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Abstract The present paper establishes the first result on the absolute conti-
nuity of elliptic measure with respect to the Lebesgue measure for a divergence
form elliptic operator with non-smooth coefficients that have a BMO anti-
symmetric part. In particular, the coefficients are not necessarily bounded.
We prove that the Dirichlet problem for elliptic equation div(A∇u) = 0 in
the upper half-space (x, t) ∈ Rn+1

+ is uniquely solvable when n ≥ 2 and the
boundary data is in Lp(Rn, dx) for some p ∈ (1,∞). This result is equivalent
to saying that the elliptic measure associated to L belongs to the A∞ class
with respect to the Lebesgue measure dx, a quantitative version of absolute
continuity.
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1 Introduction and statement of main results

Motivated by questions about the behavior of solutions of elliptic and parabolic
equations with low regularity drift terms, Seregin, Silvestre, Šverák, and Zlatoš
([22]) investigated equations such as −∆u+c·∇u = 0 and ∂tu+c·∇u−∆u = 0,
where c is a divergence-free vector field in Rn. They discovered that the
divergence-free condition can be utilized to relax the regularity assumptions on
c under which one can obtain the Harnack inequality and other regularity re-
sults for solutions. It turns out that the interior regularity theory of De Giorgi,
Nash, and Moser can be carried over to elliptic equations with c ∈ BMO−1,
and to parabolic equations with c ∈ L∞(BMO−1). Generalizing to elliptic or
parabolic equations in divergence form, this condition is equivalent to assuming
that the coefficient matrix A of the operator L = − div(A∇) can be decom-
posed into an L∞ elliptic symmetric part and an unbounded anti-symmetric
part in a certain function space. To be precise, the anti-symmetric part should
belong to the John-Nirenberg space BMO (bounded mean oscillation) in the
elliptic case, and to L∞(BMO) in the parabolic case. The space BMO plays a
key role in two ways. First, this space has the right scaling properties which
arise naturally in the iterative arguments of De Giorgi-Nash-Moser. Secondly,
the BMO condition on the anti-symmetric part of the matrix enables one to
properly define weak solutions. This latter fact follows essentially from the
div-curl lemma appearing in the theory of compensated compactness ([6]),
and the details can be found in [22] or [18].

The interior regularity results of Seregin, Silvestre, Šverák, and Zlatoš lead
naturally to questions about boundary regularity. In [18], the second and the
fourth authors studied the boundary behavior of weak solutions. It turns out
that many results for elliptic operators with bounded, measurable coefficients
can be extended to this setting. For example, they proved the boundary Hölder
regularity of the solution, established the existence of the elliptic measure ω
associated to these operators, and offered multiple characterizations of the
mutual absolute continuity of the elliptic measure and the surface measure
in Lipschitz domains. This work laid out the background necessary to launch
the investigation into boundary value problems for elliptic operators having a
BMO anti-symmetric part.

In the present paper we establish the first result pertaining to absolute
continuity of the elliptic measure for operators with BMO anti-symmetric part
and well-posedness of the Dirichlet boundary value problem with Lp data.

In order to frame our results in the context of the currently existing el-
liptic theory, let us review some historical milestones. In the middle of the
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20th century the theory of boundary value problems mainly concentrated on
the case when coefficients of the underlying equations and domains exhibit
some amount of smoothness. The past 30-40 years have brought great devel-
opments in the study of elliptic measure and boundary value problems for
operators with non-smooth bounded measurable coefficients. The background
theory of weak solutions, Green function estimates, maximum principle, and
similar results were extended to all divergence form elliptic operators with
bounded measurable coefficients. It turned out, however, that the question
of absolute continuity of the resulting elliptic measure with respect to the
Lebesgue measure on the boundary, or, equivalently, of well-posedness of the
Dirichlet boundary value problem with boundary data in Lp, is much more
delicate. First of all, examples have been found that show such results can
not be expected for all elliptic operators and some regularity of the coeffi-
cients in the transversal direction to the boundary is, in fact, necessary [5],
[20]. In light of these examples, the initial efforts concentrated on the study
of operators whose coefficients are constant in the transverse direction to the
boundary. Later results have extended the theory to the optimal regularity
of the coefficients, expressed in terms of a Carleson measure condition. In
this survey, and in this paper, we shall concentrate on the fundamental case
where the domain is the upper half-space Rn+1

+ = {(x, t) ∈ Rn × (0,∞)} and
the coefficients of the operator are independent of the transverse direction,
that is, t-independent. The first breakthrough in this direction was the 1981
paper of Jerison and Kenig [14] which established well-posedness of the Dirich-
let problem and the absolute continuity of the elliptic measure for operators
with symmetric bounded measurable t-independent coefficients on Rn+1

+ and,
by a change of variables, above a graph of a Lipschitz function. A seemingly
innocent assumption of symmetry turned out to be critical and it took 20
years to extend these results to non-symmetric operators in dimension 2 [16]
and more than 30 years to non-symmetric operators in any dimension [10].
The 1981 work of Jerison and Kenig relied on the beautiful and powerful
Rellich identity which roughly speaking says that the L2 norms of the nor-
mal and tangential derivatives of solutions on the boundary are comparable.
It is proved by an integration by parts argument invoking the symmetry of
the coefficients. However, not only the method of the proof of the Rellich
identity, but the L2 equivalence of the norms of the normal and tangential
trace of the solution itself fails when the coefficients are not necessarily sym-
metric. This has been demonstrated in [16], where the authors established
extremely useful characterizations of solvability of the Dirichlet problem in
Lp in terms of the square function/non-tangential maximal function estimates
(in any dimension), a method that made possible many later developments
including the present paper, and resolved the question of absolute continuity
of elliptic measure with respect to the Lebesgue measure for t-independent
non-symmetric operators in dimension 2. Unfortunately, many ingredients in
the argument in [16] rely heavily on the space being 2 dimensional. For exam-
ple, the 2-d case relies on a change of variable argument that does not carry
forward to higher dimensions. Only 15 years later these results have been fi-
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nally extended to multidimensional setting. In [10] the authors established
the square function/non-tangential maximal function estimates for solutions
to the t-independent, non necessarily symmetric, operators on Rn+1

+ for all
n, and as a result, absolute continuity of the elliptic measure with respect
to the Lebesgue measure and well-posedness of the Dirichlet boundary value
problem in Lp. The method involved a new pull-back/push-forward sequence
based on the Hodge decomposition of the coefficients, the celebrated solution
to the Kato problem [2], the square function/non-tangential maximal function
estimates for the heat semigroup, and many other elements. The method has
later been streamlined in [1] to avoid an explicit pull-back/push-forward on
Lipschitz domain – an important development in our context.

As we mentioned above, all of these results as well as many elements of
the surrounding elliptic theory have been restricted to the context of bounded
measurable coefficients. The present paper pioneers the consideration of the
BMO anti-symmetric part, an optimal structural assumption on the coeffi-
cients. The lack of boundedness invalidates many of the arguments that we
have described above. We shall discuss all the new difficulties and some critical
junctures of our proof in Section 2, after the statement of Theorem 3. These
new difficulties include a new Hodge decomposition beyond L2, and new esti-
mates for the Riesz transforms, square functions and non-tangential maximal
functions associated to the heat semigroup. Changes of variables and other
techniques that preserved the boundedness properties of coefficients are lost
in the presence of BMO coefficients. There are many other issues which require
a more technical discussion and we refer an interested reader to Section 2.

We now rigorously state our results. Let A = A(x) be an (n+ 1)× (n+ 1)
matrix of real, t-independent coefficients such that

1. The symmetric part As = 1
2 (A+ Aᵀ) =

(
Asij(x)

)
is L∞(Rn), and satisfies

the ellipticity condition

λ0 |ξ|2 ≤ 〈As(x)ξ, ξ〉 =

n+1∑
i,j=1

Asij(x)ξiξj for all ξ ∈ Rn+1, x ∈ Rn,

and ‖As‖L∞(Rn) ≤ λ
−1
0 ,

(1.1)

for some 0 < λ0 < 1.
2. The anti-symmetric part Aa = 1

2 (A − Aᵀ) = (Aaij(x)) is in the space
BMO(Rn), with

∥∥Aaij∥∥BMO
:= sup

Q⊂Rn

 
Q

∣∣Aaij − (Aaij)Q
∣∣ dx ≤ Λ0 (1.2)

for some Λ0 > 0. Here (f)Q denotes the average 1
|Q|

´
Q
f(x)dx.

We define in Rn+1 a second order divergence form operator

L = − divx,t(A(x)∇x,t), (1.3)
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which is interpreted in the sense of maximal accretive operators via sesquilin-
iear form. We say that u is a weak solution to the equation Lu = 0 in Rn+1

+ if

u ∈W 1,2
loc (Rn+1

+ ) and ¨
Rn+1

+

A∇u · ∇v = 0 (1.4)

for all v ∈ C∞0 (Rn+1
+ ).

We consider the Lp Dirichlet problem (D)p for the equation div(A∇u) = 0
in the upper half-space Rn+1

+ when n ≥ 2. We shall denote by µ the Lebesgue
measure in Rn. Sometimes we simply denote it by dx, and the meaning should
be clear from context. For p ∈ (1,∞), we say the Dirichlet problem for
Lp(Rn, dµ) data is solvable if for each f ∈ Lp(Rn, dµ), there is a solution
u ∈W 1,2

loc (Rn+1
+ ) such that

(D)p


Lu = 0 in Rn+1

+ ,

u→ f ∈ Lp(Rn, dµ) non-tangentially µ-a.e. on Rn

Nu ∈ Lp(Rn, dµ).

Here, N(u) denotes the non-tangential maximal function of u:

N(u)(x) := sup
(y,t):|x−y|<t

|u(y, t)| , (1.5)

and u converges to f non-tangentially means

lim
(y,t)→(x,0),(y,t)∈Γ (x)

u(y, t) = f(x),

where Γ (x) = {(y, t) ∈ Rn × R+ : |y − x| < t}.
The main result of this paper is that the Lp Dirichlet problem for L in

Rn+1
+ is uniquely solvable for some p ∈ (1,∞) sufficiently large:

Theorem 1 Let A be a matrix of real, t-independent coefficients satisfying
(1.1) and (1.2). Then for some p ∈ (1,∞), for each f ∈ Lp(Rn, µ), there
exists a unique u that solves (D)p for L = −div(A∇) in the upper half-space
Rn+1

+ when n ≥ 2.

This result is equivalent to quantitative absolute continuity of elliptic mea-
sure with respect to the Lebesgue measure, the A∞ property - see the next
Section.

For the uniqueness part of the statement, we actually prove the following
Fatou-type result.

Theorem 2 Let A be an (n + 1) × (n + 1) matrix of real coefficients. As-
sume that the symmetric part of A is bounded and elliptic, and that the anti-
symmetric part is in the space BMO(Rn+1

+ ). Assume that (D)p is solvable for

L = −div(A∇) in Rn+1
+ for some p ∈ (1,∞). Suppose that u satisfies{

Lu = 0 in Rn+1
+ ,

Nu ∈ Lp(Rn, dµ).
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Then, the non-tangential limit of u exists a.e. in Rn (and is denoted by u|N.T.
∂Rn+1

+

),

u|N.T.
∂Rn+1

+

∈ Lp(Rn, dµ), and

u(X) =

ˆ
Rn
u|N.T.
∂Rn+1

+

(y)k(X, y)dµ(y),

where k(X, y) is defined in (2.2).

One can see that this result is stronger than uniqueness. Notice that in this
theorem, we do not assume that A is t-independent. Moreover, for u, in con-
trast to a solution to (D)p, we do not assume a priori that it converges non-
tangentially.

2 An overview of the proof of Theorem 1

As mentioned in the introduction, it is shown in [15] that some Carleson mea-
sure estimate implies some quantitative mutual absolute continuity, namely,
the A∞ condition, between the elliptic measure associated to an elliptic oper-
ator with real, L∞ coefficients and the Lebesgue measure. In [18], it is verified
that this result also holds for elliptic operators having a BMO anti-symmetric
part. To understand the precise statement and its connection to Theorem 1,
we first need some notations and definitions.

For a set E ⊂ Rn, we denote its Lebesgue measure µ(E) by |E|. For any
cube Q ⊂ Rn, let xQ and l(Q) be the center and side length of Q, respectively.
Let XQ := (xQ, l(Q)) denote the corkscrew point in Rn+1

+ relative to Q. For

x ∈ Rn and r > 0, we use T (x, r) :=
{
Y ∈ Rn+1

+ : |Y − (x, 0)| < r
}

to denote

half balls in Rn+1
+ , and ∆(x, r) := {y ∈ Rn : |y − x| < r} to denote balls in Rn.

We shall simply write TR and ∆R for T (0, R) and ∆(0, R), respectively. We
use C0(Ω) to denote the set of continuous functions with compact support on
Ω. W 1,2

0 (Ω) is defined to be the closure of C∞0 (Ω) in W 1,2(Ω).

In a bounded Lipschitz domain Ω, for each X ∈ Ω, the elliptic measure ωX

is constructed in [18] to be the measure on ∂Ω, such that u(X) =
´
∂Ω

hdωX

solves the Dirichlet problem for continuous boundary data h ∈ C(∂Ω) in the
sense that div(A∇u) = 0 in Ω, with u ∈W 1,2

loc (Ω) ∩ C(Ω), and u = h on ∂Ω.

The elliptic measure on Rn can be defined as follows. Let f ∈ C0(Rn) with
supp f ⊂ ∆R0 for some R0 > 0. We define an extension of f (still denoted by
f) which is equal to 0 on Rn+1

+ \TR0
. Then for all R ≥ R0, f± ∈ C(∂TR), where

f± := max {±f, 0}. For each X ∈ TR, let ωXR be the elliptic measure on ∂TR.
Then u±R(X) :=

´
∂TR

f±dωXR solves the Dirichlet problem in TR with boundary

data f± for all R ≥ R0. For any R0 ≤ R1 ≤ R2 and X ∈ TR1
, the maximum

principle ([18] Lemma 4.7) implies that u±R1
(X) ≤ u±R2

(X) ≤ ‖f±‖L∞(Rn).
Therefore, we can define u as the monotone limit

u(X) := lim
R→∞

(
u+R(X)− u−R(X)

)
∀X ∈ Rn+1

+ .
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And we have
‖u‖L∞(Rn+1

+ ) ≤ ‖f‖L∞(Rn) . (2.1)

The mapping f 7→ u(X) is a positive bounded linear functional on C0(Rn),
and thus can be extended to a positive bounded linear functional on the set
of all continuous functions on Rn that converge to 0 uniformly at infinity.
The Riesz Representation Theorem implies that there exists a regular Borel
measure ωX on Rn such that u(X) =

´
Rn fdω

X . This ωX is defined to be
the elliptic measure on Rn. One can show, by Hölder continuity of solutions
and Caccioppoli’s inequality, that u ∈ W 1,2

loc (Rn+1
+ ) and solves the Dirichlet

problem in Rn+1
+ with boundary data f ∈ C0(Rn).

For any X, X0 ∈ Rn+1
+ , the Harnack principle implies that ωX and ωX0

are mutually absolute continuous. Define the kernel function K(X0, X, y) to

be the Radon-Nikodym derivative K(X0, X, y) := dωX

dωX0
(y). And define

k(X, y) :=
dωX

dµ
(y), for y ∈ Rn. (2.2)

Note that

k(X, y) = K(X0, X, y)k(X0, y) for any X,X0 ∈ Rn+1
+ , y ∈ Rn.

Definition 1 (A∞) For any cube Q0 ⊂ Rn, we say that a non-negative Borel
measure ω belongs to A∞(Q0) (or A∞(dµ)) with respect to the Lebesgue mea-
sure dµ, if there are positive constants C and θ such that for every cube Q ⊂ Q0

(or Q ⊂ Rn, respectively), and every Borel set E ⊂ Q,

ω(E) ≤ C
(
|E|
|Q|

)θ
ω(Q),

where C and θ are independent of E and Q.

We note that in the sequel, we shall actually establish this local A∞ property
in a scale-invariant way, that is, with constants that are independent of Q0

(see Theorem 3).

Lemma 1 ([15] Corollary 3.2, [18] Theorem 8.5) Assume that A satis-
fies (1.1) and (1.2) in Rn+1

+ , and define L as in (1.3). Assume that there is
some uniform constant C <∞ such that for all Borel sets H ⊂ Rn, the weak
solution u to the Dirichlet problem{

Lu = 0 in Rn+1
+

u = χH on ∂Rn+1
+

satisfies the following Carleson bound

sup
Q⊂Rn

1

|Q|

ˆ l(Q)

0

ˆ
Q

|∇u(x, t)|2 t dx ≤ C. (2.3)

Here l(Q) denotes the side length of the cube Q. Then for any cube Q0 ⊂ Rn,
ωXQ0 ∈ A∞(Q0).
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It is well-known from the general theory of weights that the A∞ condition
ωXQ0 ∈ A∞(Q0) implies that there is some q ∈ (1,∞) such that k(XQ0 , ·)
satisfies the following reverse Hölder inequality: for any ∆ ⊂ Q0,(

1

|∆|

ˆ
∆

k(XQ0
, y)qdµ(y)

)1/q

.
1

|∆|

ˆ
∆

k(XQ0
, y)dµ(y), (2.4)

where the implicit constant depends only on λ, Λ and n. Moreover, by esti-
mates for the kernel function K, one can show that

for any X = (x, t) ∈ Rn+1
+ , k(X, ·) ∈ Lq(Rn, dµ), (2.5)

where q is the same as in (2.4). The proof can be found in [12], where these
results are proved for degenerate elliptic operators in the upper half-space. The
argument of [12] applies to the operators under discussion. We also remark that
for bounded (Lipschitz) domains, the kernel function estimates used to prove
(2.5) for operators with L∞ coefficients can be found in [17] and [4], while for
elliptic operators with BMO anti-symmetric part these are verified in [18].

