LP)|2,,72 —|—C’(n, )\0) HbsH%w 62/w25_2772.

Recall, in addition, that ¥ > 6 = R(||b®[|;« + [[b*[lgyo) and 2 < ¢ < 22
Then |I3] is bounded by

%/\VH(W)FnZ+C(n,AO)52R—2/w2Bn2
Ao 2 2 2p—2,.1n qp 2/
§§ [VH(P)|" n* 4+ C(n, \g)3“R™“r 4 . (3.16)
B

r

For Iy, we use (3.14) and obtain

HbsHLoo ﬁz / 2B8—1 C(n, ko)B 283
I — [V W
Ll < g < =@k - DR
2,.n 2/q
< Gl ko) ][ pad) (3.17)
(r=1")(2ko —1)R \ /B,

Turning to I3, we estimate

i< (e =vnnt ) (fromore) (fiwonr)
< O(n,q) D" g0 76 (/IVH(LD)I2772> 2B (/q‘/qﬂqnq)l/q
(n,

2 2/‘1
< %/WH@)\%%MR—’QW (][ W) : (3.18)

for I, we have

where sy = %05

2 2/q
L] < ( /- <b“>Br|M) ( 16w |Vn|q/2)

(@=2)n 1 62 q 2/q
< @ g — wq'@_i
,C(nuq) ”b ||BMOT 2]{}1—17‘—7"/ </BT )
ﬁQTn f 2/q
< k was ) 3.19
> C(na q, 0) (2k0 — 1)(7” — ’I"/>R B, ( )
Combining (3.15)—(3.19)), we get

2/q
IVHW@)|? <CB* ((r—v') 2+ (r—r) 'R+ R7?) (é u745> .
T (320

Ao
8 Is,
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Furthermore, since &« = 2 when n > 3 and « € (1,2) when n = 2, by Sobolev
embedding

( H(sv)f“a) h s( HW)ZH' (7[ |VH@>|2>
B B, B,

Now by (3.20)), (3.12), and letting N go to infinity, we obtain

1
2

n—a

— 1/2
][ q’/ﬁ P < ][ q‘,Q,B
, T \Us,

1/
+CBr' ((r=r") 2+ (r—r)'R™ 4+ RJ)l/z <][ !I/qﬁ> '
B

T

§c<1+6 (rr/r, + \/(rilw‘Lg)) (ﬁrwﬂ)l/q.

Lettingl:ﬁ>1,52&:kli7r:r¢=R+§andr’:ri+1 for

1=20,1,2,..., one finds

i1 M%Jrlq .1 i ﬁlq
][ A < (CKlY)w7 ][ whkl'a <...
B, B,

Bar

i+1

?“‘,_.

Letting i — oo, we have supg, ¥ < C(n, Ao, Ao, ¢, ko) (fBZR @kq) ? and thus

7
sup|p —co| < C (][ |o — co|kq> + C,
Br Bar

where C' = C(n, Ao, Ao, q, ko). Choosing k and ¢ such that kq = p yields (3.10).
The proof of (3.11)) is similar and thus omitted. O

3.4 Weak Solutions of the Parabolic Equation

We introduce P, := e~ %Ll and P o= e_t2L\*\, the “ellipticized” heat semi-
group associated to L = —div AV and to its adjoint L*|, respectively. In

this subsection, we shall derive Moser-type estimates for 9; Py, f (and 9, Py, f),
as well as reverse Holder estimate for VP, f (and V. Py, f).

Notation. In the rest of this section, since we only work with the n-
dimensional operator L) and its adjoint Li“l instead of the operator L defined

in R}, we shall simply write L for L), and the same for its adjoint. For the
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same reason, we shall write V for V,, and div for div,. We denote by W12
the space of bounded semilinear functionals on W12(R"™).

Let u(x,t) = e t“(f)(x), for some f € L*(R™). Then by Proposition
u(x,t) is the weak solution to the initial value problem

u(z,0) = f(x).

That is, u(z,t) € L? ((O, 00), W1’2(R")) nc ([0, oo),LQ)7 and satisfies

loc

{atu —div(AVu) =0 in R" x (0, 00),

T
/ u(x,T)go(m,T)d:r—i—/ AVu - Vpdzdt
n 0o Jrn
T
:/ u(m,O)(p(x,O)dm—i—/ <8t¢7U>W71,2,W1,2
n 0

forany T > 0, any @ € L? ([0, T, W12(R")) with 9y € L2 ([O,TL W—M(R")).
Moreover, since A depends only on € R", d;u is a weak solution to

dyv — div(AVv) = 0 in R™ x (0,00) (see the remark after Proposition [13). By

[13], Theorem 4.9 and its remark, d,u € L ((0,00), L*(R™)) and 0,Vu €

loc
L% . ((0,00), L*(R™)). Finally, by the Gaussian estimate for the kernel of

Ore~tL (see [I3] Theorem 4.8), one can show that
&:u e L™ ([50, OO) X Rn) Y do > 0. (321)

These facts enable us to prove the following estimate for d;u using Moser
iteration.

Proposition 6 Let Q C R™ be a cube with [(Q) = Ry. Then
nt2 (2Ro)? /2
-tz 2
sip  |Gulat) < CRy / ﬂ U o, )P dtdz |
Qx(R3,(2R0)?] 3QJ 4>
(3.22)
for some C = C(n, Ao, Ao).-

Proof Let v(x,t) = Owu(x,t). Then by the definition of weak solution and
Lemma [15] (ii), we have

T T
/ opv(z, t)p(x, t)daxdt + / / AVv -V =0,
0o Jrn 0 n

for all ¢ € L? ([0, T), Wh? (R")) with supp ¢ C R™ x (0, T]. By considering v*
we can assume v > 0, and that

T T
/ Ow(z, t)(z, t)dxdt + / / AVv - Ve <0, (3.23)
0 R 0 n

for all ¢ € L* ([0, T], W'2(R™)) with supp e C R" x (0,7] and ¢ > 0 a.e.



Elliptic operators having a BMO anti-symmetric part 21

Now for any 0 < s < 1, define
Qs=1+5)Q, I,=((1-5)R2(2Ry)?, and C,=Q, x L.

Fix [ € N, define q; = 2k}, where ky = "TH Note that go = 2. Furthermore,

for any fixed
4 1

1
390+2 9 9l+2°
choose W, 5, € C2(Cagssy ) and ¥, 5, € C2(Cy,) such that ¥,, ., = 1 in C,,,
2
WSO,sl =1in CMa 0 S wso,slawso,sl S 13 and
2

<859 <81 <

Ry?

~ (s1—s0)?

We omit the subscript sg, s1 in ¥y, 5, and @50’51 from now on.
Let t € I,. Recalling (3.21)), one can take ¢ = v%~1¥? as a test function.

Then (3.23) gives

t t
/ Opov 1?4 / AV - V(o 1w?) < 0. (3.24)
0 JRm» 0 JR»

For the first term, integration by parts gives

t
1
/ dpov?—1g? = —/ 0¥ (z, )0 (z, t)dx — f/ / v 0, (P?)
0 JRn a n

1 CR;2
— 0¥ (z,t)dx — —— -0 5 / v,
@ Jq., a(s1—s0)* Jo

9 ~
|VW50,S1| + |atw80751‘ + ‘VWSO,SI

’613 80,81

Y

PYES

The second term in (3.24)) is split, as usual, corresponding to the symmetric
and antisymmetric part of A. Working with A®, we estimate

t
|| aeveven e
O n
‘”_1//143 (w#) V()

/ AV (v7) - V0T W
]Rn

2)\0 ql D) / / ‘VUTZ dxdt — 70(% Ao) By / v,
Qso C_a

a(s1 — %0)?
Turning to A%, note that A°Vv - Vo ¥? = 0 due to anti-symmetry, so that

PYES

t t
/ AV - V(o8 ?) = / AV - V(F?)pn~?
0

1/t 1 [t g~ 9~
= f/ / AV (o) - V(W?) = 7/ / AV (0T v T W) - V(P2).
ql 0 n (]l 0 n
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By Proposition

t
/ AV - V(2 1w?)
0 JR"»
dt

CpA ¢ ~ ~
[ 15|04, 7 (-52)
q 0 L2(R™) L2(R™)

A ~2 a
< @L/ v dxdt + ﬁ/ ‘VUTL
C 1 Csy

<

2

qi (81 - 80)2 qi

SIFT

Combining these estimates with (3.24), we have

¢
/ ¥t (x,t)der/ / ’Vv%
Q 0 JQu,

< CREQ/ v‘”dxdt—i—CG/ ‘v (v%)fdxdt,
C 1 Cs,

(81— 80)?