It is known that (2.4) yields the solvability of Lp Dirichlet problem, with
p ≥ q′ := q

q−1 . See e.g. [17] Theorem 1.7.3, or [12] for this argument. Therefore,
to prove the existence part of Theorem 1, it suffices to show the Carleson
measure estimate (2.3). Indeed, we prove the following:

Theorem 3 Let A be a matrix of real, t-independent coefficients satisfying
(1.1) and (1.2). Let L be defined as (1.3). Then any bounded weak solution u
to L in Rn+1

+ with ‖u‖L∞ ≤ 1 satisfies the estimate

ˆ l(Q)

0

ˆ
Q

|∇u(x, t)|2 t dx . |Q| , (2.6)

for any cube Q ⊂ Rn, and the implicit constant depends only on the ellipticity
constants and the BMO semi-norm. And thus for any cube Q0 ⊂ Rn, the ellip-
tic measure ωXQ0 ∈ A∞(Q0) with constants depending only on the ellipticity
constant and the BMO semi-norm.

There are many difficulties when the coefficients are not L∞. We illustrate
them by first taking a closer look at the structure of the matrix A. We write

A =

[
A|| b

c d

]
,

where A|| denotes the n × n submatrix of A with entries (A||)i,j , 1 ≤ j ≤
n, b denotes the column vector (Ai,n+1)1≤i≤n, c denotes the row vector
(An+1,j)1≤j≤n, and d = An+1,n+1.

We observe that if the coefficients are in L∞, and in addition, divx c = 0,
then the Carleson measure estimate (2.6) follows simply from an integration
by parts argument. But even in this case, when having BMO coefficients,
difficulties arise. For example, when the coefficients could be in BMO, we
cannot bound the integrals

˜
Rn+1

+
A∇u ·∇Ψ(uΨ t)dxdt and

˜
Rn+1

+
c ·∇xΨu2Ψ ,
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which appear from integration by parts. Here, Ψ is a cutoff function that is
supported in the box 2Q×(ε, l(Q)) and equals to 1 in Q×(ε, l(Q)). To deal with
this issue, we shall work with weak solutions to the operator L0 = −divA0∇,
where A0 is defined in (5.3). We observe in Lemma 12 that a weak solution of
L is also a weak solution of L0. This observation enables us to work with the
equation L0u = 0 in Rn+1

+ , for which we can control the BMO coefficients by
the John-Nirenberg inequality.

When divx c 6= 0, the situation is more complicated, even when coef-
ficients are in L∞. We define an n-dimensional divergence form operator
L|| := divA||∇, and its adjoint L∗|| := −divA∗||∇. We highlight three in-
gredients in the proof of the A∞ condition for elliptic measure associated to
operators with L∞, t-independent coefficients in [10]:

1. An adapted Hodge decomposition of c and b.
2. Lp estimates for square functions involving the “ellipticized” heat semi-

group Pt := e−t
2L|| associated to L||, and Pt := e−t

2L∗|| . Some of these
estimates reply heavily on the solution to the Kato problem.

3. Lp estimates for the non-tangential maximal function involving Pt and P∗t ,
which enables one to construct a set F with desired properties.

None of these ingredients comes for free when we move to the elliptic operators
having a BMO anti-symmetric part. But fortunately, in a recent paper ([13]),
we were able to obtain the desired Lp estimates for square functions involving
Pt and P∗t . The arguments for the Lp estimates rely on the Lp estimate for
the square root operator

√
L, which is also derived in [13]. We note here that

in [7], the Kato problem, or the L2 estimate for
√
L, was solved for elliptic

operators having a BMO anti-symmetric part. Previously, the Kato conjecture
was proved for operators having the Gaussian property ([11]) and for elliptic
operators in divergence form with complex, bounded coefficients ([2]).

In Section 3.3, we deal with the Hodge decomposition. We point out that
we need a W 1,2+ε Hodge decomposition because the BMO coefficients require
higher integrability, while for L∞ coefficients, a W 1,2 Hodge decomposition
suffices (see [12]). The Lp estimates for the non-tangential maximal function
involving Pt and P∗t are presented in Section 3.6.

2.1 Further reductions of the statement

Recall that our goal is to derive the Carleson measure estimate (2.6). Note
that this formulation allows us to assume that A is smooth as long as the
bounds do not depend on the regularity of the coefficients.

It turns out that we do not need to show (2.6) holds for integral over all of
the cube Q, but only on a subset F of Q that has a big portion of the measure
of Q. To be precise, we have the following lemma.

Lemma 2 Let u be a weak solution to L in Rn+1
+ . Assume that there is a

uniform constant c, and, for each cube, Q ⊂ Rn there is a Borel set F ⊂ Q,
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with |F | ≥ c |Q|, such that

ˆ l(Q)

0

ˆ
F

|∂tu(x, t)|2 t dx . |Q| , (2.7)

with the implicit constant depending on c, ‖u‖L∞ , the ellipticity constants and
the BMO semi-norm only, in particular, independent of Q and F .

Then u satisfies the Carleson measure estimate (2.6).

The proof of Lemma 2 requires two steps of reduction. First, one can show
by integration by parts and the Caccioppoli inequality on Whitney cubes that

ˆ l(Q)

0

ˆ
Q

|∇u(x, t)|2 t dxdt .
ˆ 2l(Q)

0

ˆ
2Q

|∂tu(x, t)|2 t dxdt+ |Q| . (2.8)

The details can be found in [10].
Secondly, since the coefficients are independent of t, ∂tu is also a weak

solution of L (see Appendix A, Remark 3), and thus ∂tu satisfies Harnack
Principle and interior Hölder estimates (see [18]). This allows us to apply a
well-known result for Carleson measures (see, e.g., [3] Lemma 2.14), to deduce
from (2.7) an apparently stronger bound

ˆ l(Q)

0

ˆ
Q

|∂tu(x, t)|2 t dx . |Q| .

Combining this with (2.8), Lemma 2 follows. This lemma gives us the freedom
to choose the set F .

The construction of the set F is presented in Section 4.1. Basically, we
will construct F such that on the set F , the non-tangential maximal function

involving Pt = e−t
2L|| and P∗t = e−t

2L∗|| , as well as some other maximal
functions are small (see (4.2)). We will exploit this property of the set F in
the proof of the Carleson measure estimate. Namely, as long as a term can be
bounded by maximal functions showing up in the definition of F , then there
is hope to control that term with desired bounds.

It turns out that to prove the Carleson measure estimate (2.7), it suffices
to prove the following main lemma (see Section 5).

Lemma 3 (Main Lemma) Let σ, η ∈ (0, 1). Then there exists some finite
constant c = c(λ0, Λ0, n) > 0, and some finite constant c̃ = c̃(σ, η, λ0, Λ0, n) >
0, such that

Jη,ε ≤ (σ + cη)Jη,ε + c̃ |Q| .

Here,

Jη,ε :=

¨
Rn+1

+

A0∇u · ∇uΨ2t dxdt

where u is a bounded weak solution to Lu = 0 (and thus also a weak solution
to L0u = 0) in Rn+1

+ with ‖u‖L∞ ≤ 1, and Ψ = Ψη,ε is a cut-off function
defined in Section 4.3.
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The main lemma is proved in Section 5. In the proof, a typical way to deal
with the BMO coefficients is to use the anti-symmetry, Hölder’s inequality, and
John-Nirenberg’s inequality. This method inevitably increases the exponent
of the integrand, and thus requires some L2+ε estimates. Besides the W 1,2+ε

Hodge decomposition we mentioned earlier, it is crucial to have an Lp estimate
for the cut-off function Ψ (see Lemma 10), and Lp estimates for the non-
tangential maximal functions and square functions that involve semigroups,
for p > 2.

3 Technical tools

3.1 Some useful results in PDE

We shall frequently use two results from [9]. We include them here for reader’s
convenience.

The first one is useful in proving reverse Hölder type inequalities.

Lemma 4 ([9] Chapter V Proposition 1.1) Let Q be a cube in Rn. Let
g ∈ Lq(Q), q > 1, and f ∈ Ls(Q), s > q, be two nonnegative functions.
Suppose

 
QR(x0)

gqdx ≤ b

( 
Q2R(x0)

gdx

)q
+

 
Q2R(x0)

fqdx+ θ

 
Q2R(x0)

gqdx

for each x0 ∈ Q and each R < min
{

1
2 dist(x0, ∂Q), R0

}
, where R0, b, θ are

constants with b > 1, R0 > 0, 0 ≤ θ < 1. Then g ∈ Lploc (Q) for p ∈ [q, q + ε)
and ( 

QR

gpdx

)1/p

≤ c
(( 

Q2R

gqdx
)1/q

+
( 

Q2R

fpdx
)1/p)

for Q2R ⊂ Q, R < R0, where c and ε are positive constants depending only on
b, θ, q, n (and s).

In applications, if one can show that

 
QR(x0)

|∇u|2 dx

≤ b

( 
Q2R(x0)

|∇u|2r dx

)1/r

+

 
Q2R(x0)

|f |2 dx+ θ

 
Q2R(x0)

|∇u|2 dx

for each x0 ∈ Q and each R < min
{

1
2 dist(x0, ∂Q), R0

}
, where b > 1, r ∈ (0, 1)

and θ ∈ [0, 1) are some constants, then by letting g = |∇u|2r, q = 1
r and f be

|f |2r in Lemma 4, one obtains that |∇u| ∈ Lploc (Q) for p ∈ [2, 2 + ε) and( 
QR

|∇u|p dx
)1/p

≤ c

(( 
Q2R

|∇u|2 dx
)1/2

+

( 
Q2R

|f |p dx
)1/p

)
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for Q2R ⊂ Q, R < R0, where c and ε are positive constants depending only on
b, θ, r and n.

Lemma 5 ([9] Chapter V Lemma 3.1) Let f(t) be a nonnegative bounded
function defined in [r0, r1], r0 ≥ 0. Suppose that for r0 ≤ t < s ≤ r1 we have

f(t) ≤
(
A(s− t)−α +B

)
+ θf(s)

where A,B, α, θ are nonnegative constants with 0 ≤ θ < 1. Then for all r0 ≤
ρ < R ≤ r1 we have

f(ρ) ≤ c
(
A(R− ρ)−α +B

)
where c is a constant depending on α and θ.

3.2 Hardy Norms

Definition 2 We say f ∈ L1(Rn) is in the real Hardy space H1(Rn) if

‖f‖H1(Rn) :=

∥∥∥∥sup
t>0
|ht ∗ f |

∥∥∥∥
L1(Rn)

<∞,

where ht(x) = 1
tnh

(
x
t

)
, and h is any smooth non-negative function on Rn,

with supph ⊂ B1(0) such that
´
Rn h(x)dx = 1.

Proposition 1 Let 1 < p < ∞. Let u ∈ Ẇ 1,p(Rn), v ∈ Ẇ 1,p′(Rn). Then
∂ju∂iv − ∂iu∂jv ∈ H1(Rn) for any 1 ≤ i, j ≤ n, and

‖∂ju∂iv − ∂iu∂jv‖H1(Rn) . ‖∇u‖Lp ‖∇v‖Lp′ , (3.1)

where the implicit constant depends only on p and dimension.

We refer to [18] and [22] for its proof.

Proposition 2 Let 1 < p < ∞. Let u ∈ Ẇ 1,p(Rn), v ∈ Ẇ 1,p′(Rn). Then
∂i(uv) ∈ H1(Rn) for any 1 ≤ i ≤ n with

‖∂i(uv)‖H1(Rn) . ‖u‖Lp ‖∇v‖Lp′ + ‖∇u‖Lp ‖v‖Lp′ , (3.2)

where the implicit constant depends only on p and dimension.

Proposition 3 Let u, v ∈ W 1,2(Rn), and ϕ be a Lipschitz function in Rn.
Then ∂j(uv)∂iϕ− ∂i(uv)∂jϕ ∈ H1(Rn) for any 1 ≤ i, j ≤ n, and

‖∂j(uv)∂iϕ− ∂i(uv)∂jϕ‖H1(Rn) . ‖u |∇ϕ|‖L2 ‖∇v‖L2 + ‖v‖L2 ‖|∇u| |∇ϕ|‖L2 ,

or

‖∂j(uv)∂iϕ− ∂i(uv)∂jϕ‖H1(Rn)

. ‖∇ϕ‖L∞(Rn)

(
‖u‖L2 ‖∇v‖L2 + ‖v‖L2 ‖∇u‖L2

)
,

where the implicit constant depends only on dimension.

The proofs for Proposition 2 and 3 can be found in [13].
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3.3 Hodge Decomposition

Recall that we write the matrix A = A(x) as follows

A =

[
A|| b

c d

]
,

where A|| is the n× n submatrix of A, b is a n× 1 vector, c is a 1× n vector,
d is a scalar function. We consider the symmetric part As and anti-symmetric
part Aa of A:

A = As +Aa :=

[
As|| bs

cs d

]
+

[
Aa|| ba

ca 0

]
.

We assume that As is L∞ and elliptic, with the ellipticity constant λ0 and
‖As‖∞ ≤ λ

−1
0 , and that Aa is in BMO(Rn), with the BMO semi-norm∥∥aaij∥∥BMO

:= sup
Q⊂Rn

 
Q

∣∣aaij − (aaij)Q
∣∣ dx ≤ Λ0.

Proposition 4 For any cube Q ⊂ Rn, there exist ϕ, ϕ̃ ∈W 1,2
0 (5Q) that solve

− divx(A∗||∇xϕ) = divx(c15Q − (ca)2Q), (3.3)

divx(A||∇xϕ̃) = divx(b15Q − (ba)2Q), (3.4)

respectively. Moreover, there exists some ε0 = ε0(n, λ0, Λ0) > 0 and C =
C(n, λ0, Λ0) > 0 such that for all p ∈ [2, 2 + ε0],

 
5Q

|∇ϕ(x)|p dx ≤ C,
 
5Q

|∇ϕ̃(x)|p dx ≤ C. (3.5)

Proof We only prove
ffl
5Q
|∇ϕ̃|p ≤ C, as the estimate for ∇ϕ can be derived

similarly. We will identify ϕ̃ with its zero extension outside of 5Q.
Let QR0

be a cube in Rn with QR0
∩ 5Q 6= ∅. For any x ∈ QR0

and
0 < R < 1

2 dist(x, ∂QR0
), we have three possibilities:

(i) Q 3
2R

(x) ∩ 5Q = ∅,
(ii) Q 3

2R
(x) ∩ (QR0 \ 5Q) = ∅,

(iii) Q 3
2R

(x) ∩ 5Q 6= ∅ and Q 3
2R

(x) ∩ (QR0
\ 5Q) 6= ∅.

In case (ii), Q 3
2R

(x) ⊂ 5Q, by the interior Caccioppoli inequality and
Poincaré-Sobolev inequality, we have

ˆ
QR(x)

|∇ϕ̃|2 dy ≤ CR−2
ˆ
Q 3

2
R
(x)

∣∣∣ϕ̃− (ϕ̃)Q3/2R(x)

∣∣∣2 dy + CRn (3.6)

≤ C

ˆ
Q 3

2
R
(x)

|∇ϕ̃|r
2/r

+ CRn,
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where r = 2n
n+2 .

In case (iii), we also have

ˆ
QR(x)

|∇ϕ̃|2 dy ≤ C

ˆ
Q 3

2
R
(x)

|∇ϕ̃|r
2/r

+ CRn,

which follows from the boundary Caccioppoli inequality,
ˆ
QR(x)

|∇ϕ̃|2 dy ≤ CR−2
ˆ
Q 3

2
R
(x)∩5Q

|ϕ̃|2 dy + CRn, (3.7)

and a Sobolev-Poincaré theorem. The proof for (3.7) is postponed until the
end.

Now we can apply Lemma 4 to get

 
QR0

2

∩5Q
|∇ϕ̃|p ≤ C

( 
QR0
∩5Q
|∇ϕ̃|2

)p/2
+ C

 
QR0

1.

Choose QR0
2
⊇ 5Q then

 
5Q

|∇ϕ̃|p ≤ C
( 

5Q

|∇ϕ̃|2
)p/2

+ Cn.

We claim that  
5Q

|∇ϕ̃|2 ≤ C(n, λ0, Λ0), (3.8)

which would imply the desired bound for
ffl
5Q
|∇ϕ̃|p. In fact, taking ϕ̃ ∈

W 1,2
0 (5Q) as a test function, equation (3.4) and ellipticity of As imply

λ0

ˆ
5Q

|∇ϕ̃|2 ≤
ˆ
5Q

As||∇ϕ̃ · ∇ϕ̃ =

ˆ
5Q

A||∇ϕ̃ · ∇ϕ̃ =

ˆ
5Q

b · ∇ϕ̃.

We have∣∣∣∣ˆ
5Q

b · ∇ϕ̃
∣∣∣∣ =

∣∣∣∣ˆ
5Q

(
bsj + baj − (baj )5Q

)
∂jϕ̃

∣∣∣∣
≤ λ0

2

ˆ
5Q

|∇ϕ̃|2 + C

ˆ
5Q

∣∣baj − (baj )5Q
∣∣2 + C

ˆ
5Q

1.

Then (3.8) follows from the John-Nirenberg inequality.
It remains to prove (3.6) and (3.7).
Proof of (3.7)

For any R ≤ t < s ≤ 3
2R, define ξ ∈ C2

0 (Q t+s
2

(x)) and η ∈ C2
0 (Qs(x)) such

that 0 ≤ ξ, η ≤ 1, ξ = 1 in Qt(x), η = 1 in Q t+s
2

(x), and |∇ξ| , |∇η| . 1
s−t .
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Choose ϕ̃ξ2 ∈W 1,2
0 (5Q) as a test function, then (3.4) gives

ˆ
Q t+s

2
(x)

A||∇ϕ̃ · ∇(ϕ̃ξ2) =

ˆ
Q t+s

2
(x)

b15Q · ∇(ϕ̃ξ2). (3.9)

To estimate the left-hand side of (3.9), we split the matrix into the symmetric
and anti-symmetric part. For the first one we have

ˆ
Q t+s

2
(x)

As||∇ϕ̃ · ∇(ϕ̃ξ2) ≥ λ0
2

ˆ
Q t+s

2
(x)

|ξ∇ϕ̃|2 − C

(s− t)2

ˆ
Q t+s

2
(x)

ϕ̃2.

For the second one, we can write

ˆ
Q t+s

2
(x)

Aa||∇ϕ̃ · ∇(ϕ̃ξ2) =
1

2

ˆ
Q t+s

2
(x)

aaij
(
∂jϕ̃∂i(ϕ̃ξ

2)− ∂iϕ̃∂j(ϕ̃ξ2)
)

=
1

4

ˆ
Q t+s

2
(x)

aaij
(
∂j(ϕ̃

2)∂i(ξ
2)− ∂i(ϕ̃2)∂j(ξ

2)
)

=
1

4

ˆ
Q t+s

2
(x)

aaij
(
∂j(ϕ̃η)2∂i(ξ

2)− ∂i(ϕ̃η)2∂j(ξ
2)
)
.

By Proposition 3, the absolute value of this quantity is bounded by

C

s− t
‖ϕ̃η‖L2 ‖∇(ϕ̃η)‖L2 ≤

Cθ
(s− t)2

ˆ
Qs(x)

|ϕ̃|2 + θ

ˆ
Qs(x)

|∇ϕ̃|2

for any 0 < θ < 1.
As for the right-hand side of (3.9), we have∣∣∣∣∣∣

ˆ
Q t+s

2
(x)

bs15Q · ∇(ϕ̃ξ2)

∣∣∣∣∣∣ ≤ λ0
8

ˆ
Q t+s

2
(x)

|ξ∇ϕ̃|2+
C

(s− t)2

ˆ
Q t+s

2
(x)

|ϕ̃|2+Csn.

Then, by Proposition 2,∣∣∣∣∣∣
ˆ
Q t+s

2
(x)

ba15Q · ∇(ϕ̃ξ2)

∣∣∣∣∣∣
≤ C

s− t

ˆ
Q t+s

2
(x)

|ϕ̃ξ|2
1/2

sn/2 + ‖ξ‖L2 ‖∇(ϕ̃ξ)‖L2

≤ λ0
8

ˆ
Q t+s

2
(x)

|ξ∇ϕ̃|2 +
C

(s− t)2

ˆ
Q t+s

2
(x)

|ϕ̃|2 + Csn.
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Combining these estimates with (3.9), we fix 0 < θ < 1 to be sufficiently small
and obtainˆ
Qt(x)

|∇ϕ̃|2 ≤
ˆ
Q t+s

2
(x)

|ξ∇ϕ̃|2 ≤ Cθ
(s− t)2

ˆ
Qs(x)

|ϕ̃|2 + Cθ

ˆ
Qs(x)

|∇ϕ̃|2 + Csn

≤ Cθ
(s− t)2

ˆ
Q 3

2
R
(x)

|ϕ̃|2 +
1

2

ˆ
Qs(x)

|∇ϕ̃|2 + CRn.

Then (3.7) follows from Lemma 5.
The interior Caccioppoli (3.6) can be shown in the same manner if one

chooses
(
ϕ̃− (ϕ̃)Q 3

2
R
(x)

)
ξ2 as a test function in the beginning. ut

Remark 1 Note that one can replace (ca)2Q and (ba)2Q in the right-hand
side of (3.3) and (3.4), respectively, by any constant vector C without changing
the result. This follows from the simple fact that

´
5Q

C · ∇v = 0 for any test

function v ∈W 1,2
0 (5Q).

Moser-type interior estimates for the weak solution to the homogeneous
equation −divxA||∇xu = 0 have been shown in [18], or [22] for the parabolic
equations. We show that similar estimates hold for weak solutions to the non-
homogeneous equations.

Proposition 5 Let ϕ and ϕ̃ be as in Proposition 4. Let B2R = B2R(x0) ⊂ 5Q.
Then for any p > 1,

sup
BR

|ϕ̃− c0| ≤ C
( 

B2R

|ϕ̃− c0|p
)1/p

+ CR(‖bs‖L∞ + ‖ba‖BMO), (3.10)

where c0 is any constant, and C = C(n, λ0, Λ0, p). Moreover, a similar esti-
mate holds for ϕ:

sup
BR

|ϕ− c0| ≤ C
( 

B2R

|ϕ− c0|p
)1/p

+ CR(‖cs‖L∞ + ‖ca‖BMO). (3.11)

Proof Fix any p > 1 and 1
2 < k0 <

p
2 . Let 1

2 < k1 < min{1, k0} and k ≥ k0.
Let α = 2 when n ≥ 3, and let α ∈ (1, 2) when n = 2. Choose q ∈ (2, nα

n−α ).

Set s0 = 2q
q+2 . Note that 1 < s0 <

n
n−2 when n ≥ 3 and 1 < s0 < α when

n = 2.
Define as in [18] Lemma 3.4, for any δ > 0, N >> 1 and β ≥ k0,

Hδ,N (t) =

{
tβ , t ∈ [δ,N ],

Nβ + β
k1
Nβ−k1(tk1 −Nk1), t > N.

Then

H ′δ,N (t) =

{
βtβ−1, t ∈ (δ,N),

βNβ−k1tk1−1, t > N.
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Define, furthermore,

Gδ,N (w) =

ˆ w

δ

|H ′δ,N (t)|2dt, w ≥ δ.

Then for w ≥ δ,
H(w) ≤ wβ , (3.12)

wH ′(w) ≤ βwβ , (3.13)

and

G(w) ≤ 1

2k1 − 1
wG′(w). (3.14)

Here and in the sequel we omit the subscripts in Gδ,N and Hδ,N .
Let δ = R(‖bs‖L∞+‖ba‖BMO), and define Ψ = |ϕ̃− c0|+δ, where c0 is an

arbitrary constant. Then Ψ is a subsolution to the equation divx(A||∇xϕ̃) =
divx(b15Q − (ba)2Q). Also, since Ψ ≥ δ, one can define H(Ψ), G(Ψ) etc.

For any R ≤ r′ < r ≤ 2R, let η ∈ C2
0 (Br) with η = 1 in Br′ and |∇η| .

(r − r′)−1. Choose v = G(Ψ)η2 > 0 as a test function. Then since Ψ is a
subsolution, one has

ˆ
Br

A||∇Ψ · ∇v ≤
ˆ
Br

b · ∇v. (3.15)

For the left-hand side of (3.15), we have (see the proof of Lemma 3.4 of
[18])

ˆ
Br

As||∇Ψ · ∇v ≥
λ0
2

ˆ
Br

|∇H(Ψ)|2 η2 − C(n, λ0, k0)

(2k0 − 1)2
β2rn

(r − r′)2

( 
Br

Ψβq
)2/q

,

and

ˆ
Br

Aa||∇Ψ · ∇v ≤
λ0
8

ˆ
Br

|∇H(Ψ)|2 η2

+
C(n, λ0, Λ0, q, k0)

(2k0 − 1)2
β2rn

(r − r′)2

( 
Br

Ψβq
)2/q

.

The right-hand side of (3.15) equals

ˆ
Br

bs · ∇
(
G(Ψ)η2

)
+

ˆ
Br

ba · ∇
(
G(Ψ)η2

)
=

ˆ
Br

bs · ∇H(Ψ) |H ′(Ψ)| η2 + 2

ˆ
Br

bs · ∇ηG(Ψ)η

+

ˆ
Br

(ba − (ba)Br ) · ∇H(Ψ) |H ′(Ψ)| η2 + 2

ˆ
Br

(ba − (ba)Br ) · ∇ηG(Ψ)η

=: I1 + I2 + I3 + I4.



18 Steve Hofmann et al.

Using Cauchy-Schwartz inequality, (3.13), as well as Young’s inequality, we
obtain

|I1| ≤
λ0
8

ˆ
|∇H(Ψ)|2 η2 + C(n, λ0) ‖bs‖2L∞ β

2

ˆ
Ψ2β−2η2.

Recall, in addition, that Ψ ≥ δ = R(‖bs‖L∞ + ‖ba‖BMO) and 2 < q < 2n
n−2 .

Then |I1| is bounded by

λ0
8

ˆ
|∇H(Ψ)|2 η2 + C(n, λ0)β2R−2

ˆ
Ψ2βη2

≤ λ0
8

ˆ
|∇H(Ψ)|2 η2 + C(n, λ0)β2R−2rn

( 
Br

Ψ qβ
)2/q

. (3.16)

For I2, we use (3.14) and obtain

|I2| ≤
‖bs‖L∞
r − r′

β2

2k1 − 1

ˆ
Ψ2β−1 |η| ≤ C(n, k0)β2

(r − r′)(2k0 − 1)R

ˆ
Br

Ψ2β

≤ C(n, k0)β2rn

(r − r′)(2k0 − 1)R

( 
Br

Ψ qβ
)2/q

. (3.17)

Turning to I3, we estimate

|I3| ≤
(ˆ

Br

|ba − (ba)Br |
s′0

) 1
s′0
(ˆ
|∇H(Ψ)|2 η2

)1/2(ˆ
|H ′(Ψ)|q ηq

)1/q

≤ C(n, q) ‖ba‖BMO r
n
s′0

(ˆ
|∇H(Ψ)|2 η2

)1/2

β

(ˆ
Ψ qβ−qηq

)1/q

≤ λ0
8

ˆ
|∇H(Ψ)|2 η2 +

C(n, λ0, q)β
2rn

R2

( 
Br

Ψ qβ
)2/q

, (3.18)

where s′0 = s0
s0−1 . Finally, for I4, we have

|I4| ≤
(ˆ

Br

|ba − (ba)Br |
q
q−2

) q−2
q
(ˆ
|G(Ψ)|q/2 |∇η|q/2

)2/q

≤ C(n, q) ‖ba‖BMO r
(q−2)n

q
1

2k1 − 1

β2

r − r′

(ˆ
Br

Ψ qβ−
q
2

)2/q

≤ C(n, q, k0)
β2rn

(2k0 − 1)(r − r′)R

( 
Br

Ψ qβ
)2/q

. (3.19)

Combining (3.15)–(3.19), we get

λ0
8

 
Br′

|∇H(Ψ)|2 ≤ Cβ2
(
(r − r′)−2 + (r − r′)−1R−1 +R−2

)( 
Br

Ψ qβ
)2/q

.

(3.20)
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Furthermore, since α = 2 when n ≥ 3 and α ∈ (1, 2) when n = 2, by Sobolev
embedding( 

Br′

H(Ψ)
nα
n−α

)n−α
nα

.

( 
Br′

H(Ψ)2

) 1
2

+ r′

( 
Br′

|∇H(Ψ)|2
) 1

2

.

Now by (3.20), (3.12), and letting N go to infinity, we obtain

( 
Br′

Ψβ
nα
n−α

)n−α
nα

≤

( 
Br′

Ψ2β

)1/2

+ Cβr′
(
(r − r′)−2 + (r − r′)−1R−1 +R−2

)1/2( 
Br

Ψ qβ
)1/q

≤ C

(
1 + β

(
r′

r − r′
+

r′√
(r − r′)R

+
r′

R

))( 
Br

Ψ qβ
)1/q

.

Letting l = nα
(n−α)q > 1, β = βi = kli, r = ri = R + R

2i and r′ = ri+1 for

i = 0, 1, 2, . . . , one finds( 
Bri+1

Ψkl
i+1q

) 1

kli+1q

≤ (Ckli)
1

kli

( 
Bri

Ψkl
iq

) 1

kliq

≤ . . .

≤ (Ck)
∑i
j=0

1

klj l
∑i
j=0

j

klj

( 
B2R

Ψkq
) 1
kq

.

Letting i→∞, we have supBR Ψ ≤ C(n, λ0, Λ0, q, k0)
(ffl

B2R
Ψkq

) 1
kq

, and thus

sup
BR

|ϕ̃− c0| ≤ C
( 

B2R

|ϕ̃− c0|kq
) 1
kq

+ Cδ,

where C = C(n, λ0, Λ0, q, k0). Choosing k and q such that kq = p yields (3.10).
The proof of (3.11) is similar and thus omitted. ut

3.4 Weak Solutions of the Parabolic Equation

We introduce Pt := e−t
2L|| and P∗t := e−t

2L∗|| , the “ellipticized” heat semi-
group associated to L|| = −divA||∇ and to its adjoint L∗||, respectively. In

this subsection, we shall derive Moser-type estimates for ∂tPηtf (and ∂tP∗ηtf),
as well as reverse Hölder estimate for ∇xPηtf (and ∇xP∗ηtf).

Notation. In the rest of this section, since we only work with the n-
dimensional operator L|| and its adjoint L∗|| instead of the operator L defined

in Rn+1
+ , we shall simply write L for L||, and the same for its adjoint. For the
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same reason, we shall write ∇ for ∇x, and div for divx. We denote by W̃−1,2

the space of bounded semilinear functionals on W 1,2(Rn).
Let u(x, t) = e−tL(f)(x), for some f ∈ L2(Rn). Then by Proposition 13,

u(x, t) is the weak solution to the initial value problem{
∂tu− div(A∇u) = 0 in Rn × (0,∞),

u(x, 0) = f(x).

That is, u(x, t) ∈ L2
loc

(
(0,∞),W 1,2(Rn)

)
∩ C

(
[0,∞), L2

)
, and satisfies

ˆ
Rn
u(x, T )ϕ(x, T )dx+

ˆ T

0

ˆ
Rn
A∇u · ∇ϕdxdt

=

ˆ
Rn
u(x, 0)ϕ(x, 0)dx+

ˆ T

0

〈∂tϕ, u〉W̃−1,2,W 1,2

for any T > 0, any ϕ ∈ L2
(
[0, T ],W 1,2(Rn)

)
with ∂tϕ ∈ L2

(
[0, T ], W̃−1,2(Rn)

)
.

Moreover, since A depends only on x ∈ Rn, ∂tu is a weak solution to
∂tv − div(A∇v) = 0 in Rn × (0,∞) (see the remark after Proposition 13). By
[13], Theorem 4.9 and its remark, ∂tu ∈ L2

loc

(
(0,∞), L2(Rn)

)
and ∂t∇u ∈

L2
loc

(
(0,∞), L2(Rn)

)
. Finally, by the Gaussian estimate for the kernel of

∂te
−tL (see [13] Theorem 4.8), one can show that

∂tu ∈ L∞ ([δ0,∞)× Rn) ∀ δ0 > 0. (3.21)

These facts enable us to prove the following estimate for ∂tu using Moser
iteration.

Proposition 6 Let Q ⊂ Rn be a cube with l(Q) = R0. Then

sup
Q×(R2

0,(2R0)2]

|∂tu(x, t)| ≤ CR−
n+2
2

0

(ˆ
3
2Q

ˆ (2R0)
2

R2
0
2

|∂tu(x, t)|2 dtdx

)1/2

,

(3.22)
for some C = C(n, λ0, Λ0).