2

S0

oT¥T
where C' = C(n, Ao, Ao, 8).
Choosing 0 to be sufficiently small, and then taking supremum in ¢ € I,
we obtain

sup /
te€lsy JQ

2
dxdt

v¥ (x,t)dx +/ ‘Vv%l
Cs

—2
1 a\ |2
< &2/ vqldxdtJrf/ ‘V (v%)’ dxdt,
(s1—50)* Jo_, 2 e,

S0

which implies

2
sup / v‘”(x,t)dx—i—/ ‘VU% dxdt
tGI% 1 Qa_1 Cq 1

2l+2 350+2 350+2

< C(n, Ao, Ag) Ry 24! / vitdzdt  (3.25)
O
by Lemma
Let us insert a cut-off function ¥;(z,t) € Cg(C’%ﬁ) into so that
we can use an embedding theorem. As usual, ¥; satisfies 0 < ¥; <1, ¥; =1 in
C_1 ,and

2l +2

V| + |8,9| < Ry 24
Then we have
. 2
sup / v (x, ) (z, t)dx + / ‘V(UTZW;)’ dxdt
teI% 1 Q% 1 C

1
DY

4
3

2 2l+2
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Now, by a well-known embedding (see e.g. [19] Theorem 6.9), we have

Qu
/ pItko < / (’U 2 g[/l)Qko
C 3 C% 1

oz 312
2/n
a g a |2
< sup (v2)*(z,t)dz ‘V(’U 2 !Pl)’ dxdt
tely 1 Qa 1 Ca 1
3 2l+2 3 ol+F2 3 olF2
ko
a g a |2
< sup (v2 )% (x, t)dx + ‘V(v 2 J/g)‘ dxdt
tels 1 JQa4 Ca_1
3 oI+ 3 30+2 3 5I+2
ko
< C (Ry24H)™ / v dadt
C_1
BYEST
Therefore, for all [ € N,
1 1
a1 ) . a
/ v+ dadt < Cuvn (Ry%4h)w / v dadt
C 1 C_1_
T2 BYEST
Then (3.22) follows from iteration and letting ! go to infinity. O

Proposition 7 Let Q C R™ be a cube with [(Q) = Ry. Then for any t > 0,

(72 Vu(z, t)[” dx) v

<c (7242 V(e )2 dx) 7 R, (72@ 8tu(x,t)|pdm> a6

for all p € [2,2 + ¢€), where C' = C(n, \g, Ao) and € = e(n, A, Ag) are positive
constants.

Proof Let zg € 4QQ and 0 < R < min {% dist(zo,4Q), 2R0}. Choose two cut-off
functions. First, ¥ € C&(Q%R(mo)), with ¥ = 1 on Qg(zo) and |V¥| < R,
and secondly, ¥ € C}(Q2r(x0)), with ¥ = 1 on Q3 g(wo) and ’prv‘ < RL

Fix ¢t > 0 and define @ = me(zo) u(x,t)dz. Take (u(x,t) — u)¥?(z) as a
test function. Then dyu — div(AVu) = 0 implies that

/n AVu(z, 1) -V ((u(z, t) — )P2(2)) do

= L. dyu(z, t)(u(z, t) — @)W (x)dz. (3.27)
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For the integral involving the symmetric part of A, we have

/ ATu(e, ) 9 ((ul 1) - 0P (2)) do

> 20 |Vu|2dx—c(n7’2/\0)/ (u — )2
2 JQn(wo) R Qg R(zo)

For the integral involving the anti-symmetric part of A, we insert ¥ and apply
Proposition

/n A"Vu(z,t) -V ((u(z, t) — a)¥?(z)) do

AV (u—a)? - V(&?)

o
CpA
ll

/ 42V ((u—ap?) - v (#?)

v ((w-w2)
< cw/ V| do + L/;()m/ (u — @)2da.
Q2r(x0) R Q2r (o)

Finally, we estimate the right-hand side of (3.27) by Cauchy-Schwartz:

<

u—ﬂ)@‘

L2 (Rn) L2 (Rn)

Opu(z, t)(u(z,t) — w)¥?(z)dx
R'ﬂ,
2 2 Cn —\2
< CpR |Owu|” dz + — (u(z,t) —u)°dx.
, R?
Q%R(lo) Q%R(Io)

To summarize,

/ |Vul? do < R™2 (u — @)?dx
Qr(z0) Q2r(z0)

+R2/ |Oyul® dz + 0 Vul|® dz.
Q3 (o) Q2r(z0)

Choosing 6 to be sufficiently small and using Sobolev inequality, we obtain

]L Vu|?dz < C ][ V|42 dz
Qr(xo0) Q2r(x0)

1
+CR§]L |8yul? dx + 7][ Vul|® da.
Q2r(z0) 2 Q2r(z0)

Then (3:26) follows from Lemma [4] O

n+2

n

Let w(z,t) = Py f(x) = e~ L (f)(x) for some 1 > 0. Then dyw(z,t) =
2n%td,u(x, (nt)?). Using this relationship one easily gets
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Corollary 1 Let k € Z, and Q C R™ be a cube with 1(Q) ~ 27 *n. Then

sup |Opw(z, t)]
Qx (27K, 27K+

o—k+1 /2
< C Ry 2 (2 ) _ny2 (/ / - 0w (z, t)[? dtdx> ;

for some C = C(n, Ao, Ay). Equivalently,
92— k+1

wp 1P @) < Ol o do) / |, 0P

Qx (27,27 F+H]
for all f € L*(R™). The estimate also holds for ;P f(x).
Corollary 2 Let Q C R™ be a cube with 1(Q) ~ 27%n. Then

(]é |Vw(;v,t)P)1/p <C (]iQ |Vw(x,t)|2)1/2 4 (]iQ |8tw(:c,t)|p>1/p

(3.28)
for any t € (27%,27% ) p € [2,2 4+ ¢). Here, C = C(n,\o,Ag) and ¢ =
e(n, Ao, Ag) are positive constants.

th

3.5 LP estimates for square functions

The following results are obtained in [I3] and we include them here for reader’s
convenience. The operator L should be thought of as the operator L or LI*I
in our setting.

Proposition 8 ([13] Proposition 6.2) For all 1 < p < oo, and
F e Wh2(R™) 0 WhP(R?),

2 1/2
H ‘tL LR dt)

S CplIVE Lo mny - (3.29)
Lr(R")

Or equivalently,

<G lIVF| ey (330)

2 dt\1/2
() e )

L?(R™)

Proposition 9 ([13] Proposition 6.3) For 1 < p < 2 + ey, with ¢ =
€0(Xo, Ag,n) > 0, and for all F € WH2(R™) N WHP(R™),

(/ 2L LF‘Q dt)m

Or equivalently,

<G IVFlpny - (331
Lp(R™)

([ e 8y

< Cy IVF g -
L (R™)
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Remark 2 The upper bound 2 + ¢y for the range of admissible of p might
be different from the 2 + €1 in [13], Proposition 6.3. For convenience, we set
the minimum between €1 and the ey from Proposition [4] to be ey and fix the
notation from now on.

Proposition 10 ([I3] Proposition 6.4) For all 1 < p < oo, and all F' €
W1’2(Rn) e Wl’p(Rn),

o0 B 2 dt 1/2
H(/O ’tQGtLe tzLF‘ 7) < Cy |IVF | o gn - (3.32)

Lp (]Rn)

3.6 LP estimates for non-tangential maximal functions
Definition 3 The non-tangential mazimal function is defined as

N%(u)(x) := sup sup lu(y, t)] . (3.33)

t>0 (y,b):|lz—y|<at

The integrated non-tangential mazimal function is defined as

t>0 (y,t):|z—y|<at

1/2
N°(u)(z) := sup sup <]|[ e lu(z,t)|? dz) . (3.34)

Again, we shall simply write L for the n-dimensional operator L in this

section. We consider functions such as IV a(é)te’tQL f), where we think of
d,e~tL f(z) as a function of = and t.

Proposition 11 Letn >0, a > 0. Then
[ v @ p) | < Ca 19

for allp > 1, and f € WYP. The constant Cop also depends on Ao, Ag and n,
but not on 1.

Proof Fix any € R™, and let (y,t) € I, (2) so that |z — y| < nat. We claim
that for every f € .7(R")

L9, (ML f(y)‘ < O M(VF) (). (3.35)

Let Vi(z,y) be the kernel associated to dye=t"L. Then by [13] Theorem 4.8, we
have

2
\m7y|2 |z—y]|

V(e )l St e w2, [ Wz, y)| S (pt) 7" le <00
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where the implicit constant depends on g, A9 and n. We write
2 _ _ 2
Nt oe” M fy) = 7 oe Y L(f _][ f)(y)
Bapat ()

- /R Vil ) (1 - ]i o 7))z

Then the estimate for the kernel entails the bound

—19 —(nt)’L < 1 _‘f::‘; _
e f()| < [ e | d
‘ Bayat(x) (T)t) i Bayat(z)
Syl e - ]
———e <t z) — z
=1 J2r 1 By (2)\2 Byac (o) (1)"F) Bayar ()
=: Il + Ig.

_ly=z?
For I, we trivially bound e <®* by 1, and then the Poincaré inequality

1(2) - ]{3 o

where the implicit constants depend only on n.
For I, we have

£ e 2
(nt)n+1 c 201 B, o4 (x)

k=1

f-f
Banat ()
e 2n(k+1)an 2k —1)2a2
Ztexp{—()}][ f(z)—][ f
1 n c 2k+1 Byt () Banat(w)

Breaking the integrand into sum of terms containing f,,, 5 (@) f—fup  f
ne ne

gives

an

L S —

dzsa”“f v/l
Mt J Bapat(2) Baya(z)

S "MV ) (2),

dz

I

A

dz.

N

and using the Poincaré inequality again, we obtain
k41

e 4]62 2
LY exp { o }2“<k+1>a“+1 ST OM(VA) (@) Sa M(VF)(@),
c
k=1
and thus (3.35)) follows. By the choice of (y, t), this implies
T N @M ) (@) < CaM(Vf)(3),

=2

so that

[ v @ )| < Cap VSl VP>, f € SR,

Then the proposition follows from a standard limiting argument.
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We also have LP estimates for the integrated non-tangential maximal func-
tion:

Proposition 12 Let n > 0. Then for any p > 2, f € WHP(R"),
|F1Te g <Gl

where the constant depends on p, Ao, Ag and n, but not on 7.