Proof Let v(x, t) = ∂tu(x, t). Then by the definition of weak solution and
Lemma 15 (ii), we have

ˆ T

0

ˆ
Rn
∂tv(x, t)ϕ(x, t)dxdt+

ˆ T

0

ˆ
Rn
A∇v · ∇ϕ = 0,

for all ϕ ∈ L2
(
[0, T ],W 1,2(Rn)

)
with suppϕ ⊂ Rn× (0, T ]. By considering v±

we can assume v ≥ 0, and that

ˆ T

0

ˆ
Rn
∂tv(x, t)ϕ(x, t)dxdt+

ˆ T

0

ˆ
Rn
A∇v · ∇ϕ ≤ 0, (3.23)

for all ϕ ∈ L2
(
[0, T ],W 1,2(Rn)

)
with suppϕ ⊂ Rn × (0, T ] and ϕ ≥ 0 a.e.
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Now for any 0 ≤ s ≤ 1, define

Qs = (1 + s)Q, Is = ((1− s)R2
0, (2R0)2], and Cs = Qs × Is.

Fix l ∈ N, define ql = 2kl0, where k0 = n+2
n . Note that q0 = 2. Furthermore,

for any fixed
4

3

1

2l+2
≤ s0 < s1 ≤

3

2

1

2l+2
,

choose Ψs0,s1 ∈ C2
0 (C s0+s1

2
) and Ψ̃s0,s1 ∈ C2

0 (Cs1) such that Ψs0,s1 = 1 in Cs0 ,

Ψ̃s0,s1 = 1 in C s0+s1
2

, 0 ≤ Ψs0,s1 , Ψ̃s0,s1 ≤ 1, and

|∇Ψs0,s1 |
2

+ |∂tΨs0,s1 |+
∣∣∣∇Ψ̃s0,s1∣∣∣2 +

∣∣∣∂tΨ̃s0,s1∣∣∣ . R−20

(s1 − s0)2
.

We omit the subscript s0, s1 in Ψs0,s1 and Ψ̃s0,s1 from now on.
Let t ∈ Is0 . Recalling (3.21), one can take ϕ = vql−1Ψ2 as a test function.

Then (3.23) gives
ˆ t

0

ˆ
Rn
∂tvv

ql−1Ψ2 +

ˆ t

0

ˆ
Rn
A∇v · ∇(vql−1Ψ2) ≤ 0. (3.24)

For the first term, integration by parts gives
ˆ t

0

ˆ
Rn
∂tvv

ql−1Ψ2 =
1

ql

ˆ
Rn
vql(x, t)Ψ2(x, t)dx− 1

ql

ˆ t

0

ˆ
Rn
vql∂t(Ψ

2)

≥ 1

ql

ˆ
Qs0

vql(x, t)dx− CR−20

ql(s1 − s0)2

ˆ
C 1

2l+1

vql .

The second term in (3.24) is split, as usual, corresponding to the symmetric
and antisymmetric part of A. Working with As, we estimate

ˆ t

0

ˆ
Rn
As∇v · ∇(vql−1Ψ2)

=
4(ql − 1)

q2l

ˆ t

0

ˆ
Rn
As∇(v

ql
2 ) · ∇(v

ql
2 )Ψ2

+
4

ql

ˆ t

0

ˆ
Rn
As∇(v

ql
2 ) · ∇Ψv

ql
2 Ψ

≥ 2λ0(ql − 1)

q2l

ˆ t

0

ˆ
Qs0

∣∣∣∇v ql2 ∣∣∣2 dxdt− C(n, λ0)R−20

ql(s1 − s0)2

ˆ
C 1

2l+1

vql .

Turning to Aa, note that Aa∇v · ∇v Ψ2 = 0 due to anti-symmetry, so that

ˆ t

0

ˆ
Rn
Aa∇v · ∇(vql−1Ψ2) =

ˆ t

0

ˆ
Rn
Aa∇v · ∇(Ψ2)vql−1

=
1

ql

ˆ t

0

ˆ
Rn
As∇(vql) · ∇(Ψ2) =

1

ql

ˆ t

0

ˆ
Rn
As∇(v

ql
2 Ψ̃v

ql
2 Ψ̃) · ∇(Ψ2).



22 Steve Hofmann et al.

By Proposition 3,∣∣∣∣ˆ t

0

ˆ
Rn
Aa∇v · ∇(vql−1Ψ2)

∣∣∣∣
≤ CnΛ0

ql

ˆ t

0

‖∇Ψ‖L∞(Rn)

∥∥∥v ql2 Ψ̃∥∥∥
L2(Rn)

∥∥∥∇(v ql2 Ψ̃)∥∥∥
L2(Rn)

dt

≤ CθΛ0

ql

R−20

(s1 − s0)2

ˆ
C 1

2l+1

vqldxdt+
θ

ql

ˆ
Cs1

∣∣∣∇v ql2 ∣∣∣2 .
Combining these estimates with (3.24), we have

ˆ
Qs0

vql(x, t)dx+

ˆ t

0

ˆ
Qs0

∣∣∣∇v ql2 ∣∣∣2
≤ CR−20

(s1 − s0)2

ˆ
C 1

2l+1

vqldxdt+ Cθ

ˆ
Cs1

∣∣∣∇(v ql2 )∣∣∣2 dxdt,
where C = C(n, λ0, Λ0, θ).

Choosing θ to be sufficiently small, and then taking supremum in t ∈ Is0 ,
we obtain

sup
t∈Is0

ˆ
Qs0

vql(x, t)dx+

ˆ
Cs0

∣∣∣∇v ql2 ∣∣∣2 dxdt
≤ CR−20

(s1 − s0)2

ˆ
C 1

2l+1

vqldxdt+
1

2

ˆ
Cs1

∣∣∣∇(v ql2 )∣∣∣2 dxdt,
which implies

sup
t∈I 4

3
1

2l+2

ˆ
Q 4

3
1

2l+2

vql(x, t)dx+

ˆ
C 4

3
1

2l+2

∣∣∣∇v ql2 ∣∣∣2 dxdt
≤ C(n, λ0, Λ0)R−20 4l

ˆ
C 1

2l+1

vqldxdt (3.25)

by Lemma 5.
Let us insert a cut-off function Ψl(x, t) ∈ C2

0 (C 4
3

1

2l+2
) into (3.25) so that

we can use an embedding theorem. As usual, Ψl satisfies 0 ≤ Ψl ≤ 1, Ψl = 1 in
C 1

2l+2
, and

|∇Ψl|2 + |∂tΨl| . R−20 4l.

Then we have

sup
t∈I 4

3
1

2l+2

ˆ
Q 4

3
1

2l+2

vql(x, t)Ψl(x, t)dx+

ˆ
C 4

3
1

2l+2

∣∣∣∇(v
ql
2 Ψl)

∣∣∣2 dxdt
≤ CR−20 4l

ˆ
C 1

2l+1

vqldxdt.
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Now, by a well-known embedding (see e.g. [19] Theorem 6.9), we have

ˆ
C 1

2l+2

vqlk0 ≤
ˆ
C 4

3
1

2l+2

(v
ql
2 Ψl)

2k0

≤ sup
t∈I 4

3
1

2l+2

ˆ
Q 4

3
1

2l+2

(v
ql
2 Ψl)

2(x, t)dx

2/n ˆ
C 4

3
1

2l+2

∣∣∣∇(v
ql
2 Ψl)

∣∣∣2 dxdt
≤

 sup
t∈I 4

3
1

2l+2

ˆ
Q 4

3
1

2l+2

(v
ql
2 Ψl)

2(x, t)dx+

ˆ
C 4

3
1

2l+2

∣∣∣∇(v
ql
2 Ψl)

∣∣∣2 dxdt
k0

≤ C
(
R−20 4l

)k0 ˆ
C 1

2l+1

vqldxdt

k0

.

Therefore, for all l ∈ N,ˆ
C 1

2l+2

vql+1dxdt

 1
ql+1

≤ C
1

ql+1 (R−20 4l)
1
ql

ˆ
C 1

2l+1

vqldxdt

 1
ql

.

Then (3.22) follows from iteration and letting l go to infinity. ut

Proposition 7 Let Q ⊂ Rn be a cube with l(Q) = R0. Then for any t > 0,

( 
Q

|∇u(x, t)|p dx
)1/p

≤ C
( 

2Q

|∇u(x, t)|2 dx
)1/2

+R0

( 
2Q

|∂tu(x, t)|p dx
)1/p

(3.26)

for all p ∈ [2, 2 + ε), where C = C(n, λ0, Λ0) and ε = ε(n, λ0, Λ0) are positive
constants.

Proof Let x0 ∈ 4Q and 0 < R < min
{

1
2 dist(x0, 4Q), 2R0

}
. Choose two cut-off

functions. First, Ψ ∈ C1
0 (Q 3

2R
(x0)), with Ψ = 1 on QR(x0) and |∇Ψ | . R−1,

and secondly, Ψ̃ ∈ C1
0 (Q2R(x0)), with Ψ = 1 on Q 3

2R
(x0) and

∣∣∣∇Ψ̃ ∣∣∣ . R−1.

Fix t > 0 and define ū =
ffl
Q2R(x0)

u(x, t)dx. Take (u(x, t) − ū)Ψ2(x) as a

test function. Then ∂tu− div(A∇u) = 0 implies that

ˆ
Rn
A∇u(x, t) · ∇

(
(u(x, t)− ū)Ψ2(x)

)
dx

= −
ˆ
Rn
∂tu(x, t)(u(x, t)− ū)Ψ2(x)dx. (3.27)
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For the integral involving the symmetric part of A, we have

ˆ
Rn
As∇u(x, t) · ∇

(
(u(x, t)− ū)Ψ2(x)

)
dx

≥ λ0
2

ˆ
QR(x0)

|∇u|2 dx− C(n, λ0)

R2

ˆ
Q 3

2
R(x0)

(u− ū)2.

For the integral involving the anti-symmetric part of A, we insert Ψ̃ and apply
Proposition 3:∣∣∣∣ˆ

Rn
Aa∇u(x, t) · ∇

(
(u(x, t)− ū)Ψ2(x)

)
dx

∣∣∣∣
=

∣∣∣∣ˆ
Rn
Aa∇(u− ū)2 · ∇(Ψ2)

∣∣∣∣ =

∣∣∣∣ˆ
Rn
Aa∇

(
(u− ū)2Ψ̃2

)
· ∇(Ψ2)

∣∣∣∣
≤ CnΛ0

R

∥∥∥(u− ū)Ψ̃
∥∥∥
L2(Rn)

∥∥∥∇((u− ū)Ψ̃
)∥∥∥

L2(Rn)

≤ Cnθ
ˆ
Q2R(x0)

|∇u|2 dx+
C(n,Λ0, θ)

R2

ˆ
Q2R(x0)

(u− ū)2dx.

Finally, we estimate the right-hand side of (3.27) by Cauchy-Schwartz:∣∣∣∣ˆ
Rn
∂tu(x, t)(u(x, t)− ū)Ψ2(x)dx

∣∣∣∣
≤ CnR2

ˆ
Q 3

2
R
(x0)

|∂tu|2 dx+
Cn
R2

ˆ
Q 3

2
R(x0)

(u(x, t)− ū)2dx.

To summarize,

ˆ
QR(x0)

|∇u|2 dx . R−2
ˆ
Q2R(x0)

(u− ū)2dx

+R2

ˆ
Q 3

2
R
(x0)

|∂tu|2 dx+ θ

ˆ
Q2R(x0)

|∇u|2 dx.

Choosing θ to be sufficiently small and using Sobolev inequality, we obtain

 
QR(x0)

|∇u|2 dx ≤ C

( 
Q2R(x0)

|∇u|
2n
n+2 dx

)n+2
n

+ CR2
0

 
Q2R(x0)

|∂tu|2 dx+
1

2

 
Q2R(x0)

|∇u|2 dx.

Then (3.26) follows from Lemma 4. ut

Let w(x, t) = Pηtf(x) = e−ηt
2L||(f)(x) for some η > 0. Then ∂tw(x, t) =

2η2t∂τu(x, (ηt)2). Using this relationship one easily gets
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Corollary 1 Let k ∈ Z, and Q ⊂ Rn be a cube with l(Q) ≈ 2−kη. Then

sup
Q×(2−k,2−k+1]

|∂tw(x, t)|

≤ C(2−kη2)1/2(2−kη)−
n+2
2

(ˆ
3
2Q

ˆ 2−k+1

2−k−
1
2

|∂tw(x, t)|2 dtdx

)1/2

,

for some C = C(n, λ0, Λ0). Equivalently,

sup
Q×(2−k,2−k+1]

|∂tPηtf(x)|2 ≤ C(n, λ0, Λ0)
η

|Q|

ˆ
3
2Q

ˆ 2−k+1

2−k−
1
2

|∂tPηtf(x)|2 dt
t
dx,

for all f ∈ L2(Rn). The estimate also holds for ∂tP∗ηtf(x).

Corollary 2 Let Q ⊂ Rn be a cube with l(Q) ≈ 2−kη. Then( 
Q

|∇w(x, t)|p
)1/p

≤ C
( 

2Q

|∇w(x, t)|2
)1/2

+ η−1
( 

2Q

|∂tw(x, t)|p
)1/p

(3.28)
for any t ∈ (2−k, 2−k+1), p ∈ [2, 2 + ε). Here, C = C(n, λ0, Λ0) and ε =
ε(n, λ0, Λ0) are positive constants.

3.5 Lp estimates for square functions

The following results are obtained in [13] and we include them here for reader’s
convenience. The operator L should be thought of as the operator L|| or L∗||
in our setting.

Proposition 8 ([13] Proposition 6.2) For all 1 < p <∞, and
F ∈W 1,2(Rn) ∩W 1,p(Rn),∥∥∥∥(ˆ ∞

0

∣∣∣tLe−t2LF ∣∣∣2 dt
t

)1/2∥∥∥∥
Lp(Rn)

≤ Cp ‖∇F‖Lp(Rn) . (3.29)

Or equivalently,∥∥∥∥(ˆ ∞
0

∣∣∣∂te−t2LF ∣∣∣2 dt
t

)1/2∥∥∥∥
Lp(Rn)

≤ Cp ‖∇F‖Lp(Rn) . (3.30)

Proposition 9 ([13] Proposition 6.3) For 1 < p ≤ 2 + ε0, with ε0 =
ε0(λ0, Λ0, n) > 0, and for all F ∈W 1,2(Rn) ∩W 1,p(Rn),∥∥∥∥(ˆ ∞

0

∣∣∣t2∇Le−t2LF ∣∣∣2 dt
t

)1/2∥∥∥∥
Lp(Rn)

≤ Cp ‖∇F‖Lp(Rn) . (3.31)

Or equivalently,∥∥∥∥(ˆ ∞
0

∣∣∣t∇∂te−t2LF ∣∣∣2 dt
t

)1/2∥∥∥∥
Lp(Rn)

≤ Cp ‖∇F‖Lp(Rn) .
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Remark 2 The upper bound 2 + ε0 for the range of admissible of p might
be different from the 2 + ε1 in [13], Proposition 6.3. For convenience, we set
the minimum between ε1 and the ε0 from Proposition 4 to be ε0 and fix the
notation from now on.

Proposition 10 ([13] Proposition 6.4) For all 1 < p < ∞, and all F ∈
W 1,2(Rn) ∩W 1,p(Rn),∥∥∥∥( ˆ ∞

0

∣∣∣t2∂tLe−t2LF ∣∣∣2 dt
t

)1/2∥∥∥∥
Lp(Rn)

≤ Cp ‖∇F‖Lp(Rn) . (3.32)

3.6 Lp estimates for non-tangential maximal functions

Definition 3 The non-tangential maximal function is defined as

Nα(u)(x) := sup
t>0

sup
(y,t):|x−y|<αt

|u(y, t)| . (3.33)

The integrated non-tangential maximal function is defined as

Ñα(u)(x) := sup
t>0

sup
(y,t):|x−y|<αt

( 
|y−z|<αt

|u(z, t)|2 dz

)1/2

. (3.34)

Again, we shall simply write L for the n-dimensional operator L|| in this

section. We consider functions such as Nα(∂te
−t2Lf), where we think of

∂te
−t2Lf(x) as a function of x and t.

Proposition 11 Let η > 0, α > 0. Then∥∥∥η−1Nηα(∂te
−(ηt)2Lf)

∥∥∥
Lp
≤ Cα,p ‖∇f‖Lp

for all p > 1, and f ∈W 1,p. The constant Cα,p also depends on λ0, Λ0 and n,
but not on η.

Proof Fix any x ∈ Rn, and let (y, t) ∈ Γηα(x) so that |x− y| < ηαt. We claim
that for every f ∈ S (Rn)∣∣∣η−1∂te−(ηt)2Lf(y)

∣∣∣ ≤ CαM(∇f)(x). (3.35)

Let Vt(x, y) be the kernel associated to ∂te
−t2L. Then by [13] Theorem 4.8, we

have

|Vt(x, y)| . t−n−1e−
|x−y|2

ct2 ,
∣∣η−1Vηt(x, y)

∣∣ . (ηt)−n−1e
− |x−y|

2

c(ηt)2
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where the implicit constant depends on λ0, Λ0 and n. We write

η−1∂te
−(ηt)2Lf(y) = η−1∂te

−(ηt)2L
(
f −

 
B2ηαt(x)

f
)

(y)

=

ˆ
Rn
η−1Vηt(y, z)

(
f −

 
B2ηαt(x)

f
)

(z)dz.

Then the estimate for the kernel entails the bound∣∣∣η−1∂te−(ηt)2Lf(y)
∣∣∣ . ˆ

B2ηαt(x)

1

(ηt)n+1
e
− |y−z|

2

c(ηt)2

∣∣∣∣∣f(z)−
 
B2ηαt(x)

f

∣∣∣∣∣ dz
+

∞∑
k=1

ˆ
2k+1Bηαt(x)\2kBηαt(x)

1

(ηt)n+1
e
− |y−z|

2

c(ηt)2

∣∣∣∣∣f(z)−
 
B2ηαt(x)

f

∣∣∣∣∣ dz
=: I1 + I2.

For I1, we trivially bound e
− |y−z|

2

c(ηt)2 by 1, and then the Poincaré inequality
gives

I1 .
αn

ηt

 
B2ηαt(x)

∣∣∣∣∣f(z)−
 
B2ηαt(x)

f

∣∣∣∣∣ dz . αn+1

 
B2ηαt(x)

|∇f |

. αn+1M(∇f)(x),

where the implicit constants depend only on n.
For I2, we have

I2 .
∞∑
k=1

1

(ηt)n+1
exp

{
− (2k − 1)2α2

c

}ˆ
2k+1Bηαt(x)

∣∣∣∣∣f(z)−
 
B2ηαt(x)

f

∣∣∣∣∣ dz
.
∞∑
k=1

2n(k+1)αn

ηt
exp

{
− (2k − 1)2α2

c

} 
2k+1Bηαt(x)

∣∣∣∣∣f(z)−
 
B2ηαt(x)

f

∣∣∣∣∣ dz.
Breaking the integrand into sum of terms containing

ffl
2l+1Bηαt(x)

f−
ffl
2lBηαt(x)

f

and using the Poincaré inequality again, we obtain

I2 .
∞∑
k=1

exp

{
−4k2α2

c

}
2n(k+1)αn+1

k+1∑
l=2

2lM(∇f)(x) .α M(∇f)(x),

and thus (3.35) follows. By the choice of (y, t), this implies

η−1Nηα(∂te
−(ηt)2Lf)(x) ≤ CαM(∇f)(x),

so that∥∥∥η−1Nηα(∂te
−(ηt)2Lf)

∥∥∥
Lp
≤ Cα,p ‖∇f‖Lp ∀ p > 1, f ∈ S (Rn).

Then the proposition follows from a standard limiting argument. ut
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We also have Lp estimates for the integrated non-tangential maximal func-
tion:

Proposition 12 Let η > 0. Then for any p > 2, f ∈W 1,p(Rn),∥∥∥Ñη(∇e−(ηt)
2Lf)

∥∥∥
Lp
≤ Cp ‖∇f‖Lp ,

where the constant depends on p, λ0, Λ0 and n, but not on η.

Proof Let f ∈ S (Rn). Define u(x, t) = e−tLf(x). Then u satisfies the equation
∂tu − div(A∇u) = 0 in L2. Now fix x ∈ Rn, and fix (y, t) ∈ Γη(x). Define
Bs = B(y, (1 + s)ηt), the ball centered at y with radius (1 + s)ηt.

For 0 ≤ s < s′ < 1
2 , choose

Ψ ∈ C∞0 (B s+s′
2

), with Ψ = 1 on Bs, |∇Ψ | . 1

(s′ − s)ηt
,

and

Ψ̃ ∈ C∞0 (Bs′), with Ψ̃ = 1 on B s+s′
2

,
∣∣∣∇Ψ̃ ∣∣∣ . 1

(s′ − s)ηt

Let ū =
ffl
B(y, 32ηt)

u(x, 0)dx. Taking (u− ū)Ψ2 as a test function, we obtain

ˆ
Rn
A(x)∇u(x, τ) · ∇

(
(u(x, τ)− ū)Ψ2

)
dx = −

ˆ
Rn
∂τu(x, τ)(u(x, τ)− ū)Ψ2dx

for any τ > 0. Then by an argument similar to the proof of Proposition 7, one
can write

ˆ
Rn
A(x)∇u(x, τ) · ∇

(
(u(x, τ)− ū)Ψ2

)
dx

≤ λ0
2

ˆ
Bs

|∇u(x, τ)|2 dx− Cθ
(s′ − s)2(ηt)2

ˆ
Bs′

|u(x, τ)− ū|2 dx

− θ
ˆ
Bs′

|∇u(x, τ)|2 dx,

and∣∣∣∣ˆ
Rn
∂τu(x, τ)(u(x, τ)− ū)

∣∣∣∣
. (s′ − s)2(ηt)2

ˆ
B s+s′

2

|∂τu(x, τ)|2 dx+
1

(s′ − s)2(ηt)2

ˆ
B s+s′

2

|u(x, τ)− ū|2 .

Combining, we have

ˆ
Bs

|∇u(x, τ)|2 dx ≤ C

(s′ − s)2(ηt)2

ˆ
Bs′

(u(x, τ)− ū)2dx

+ C(ηt)2
ˆ
Bs′

|∂τu(x, τ)|2 dx+ Cθ

ˆ
Bs′

|∇u(x, τ)|2 dx.
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Choosing θ sufficiently small, then Lemma 5 gives

 
B(y,ηt)

|∇u(x, τ)|2 dx

.
1

(ηt)2

 
B(y, 32ηt)

|u(x, τ)− ū|2 dx+ (ηt)2
 
B(y, 32ηt)

|∂τu(x, τ)|2 dx, (3.36)

for any τ > 0.
Let w(z, t) = u(z, η2t2). Then it suffices to show∥∥∥Ñη(∇xw)

∥∥∥
Lp
≤ Cp ‖∇f‖Lp ∀ p > 2.

To this end, let τ = η2t2 in (3.36). Noticing that ∂tw(z, t) = 2η2t∂tu(z, η2t2),
we have

 
B(y,ηt)

|∇w(z, t)|2 dz

.
1

(ηt)2

 
B(y, 32ηt)

|w(z, t)− w̄|2 dz + η−2
 
B(y, 32ηt)

|∂tw(z, t)|2 dz (3.37)

where w̄ =
ffl
B(y, 32ηt)

w(z, 0)dz.

The expression
ffl
B(y, 32ηt)

|∂tw(z, t)|2 dz on the right-hand side of (3.37) can

be controlled by M
(
Nη(∂tw)2

)
(x). To estimate the first term on the right-

hand side of (3.37), we write

|w(z, t)− w̄| ≤ |w(z, t)− w(z, 0)|+ |w(z, 0)− w̄| .

Using Poincaŕe inequality, we have

1

(ηt)2

 
B(y, 32ηt)

|w(z, 0)− w̄|2 dz .
 
B(y, 32ηt)

|∇w(z, 0)|2 dz

.M
(
|∇w(·, 0)|2

)
(x) = M

(
|∇f |2

)
(x).

Since

|w(z, t)− w(z, 0)| ≤
ˆ t

0

|∂τw(z, τ)| dτ ≤ t sup
0≤τ≤t

|∂τw(z, τ)| ,

we conclude that
 
B(y, 32ηt)

|w(z, t)− w(z, 0)|2 dz ≤ t2
 
B(y, 32ηt)

sup
0≤τ≤t

∣∣∂τw(z, t)2
∣∣ dz

≤ t2M(Nη(∂tw)2)(x).

Therefore, we have obtained the estimate 
B(y,ηt)

|∇w(z, t)|2 dz .M
(
|∇f |2

)
(x) + η−2M

(
Nη(∂tw)2

)
(x)
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for any (y, t) ∈ Γη(x). This implies, by the definition of the integrated non-

tangential maximal function Ñη, that

Ñη(∇zw)(x) .
(
M
(
|∇f |2

)
(x)
)1/2

+η−1
(
M
(
Nη(∂tw)2

)
(x)
)1/2

, ∀x ∈ Rn.

Thus for any p > 2,∥∥∥Ñη
(
∇e−η

2t2Lf
)∥∥∥

Lp(Rn)
. ‖∇f‖Lp +

∥∥∥η−1Nη
(
∂te
−η2t2Lf

)∥∥∥
Lp(Rn)

≤ Cp ‖∇f‖Lp(Rn) ,

where we have used Proposition 11 with α = 1. ut

4 Construction of F and sawtooth domains associated with F

4.1 The set F

We define the following maximal differential operator

Dpf(x) := sup
r>0

( 
|x−y|<r

(
|f(x)− f(y)|
|x− y|

)p
dy

)1/p

. (4.1)

Lemma 6

‖Dp1f‖Lp(Rn) ≤ Cp,p1,n ‖∇f‖Lp ∀ 1 ≤ p1 < p <∞.

This lemma follows from a Morrey type inequality

|f(x)− f(y)|
|x− y|

≤M(∇f)(x) +M(∇f)(y) ∀x, y ∈ Rn,

and the Lp bound for the Hardy-Littlewood maximal function.
We introduce a few notations. Recall that we use Pt to denote e−t

2L|| , and

P∗t = e−t
2L∗|| . Define

Λ1 := η−1Nη(∂tP∗ηtϕ) +N(∂tP∗t ϕ) + Ñη(∇xP∗ηtϕ) +
(
M(|∇ϕ|2)

)1/2
,

Λ2 := η−1Nη(∂tPηtϕ̃) +N(∂tPtϕ̃) + Ñη(∇xPηtϕ̃) +
(
M(|∇ϕ̃|2)

)1/2
,

where ϕ and ϕ̃ are as in Proposition 4, and the non-tangential maximal oper-
ator N in the second terms on the two right hand sides in defined with respect
to the cones of aperture 1.

Let Q ⊂ Rn and κ0 � 1 be given. Fix p1 ∈ (1, 2) and define the set F as
follows

F := {x ∈ Q : Λ1(x) + Λ2(x) +Dp1ϕ(x) +Dp1 ϕ̃(x) ≤ κ0} . (4.2)
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Lemma 7 Let ε0 be as in Proposition 4. Then

|Q \ F | . κ−2−ε00 |Q| (4.3)

uniformly in η.

Proof By Chebyshev’s inequality,

κ2+ε00 |Q \ F | ≤
ˆ
Q∩{Λ1+Λ2+Dp1ϕ+Dp1 ϕ̃>κ0}

(Λ1 + Λ2 +Dp1ϕ+Dp1 ϕ̃)
2+ε0 dx.

We apply Proposition 11, Propostion 12, and Proposition 6, and their analogs
for the adjoint operators, with p = 2 + ε0, to see that the right-hand side is
bounded by

C

ˆ
Rn
|∇ϕ|2+ε0 +M

(
|∇ϕ|2

) 2+ε0
2

+ |∇ϕ̃|2+ε0 +M
(
|∇ϕ̃|2

) 2+ε0
2

dx,

which, in turn, is bounded by

C |Q|
 
5Q

(
|∇ϕ|2+ε0 + |∇ϕ̃|2+ε0

)
.

Then the lemma follows from (3.5). ut

We can now choose κ0, depending only on λ0, Λ0 and n, such that

|Q \ F | ≤ 1

1000
|Q| . (4.4)

This completes the construction of F and from now on κ0 is fixed.

4.2 Sawtooth domains and related estimates

Define Ω0 to be the sawtooth domain

Ω0 :=
⋃
x∈F

Γη(x). (4.5)

Define
θt := ϕ− P∗t ϕ, θ̃t := ϕ̃− Ptϕ̃. (4.6)

We observe that

θηt(x) = −
ˆ ηt

0

∂sP∗sϕ(x), and θ̃ηt(x) = −
ˆ ηt

0

∂sPsϕ̃(x).

So by the definition of the set F ,

|θηt(x)| ≤ ηtκ0,
∣∣∣θ̃ηt(x)

∣∣∣ ≤ ηtκ0 ∀ (x, t) ∈ F × (0,∞). (4.7)

We show that such estimates also hold in the truncated sawtooth domain.
Note that we shall eventually choose η > 0 to be small, so we can assume in
the sequel that η < 1/2.
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Lemma 8 Retain the notation above. The following estimates hold:

|θηt(x)| . ηtκ0 and
∣∣∣θ̃ηt(x)

∣∣∣ . ηtκ0, ∀ (x, t) ∈ Ω0 ∩ (2Q× (0, 4l(Q))) .

Proof We only show the estimate for θηt, for the proof for θ̃ηt is similar. Let
(x, t) ∈ Ω0 ∩ (2Q× (0, 4l(Q))). Then there exists x0 ∈ F such that |x− x0| ≤
ηt. Since t < 4l(Q), and η < 1

2 , we have 2B(x0, ηt) ⊂ 5Q. We write

|θηt(x)| ≤ |ϕ(x)− ϕ(x0)|+ |θηt(x0)|+
∣∣∣P∗ηt (ϕ− (ϕ)2Bηt(x0)

)
(x0)

∣∣∣
+
∣∣∣P∗ηt (ϕ− (ϕ)2Bηt(x0)

)
(x)
∣∣∣ (4.8)

where (ϕ)2Bηt(x0)
=
ffl
2Bηt(x0)

ϕ. Note that we have used the conservation prop-

erty, and P∗ηt (ϕ)Bηt(x0)
is a constant.

By Proposition 5, the first term on right-hand side of (4.8) is bounded by

C

( 
2Bηt(x0)

|ϕ− ϕ(x0)|p1
)1/p1

+ Cηt(‖cs‖L∞ + ‖ca‖BMO).

By the definition of Dp1 and the set F , this is bounded by

Cηt (Dp1ϕ(x0) + λ0 + Λ0) ≤ Cηt(κ0 + λ0 + Λ0) ≤ Cηtκ0,

with C = C(λ0, Λ0, n, p1).
By (4.7), the second term on the right-hand side of (4.8) is also bounded

by Cηtκ0. Now we take care of the last two terms in (4.8). We claim that for
any (y, s) ∈ Γη(x0),

P∗ηs
(
ϕ− (ϕ)2Bηs(x0)

)
(y) . ηsM(∇ϕ)(x0) . ηsκ0.

Consider the kernel K∗(ηs)2 associated to P∗ηs. Then by the Gaussian esti-
mate for the kernel of the semigroup,∣∣∣K∗(ηs)2(y, z)

∣∣∣ . 1

(ηs)n
e
− c|y−z|

2

(ηs)2 .

Then, for (y, s) ∈ Γη(x0),

∣∣∣P∗ηs (ϕ− (ϕ)2Bηs(x0)

)
(y)
∣∣∣ . ˆ

Rn

1

(ηt)n
e
− c|y−z|

2

(ηs)2
∣∣ϕ(z)− (ϕ)2Bηs(x0)

∣∣ dz
.
ˆ
2Bηs(x0)

1

(ηs)n
∣∣ϕ(z)− (ϕ)2Bηs(x0)

∣∣ dz
+

∞∑
k=1

ˆ
2k+1Bηs(x0)\2kBηs(x0)

1

(ηs)n
e
− c|y−z|

2

(ηs)2
∣∣ϕ(z)− (ϕ)2Bηs(x0)

∣∣ dz.
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Since |y − x0| ≤ ηs, |y − z| ≥ (2k − 1)ηs for z ∈ 2k+1Bηs(x0) \ 2kBηs(x0).
Therefore,∣∣∣P∗ηs (ϕ− (ϕ)2Bηs(x0)

)
(y)
∣∣∣ . (ηs)

 
2Bηs(x0)

|∇ϕ(z)| dz

+

∞∑
k=1

ˆ
2k+1Bηs(x0)\2kBηs(x0)

1

(ηs)n
e−c(2

k−1)2 ∣∣ϕ(z)− (ϕ)2Bηs(x0)

∣∣ dz
. (ηs)M(∇ϕ)(x0) +

∞∑
k=1

2k(n+1)e−c(2
k−1)2ηsM(∇ϕ)(x0)

. ηsM(∇ϕ)(x0) . ηs
(
M
(
|∇ϕ|2

)
(x0)

)1/2
. ηsκ0.

This finishes the proof. ut

Lemma 9 Retain the notation above. The following estimates hold:¨
Rn+1

+

|θηt(x)|2 dxdt
t3

. η2 |Q| , and

¨
Rn+1

+

∣∣∣θ̃ηt(x)
∣∣∣2 dxdt

t3
. η2 |Q| ,

where the implicit constants only depend on λ0, Λ0 and n.

Proof We only prove the estimate for θ̃ηt, for the proof for θηt is similar. We
have the following weighted Hardy’s inequality:

ˆ ∞
0

(
1

t

ˆ t

0

|f(s)| ds
)p

dt

t
≤
ˆ ∞
0

|f(t)|p dt
t
, ∀ 1 < p <∞. (4.9)

A short and direct proof of (4.9) is provided at the end. Recall that∣∣∣θ̃ηt∣∣∣ =

∣∣∣∣ˆ ηt

0

∂sPsϕ̃ds
∣∣∣∣ ≤ ˆ ηt

0

|∂sPsϕ̃| ds,

so that

ˆ ∞
0

(
1

t

∣∣∣θ̃ηt∣∣∣)2
dt

t
≤
ˆ ∞
0

(
1

t

ˆ ηt

0

|∂sPsϕ̃| ds
)2

dt

t

= η2
ˆ ∞
0

(
1

t

ˆ t

0

|∂sPsϕ̃| ds
)2

dt

t
.