Proof Let f € .7 (R"). Define u(z,t) = e~ ** f(x). Then u satisfies the equation
ou — div(AVu) = 0 in L2 Now fix z € R”, and fix (y,t) € I},(z). Define
Bs = B(y, (1 + s)nt), the ball centered at y with radius (1 + s)nt.
For 0 <s<s' < %, choose
0 . 1
VS CO (B%s/), with ¥ =1on B87 ‘Vgp‘ g m7

and

~ - ] - ~ 1
U € CF(By), with @ =1lonB.... ’vq/‘ S 7o

Let 4 = fB(y 5,1 W(,0)dz. Taking (u — u)¥? as a test function, we obtain
'3

- A(2)Vu(z, 1)V ((u(z,7) — 0)¥?) do = — - Oru(z, 7)(u(z, 7) — 0)¥dx

for any 7 > 0. Then by an argument similar to the proof of Proposition [7] one
can write

/n A()Vu(z, 1) - V ((u(z,7) — 0)¥?) dx

Ao 9 Co / 2
< — Vu(z,7)["dr — ——5—3 w(x, 7) —ul” dx
2 o, VT ey f, 1)
fe/ |Vu(z, 1) d,
BSI
and
Oru(x, 7)(u(z,7) — @)
]Rn
1
< I )2 2 2 =12
SO on? [ orule P et e [ e —al

Bs+s/ s+s
2 2

Combining, we have

(u(z,7) — @)*dx

9 C
/Bs Ve, I dr < e /B

4 C(nt)2/ O, P2 dz+C0 [ Va7 da.

B B,/

s/
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Choosing 6 sufficiently small, then Lemma [5| gives

][ |Vu(9L‘,7')|2 dx
B(y,nt)

1
< 72][ lulz, 7) -l dz + (nt)2][ 0wz, 7| de,  (3.36)
(nt) B(y,2nt) B(y,$nt)
for any 7 > 0.

Let w(z,t) = u(z,n*t?). Then it suffices to show
¥ (Tew)| <GVl >

To this end, let 7 = 7%t? in (3.36)). Noticing that d,w(z,t) = 2n*tdu(z, n’t?),
we have

][ V(2 )2 d
B(y,nt)

1
S 3 ][ lw(z,t) — o) dz + 77_2][ 0w (z,t)]*dz  (3.37)
(1) J By, 30) By, 3nt)
where w = fB(y,%nt) w(z,0)dz.

The expression fB(y,%nt) |8;w(z,t)|* dz on the right-hand side of (3.37) can

be controlled by M (N”(atw)2) (x). To estimate the first term on the right-
hand side of (3.37)), we write

|w(z,t) —w| < |w(z,t) — w(z,0)| + |w(z,0) — @ .

Using Poincafe inequality, we have

it e —aPdsf o Ve oP
n ) B(y,%nt) B(y,%nt)

<M (|Vw(~,0)|2> (x) =M (IVfIQ) ().
Since

t
|w(z,t) —w(z,0)| < / |0-w(z, )| dT <t sup |Orw(z,T),
0

0<r<¢t

we conclude that

][ lw(z,t) —w(z,0))* dz < t2][ sup |87w(z,t)2| dz
B(y,§nt) B(y,3nt) 0<7<t

< 2 M(N"(9w)?)(x).

Therefore, we have obtained the estimate

£, D07 = S 01 ([957) () 0720 (V1 0?) 2)
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for any (y,t) € I, (x). This implies, by the definition of the integrated non-
tangential maximal function N7, that

Ko@) £ (M (1VP) @) e (1 (V@) (1)), v e R
Thus for any p > 2,

|3 (verees)]

< 71N7] 7n2t2L ’
1 A7) PR U T
<Gy ”vf“Lp(R") )

where we have used Proposition [11| with o@ = 1. a

Lr(R"

4 Construction of F and sawtooth domains associated with F
4.1 The set F

We define the following maximal differential operator
1/p
flz) = f)’
D, f(x) :=sup ][ <|()()| dy . (4.1)
>0 lz—y|<r |."L' - yl

”D;nlfHLp(Rn) <Copin vaHLp V1<p <p<oo.

Lemma 6

This lemma follows from a Morrey type inequality

[f(x) = ()l

o SMVNE M) ey e R

and the LP bound for the Hardy-Littlewood maximal function. )
We introduce a few notations. Recall that we use P; to denote e~* Z1, and

427
Pi=e *Li| | Define

~ 1/2
A= N OPye) + NP} ) + N'(VaPiyp) + (M(96)

_ . _ oN1/2
Ag =0 ' N0, Ppu®) + N(0:P @) + N(VoPre) + <M(|V80‘2)) ;

where ¢ and @ are as in Proposition 4] and the non-tangential maximal oper-
ator N in the second terms on the two right hand sides in defined with respect
to the cones of aperture 1.

Let @ C R™ and kg > 1 be given. Fix p; € (1,2) and define the set F' as
follows

F:={z€Q: Ai(z)+ As(x) + Dp,o(x) + Dp, o(z) < Ko} . (4.2)
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Lemma 7 Let €y be as in Proposition[jl Then

Q\F| < ro” Q] (4.3)
uniformly in 7.
Proof By Chebyshev’s inequality,
kot Q\ F| < / (A1 + Ay + Dy, 0 + D, 7)1 da.
QN{A1+A2+Dy, o+Dp, F>r0 }

We apply Proposition [II] Propostion [I2} and Proposition [f] and their analogs
for the adjoint operators, with p = 2 + ¢y, to see that the right-hand side is
bounded by

2+¢g 2+eg

+ Ve[ + M (19gP) T ds,

O | Vel 40 (j96f)

which, in turn, is bounded by

clalf (Ivel*+|vaPTe).
5Q

Then the lemma follows from (3.5]). O

We can now choose kg, depending only on Ag, Ag and n, such that

1
Q\Fl < o1l (44)

This completes the construction of F' and from now on kg is fixed.

4.2 Sawtooth domains and related estimates

Define {2y to be the sawtooth domain

20 = | (). (4.5)

zeF
Define "
6t =Y — P:‘pa 915 = QZ - Pt@ (46)
We observe that
nt - nt
ent(x) = - 887):‘10(56)’ and ent(x) = - aﬂ’g@@)
0 0
So by the definition of the set F,
|0 (z)] < ntro, ‘gnt(x)‘ < ntko V(x,t) € F x (0,00). (4.7)

We show that such estimates also hold in the truncated sawtooth domain.
Note that we shall eventually choose 17 > 0 to be small, so we can assume in
the sequel that n < 1/2.
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Lemma 8 Retain the notation above. The following estimates hold:
O Stk and  [Bu(0)] Sntko, ¥ (2,1) € 200 (2Q x (0,4UQ)).

Proof We only show the estimate for 6,,, for the proof for @n is similar. Let
(z,t) € 20N (2Q x (0,41(Q))). Then there exists xg € F such that |x — xg| <
nt. Since t < 41(Q), and n < %, we have 2B(zo,nt) C 5Q. We write

[0 ()] < [o() = ¢ (o)| + |6t (0)| + ‘P;;t (‘P - (90)2Bnt(zo)) (mo)‘
} (0= @00 (@ )‘ (4.8)

where (cp)QBm(%) = sz (o) P" Note that we have used the conservation prop-
nt (T
erty, and PJ, (9) g, , (4,) I8 & constant.
By Proposition |5} the first term on right-hand side of (4.8)) is bounded by

1/p1
C(J[ ( )I@—@(m)l’“) +Cnt([le L + [l lpmo)-
nt(Zo

By the definition of D,, and the set F', this is bounded by
Cnt (Dp, (o) + Ao + Ao) < Cnt(ko + Ao + Ag) < Ctrg,

with C' = O(/\(), Ay, n,pl).
By (4.7), the second term on the right-hand side of (4.8]) is also bounded
by Cntrg. Now we take care of the last two terms in (4.8). We claim that for

any (y, s) € Iy (zo),

Pie (%= a0y ) ) S 15M(V2)(0) S 50

Consider the kernel K¢, ), associated to P;,. Then by the Gaussian esti-
mate for the kernel of the semigroup,

* 1 7C\y*z2\2
’K(ns)z(y,z) /S (778)” (ns)? |
Then, for (y,s) € I,(xo),
1 _cly— z2\
’ ( QB"S(%))( )‘ g/n COEA 0(2) = ()28, (20| 42
1
< J—
~ ¢(2) — (¢)28,. dz
/23715(900) (775)" | 7 (330)|
+m/ et |o(2) = (#) d
e 7 ol ©)2B, . (z0)| A2
i 21 By (wo)\28 By (o) (15)" e (@0)
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Since |y — zo| < ns, [y — 2| > (28 — 1)ns for z € 28T1B, (20) \ 28 B,)5(20).
Therefore,

Pin (b~ @) G S0 f, Vi)l

- 1 ,
+ Z/ ’rLeiC(Qkil)2 ’(p(z) - (¢)23n3($0)| dz
k=1

2k+1 B,  (20)\2F Bys (z0) (778)

> k 2
S ()M (V) (o) + Y 2M Ve =1 s M (Vo) ()
k=1

1/2
S nsM(Ve)(o) S s (M (IVel) (@0)) S mswo.
This finishes the proof. a

Lemma 9 Retain the notation above. The following estimates hold:

d dt d dt
Lo S <101 ana // ’
R"+1

Iuo)| B < e,
where the implicit constants only depend on \g, Ay and n.