By (4.9), the last term is bounded by η2
´∞
0
|∂tPtϕ̃|2 dtt . Then Proposition 8

gives

ˆ
Rn

(ˆ ∞
0

∣∣∣θ̃ηt∣∣∣2 dt
t3

)p/2
dx ≤ η2

ˆ
Rn

(ˆ ∞
0

|∂tPtϕ̃|2
dt

t

)p/2
dx . η2

ˆ
Rn
|∇ϕ̃|p dx

for any p ≥ 2. In particular, with p = 2, we obtain¨
Rn+1

+

∣∣∣θ̃ηt(x)
∣∣∣2 dxdt

t3
. η2

ˆ
Rn
|∇ϕ̃|2 dx . η2

 
5Q

|∇ϕ̃|2 dx |Q| . η2 |Q| .
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Proof of (4.9). By Hölder’s inequality,

ˆ t

0

|f(s)| ds ≤
(ˆ t

0

|f(s)|p ds
)1/p

t1−
1
p .

And so (
1

t

ˆ t

0

|f(s)| ds
)p
≤ 1

t

ˆ t

0

|f(s)|p ds.

Integrating in t and using Fubini, we obtain

ˆ ∞
0

(
1

t

ˆ t

0

|f(s)| ds
)p

dt

t
≤
ˆ ∞
0

ˆ t

0

|f(s)|p dsdt
t2

=

ˆ ∞
0

|f(s)|p
ˆ ∞
s

1

t2
dtds =

ˆ ∞
0

|f(s)|p ds
s
.

ut

4.3 The cut-off function

In this subsection, we define the cut-off function adapted to a thinner sawtooth
domain. Define

Ω1 =
⋃
x∈F

Γ η
8
(x). (4.10)

Let Φ ∈ C∞(R) with 0 ≤ Φ ≤ 1, Φ(r) = 1 if r ≤ 1
16 , and Φ(r) = 0 if r > 1

8 .
Define

Ψ(x, t) := Ψη,ε := Φ

(
δ(x)

ηt

)
Φ

(
t

32l(Q)

)(
1− Φ

(
t

16ε

))
, (4.11)

where δ(x) := dist(x, F ).
Then Ψ has following properties. First,

Ψ = 1 on
⋃
x∈F

Γ η
16
∩ {2ε < t ≤ 2l(Q)} .

Secondly, suppΨ ⊂ Ω1 ∩ {ε < t < 4l(Q)}. And finally,

supp∇Ψ ⊂ E1 ∪ E2 ∪ E3,

where

E1 =

{
(x, t) ∈ 2Q× (0, 4l(Q)) :

ηt

16
≤ δ(x) ≤ ηt

8

}
,

E2 =

{
(x, t) ∈ 2Q× (2l(Q), 4l(Q)) : δ(x) ≤ ηt

8

}
,

E3 =

{
(x, t) ∈ 2Q× (ε, 2ε) : δ(x) ≤ ηt

8

}
.
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In addition, a direct computation shows

|∇Ψ(x, t)| . 1

ηt
1E1

+
1

l(Q)
1E2

+
1

ε
1E3

. (4.12)

Lemma 10 Under the assumptions above,

ˆ
Rn

(ˆ ∞
0

|∇Ψ |α tα−1dt
)p

dx ≤ C(η, α, p, n) |Q| , (4.13)

for any α > 0, p > 0, and

¨

supp∇Ψ

dxdt

t
≤ Cn |Q| . (4.14)

Proof Using (4.12), we compute

ˆ
Rn

(ˆ ∞
0

|∇Ψ |α tα−1dt
)p

dx .n

ˆ
2Q

(ˆ 16δ(x)
η

8δ(x)
η

(
1

ηt

)α
tα−1dt

)p
dx

+

ˆ
2Q

(ˆ 4l(Q)

2l(Q)

(
1

l(Q)

)α
tα−1dt

)p
dx+

ˆ
2Q

(ˆ 2ε

ε

(
1

ε

)α
tα−1dt

)p
dx

.n
1

ηαp

ˆ
2Q

(ˆ 16δ(x)
η

8δ(x)
η

1

t
dt

)p
dx+ Cα,p |2Q|

≤ C(α, p, n)

(
1 +

1

ηαp

)
|Q| ≤ C(η, α, p, n) |Q| .

This shows (4.13), and (4.14) can be derived similarly:

¨

supp∇Ψ

dxdt

t
≤
¨
E1

dxdt

t
+

¨
E2

dxdt

t
+

¨
E3

dxdt

t

≤
ˆ
2Q

ˆ 16δ(x)
η

8δ(x)
η

dt

t
dx+

ˆ
2Q

ˆ 4l(Q)

2l(Q)

dt

t
dx+

ˆ
2Q

ˆ 2ε

ε

dt

t
dx

≤ Cn |Q| ,

as desired. ut

5 Proof of the Carleson measure estimate

Throughout this section, let Q ⊂ Rn be fixed, and construct F ⊂ Q and the
cut-off function Ψ as in Section 4. Recall that κ0 is fixed to ensure that (4.4)
holds.
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Recall that we have the matrix A = A(x) whose entries are functions on
Rn, or, independent of t, and we write

A =

[
A|| b

c d

]
.

Write the n × 1 vector b as b = b1 + b2, with divx b2 = 0. We define a new
matrix A1 as follows:

A1 =

[
A|| b1

c + bᵀ
2 d

]
and define L1 = −divA1∇. Then L1 and L actually define the same operator.
To be precise, we have the following

Lemma 11 For any u ∈W 1,2(Rn+1
+ ) and v ∈W 1,2

0 (Rn+1
+ )

¨
Rn+1

+

A(x)∇u(x, t) · ∇v(x, t)dxdt =

¨
Rn+1

+

A1(x)∇u(x, t) · ∇v(x, t)dxdt.

(5.1)
In particular, a weak solution to Lu = 0 in Rn+1

+ is also a weak solution to

L1u = 0 in Rn+1
+ .

Proof We first show (5.1) for u ∈W 1,2(Rn+1
+ ) and v ∈ C2

0 (Rn+1
+ ). To this end,

we write
¨

Rn+1
+

A(x)∇u(x, t) · ∇v(x, t)dxdt

=

¨
A||∇xu · ∇xv + (bᵀ

1 + bᵀ
2) · ∇xv ∂tu+ c · ∇xu ∂tv + d ∂tu ∂tv dxdt,

(5.2)

and
¨

Rn+1
+

bᵀ
2 · ∇xv ∂tu dxdt = −

¨
Rn+1

+

∂t (bᵀ
2 · ∇xv)u dxdt

= −
¨

bᵀ
2 · ∇x(∂tv)u dxdt = −

¨
bᵀ
2 · ∇x(∂tv u)dxdt

+

¨
bᵀ
2 · ∇xu ∂tv dxdt =

¨
bᵀ
2 · ∇xu ∂tv dxdt,

where in the second equality we have used the facts that b2 is t-independent
and that v ∈ C2, and in the last equality we have used the divergence-free
property of b2. Then (5.2) is further equal to¨

Rn+1
+

A||∇xu · ∇xv + bᵀ
1 · ∇xv ∂tu+ (c + bᵀ

2) · ∇xu ∂tv + d ∂tu ∂tv dxdt

=

¨
Rn+1

+

A1(x)∇u(x, t) · ∇v(x, t)dxdt.
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Now since C2
0 (Rn+1

+ ) is dense in W 1,2
0 (Rn+1

+ ), a limiting argument shows that

(5.1) holds for all u ∈W 1,2(Rn+1
+ ), v ∈W 1,2

0 (Rn+1
+ ). ut

Define

A0 =

[
A|| b− (ba)2Q

c− (ca)2Q d

]
, (5.3)

where (ba)2Q =
ffl
2Q

ba, and let L0 := −divA0∇.

Note that (ba)
ᵀ
2Q = − (ca)2Q by definition of ba and ca. Also, (ba)2Q is

a constant vector so we of course have divx (ba)2Q = 0. Hence, we can apply
the lemma with b2 = (ba)2Q. Moreover, observe that

A0 =

[
A|| b− (ba)2Q

c− (ca)2Q d

]
=

[
As|| bs

cs d

]
+

[
Aa|| ba − (ba)2Q

ca − (ca)2Q 0

]
,

where

[
As|| bs

cs d

]
is the symmetric part of A0, which is the same as the sym-

metric part of A, and

[
Aa|| ba − (ba)2Q

ca − (ca)2Q 0

]
is anti-symmetric, BMO,

with the same BMO semi-norm as Aa. We summarize these observations in
the following lemma.

Lemma 12 A weak solution to Lu = 0 in Rn+1
+ is also a weak solution to

L0u = 0 in Rn+1
+ . Moreover, the operator L0 has the same ellipticity constant

and BMO semi-norm as L.

Let u be a bounded weak solution to Lu = 0 in Rn+1
+ with ‖u‖L∞ ≤ 1.

Then u is also a bounded weak solution to L0u = 0 in Rn+1
+ . Recall that

Jη,ε =

¨
Rn+1

+

A0∇u · ∇uΨ2t dxdt.

Then by ellipticity of A0 and the support property of Ψ , we have

Jη,ε ≥ λ0
ˆ l(Q)

2ε

ˆ
F

|∇u(x, t)|2 t dxdt.

The goal of this section is to prove Lemma 3. Once it is proved, we choose
σ and η to be sufficiently small, so that

Jη,ε ≤ 2c̃ |Q| . (5.4)

Now that η is fixed, and c̃ is independent of ε, we let ε→ 0 and thus obtain

ˆ l(Q)

0

ˆ
F

|∇u(x, t)|2 t dxdt ≤ 2c̃,
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as desired.
Let us further reduce the statement to the case of smooth coefficients before

we prove Lemma 3. We claim that we can assume that A is smooth (and
thus A0 is smooth) in Lemma 3, as long as all bounds depend on A only
through its ellipticity constant and BMO semi-norm. If A is not smooth, we
take Aδ = ξδ ∗A0, where ξδ(X) = δ−n−1ξ(Xδ ) is an approximate identity. Then
Aδ converges to A0 locally in Lp(Rn+1) for all 1 ≤ p <∞ as δ → 0, and

‖Aaδ‖BMO(Rn+1) ≤ ‖A
a
0‖BMO(Rn+1) . (5.5)

See e.g. [21] Proposition 3.3 for a proof of (5.5). Then the desired result in the
non-smooth case follows from a limiting argument. To see this, fix any u that
satisfies Lu = 0 in Rn+1

+ and ‖u‖L∞(Rn+1
+ ) ≤ 1. Then fix a cube Q ⊂ Rn and

define the cutoff function Ψ = ΨQ,ε,η as in (4.11). Take cubes Q̃0 and Q̃1 such
that

suppΨ ⊂⊂ Q̃0 ⊂⊂ Q̃1 ⊂⊂ Rn+1
+ .

Now let uδ satisfy Lδuδ = −div(Aδ∇uδ) = 0 in Q̃0 and uδ = u on ∂Q̃0. Let
furthermore

Jδ = Jη,ε,δ =

¨
Rn+1

+

Aδ∇uδ · ∇uδ Ψ2t dxdt.

Since Aδ is smooth, we can use the result in the smooth case and have Jδ ≤
C |Q| by (5.4). The constant C is independent of ε, and can be independent
of δ because of (5.5). Hence, it remains to show that |Jδ − J | → 0 as δ → 0,
where

J = Jη,ε =

¨
Rn+1

+

A0∇u · ∇uΨ2t dxdt.

Notice that Aaδ∇uδ · ∇uδ = Aa0∇u · ∇u = 0 by anti-symmetry, and thus

|Jδ − J | =

∣∣∣∣∣
¨

Rn+1
+

Asδ∇uδ · ∇uδ Ψ2t dxdt−
¨

Rn+1
+

As0∇u · ∇uΨ2t dxdt

∣∣∣∣∣ .
We write

Asδ∇uδ · ∇uδ −As0∇u · ∇u
= Asδ∇(uδ − u) · ∇uδ +Asδ∇u · ∇(uδ − u) + (Asδ −As0)∇u · ∇u,

and get

|Jδ − J | ≤ sup
Q̃0

(Ψ2t)

{ ∣∣∣∣¨
Q̃0

Asδ∇(uδ − u) · ∇uδ dxdt
∣∣∣∣

+

∣∣∣∣¨
Q̃0

Asδ∇u · ∇(uδ − u)dxdt

∣∣∣∣+

∣∣∣∣¨
Q̃0

(Asδ −As0)∇u · ∇u dxdt
∣∣∣∣ }

≤ C
{¨

Q̃0

|∇(uδ − u)| (|∇uδ|+ |∇u|)dxdt+

¨
Q̃0

|Asδ −As0| |∇u|
2
dxdt

}
=: C(I1 + I2).
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Using ellipticity of Aδ, and taking u− uδ as a test function to both Lδuδ = 0
and L0u = 0 in Q̃0, one can get

¨
Q̃0

|∇(uδ − u)|2 dxdt ≤ λ−10

¨
Q̃0

Aδ∇(uδ − u) · ∇(uδ − u)dxdt

= λ−10

¨
Q̃0

(A0 −Aδ)∇u · ∇(uδ − u)dxdt.

Then by Cauchy-Schwarz inequality,

¨
Q̃0

|∇(uδ − u)|2 dxdt ≤ λ−20

¨
Q̃0

|A0 −Aδ|2 |∇u|2 dxdt.

Using Hölder inequality, reverse Hölder inequality for ∇u, and the fact that
‖A0 −Aδ‖Lp(Q0)

→ 0 as δ → 0 (p will be large), we obtain

¨
Q̃0

|∇(uδ − u)|2 dxdt→ 0 as δ → 0. (5.6)

Notice that ¨
Q̃0

|∇uδ|2 dxdt ≤ λ−40

¨
Q̃0

|∇u|2 dxdt,

and thus I1 → 0 by Cauchy-Schwarz inequality and (5.6). The second term,
I2, converges to 0 by the dominated convergence theorem.

This justifies the claim that we only need to prove Lemma 3 for A smooth.
Notice that in this case, ϕ, ϕ̃, Ptϕ̃, P∗t ϕ̃ and u are all smooth by interior
regularity of elliptic equations.

Now we are ready for the
Proof of Lemma 3. In the sequel, we shall simply write J for Jη,ε. We shall
not distinguish a column vector and a row vector, namely, we shall not use the
sign of transposition, as it should be clear from the context. We denote by c
some constant depending only on λ0, Λ0 and n, and by c̃ a constant depending
additionally on σ and η.

Since u is a weak solution to L0u = 0 in Rn+1
+ ,

¨
Rn+1

+

A0∇u · ∇(uΨ2t) dxdt = 0,

where we have chosen uΨ2t to be the test function. Therefore,

J =

¨
Rn+1

+

A0∇u · ∇uΨ2t dxdt

= −
¨

A0∇u · ∇(Ψ2)ut dxdt−
¨

A0∇u · ∇t uΨ2dxdt =: J1 + J2.
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The first term

J1 = −
¨

A||∇xu · ∇x(Ψ2)ut dxdt−
¨

(b− (ba)2Q) · ∇x(Ψ2)∂tuut dxdt

−
¨

(c− (ca)2Q) · ∇xu ∂t(Ψ2)ut dxdt−
¨

d ∂tu ∂t(Ψ
2)ut dxdt

=: J11 + J12 + J13 + J14.

For J11, we claim that

J11 = −
¨ (

A|| − (Aa||)2Q

)
∇xu · ∇x(Ψ2)ut dxdt. (5.7)

This is because¨
(Aa||)2Q∇xu · ∇x(Ψ2)ut dxdt =

1

2

¨
(Aa||)2Q∇x(u2) · ∇x(Ψ2t)dxdt,

and the last integral is 0 because (Aa||)2Q is a constant anti-symmetric matrix,

and Ψ2t is C2. Therefore,

J11 = −
¨

As||∇xu · ∇x(Ψ2)ut dxdt−
¨ (

Aa|| − (Aa||)2Q

)
∇xu · ∇x(Ψ2)ut dxdt

=: J111 + J112.