Proof We only prove the estimate for 'ém, for the proof for 0, is similar. We
have the following weighted Hardy’s inequality:

/1< /|f|d)(?</mV@p?’Vl<p<m. (4.9)

A short and direct proof of (4.9) is provided at the end. Recall that

nt
0sPspds
0

~ nt
G, §/|@ﬂ@m,
0

so that
© 1~ \2dt o /1 [t N\ dt
[ Glod) 5= G wraie)
/1 ft N dt
:772/ </ 3373390|d5> -
0 tJo t

By (£.9), the last term is bounded by n? [;* 10, P3| 4t Then Proposition
gives

2 gt p/2 oS o dt p/2 .
L[l %) arsw [ ([Toper ) awse [ 1vira
n 0 n 0 n

for any p > 2. In particular, with p = 2, we obtain

// 2 dxdt
Rn+1

IN

2 / V3 de < P ][ V32 dr QI < n?1Ql.
Rn 50

nt ‘
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Proof of (4.9). By Hélder’s inequality,

Kfﬁwﬂdsé([ff@)“k)upf?
(3 [ 1senas) <1 [ as

Integrating in ¢t and using Fubini, we obtain

oo 1 t pdt oo t » dt
/ (tOU@mﬁtsﬂ Cror st
= [ s [ gaas = [ ior <

And so

4.3 The cut-off function

In this subsection, we define the cut-off function adapted to a thinner sawtooth
domain. Define
= (@) (4.10)
zeF

Let # € C*(R) with 0 < & < 1, &(r) =1 if r < 15, and &(r) =0 if r > §.
Define

o msino (2o (i) (o))

where §(z) := dist(z, F).
Then ¥ has following properties. First,

=1 on |JI'zN{2<t<2(Q)}.
zEF

Secondly, supp ¥ C 1 N{e <t < 41(Q)}. And finally,
supp V¥ C E1 U Es U Eg,

where

Ey = {(x,t) €2Q x (0,41(Q)) : Uil <d(z) < nt})

E, {(m,t) €20Q x (21(Q),4(Q)) : §(z) < 77875}’

s {(x,t) €20 % (€,26) : 6(x) < ’Z;}
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In addition, a direct computation shows

1 1
(V& (2,1)] S %lEl + 1g, + g]lEs- (4.12)

1
HQ)

Lemma 10 Under the assumptions above,

[e%e] p
L[ veresa) a < coapnal (1.13)
n \Jo

for any a >0, p >0, and

// dzdt _ o 10l (4.14)

supp V¥

Proof Using (4.12)), we compute

166 (x)

p

oo P — a

/ (/ |VW|°‘t°‘1dt> dx gn/ (/ <1> t“ldt> dx

n \Jo 2@ \J&8= A\t
41(Q) 1 a p 2 71\ 2 P
+/ / () t*tdt dx+/ (/ () t"“ldt> dx
2Q 21(Q) Z(Q) 2Q € €
168 (x)

P
1 1
< 1 / " Ya) aeto, 20
nep 20 857(7z) t

SCW@M(HW1)@<CWan)@L

This shows (4.13)), and (4.14]) can be derived similarly:

dzdt dxdt dzdt dzxdt
—— < ==+ ==+ ==
supp V¥ ! £ ! P2 ! B !
2e
—d;z:+// Y o +// & g
2Q J 2o 21(Q)

<

as desired. 0

5 Proof of the Carleson measure estimate

Throughout this section, let @ C R"™ be fixed, and construct F' C @ and the
cut-off function ¥ as in Section [4} Recall that k¢ is fixed to ensure that (4.4)
holds.



36 Steve Hofmann et al.

Recall that we have the matrix A = A(x) whose entries are functions on
R™, or, independent of ¢, and we write

a= 2t

Write the n x 1 vector b as b = by + by, with div, bs = 0. We define a new
matrix A; as follows:

and define L; = —div A1 V. Then Ly and L actually define the same operator.
To be precise, we have the following

Lemma 11 For any u € Wl’Q(RT'l) and v € W&’Q(Riﬂ)

/ A(x)Vu(z,t) - Vou(z, t)dedt = / A (z)Vu(z,t) - Vo(z, t)dzdt.
]RiJrl Ri+l

(5.1)
In particular, a weak solution to Lu = 0 in Riﬂ s also a weak solution to
Liu=0in RT‘l.

Proof We first show (5.1) for v € WH2(R}™!) and v € C3(R'}™). To this end,

we write
// A(x)Vu(z,t) - Vo(z, t)dzdt
Ry

= / A Veu - Veu + (bf +b]) - Vovdiu + ¢ - Veudyw + d Oyu Opv dadt,
(5.2)

and

// bl - V,vdudrdt = — // 0; (b - V,v) udzdt
]RiJrl RK+1

=— //b; -V (0w)udzdt = — //b; - V(0w u)dzdt
+ //b; - Vou O dadt = //bg - Vu Oy dxdt,

where in the second equality we have used the facts that by is t-independent
and that v € C2%, and in the last equality we have used the divergence-free
property of by. Then (5.2)) is further equal to

// B A Veu - Vaev + bl - Vv du+ (¢ + b)) - Voudw + dOyu Oy dadt
R

_ //R @)Vl 1) - Vol .
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Now since C3(R™) is dense in Wy*(R:!), a limiting argument shows that

(5-1) holds for all u € WH2(RTHY), v € Wy (REH). ul
Define .
A b—(b%
AO = | lL ....... T 2Q , (53)
c—(c")yq:  d

where (b“)zQ = fQQ b?, and let Lo := — div Ay V.

Note that (b“);Q = —(c%),q by definition of b* and ¢®. Also, (b?),y is
a constant vector so we of course have div, (ba)QQ = 0. Hence, we can apply
the lemma with by = (b“)zQ. Moreover, observe that

4 AH b — (b“)2Q ﬁ ;bs ﬁ b® — (ba)QQ
o= | P = |- T o QN T -,
c—(c)y0 d c’id c” — (c")yq 0
b . .
where |...!l: . _| is the symmetric part of Ay, which is the same as the sym-
CS

metric part of A, and

P PP Q-] is anti-symmetric, BMO,

with the same BMO semi-norm as A% We summarize these observations in
the following lemma.

Lemma 12 A weak solution to Lu = 0 in RT‘l 1s also a weak solution to

Lou =10 in Riﬂ. Moreover, the operator Lo has the same ellipticity constant
and BMO semi-norm as L.

Let u be a bounded weak solution to Lu = 0 in R}t with [jul| . < 1.
Then u is also a bounded weak solution to Lou = 0 in ]Rff_“. Recall that

e = / AoVu - Vu Wt drdt.
Ry
Then by ellipticity of Ag and the support property of ¥, we have

UQ) )
Ine > )\0/ / [Vu(z,t)|” t dedt.
2e F

The goal of this section is to prove Lemma [3] Once it is proved, we choose
o and 7 to be sufficiently small, so that

Jne <261Q). (5.4)

Now that 7 is fixed, and ¢ is independent of ¢, we let ¢ — 0 and thus obtain

Q) )
/ / |[Vu(x, t)|” tdedt < 2¢,
0 F
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as desired.

Let us further reduce the statement to the case of smooth coefficients before
we prove Lemma [3] We claim that we can assume that A is smooth (and
thus Ap is smooth) in Lemma [3| as long as all bounds depend on A only
through its ellipticity constant and BMO semi-norm. If A is not smooth, we
take As = &5 Ag, where {5(X) = 5‘"‘15(%) is an approximate identity. Then
As converges to Ag locally in LP(R™*1) for all 1 < p < oo as § — 0, and

||A§||BMO(RH+1) < [ A6l smo@ntry - (5.5)

See e.g. [21] Proposition 3.3 for a proof of (5.5). Then the desired result in the

non-smooth case follows from a limiting argument. To see this, fix any u that

satisfies Lu = 0 in R and [[ull oo (gn+1) < 1. Then fix a cube @ C R™ and
+

define the cutoff function ¥ = ¥g ., as in (4.11f). Take cubes @0 and @1 such
that _ _
supp¥ CC Qo CC @ CC R

Now let ug satisfy Lsus = —div(AsVus) = 0 in Qvo and us = u on 8@0. Let
furthermore

Js = Jpes = // ., AsVus - Vs 2t dudt.
RY

Since Aj is smooth, we can use the result in the smooth case and have J5 <
C'|Q| by (5.4). The constant C' is independent of €, and can be independent
of 0 because of (5.5)). Hence, it remains to show that |Js — J| — 0 as § — 0,
where

J=Jye= / AoV - Vu Wt dzdt.
Ry

Notice that A§Vus - Vus = AfVu - Vu = 0 by anti-symmetry, and thus

|Js — J| = // A5Vug - Vus Ut dedt — // AV - Vu Wt dedt
n+1 R+
+ +

We write

AjVus - Vus — AgVu - Vu
= AjV(us —u) - Vus + AsVu - V(us — u) + (A5 — Aj)Vu - Vu,

and get

|Js — J| < sup (WQt){ ‘/~ AV (us — u) - Vug dxdt‘
@0 Qo

+ ’/~ AsVu - V(us — u)d;vdt’ + ‘//~ (A5 — A5)Vu - Vu dxdt‘ }

<c{ [ 196s ~ )l (V] + [Val)dodt + [ 145 - 45| |Vul® doct}
Qo Qo
=: C(Il +Ig)
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Using ellipticity of As, and taking u — us as a test function to both Lsus = 0
and Lou = 0 in Qg, one can get

//~ |V (us — u)‘Q dxdt < )\0_1 //~ A5V (us —u) - V(us — u)dzdt
0 Qo
=X //~ (Ao — As)Vu - V(us — u)dxdt.

Then by Cauchy-Schwarz inequality,

//~ IV (us — w)|? dedt < A\;? //~ |Ag — As|* |[Vul? dadt.
0 Qo

Using Holder inequality, reverse Holder inequality for Vu, and the fact that
Ao — Asll 1o (g, — 0 as § — 0 (p will be large), we obtain

//~ IV (us — )2 dadt — 0 as 5 — 0, (5.6)

//~ |vw|2da;ah¢gAg‘*//~ Vu|? dadt,
Qo Qo

and thus I; — 0 by Cauchy-Schwarz inequality and . The second term,
15, converges to 0 by the dominated convergence theorem.

This justifies the claim that we only need to prove Lemma[3]for A smooth.
Notice that in this case, ¢, ¢, Pio, Pfp and u are all smooth by interior
regularity of elliptic equations.

Notice that

Now we are ready for the
Proof of Lemma @ In the sequel, we shall simply write J for J, .. We shall
not distinguish a column vector and a row vector, namely, we shall not use the
sign of transposition, as it should be clear from the context. We denote by ¢
some constant depending only on \g, Ay and n, and by ¢ a constant depending
additionally on ¢ and 7.

Since u is a weak solution to Lou = 0 in Riﬂ,

// AgVu - V(u®?t) dadt =0,
REF!
where we have chosen u %2t to be the test function. Therefore,

J = // AoVu - Vul?t dadt
Rfl

= —//onu -V (¥?)ut dvdt — //Aow Vtub?dzdt =: Jy + Ja.
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The first term

[ AT Va@tyutdsdt [ b= (b)) Va@ 0w ut duds
_ // (¢ — (¢V)q) - Vou By (2)ut dudt — // 00,10, (VYut dadt

= Ju + Ji2 + Jiz + Jia.

For Jy1, we claim that
Ji = // A — (Af QQ) Vot - Vi (0?)ut drdt. (5.7)
This is because
1
// (Afl)2qVau - Vo (WP )ut dedt = 3 // (Afl)2@Va(u?) - Vo (Pt)ddt,

and the last integral is 0 because (Af{})2q is a constant anti-symmetric matrix,
and W2t is C2. Therefore,

Jii= / AHV -V utdwdt—/ AH || 2Q> Vru-vz(w2)utdxdt
=:Jin1 + Jii2-

For Ji11, we have

[J111] =2

// A§Vu ¥ uV, Ut dedt
R+
<+ // \Voul| @] Y2 |V,0| tY 2 dedt
0

< O’/\O// \Vul? W2t dedt + — // V| tdadt < oJ +¢|Q),
n+41 o n+1
+ +

| <t and fuf. < 1,
L()C
and in the last step we have used Lemma[I0] For Ji12, by Holder’s inequality,

where in the first inequality we have used HAfl

1 Q)
5 M| = (Aﬁ - (Aﬁ)QQ) Vot - Vo0 (ult)dtde

. (/ ’Aﬁ o o dz)ix </ </41(Q) Tl ‘wl/z‘ IVWItl/th)adx>“
2Q 2Q “Jo
BMO{/ZQ (/041(@ IV w?tdt) (-/04Z(Q)|VW|2tdt)gdx}i7

(5.8)
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where « is any number between 1 and 2. Now we use Holder inequality with

p= % to bound ([5.8) by

2—a

41(Q) 12 41(Q) AN

clol* // \Vul? 02t didz /(/ Ve ed)de )
20 Jo 20 VJo

which by Lemma [I0] can then be bounded by
IR |QITTE — a2 Q2
Then Young’s inequality gives
|J112| < 0J +¢|Q].

Note that Ji2 and Ji3 can be estimated similar as . So both of then
are bounded by o.J + ¢|Q|. Since ||d||;. < Ay', Ji4 can be also bounded by
oJ + ¢|Q| using Young’s inequality and Lemma

For J5, we compute

JQ = — // AQVU c€n41 uWdedt
Ry

= // (€ — (c)2q) - Vou(u¥?)dzdt — // d Opu(uW?)dxdt
]RKJA Ri+1
=: Jo1 + Joo.

For Js9, since d is t-independent, integration by parts gives

Jos :7% // d Oy (u?)W?drdt = // du* WO, dxdt.
Ry R

Thus |Ja2| < ¢|Q)| again by Lemma For Jo1, we write
2@2
Jo1 = —// (c — (c)20) - Vs (“ ) dxdt
RPN+ 2
i
+ // — (C - (Ca)QQ) : VwW(uQW)dxdt =: Ja11 + Ja12.
R}

Going further,

o1z = // ¢ -V, U (u?W)dxdt + // (c” — (c%)aq) - VoW (u?W)dxdt
R1+1 R1+1

=: Jo121 + Jo122.
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Then again by Lemma |Jo121] < ¢|Q)|. For Jajas,

41(Q)
|J2122|§/ lc” — (c)20] / Vo (u*W)| dt | da
2Q 0
N 41(Q) oy e
< (/ lc® — (c)20]” dx) (/ (/ |Wx|{u2wydt> )
2Q 2Q 0
" Q) o\
<clQ ([ ([ o) ar)  <cpal
2Q 0

For Ja11, we use (3.3)) to get
2@2
Jo11 = / A‘*lvmgo -V, <u ) dxdt.
R7H! 2

Recall that we defined 6,; = ¢ — Py, in Section We compute

2 2
Jo11 = // ‘*‘Vmem.v dmdt—i—// AHV P*#PV ( )dwdt
RQLj»l R'Hr
* *a U2W2
- //Rn+1 (AH = [l )QQ) Vzent Vg (?)dxdt
i

272

+ //+ AV P
R-F

where in the second equality we have used the assumption that the coeffi-
cients are smooth, which implies that u? is smooth, and thus (Aﬁ“)g@ being a
constant anti-symmetric matrix gives

)d:L'dt = J2111 + J2112;

i >d:cdt0.

u2 2
[/ (Arla)Qvaent . VJC <
R+

For Jo112, integration by parts with respect to ¢ gives

u?w?
J2112 = — // 6} (A”]VIP;;M . Vm ( >> t dxdt
R7H 2

. . ’LL2 2
T Rn+1A||Vw‘9t7’nt<P'Vw

//RMAW PV at( )tdxdt_ I + L.

> tdxdt
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By the same reasoning as for ([5.7]), we have
IL=- // (41 = (4j")20) VudiPyyp- Vi (
R

2@2
— ANV, 0P - Vo | o ) tdudt
n41 Il 2
R+
272

*a *a * u v
B //Ri*l ( n - (AH )2Q) vwatlpntw vw (

=: 111 + I1s.

w2

> tdxdt

) tdxdt

Then, applying Propositionlﬂto the operator L‘*| = —div Aﬁv, with p = 2,

1/2
. |2
(//n+1 |ant77nttp| tdxdt) <c|Vell ragny -
T

So by Cauchy-Schwartz inequality and by (3.5)),

1/2
| <c (// \vxatP;t<p|2tdxdt> <// |Vz(u2w2)]2tdwdt>
]Ri'H R1+1
1/2
< c|Q['? (// |un|2W2tda:dt+// |V1W|2tdxdt> .
]Rfrl ]Ri*l

Then Lemma [10] and Young’s inequality give

1/2

[In| < e|Q'? (T +E|QN"? < 0T +¢|Q).

For I5, we use Holder inequality to get

1 *a *a o i
[T12] < B (/ ‘ = (4 )2Q‘ dw)
2Q

> * 252 ¢ L
x {/ (/0 V8P| |V (u?® )|tdt> dz

< c|Q|1/a, (/R </0 ’VmatP;tgo‘Qtdt> h dx)
0 ) 1/2
X (/ / {Vx(u2W2)| tdtdx) .
nJo

Letting 52— = 2';607 then by Proposition @ (13.5) and Lemma

La| <] QI (J+&|Q)? <aJ +2|Q).
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For I, by the definition of LI*I’ we can write I as

/ / Py 0y (u*W?)d t dt.

By the Cauchy-Schwartz inequality,

1/2
2
L] < ¢ // P;t@‘ t dtdz // |0, (u20?)|* t dtda
Ri+l R1+1

By Proposition [§]

(L.

So by (3.5) and Lemma [I0] we have

1/2
~ 2
L] < eIVl 2@ (//R+ |0, (u?w?)| tdtdz)
+

<elQ|"*(J+ &N <o + Q.

We now return to Joi11. Write

Jo1 = // (A\*\ - (A\*\a)zcg) Vbt - Vou(ul?)dodt
Ry

//,L+1 — (A" )2@) Vbt - Vo (W) udodt
R
= IIl + IIQ

1/2

1/2
2
LﬁP;;tap‘ tdtdx) < |Vl g2 gn -

For I1,, we split it up into the integral involving Ai“ls and the integral involving
Af" = (A}*)2q as before. We only treat the integral involving A — (A}")2q
(denoted by I19) as the estimate for the former is similar and easier. By the
Cauchy-Schwarz inequality and (4.12]), we can write

2 1 4UQ) s \?
gl <ol [ [aie = aiprao as)” ([ ([ 19l 1901 a1) 0
/2
4UQ) a2\
<é|Q|"? / / Vaboi| 1g, — ) da
|\{2Q(0 | m|Et)
4(Q)
+ / (/ V. ent|1E21
2Q 0

1/2

+ (/2Q (/04l(Q)|v Ol 15,2’ dx) )

= 2|QI"? ((I13)* + (I15,)V + (I135) /%) . (5.9)
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Observing that

166 ()

Q@) dt ndt
1 — < — =1n2
/0 B (1) t ~ Aam t

n

and using the Cauchy-Schwarz inequality, we show that

4(Q) dt 41(Q) dt
113, g/ (/ |v$9,ﬁ|211E1t> (/ 11E17 dx
2Q 0 0

27k+1

<cd Y //2 IV 00| 1El%dx,

k QeD]

where D] denotes the grid of dyadic cubes such that

1 1
L Fu@) < 3572 Ko Qe (5.10)

Consider for any fixed k and Q" € D}, for which Q' x [27%, 27 * 1N E; # 0.
One can show that for such @’, there exists some g € F such that

2Q" C B(zo,n27%). (5.11)

This implies that for any ¢ € [27F 27F+1]

Va0 d <, f IV, P2 o) da +][ V() de
Q' B(zo,m27F) B

(zo,m27F)

Sif WP+ f Vel ds
B(zo,nt) B(zo,nt)

~77 * 2 2 2
S (N(VaPyu) (w0) + M (1926l ) (20) S w8, (5.12)

by definition of the integrated non-tangential maximal function ([3.34)) and the
definition of the set F.