For J111, we have

|J111| = 2

∣∣∣∣∣
¨

Rn+1
+

As||∇xuΨ u∇x Ψ t dxdt

∣∣∣∣∣
≤ 2

λ0

¨
Rn+1

+

|∇xu| |Ψ | t1/2 |∇xΨ | t1/2dxdt

≤ σλ0
¨

Rn+1
+

|∇u|2 Ψ2t dxdt+
c

σ

¨
Rn+1

+

|∇Ψ |2 t dxdt ≤ σJ + c̃ |Q| ,

where in the first inequality we have used
∥∥∥As||∥∥∥

L∞
≤ λ−10 and ‖u‖L∞ ≤ 1,

and in the last step we have used Lemma 10. For J112, by Hölder’s inequality,

1

2
|J112| =

∣∣∣∣∣
ˆ
2Q

ˆ 4l(Q)

0

(
Aa|| − (Aa||)2Q

)
∇xu · ∇xΨ(uΨt)dtdx

∣∣∣∣∣
≤
(ˆ

2Q

∣∣∣Aa|| − (Aa||)2Q

∣∣∣α′ dx) 1
α′
(ˆ

2Q

(ˆ 4l(Q)

0

|∇u|
∣∣∣Ψt1/2∣∣∣ |∇Ψ | t1/2dt)αdx) 1

α

≤ c |Q|
1
α′
∥∥∥Aa||∥∥∥

BMO

{ ˆ
2Q

( ˆ 4l(Q)

0

|∇u|2 Ψ2t dt
)α

2
( ˆ 4l(Q)

0

|∇Ψ |2 t dt
)α

2

dx
} 1
α

,

(5.8)
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where α is any number between 1 and 2. Now we use Hölder inequality with
p = 2

α to bound (5.8) by

c |Q|
1
α′

(ˆ
2Q

ˆ 4l(Q)

0

|∇u|2 Ψ2t dtdx

)1/2(ˆ
2Q

(ˆ 4l(Q)

0

|∇Ψ |2 t dt
) α

2−α
dx

) 2−α
2α

,

which by Lemma 10 can then be bounded by

c̃J1/2 |Q|
1
α′+

2−α
2α = c̃J1/2 |Q|1/2 .

Then Young’s inequality gives

|J112| ≤ σJ + c̃ |Q| .

Note that J12 and J13 can be estimated similar as (5.7). So both of then
are bounded by σJ + c̃ |Q|. Since ‖d‖L∞ ≤ λ−10 , J14 can be also bounded by
σJ + c̃ |Q| using Young’s inequality and Lemma 10.

For J2, we compute

J2 = −
¨

Rn+1
+

A0∇u · en+1 uΨ
2dxdt

= −
¨

Rn+1
+

(c− (ca)2Q) · ∇xu(uΨ2)dxdt−
¨

Rn+1
+

d ∂tu(uΨ2)dxdt

=: J21 + J22.

For J22, since d is t-independent, integration by parts gives

J22 = −1

2

¨
Rn+1

+

d ∂t(u
2)Ψ2dxdt =

¨
Rn+1

+

d u2Ψ∂tΨ dxdt.

Thus |J22| ≤ c̃ |Q| again by Lemma 10. For J21, we write

J21 = −
¨

Rn+1
+

(c− (ca)2Q) · ∇x
(
u2Ψ2

2

)
dxdt

+

¨
Rn+1

+

(c− (ca)2Q) · ∇xΨ(u2Ψ)dxdt =: J211 + J212.

Going further,

J212 =

¨
Rn+1

+

cs · ∇xΨ(u2Ψ)dxdt+

¨
Rn+1

+

(ca − (ca)2Q) · ∇xΨ(u2Ψ)dxdt

=: J2121 + J2122.
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Then again by Lemma 10, |J2121| ≤ c̃ |Q|. For J2122,

|J2122| ≤
ˆ
2Q

|ca − (ca)2Q|

(ˆ 4l(Q)

0

∣∣∇xΨ(u2Ψ)
∣∣ dt) dx

≤
(ˆ

2Q

|ca − (ca)2Q|α
′
dx

)1/α′
(ˆ

2Q

(ˆ 4l(Q)

0

|∇Ψ |
∣∣u2Ψ ∣∣ dt)α)1/α

≤ c |Q|1/α
′

(ˆ
2Q

(ˆ 4l(Q)

0

|∇Ψ | dt

)α
dx

)1/α

≤ c̃ |Q| .

For J211, we use (3.3) to get

J211 =

¨
Rn+1

+

A∗||∇xϕ · ∇x
(
u2Ψ2

2

)
dxdt.

Recall that we defined θηt = ϕ− P∗ηtϕ in Section 4.2. We compute

J211 =

¨
Rn+1

+

A∗||∇xθηt·∇x
(u2Ψ2

2

)
dxdt+

¨
Rn+1

+

A∗||∇xP
∗
ηtϕ·∇x

(u2Ψ2

2

)
dxdt

=

¨
Rn+1

+

(
A∗|| − (A∗a|| )2Q

)
∇xθηt · ∇x

(u2Ψ2

2

)
dxdt

+

¨
Rn+1

+

A∗||∇xP
∗
ηtϕ · ∇x

(u2Ψ2

2

)
dxdt =: J2111 + J2112,

where in the second equality we have used the assumption that the coeffi-
cients are smooth, which implies that u2 is smooth, and thus (A∗a|| )2Q being a
constant anti-symmetric matrix gives

¨
Rn+1

+

(A∗a|| )2Q∇xθηt · ∇x
(
u2Ψ2

2

)
dxdt = 0.

For J2112, integration by parts with respect to t gives

J2112 = −
¨

Rn+1
+

∂t

(
A∗||∇xP

∗
ηtϕ · ∇x

(
u2Ψ2

2

))
t dxdt

= −
¨

Rn+1
+

A∗||∇x∂tP
∗
ηtϕ · ∇x

(
u2Ψ2

2

)
t dxdt

−
¨

Rn+1
+

A∗||∇xP
∗
ηtϕ · ∇x∂t

(
u2Ψ2

2

)
t dxdt =: I1 + I2.
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By the same reasoning as for (5.7), we have

I1 = −
¨

Rn+1
+

(
A∗|| − (A∗a|| )2Q

)
∇x∂tP∗ηtϕ · ∇x

(
u2Ψ2

2

)
t dxdt

= −
¨

Rn+1
+

A∗s|| ∇x∂tP
∗
ηtϕ · ∇x

(
u2Ψ2

2

)
t dxdt

−
¨

Rn+1
+

(
A∗a|| − (A∗a|| )2Q

)
∇x∂tP∗ηtϕ · ∇x

(
u2Ψ2

2

)
t dxdt

=: I11 + I12.

Then, applying Proposition 9 to the operator L∗|| = −divA∗||∇, with p = 2,

(¨
Rn+1

+

∣∣∇x∂tP∗ηtϕ∣∣2 t dxdt
)1/2

≤ c ‖∇ϕ‖L2(Rn) .

So by Cauchy-Schwartz inequality and by (3.5),

|I11| ≤ c

(¨
Rn+1

+

∣∣∇x∂tP∗ηtϕ∣∣2 t dxdt
)1/2(¨

Rn+1
+

∣∣∇x(u2Ψ2)
∣∣2 t dxdt)1/2

≤ c |Q|1/2
(¨

Rn+1
+

|∇xu|2 Ψ2 t dxdt+

¨
Rn+1

+

|∇xΨ |2 t dxdt

)1/2

.

Then Lemma 10 and Young’s inequality give

|I11| ≤ c |Q|1/2 (J + c̃ |Q|)1/2 ≤ σJ + c̃ |Q| .

For I12, we use Hölder inequality to get

|I12| ≤
1

2

(ˆ
2Q

∣∣∣A∗a|| − (A∗a|| )2Q

∣∣∣α′ dx) 1
α′

×
{ˆ

Rn

(ˆ ∞
0

∣∣∇x∂tP∗ηtϕ∣∣ ∣∣∇x (u2Ψ2
)∣∣ t dt)α dx}1/α

≤ c |Q|1/α
′

(ˆ
Rn

(ˆ ∞
0

∣∣∇x∂tP∗ηtϕ∣∣2 t dt) α
2−α

dx

) 2−α
2α

×
(ˆ

Rn

ˆ ∞
0

∣∣∇x(u2Ψ2)
∣∣2 t dtdx)1/2

.

Letting α
2−α = 2+ε0

2 , then by Proposition 9, (3.5) and Lemma 10,

|I12| ≤ c |Q|1/α
′
|Q|

2−α
2α (J + c̃ |Q|)1/2 ≤ σJ + c̃ |Q| .
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For I2, by the definition of L∗||, we can write I2 as

I2 = −1

2

ˆ ∞
0

ˆ
Rn
L∗||P

∗
ηtϕ∂t(u

2Ψ2)dx t dt.

By the Cauchy-Schwartz inequality,

|I2| ≤ c

(¨
Rn+1

+

∣∣∣L∗||P∗ηtϕ∣∣∣2 t dtdx
)1/2(¨

Rn+1
+

∣∣∂t(u2Ψ2)
∣∣2 t dtdx)1/2

.

By Proposition 8,(¨
Rn+1

+

∣∣∣L∗||P∗ηtϕ∣∣∣2 t dtdx
)1/2

≤ c̃ ‖∇ϕ‖L2(Rn) .

So by (3.5) and Lemma 10, we have

|I2| ≤ c̃ ‖∇ϕ‖L2(Rn)

(¨
Rn+1

+

∣∣∂t(u2Ψ2)
∣∣2 t dtdx)1/2

≤ c̃ |Q|1/2 (J + c̃ |Q|)1/2 ≤ σJ + c̃ |Q| .

We now return to J2111. Write

J2111 =

¨
Rn+1

+

(
A∗|| − (A∗a|| )2Q

)
∇xθηt · ∇xu(uΨ2)dxdt

+
1

2

¨
Rn+1

+

(
A∗|| − (A∗a|| )2Q

)
∇xθηt · ∇x(Ψ2)u2dxdt

=: II1 + II2.

For II2, we split it up into the integral involving A∗s|| and the integral involving

A∗a|| − (A∗a|| )2Q as before. We only treat the integral involving A∗a|| − (A∗a|| )2Q
(denoted by IIa2 ) as the estimate for the former is similar and easier. By the
Cauchy-Schwarz inequality and (4.12), we can write

|IIa2 | ≤ c
(ˆ

2Q

∣∣∣A∗a|| − (A∗a|| )2Q

∣∣∣2 dx) 1
2

(ˆ
2Q

(ˆ 4l(Q)

0

|∇xθηt| |∇xΨ | dt
)2
dx

) 1
2

≤ c̃ |Q|1/2
{(ˆ

2Q

( ˆ 4l(Q)

0

|∇xθηt|1E1

dt

t

)2
dx

)1/2

+

(ˆ
2Q

(ˆ 4l(Q)

0

|∇xθηt|1E2

dt

l(Q)

)2
dx

)1/2

+

(ˆ
2Q

(ˆ 4l(Q)

0

|∇xθηt|1E3

dt

ε

)2
dx

)1/2 }
=: c̃ |Q|1/2

(
(IIa21)1/2 + (IIa22)1/2 + (IIa23)1/2

)
. (5.9)
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Observing that

ˆ 4l(Q)

0

1E1(x, t)
dt

t
≤
ˆ 16δ(x)

η

8δ(x)
η

dt

t
= ln 2

and using the Cauchy-Schwarz inequality, we show that

IIa21 ≤
ˆ
2Q

(ˆ 4l(Q)

0

|∇xθηt|2 1E1

dt

t

)(ˆ 4l(Q)

0

1E1

dt

t

)
dx

≤ c
∑
k

∑
Q′∈Dηk

ˆ
Q′

ˆ 2−k+1

2−k
|∇xθηt|2 1E1

dt

t
dx,

where Dηk denotes the grid of dyadic cubes such that

1

64
η2−k ≤ l(Q′) < 1

32
η2−k, Q′ ∈ Dηk . (5.10)

Consider for any fixed k and Q′ ∈ Dηk , for which Q′× [2−k, 2−k+1]∩E1 6= ∅.
One can show that for such Q′, there exists some x0 ∈ F such that

2Q′ ⊂ B(x0, η2−k). (5.11)

This implies that for any t ∈ [2−k, 2−k+1],

 
Q′
|∇xθηt|2 dx .n

 
B(x0,η2−k)

∣∣∇xP∗ηtϕ(x)
∣∣2 dx+

 
B(x0,η2−k)

|∇ϕ(x)|2 dx

.n

 
B(x0,ηt)

∣∣∇xP∗ηtϕ(x)
∣∣2 dx+

 
B(x0,ηt)

|∇ϕ(x)|2 dx

.n
(
Ñη(∇xP∗ηtϕ)

)2
(x0) +M

(
|∇xϕ|2

)
(x0) . κ20, (5.12)

by definition of the integrated non-tangential maximal function (3.34) and the
definition of the set F .

By (5.10) and the definition of E1, one can show there exists some uniform
constant C > 1 such that

Q′ × [2−k, 2−k+1] ⊂ Ẽ1 :=
{

(y, s) ∈ 2Q× (0, 4l(Q)) :
ηs

C
≤ δ(y) ≤ Cηs

}
,

which implies

|Q′| .
ˆ
Q′

ˆ 2−k+1

2−k
1Ẽ1

(y, s)
ds

s
dy. (5.13)
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Using (5.12) and (5.13), we estimate IIa21 as follows:

IIa21 ≤ c
∑
k

∑
Q′∈Dηk

ˆ 2−k+1

2−k

 
Q′
|∇xθηt|2 dx |Q′|

dt

t

≤ cκ20
∑
k

∑
Q′∈Dηk

(ˆ 2−k+1

2−k

dt

t

) ˆ
Q′

ˆ 2−k+1

2−k
1Ẽ1

(y, s)
ds

s
dy

≤ c
¨

Rn+1
+

1Ẽ1
(y, s)

dsdy

s
≤ c

ˆ
2Q

ˆ Cδ(y)
η

δ(y)
Cη

ds

s
dy ≤ c |Q| .

For IIa22, notice that

IIa22 =

ˆ
2Q

(ˆ 4l(Q)

2l(Q)

|∇xθηt|1E2

dt

l(Q)

)2

dx

≤ 4

l(Q)

ˆ 4l(Q)

2l(Q)

ˆ
2Q

∣∣∇xP∗ηtϕ(x)
∣∣2 1E2

dxdt

+
4

l(Q)

ˆ 4l(Q)

2l(Q)

ˆ
2Q

|∇xϕ(x)|2 1E2dxdt. (5.14)

By the definition of E2, one has δ(x) ≤ η
2 l(Q) for any (x, t) ∈ E2. Denote

by πE2 the projection of E2 onto {t = 0}, then πE2 can be covered by balls
B(xi, 2ηl(Q)) with xi ∈ F , and the number N of these balls can be bounded
by cnη

−n, where cn is a constant depending only on the dimension. So the
first term on the right-hand side of (5.14) is bounded by

cηnl(Q)n−1
N∑
i=1

ˆ 4l(Q)

2l(Q)

 
B(xi,2ηl(Q))

∣∣∇xP∗ηtϕ∣∣2 dxdt
≤ cηn |Q|

l(Q)

N∑
i=1

ˆ 4l(Q)

2l(Q)

 
B(xi,2ηl(Q))

Ñη(∇xP∗ηtϕ)2(xi)
2dt ≤ cκ20 |Q| ,

using the definition of Ñη, the definition of the set F , and N ≤ cη−n. For the
second term on the right-hand side of (5.14), notice that πE2

⊂ B(x0, 2l(Q))
for any x0 ∈ F . Then the second term is bounded by

c |Q|
l(Q)

ˆ 4l(Q)

2l(Q)

 
B(x0,2l(Q))

|∇ϕ(x)|2 dxdt ≤ c |Q|
l(Q)

ˆ 4l(Q)

2l(Q)

M
(
|∇ϕ|2

)
(x0)dt

≤ cκ20 |Q| ,

using again the definition of the set F . Combining these two estimates with
(5.14) we obtain the bound IIa22 ≤ c |Q|.
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By a similar argument, one can show that IIa23 ≤ c̃ |Q| as well. Combining
these results with (5.9), we have shown that |IIa2 | ≤ c̃ |Q|, and thus |II2| ≤
c̃ |Q|.

We now deal with II1. Write

II1 =

¨
Rn+1

+

(
A∗|| − (A∗a|| )2Q

)
∇x(θηtuΨ

2) · ∇xudxdt

−
¨

Rn+1
+

(
A∗|| − (A∗a|| )2Q

)
∇xu · ∇xu (θηtΨ

2)dxdt

−
¨

Rn+1
+

(
A∗|| − (A∗a|| )2Q

)
∇x(Ψ2) · ∇xu (uθηt)dxdt

=: II11 + II12 + II13.

We use Lemma 8 to bound II12 and II13. We rewrite Lemma 8 in the following
way

|θηt(x)| . κ0ηt for (x, t) ∈ suppΨ. (5.15)

Note that by anti-symmetry,

II12 = −
¨

Rn+1
+

A∗s|| ∇xu · ∇xu (θηtΨ
2)dxdt,

and thus

|II12| ≤ cη
¨

Rn+1
+

|∇u|2 Ψ2t dxdt ≤ cηJ.

For II13, we have

|II13| ≤ cκ0η
¨

Rn+1
+

∣∣∣A∗|| − (A∗a|| )2Q

∣∣∣ ∣∣∇x(Ψ2)
∣∣ |∇xu| t dxdt,

which is bounded by σJ + c̃ |Q| by the same reasoning for the term J11.
For II11, observe first that

II11 =

¨
Rn+1

+

A∗||∇x(θηtuΨ
2) · ∇xudxdt =

¨
Rn+1

+

A||∇xu · ∇x(θηtuΨ
2)dxdt.