By (5.10) and the definition of E1, one can show there exists some uniform
constant C' > 1 such that

Q' x 274,27 € By = {(y,5) € 2Q x (0.41(Q)) : % < (y) < s},

which implies

27k+1

d
|Ql|5/,/2,k 15, (4.5)dy. (5.13)
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Using (5.12) and (5.13)), we estimate I1§; as follows:

—k+1

. dt

m<eY S [ el T
k QIGDZ - Q'

g—k+1 o—k+1

Scm%Z Z (/2—k it)/'/z—k ILEl(y,S)%dy

k Q'eD]

Co(y)
dsdy o ds
SC//nH]lEl(y’S)TSC/ /5() ?dySdQ"
RY 2Q /%

For 1I5,, notice that

4l(Q)| | a \’
11 = / / Vbt 15, da
22 2Q \J21(Q) e Q)

4 /4l(Q) / } ( )|2
< — V. Pro(x)| 1g,dxdt
UQ) Jawg) J20 ¥ .

4 41(Q)
+—/ / \Veo(@)|? Lp,dzdt.  (5.14)
Q) 20(Q) J2Q

By the definition of Es, one has d(z) < 21(Q) for any (x,t) € E,. Denote
by mg, the projection of Es onto {t = 0}, then 7g, can be covered by balls
B(z;,2nl(Q)) with z; € F, and the number N of these balls can be bounded
by ¢,n™", where ¢, is a constant depending only on the dimension. So the
first term on the right-hand side of is bounded by

N @ ,
cn"l(Q)"‘lz/ ][ ’Vﬂ’;tﬂ dxdt
i—1 72UQ) JB(z:,2nl(Q))

N N
< en™ Q) 2/41@)][ Nn(vrp;;t@)?(;pi)zdt < cer2|Ql,
1(Q) 3 720Q) JB(z:201(Q))

using the definition of N 1. the definition of the set F', and N < ¢n~". For the
second term on the right-hand side of (5.14)), notice that 7z, C B(zo,2l(Q))
for any zo € F. Then the second term is bounded by

41(Q) 41(Q)
;Jg) ][ Vo(e)|? dedt < ;'Q|
2(Q) JB(xo,21Q)) (@Q) Ja)

M (IVel?) (o)t
< erglQl,

using again the definition of the set F. Combining these two estimates with

(5.14) we obtain the bound 1, < ¢|Q)|.
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By a similar argument, one can show that I15; < ¢|Q)| as well. Combining
these results with (5.9)), we have shown that |II§| < ¢|Q|, and thus |II5] <
£1Ql.

We now deal with I1;. Write

1 = // (Aﬁ —(Aﬁ“)zQ) Vo (Ol - Vyudzdt
Ry
- // (Aﬁ—( ﬁa)w) Vot - Vou (0, %) dzdt
Ry

- // . (Aﬁ - (Aﬁa)gQ) Vo (02) - Vo (uy)dudt
rRYF
= 1111 + 1112 + 1113.

We use Lemmato bound 1115 and I13. We rewrite Lemmain the following
way
|0ne(x)] S kont for (z,t) € supp W. (5.15)

Note that by anti-symmetry,
1Ly =— // 1V - Vo (0, 0%)dadt,
RY T
and thus
|[IT12| < cn// |Vu|2 T2t dedt < end.
Ry
For 113, we have

‘I113| < Cﬂoﬁ// . ‘Arl — (Arla)QQ‘ |Vz(w2)| |qu|td£17dt,
RYT!

which is bounded by oJ + ¢|Q| by the same reasoning for the term Ji;.
For 111, observe first that

Il = / A[ Vo (0yul®) - Vyudedt = / A Vou - Vo (Opul®)dadt.
Ry R

n+1
+

Taking 0,,;u¥? as a test function (this is admissible due to the smoothness
assumption) in the equation Lou = 0 in Riﬂ, one gets

0= / AoVu - V(0,,ul?)dzdt
Ry
:// A||ku-vw(9,,tuw2)+// (b — (b%)2q) - Vau(fyu??)0pu
R:+1 Ri+1

+// N (c—(c“)gQ)~un8t(9ntuLP2)+// N d@tuat(entuwz).
Ri 1 i 1
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So we have

1, = — // N (b — (b%)20) ~Vz(9ntuk7/2)8tu
Ry b

_ // (c = (¢*)20) - Vaudy(6pul?) — // d Dy Oy (Brgul)
Ri+1 Ri+1
=: 11111 + 1o+ 13-

We treat 1113 first. Write
I.[113 = — // datu 3t9nt(uw2) - // datu atu(entW2)
Ri+l Ri+1
— // " dOsu 6t(W2)0,,tu =: II1131 + 111132 + I11133.
4

Note that 9;0,; = —0;Pyp. So I3 = ffRiﬂ d o 8{P;;tg0(uw2). We first
use Cauchy-Schwartz and then Proposition [8] to get

1/2
dt
‘111131| <c // \&u‘? W2t dxdt ﬂ |6f73:;t<p|2 —dx
R+ R+ t

<est? HVSDHL?(W) <oJ+elQ|.

1/2

For 11132, we use (5.15) to get
[IT1132] < cmon// \Vul? W2t dedt < cnJ.
Ry
By (5.15), Young’s inequality and Lemma
|[I11133] < cnon// ) |Osu] |0 | Wtdadt < o +¢|Q)| .
rRYF
We now treat I11o. Write
11112 = — ﬂ - (C — (Ca)QQ) . VLU, Btu (GntWQ)dxdt
R}
+ // . (¢ = (c")2q) - Vou 0y Pyro(ul?)dadt
Ry

- 2// . (c = (c")2q) - Vau 0¥ (0 ul )dadt
Ry

=: I1i191 + I11192 + 111123.
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For 111122, we only focus on the anti-symmetric part, namely, the integral
involving ¢* — (c¢*)2¢ (denoted by I{4,), for the integral involving c® is easier
to estimate. We have

s\ Q) , e
11l < ([ le=@al”) " ([ ([ WuloPyel v2r) "o
2Q 2Q *Jo
, 00 a/2 1/
<l (/ (/ Vu|!l'2tdt> (/ |0, P, t<p\2dt> dm)
» \Jo
a/ dt ;aa
<" JW(/ (/ 0Py’ ) dx) .
Rn

Choosing « so that 5% = 2260 and applying Proposition [8 with p = 22% =

2 + €g, as well as (3.5)), we get
1/«
[[1}90] < en|Q) fot i ||V<P|| 2o

a

-y SR <07+ 2(Q).

Using the bound (j5.15)), 11123 can be estimated like I113, and hence bounded
by oJ 4+ ¢|Q)|.
For 111121, we write

111191 = — // c® - Vou dyu b, 0° — // (¢ = (c")2q) - Vou Opu 0, 0*
RK+1 Rn+1

—// xu&u@ ty72 ﬂ ba QQ) Vl.uatuﬁ,,tWQ.
Rn«#l Rn+1
+

(5.16)

The first term in (5.16]) can be estimated as I17132. We leave the second term
aside for now.
We write 11111 as follows

1l = — // (b — (b)20) - Vil (u¥?dpu)dzdt
Rn+1
- // (b — (b%)aq) - Vau (0, ¥ 0yu)drdt

- 2//}1@1“ (b — (b%)2q) - VoW (0 u¥ Oyu)dadt

=:IIi111 + T1h112 + 13-

The term |II1113] can be estimated like IT1123, and hence bounded by oJ +
¢|Q)|. For 111112, we write

T = — // bV (0,0 0y) — // (b — (b)) - Vo (0,7 9yu)
RF RYF
(5.17)
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The first term can be estimated as the first term in (5.16)). And the second

term in (5.17)) cancels the second term in (5.16)).

It remains to estimate Il111. Integration by parts in ¢ gives

21 = [[ (b= (b%)a0) - 01(V.0,)u%0"
Ry H

- // (b= (6%)2) - Va(O0Py00 )
//]R (b (b)sq) V()0 Py
//R (b= (b)) Vb0 (W2)u? =i [11y + I + 1113,
For 1115, we write
III, = -2 //R"+1 — (b%)2q) - Voudy Pryp(ud®)

72// . (b — (b%)2q) - VoW, Pyyp(u ).
RY L

The first term on the right-hand side can be estimated as I11125. The second
term can be estimated using ||u||, .~ < 1, Holder’s inequality, Lemma (10| and
(3-30). Together, one obtains |[I113| < oJ+¢|Q)|. Finally, I113 can be estimated
as Iy, and thus |[I1I3] < ¢|Q)|.

For 111, note that it is similar to J21;7 except that it has an extra 5‘tP;7"tg0.
It turns out that this term will do our favor. We proceed like J21; by recalling
that div, (b — (b%)2q) = div, A VL@ = —L|@ (see (3.4)). So we have

Ih :// AVaG - Vo (0PhoWu?).
Ry
Writing ¢ = 57726 + P, we get
IIIl = / N A“ngnt . VI (5t77;t<,0(&172u2))
R
+/ o ANVeP - Vo (0:P0(P70?))
R7H
= //]R+ (AH - (Aﬁ)zQ) Vb - Vo (0, Php(02u?))
"

+// . L) Py 0y Prvp(WPu?) =: 111y + 111,
v
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where in the second equality we have used the smoothness assumption to
obtain

// . (Aﬁ)Qszant AV (atpj;w(g/?u?)) =0.
R

For I11;5, the Cauchy-Schwartz inequality gives

B dudt
|IIIlg| <c <// N t‘L|'Pnt<,O|2dxdt> (ﬂ |8t nt P 2 axr >
Ry H

So by Proposition 8 [I1112] < ¢|Q).
For I11,1, we write

I, = // N <A|| - (Aﬁ)2Q> Vbt - Va(u 0P W?
RY

RY T

+ // (45 = (AR)2q) Vally - Vo0 Pryip(02u?)
Ry
=: 111111 + 111112 + 111113.

Since N7 (8,5P;t<p) (z) < ckon for any & € F by the construction of F,

]am;t<p\ < ckon on the support of ¥. Therefore, [11115 can be estimated like
the term Ily and thus |I11112] < ¢|Q)|.
For I1113, note that Proposition [I0] implies

// 2 dxdt
RYT!

L0 Py —— < en ?1Q|. (5.18)
Il = / , ValbyP?) - A V.0 Py
R}

_ // O Vo (u202) - (4] = (A)q) Vadi Py
R

_ n 27,2 1% *
= /Li+1 Qntu v LHVratPntcp

_ %ﬂ,+1 antVz(u2W2) . ( r‘ — (Aﬁ*)QQ) Vmat'P;t(p =: IIIllgl —+ 1111132,
+

1/2
2 dxdt /
t

We write

By the Cauchy-Schwartz inequality, Lemma@ and (5.18)),

2
[II1I131] < ¢ // Ot dmdt //
R1+1 ]R"+

<cl@Q].

12 L E)tP*
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By (5.15)), |[I111132| is bounded by

CRoT) //
RY T

which is bounded by oJ + ¢|Q| using the same method of estimating I15.

Now it remains to estimate I11;11. Note that the integration is over the
support of ¥ instead of support of V¥, so we cannot use the same method as
estimating I1,. Like before, we only deal with the term involving A” (Aﬁ)QQ,
as the term with the symmetric matrix A is easier to estimate. We have

Ajj - (Aﬁ*)%?‘ Vo (u?P?)] | Vo0, Ppyp| t devdt,

11| = ‘// H)zQ)V Ont - Vo (u?) 0Py W°

. e a
<eclQ™ /Q/ [Vl (92 02 [0,P50] )
2
a N dt\ == o
< clQl (oJ+c/ ([ 78] 10Psel oo T ) d:c> .
RTL

a

(5.19)
We write
dt\ ==
/ (/ ‘V 9,7,5‘ ’at t@‘ bupp‘l’t> dx
dedt|® "
= sup \Y4 Gnt |at t<P| E supp‘I/

(e (R™) Ry t
el 72 <1

As before, let D} be the grid of dyadic cubes such that (5.10) holds. Then

il dadt
// +1 Vment |atp;tw’2£(x)]]-suppme
RY
g—k+1
E g dtd
B / /Qk ‘V Gnt’ |8t ﬁt(p‘ (x Lsuppw tJS (5.20)
k Q/GDTI

By Corollary |1, we bound ([5.20)) by

g—k+1
cnz Z (/Ql/zk1 |8t |2dydt>

k Q'eD]
2~ k+1

X/2k IQI

We now estimate the integral in the second line of (5.21)).

dtdz

)| lsuppwi

- (5.21)
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Let r = 1+¢ with € > 0 sufficiently small. We use Holder’s inequality, then
definition of 9nt, and Corollary |2 as well as the reverse Holder estimates for
Vg, to get

27t dtdz

/2% |5,|/ ’Vx%trlé(a:)msupr
/ (][ 2r/ dm) /v ( : |€(_’L‘)|Td$)1/r lsuppwﬂ

t
1/r
x)|" da:)

oK+l ) 1/ ) 1/ i@t
x / {(f, 1wepuetmaz) & (f 1967 do)  Haoe T
2—k Q' Q!

1/r zkl—l N\ 7
<c(f wara) [T wppetac et (£ opas)
Q/ % 2Q/ 2Q/

k

dt
+][ ‘V@| } supp ¥~

/r Eﬁ%T _
<ec (f |€(x)|" dx) / {][ |VIPnts0|2 dx
f B(xzo,mn27F)

k

1/r'
o B Loy gt
+n72 ][ |0, Pye @ da +][ IVsD|2dx}L&D7
B(xzg,m27%) B(zo,m27F) t

xYnt

where in the last inequality we have used (5.11]), with xg € F. Therefore, we
can bound this by

o—k+1

1/ N
‘ < € (2)]" dm) / NV Ppi@)(0)® + 0 N9 Pyu) (w0)?
Q' 2

-k

w20 (95) () % < i (et ar)
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So is bounded by
og—k+1 1/r
2 dydt
o X ([, [ e ) (f, or oo
Kk Qepp 2@ /27
o dt
1 T * 2
< S [ e [ ol G
R QeD) o—k—1
r 1r > " 2 dt
<en | M(|&]")(y) 0P ()] Sy
n O
r 1 o 2 dt a\
<on([ wtenoa) ([ ([ opewlT)
n » \Jo
Choosing ¢ = 5, the above is bounded by

2—a

e > e\ ==\ °
(L) T (L oot ) )
<Eell, g Q1T

where in the last step we have used Proposition [§] Combining these estimates

with (5.19), we obtain

% ~ a g ~
1] < el (o] + 2@ < 5T +21Ql.

This finishes the proof of Lemma 0

6 Proof of Uniqueness and Theorem

In this section, we prove the uniqueness part in the statement of Theorem
One can prove the uniqueness of LP Dirichlet problem in bounded domains
as in [I7] Theorem 1.7.7. But that argument can not be modified to work for
unbounded domains. We present here a different and simpler proof that works
in a rather general setting.

Recall that we have proved that for any cube Qo C R", wX@0 € A, (Qo),
which implies that there is some ¢ € (1,00) such that the Radon-Nikodym
derivative k(Xq,, -) satifies the reverse Holder inequality . We now show
that we have the following non-tangential maximal function estimate:

Lemma 13 Let p > ¢/, where q is the exponent in the reverse Hélder inequal-
ity @4). If f € LP(R™,dp) and uw(X = Jon FE(X,y)du(y), then

||NU||L;~(]Rn7dM) S Hf”LP(]R",du) : (6.1)

Moreover, u converges non-tangentially p- a.e. to f.
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Proof We first note that may be obtained as in the proof of Lemma
5.32 in [I2]. Indeed, the argument in [I2] relies only on Holder continuity of
solutions, Harnack principle, and comparison principle. The coefficients (in
BMO) do not affect the argument since the equation is not used explicitly. It
therefore suffices to show that u converges non-tangentially u-a.e. to f.

For any € > 0, choose fe € Co(R") such that [|f — fel|»(gn ,) < €. Define
ue(X) = [gn fe(y)k(X,y)dp(y). Then u. € C(R}™) and u. = f. on R™. We
note that the latter fact may be gleaned from the analogous fact on bounded
domains (see[I]]), the construction at the beginning of Section 2 (applied with

u = u,), and an equicontinuity argument using [I8] Lemma 3.9, and Lemma
4.5. So

lim ue(y,t) = fe(x VreR"
I'(z)>(y,t)—(x,0) (y ) f( )

Since we have the non-tangential convergence for a dense class, the non-
tangential convergence of u follows from (6.1) and a standard argument. In
fact, we have

limsup  |u(y,t) — f(z)] <IN (v —ue) (@) + |(f — fo) (z)] Vz eR"™
I(x)3(y,t)—(x,0)

For any A > 0, we apply Chebyshev’s inequality and (6.1]) to get

1 <{x eR": limsup  |u(y,t) — f(z)| > A})
I(@)3(y,t)—(2,0)
<p({z e R": N (u—ue)(x) > A2}) + p({z e R" [(f = fo) (x)] > A/2})

S (IN G = w) W gy + 1S — Sl )

5 )\—p ”f - feHI[),p(]Rn,du) 5 6)‘_p'

Since € > 0 is arbitrary, it shows that limp)5y.6)—(2,0) u(y,t) = f(z) for p-
a.e. z € R". a

The LP boundedness of the non-tangential maximal function implies cer-
tain decay properties. To be precise, we have the following

Lemma 14 Let u(x,t) be a function in RT‘l. If there exists some constant
C such that ||Nul[1pgay < C for some p > 0, then u satisfies the following
properties:

1. u(z,t)| < C't™ % for all (x,t) € R, where the constant C" only depends
onn and C.

2. For any € > 0, any 0 > 0, there exists some Ry = Ro(u,€,0) > 1 such that
for all |z| > R and t > 6, we have |u(z,t)| < e.
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Proof To see , we observe for any fixed (z,t) € Riﬂ, for all y € A(x,t),
(z,t) € I'(y). So we have
1

|u(x7t)|p < m Alet) Nu(y)Pdu(y) < C,CPt™".

We prove by contradiction. If this is not true, then there exist some ¢ > 0
and 0 > 0 such that for any k € N, we can find |zg| > k and ¢, > §, for which
|u(zk, tr)| > €. Since tr > 0, (x,ti) € I'(y) for all y € A(zy, ). This implies
that

Nu(y) > u(wg, ty) > € Vy € Awy,9).

Choose a subsequence x, so that the collection of surface balls { A(zy;,d)} is
pairwise disjoint. Then

cr> [ NP duty) > > /.

which yields a contradiction. O

duly) = Cn )y e"d" = oo,
(%k,6) =0

We now prove the uniqueness of the LP Dirichlet problem.
Proof of uniqueness. Fix ¢ so that k(X,-) € LY(R™) for all X € Ri“ as in
(2.4), and let p = #. We show that if u is a solution of (D),, that is,

Lu=0 in R},
u— f € LP(R™, du) non-tangentially p-a.e. on R™,
Nu € LP(R™, dy),

then
u(X) = /n 9(y)k(X,y)du(y) for some g € LP(R", du). (6.2)

Then by Lemma u converges non-tangentially u-a.e. to g. This implies that
w(X) = [, f(¥)k(X,y)du(y), which proves that the solution is unique. We
now show (6.2)).

For any m € N, set f,,(z) := u(z, L). Note that by the interior estimates
for weak solutions, f,, is continuous on R™. Moreover,

[ fmll Lo mny < i‘ig (s )l Lo gny < INullpp < o0 (6.3)
Since Nu € LP(R™), we can apply Lemma (2) and get
limoo fm(2) =0, ||fMHL°°(R") < 0. (6.4)
We define

U (z, 1) := - fm @k ((x,t),y) du(y), and 6, (z,t) := u(x,t+%)—um(x,t).



Elliptic operators having a BMO anti-symmetric part 57

Since fy, is continuous on R™ and satisfies ([6.4]), from the definition of elliptic
measures it follows that

||Um||Loo(Ri+1) < ||fm||La<>(Rn)~ (6.5)

Moreover, we claim that wu,, is a solution to the continuous Dirichlet prob-
lem, with data f,,; in particular, u,,(x,0) = f,,.(z) for all z € R™. To see
this, for R > 0 and large, let & be a smooth cut-off function defined on
R™, identically 1 in A(0, R), supported in A(0,2R), with 0 < & < 1. Set
fm,r = fm®Pr, and let u,, r be the elliptic measure solution with data f, r.
Then w,, r(-,0) = fm,r continuously, since the data belongs to Cy(R™). In
particular, w,, r(z,0) = fn(x) for all |x| < R. Given € > 0, we note that by
Lemma (2), |fm(x) = fm.r(x)] <, for all x € R™, provided that R is large
enough, hence also |um, r(z,t) — um(z,t)| <€, since elliptic measure has total
mass 1. The claim now follows. This means that

Om (2,0) =0 for all x € R™. (6.6)
Notice that §,, is a solution to Lv = 0 in erfl, which vanishes continuously
on {t = 0}. We claim that J,, = 0 in ]Rﬁ“. To prove this claim, we observe
that by the maximum principle, it suffices to show that

: 1 _
lim |u(z,t+ E)| + |um (z,t)| = 0.

|z|+t—00

For u(w, t+ %), this follows immediately from Lemma and our assumption
that Nu € LP(R™). To see that decay to 0 holds for w,,, we define fy, r, Um. g
as above. Given e > 0, fix R so that ||fm — fm,;ll e gn) < € hence also
||t — um,RHLOO(]Ri+1) < €. By Holder continuity at the boundary, we may

choose ¢ > 0 small enough that for |z| > 3R, and t < §, we have

|um7R($at)| S 0% fmlloo <6

and thus also |u,,(z,t)] < 2e. Moreover, with this value of § now fixed, it
follows immediately from (6.3)), the definition of u,, and (6.1)), and Lemma [14]
that

m [ (2, ) [1[5,00) () = 0.

|z]|4+t—00
We conclude that d,, = 0. In turn, the latter is equivalent to
1
u(’J),t+ E) = fm(y)k((x7t)ay)dﬂ(y)v Vm e N. (67)
]Rn

Since supy, || fmllpo@n) < [[Nullz, < oo, there is some g € LP(R™,du) and
{fm} such that f,,, converges to g weakly. Note that k(X,-) € LY(R"™, du)
(see (2.5), so by letting m' go to infinity in we obtain (6.2)). O

From the proof of uniqueness, one can see that we actually proved the
stronger result, Theorem [2| In fact, we did not use v — f € LP(R",du) non-
tangentially p-a.e. on R™ to obtain . Once we express u as in , we
apply Lemma [13] to conclude that the non-tangential limit of u exists u- a.e.
and is in LP(R™, dp).
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A Appendix: Weak solution of parabolic equations

Lemma 15 Suppose u,v € L% ((0,T), WH2(R™)) with dyu, v € L? ((O,T),W_I’Q(R")).
Then

(i) u € C([0,T],L*(R"));
(i) The mapping t — |lu(:,t)l| L2 (gny is absolutely continuous, with

d

a ”u("t)HiQGRH) = 2%(87&“(',15),u(~,t)>w,12’w1,2 for a.e. t e [OvT]

As a consequence,

%(u('ft)vv("t))LQ(Rn) = <atu("t)’v('7t)>W71,2ywl,2+<atﬁU('7t):u("t))W—1,27W1,2 a.e.

For the proof see, e.g., [8], Section 5.9.2, Theorem 3.

Suppose that A = A(z) = A%(z) + A%(z) is a real, n X n matrix, with A% being
symmetric, elliptic with constant A\g > 0, HASHLOO(DW) < )\51, and A% being anti-symmetric
and [|A%||lgyo(mny < Ao-

Proposition 13 For any ug € L?(R™), the initial value problem

{(‘%u —div(AVu) =0 in R™ x (0,00), (A1)

u(z,0) = uo(x),
has a unique weak solution u(x,t) = e~ L (ug)(x). Here, div = divy and V = V.
Proof Existence.
Since the domain of L (denoted by D(L)) is dense in W12(R"), and thus dense in
L?(R™), we can find a sequence {ug,} C D(L) such that ug . converges to ug in L?(R™).

Denote ue(z,t) := e~ *(ug,¢)(z). Then by semigroup theory,

duc + Luc =0 in L2(R™) Vit >0. (A.2)

Forany 0 < 7 < T, and any ¢ € L2 ((0,T), Wh2(R™)), with 8y € L2 ((0, T),W*LQ(R”)>,
(A.2) implies
T T
/ (Otuie, ) 2 dt + / (Lue, @) 2 dt = 0. (A.3)
T T

Since drue € L ((0,00), L2(R™)) (see [I3] Theorem 4.9), and by Lemma (ii), (A.3)

can be written as
— T
/ ue(z, T)(x, T)dx +/ AVu, - Vpdzdt
R™ T R™

. T
:/ ue(va)SO(va)der/ <at507u€>v’\[7—1,27wl,2' (A4)

Notice that ue — u in C((r,T), WLH2(R")) (see [I3] Theorem 4.9), and so letting e — 01
we get

—_— T —
/ u(z, T)p(x, T)dx + / AVu - Vodzdt
R? r Jrn

[ Ti
= [ w e+ [ Beigora s (A5)
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Letting ¢ = uc in (A.4) and applying Lemma [L5] (ii) again, one obtains

T
/ lue (2, T)|? dz + 2§R/ AVuc - Vuedzdt = / [ue(z, 7)|? d.
R7l T R7l R”L

By ellipticity and the definition of u., we have

T 2 —7L 2
2)\0/r /]R” [Vue|® dedt < He (uo,e) 2@
<2 HGJL(UO,E - uo)’ ;(Rn) +2 He”L(uo)‘ ;(Rn) .

Letting € — 0%, 7 — 0%, T — oo, we obtain [;° [zn [Vul? dedt < A5 [luol|32 < co. This
enables us to take limit as 7 go to 01 on both sides of (A.5)) and get
- T _ N T____
/ u(z, T)p(z, T)doc+/ AVu-Veodrdt = / u(z,O)@(m,O)der/ (8t<p,u>‘7‘7_112 w2
n 0 JR™ R™ 0 ’
i.e. u(z,t) is a weak solution of (A.1)).

Uniqueness.

Let v be a weak solution of (A.1)). We first show that d;v € L? ((O,T),W’l’z(]l{”))

for any T' € (0, 00). Define a semilinear functional F' on L? ([0, 7], W1:2(R")) as follows: for
any ¢ € L2 ([0,T], WL2(R")), let

T
(F, @) := / AV - Vipdzdt.
0 R'Vl

Obviously,
KFe)| <C ||VUHL2([0,T],L2(R7L)) HVS/’HLZ([O,T],LZ(RTL)) :

Then by Riesz representation theorem, there exists w(z,t) € L2 ([0, 7], W!2(R™)) such that

T

(F,¢) = / / (Vw - Vo + wp)dxdt
o Jrn
T
- /0 (= 2w (-, 1) + w1), 0) 1.2 1.2t
and
I=Aw il (0,1 -12rny) S Iz o wra@ny) < CIVPIL2 (o1, L2 m)) -

Choose p(x,t) = W(z)n(t) as a test function in (A1), where ¥ € WL2(R?), n €
C4 ((0,T)). Then since v is a weak solution, we have
T T r .
/ (W0(-£),7) 2 n’(t)dt:/ AV - VOn(t)dadt
Jo Jo Jrn

T
= [ At + 0. Py

Since ¥ € W12(R™) is arbitrary,

T T —
/ o(z, O (£)dt = / (Aw+ wyn(t)dt  in W-L2(RM),
0 0
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which gives Ov = Aw — w € L? ((O,T),W*1v2(R”)>. Therefore, we can take ¢ = v as a
test function in (A.1) and get

T T
/ \v(x,:r)|2+/ / Aw-vwzdt=/ B0, D12 .o +/ lo(z, 0)|2 da.
RrR™ 0 RrR™ 0 ’ JR™

Using this and Lemma (ii), we have

T
/ oz, T)|? + 2§R/ AV - Vudzdt = / |v(z,0)|2 da.
R o Jrn R®

So we get

T
/ [o(z, T)| + 2)\0/ / |Vo|? dadt < / [v(z,0)]? de,
R™ o Jrn Rn

which implies that if v(x,0) = 0 then v = 0. o

Remark 3 Let u(z,t) be the weak solution to (A.l)). Since the coefficients are indepen-
dent of t, a standard argument shows that Oiu is a weak solution to drv — div(AVv) =0
in R™ x (0,00). That is, for any T > 0, any ¢ € L% ([0,T], WHZ(R")) with Op €

L? ([O,T],W’l’Q(R”)) and ¢ =0 when 0 <t < ¢ for some 0<e<T,

- T r . T____
Oru(z, T)p(z, T)dx +/ AV (0¢u) - Vipdadt = / (Ocp, 8tu>ﬁ/*1,2 W1,2dt.
Rn o Jrn 0 ’

Moreover, since Olu € L ((0,00), L2(R™)) and 9!Vu € L ((0,00), L2(R™)) for any

1 € N, one can show that for any Il € N, 8lu is a weak solution to v — div(AVv) = 0 in
R™ x (0, 00).
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