Taking θηtuΨ
2 as a test function (this is admissible due to the smoothness

assumption) in the equation L0u = 0 in Rn+1
+ , one gets

0 =

¨
Rn+1

+

A0∇u · ∇(θηtuΨ
2)dxdt

=

¨
Rn+1

+

A||∇xu · ∇x(θηtuΨ
2) +

¨
Rn+1

+

(b− (ba)2Q) · ∇x(θηtuΨ
2)∂tu

+

¨
Rn+1

+

(c− (ca)2Q) · ∇xu ∂t(θηtuΨ2) +

¨
Rn+1

+

d ∂tu ∂t(θηtuΨ
2).
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So we have

II11 = −
¨

Rn+1
+

(b− (ba)2Q) · ∇x(θηtuΨ
2)∂tu

−
¨

Rn+1
+

(c− (ca)2Q) · ∇xu ∂t(θηtuΨ2)−
¨

Rn+1
+

d ∂tu ∂t(θηtuΨ
2)

=: II111 + II112 + II113.

We treat II113 first. Write

II113 = −
¨

Rn+1
+

d ∂tu ∂tθηt(uΨ
2)−

¨
Rn+1

+

d ∂tu ∂tu(θηtΨ
2)

−
¨

Rn+1
+

d ∂tu ∂t(Ψ
2)θηtu =: II1131 + II1132 + II1133.

Note that ∂tθηt = −∂tP∗ηtϕ. So II1131 =
˜

Rn+1
+

d ∂tu ∂tP∗ηtϕ(uΨ2). We first

use Cauchy-Schwartz and then Proposition 8 to get

|II1131| ≤ c

(¨
Rn+1

+

|∂tu|2 Ψ2t dxdt

)1/2(¨
Rn+1

+

∣∣∂tP∗ηtϕ∣∣2 dtt dx
)1/2

≤ c̃J1/2 ‖∇ϕ‖L2(Rn) ≤ σJ + c̃ |Q| .

For II1132, we use (5.15) to get

|II1132| ≤ cκ0η
¨

Rn+1
+

|∇u|2 Ψ2t dxdt ≤ cηJ.

By (5.15), Young’s inequality and Lemma 10,

|II1133| ≤ cκ0η
¨

Rn+1
+

|∂tu| |∂tΨ |Ψtdxdt ≤ σJ + c̃ |Q| .

We now treat II112. Write

II112 = −
¨

Rn+1
+

(c− (ca)2Q) · ∇xu ∂tu (θηtΨ
2)dxdt

+

¨
Rn+1

+

(c− (ca)2Q) · ∇xu ∂tP∗ηtϕ(uΨ2)dxdt

− 2

¨
Rn+1

+

(c− (ca)2Q) · ∇xu ∂tΨ(θηtuΨ)dxdt

=: II1121 + II1122 + II1123.
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For II1122, we only focus on the anti-symmetric part, namely, the integral
involving ca− (ca)2Q (denoted by Ia1122), for the integral involving cs is easier
to estimate. We have

|IIa1122| ≤
(ˆ

2Q

|c− (ca)2Q|α
′
) 1
α′
(ˆ

2Q

( ˆ 4l(Q)

0

|∇xu|
∣∣∂tP∗ηtϕ∣∣Ψ2dt

)α
dx

) 1
α

≤ c |Q|1/α
′

(ˆ
Rn

(ˆ ∞
0

|∇u|Ψ2t dt

)α/2(ˆ ∞
0

∣∣∂tP∗ηtϕ∣∣2 dtt
)α/2

dx

)1/α

≤ |Q|1/α
′
J1/2

(ˆ
Rn

(ˆ ∞
0

∣∣∂tP∗ηtϕ∣∣2 dtt
) α

2−α

dx

) 2−α
2α

.

Choosing α so that α
2−α = 2+ε0

2 and applying Proposition 8 with p = 2α
2−α =

2 + ε0, as well as (3.5), we get

|IIa1122| ≤ cη |Q|
1/α′

J1/2 ‖∇ϕ‖
L

2α
2−α (Rn)

≤ cηJ1/2 |Q|1/2 ≤ σJ + c̃ |Q| .

Using the bound (5.15), II1123 can be estimated like II13, and hence bounded
by σJ + c̃ |Q|.

For II1121, we write

II1121 = −
¨

Rn+1
+

cs · ∇xu ∂tu θηtΨ2 −
¨

Rn+1
+

(ca − (ca)2Q) · ∇xu ∂tu θηtΨ2

= −
¨

Rn+1
+

cs · ∇xu ∂tu θηtΨ2 +

¨
Rn+1

+

(ba − (ba)2Q) · ∇xu ∂tu θηtΨ2.

(5.16)

The first term in (5.16) can be estimated as II1132. We leave the second term
aside for now.

We write II111 as follows

II111 = −
¨

Rn+1
+

(b− (ba)2Q) · ∇xθηt(uΨ2∂tu)dxdt

−
¨

Rn+1
+

(b− (ba)2Q) · ∇xu (θηtΨ
2∂tu)dxdt

− 2

¨
Rn+1

+

(b− (ba)2Q) · ∇xΨ(θηtuΨ∂tu)dxdt

=: II1111 + II1112 + II1113.

The term |II1113| can be estimated like II1123, and hence bounded by σJ +
c̃ |Q|. For II1112, we write

II1112 = −
¨

Rn+1
+

bs ·∇xu (θηtΨ
2∂tu)−

¨
Rn+1

+

(ba − (ba)2Q) ·∇xu (θηtΨ
2∂tu)

(5.17)
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The first term can be estimated as the first term in (5.16). And the second
term in (5.17) cancels the second term in (5.16).

It remains to estimate II1111. Integration by parts in t gives

2II1111 =

¨
Rn+1

+

(b− (ba)2Q) · ∂t(∇xθηt)u2Ψ2

+

¨
Rn+1

+

(b− (ba)2Q) · ∇xθηt∂t(Ψ2)u2

=

¨
Rn+1

+

(b− (ba)2Q) · ∇x(∂tP∗ηtϕΨ2u2)

−
¨

Rn+1
+

(b− (ba)2Q) · ∇x(Ψ2u2)∂tP∗ηtϕ

+

¨
Rn+1

+

(b− (ba)2Q) · ∇xθηt∂t(Ψ2)u2 =: III1 + III2 + III3.

For III2, we write

III2 = −2

¨
Rn+1

+

(b− (ba)2Q) · ∇xu∂tP∗ηtϕ(uΨ2)

− 2

¨
Rn+1

+

(b− (ba)2Q) · ∇xΨ∂tP∗ηtϕ(u2Ψ).

The first term on the right-hand side can be estimated as II1122. The second
term can be estimated using ‖u‖L∞ ≤ 1, Hölder’s inequality, Lemma 10 and
(3.30). Together, one obtains |III2| ≤ σJ+c̃ |Q|. Finally, III3 can be estimated
as II2, and thus |III3| ≤ c̃ |Q|.

For III1, note that it is similar to J211 except that it has an extra ∂tP∗ηtϕ.
It turns out that this term will do our favor. We proceed like J211 by recalling
that divx (b− (ba)2Q) = divxA||∇xϕ̃ = −L||ϕ̃ (see (3.4)). So we have

III1 =

¨
Rn+1

+

A||∇xϕ̃ · ∇x(∂tP∗ηtϕΨ2u2).

Writing ϕ̃ = θ̃ηt + Pηtϕ̃, we get

III1 =

¨
Rn+1

+

A||∇xθ̃ηt · ∇x
(
∂tP∗ηtϕ(Ψ2u2)

)
+

¨
Rn+1

+

A||∇xPηtϕ̃ · ∇x
(
∂tP∗ηtϕ(Ψ2u2)

)
=

¨
Rn+1

+

(
A|| − (Aa||)2Q

)
∇xθ̃ηt · ∇x

(
∂tP∗ηtϕ(Ψ2u2)

)
+

¨
Rn+1

+

L||Pηtϕ̃ ∂tP∗ηtϕ(Ψ2u2) =: III11 + III12,
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where in the second equality we have used the smoothness assumption to
obtain ¨

Rn+1
+

(Aa||)2Q∇xθ̃ηt · ∇x
(
∂tP∗ηtϕ(Ψ2u2)

)
= 0.

For III12, the Cauchy-Schwartz inequality gives

|III12| ≤ c

(¨
Rn+1

+

t
∣∣L||Pηtϕ̃∣∣2 dxdt

)1/2(¨
Rn+1

+

∣∣∂tP∗ηtϕ∣∣2 dxdtt
)1/2

.

So by Proposition 8, |III12| ≤ c̃ |Q|.
For III11, we write

III11 =

¨
Rn+1

+

(
A|| − (Aa||)2Q

)
∇xθ̃ηt · ∇x(u2)∂tP∗ηtϕΨ2

+

¨
Rn+1

+

(
A|| − (Aa||)2Q

)
∇xθ̃ηt · ∇x(Ψ2)∂tP∗ηtϕu2

+

¨
Rn+1

+

(
A|| − (Aa||)2Q

)
∇xθ̃ηt · ∇x∂tP∗ηtϕ(Ψ2u2)

=: III111 + III112 + III113.

Since Nη
(
∂tP∗ηtϕ

)
(x) ≤ cκ0η for any x ∈ F by the construction of F ,∣∣∂tP∗ηtϕ∣∣ ≤ cκ0η on the support of Ψ . Therefore, III112 can be estimated like

the term II2 and thus |III112| ≤ c̃ |Q|.
For III113, note that Proposition 10 implies¨

Rn+1
+

∣∣∣t2L∗||∂tP∗ηtϕ∣∣∣2 dxdtt ≤ cη−2 |Q| . (5.18)

We write

III113 =

¨
Rn+1

+

∇x(θ̃ηtu
2Ψ2) ·A∗||∇x∂tP

∗
ηtϕ

−
¨

Rn+1
+

θ̃ηt∇x(u2Ψ2) ·
(
A∗|| − (Aa∗|| )2Q

)
∇x∂tP∗ηtϕ

=

¨
Rn+1

+

θ̃ηtu
2Ψ2L∗||∇x∂tP

∗
ηtϕ

−
¨

Rn+1
+

θ̃ηt∇x(u2Ψ2) ·
(
A∗|| − (Aa∗|| )2Q

)
∇x∂tP∗ηtϕ =: III1131 + III1132.

By the Cauchy-Schwartz inequality, Lemma 9 and (5.18),

|III1131| ≤ c

(¨
Rn+1

+

∣∣∣θ̃ηt∣∣∣2 dxdt
t3

)1/2(¨
Rn+1

+

∣∣∣t2L∗||∂tP∗ηtϕ∣∣∣2 dxdtt
)1/2

≤ c |Q| .
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By (5.15), |III1132| is bounded by

cκ0η

¨
Rn+1

+

∣∣∣A∗|| − (Aa∗|| )2Q

∣∣∣ ∣∣∇x(u2Ψ2)
∣∣ ∣∣∇x∂tP∗ηtϕ∣∣ t dxdt,

which is bounded by σJ + c̃ |Q| using the same method of estimating I12.
Now it remains to estimate III111. Note that the integration is over the

support of Ψ instead of support of ∇Ψ , so we cannot use the same method as
estimating II2. Like before, we only deal with the term involving Aa||−(Aa||)2Q,
as the term with the symmetric matrix As|| is easier to estimate. We have

|IIIa11| =

∣∣∣∣∣
¨

Rn+1
+

(
Aa|| − (Aa||)2Q

)
∇xθ̃ηt · ∇x(u2)∂tP∗ηtϕΨ2

∣∣∣∣∣
≤ c |Q|

1
α′

(ˆ
2Q

(ˆ 4l(Q)

0

∣∣∣∇xθ̃ηt∣∣∣ |∇xu|Ψ2
∣∣∂tP∗ηtϕ∣∣ dt

)α
dx

) 1
α

≤ c |Q|
1
α′

(
σJ + c̃

ˆ
Rn

(ˆ ∞
0

∣∣∣∇xθ̃ηt∣∣∣2 ∣∣∂tP∗ηtϕ∣∣2 1suppΨ
dt

t

) α
2−α

dx

) 1
α

.

(5.19)

We write
ˆ
Rn

(ˆ ∞
0

∣∣∣∇xθ̃ηt∣∣∣2 ∣∣∂tP∗ηtϕ∣∣2 1suppΨ
dt

t

) α
2−α

dx

= sup
ξ∈S (Rn)
‖ξ‖

α
2α−2≤1

∣∣∣∣∣
¨

Rn+1
+

∣∣∣∇xθ̃ηt∣∣∣2 ∣∣∂tP∗ηtϕ∣∣2 ξ(x)1suppΨ
dxdt

t

∣∣∣∣∣
α

2−α

.

As before, let Dηk be the grid of dyadic cubes such that (5.10) holds. Then
¨

Rn+1
+

∣∣∣∇xθ̃ηt∣∣∣2 ∣∣∂tP∗ηtϕ∣∣2 ξ(x)1suppΨ
dxdt

t

=
∑
k

∑
Q′∈Dηk

ˆ
Q′

ˆ 2−k+1

2−k

∣∣∣∇xθ̃ηt∣∣∣2 ∣∣∂tP∗ηtϕ∣∣2 ξ(x)1suppΨ
dtdx

t
. (5.20)

By Corollary 1, we bound (5.20) by

cη
∑
k

∑
Q′∈Dηk

(ˆ
2Q′

ˆ 2−k+1

2−k−1

∣∣∂tP∗ηtϕ∣∣2 dydtt
)

×
ˆ 2−k+1

2−k

1

|Q′|

ˆ
Q′

∣∣∣∇xθ̃ηt∣∣∣2 |ξ(x)|1suppΨ
dtdx

t
. (5.21)

We now estimate the integral in the second line of (5.21).
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Let r = 1+ ε with ε > 0 sufficiently small. We use Hölder’s inequality, then
definition of θ̃ηt, and Corollary 2 as well as the reverse Hölder estimates for
∇ϕ̃, to get

ˆ 2−k+1

2−k

1

|Q′|

ˆ
Q′

∣∣∣∇xθ̃ηt∣∣∣2 |ξ(x)|1suppΨ
dtdx

t

≤
ˆ 2−k+1

2−k

( 
Q′

∣∣∣∇xθ̃ηt∣∣∣2r′ dx)1/r′ ( 
Q′
|ξ(x)|r dx

)1/r

1suppΨ
dt

t

≤
( 

Q′
|ξ(x)|r dx

)1/r

×
ˆ 2−k+1

2−k

{( 
Q′
|∇xPηtϕ̃|2r

′
dx

)1/r′

+

( 
Q′
|∇ϕ̃|2r

′
dx

)1/r′ }
1suppΨ

dt

t

≤ c
( 

Q′
|ξ(x)|r dx

)1/r ˆ 1

2k−1

1

2k

{ 
2Q′
|∇xPηtϕ̃|2 dx+ η−2

( 
2Q′
|∂tPηtϕ̃|2r

′
) 1
r′

+

 
2Q′
|∇ϕ̃|2

}
1suppΨ

dt

t

≤ c
( 

Q′
|ξ(x)|r dx

)1/r ˆ 1

2k−1

1

2k

{ 
B(x0,η2−k)

|∇xPηtϕ̃|2 dx

+ η−2

( 
B(x0,η2−k)

|∂tPηtϕ̃|2r
′
dx

)1/r′

+

 
B(x0,η2−k)

|∇ϕ̃|2 dx
}
1suppΨdt

t
,

where in the last inequality we have used (5.11), with x0 ∈ F . Therefore, we
can bound this by

c

( 
Q′
|ξ(x)|r dx

)1/r ˆ 2−k+1

2−k
Ñη(∇xPηtϕ̃)(x0)2 + η−2Nη(∂tPηtϕ̃)(x0)2

+M
(
|∇ϕ̃|2

)
(x0)

dt

t
≤ cκ20

( 
Q′
|ξ(x)|r dx

)1/r

.
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So (5.21) is bounded by

cη
∑
k

∑
Q′∈Dηk

(ˆ
2Q′

ˆ 2−k+1

2−k−1

∣∣∂tP∗ηtϕ∣∣2 dydtt
)( 

Q′
|ξ(x)|r dx

)1/r

≤ cη
∑
k

∑
Q′∈Dηk

ˆ
2Q′

(M(|ξ|r))1/r (y)

ˆ 2−k+1

2−k−1

∣∣∂tP∗ηtϕ(y)
∣∣2 dt

t
dy

≤ cη
ˆ
Rn
M(|ξ|r)(y)1/r

ˆ ∞
0

∣∣∂tP∗ηtϕ(y)
∣∣2 dt

t
dy

≤ cη
(ˆ

Rn
M(|ξ|r)(y)q/rdy

)1/q
(ˆ

Rn

(ˆ ∞
0

∣∣∂tP∗ηtϕ(y)
∣∣2 dt

t

)q′)1/q′

.

Choosing q = α
2α−2 , the above is bounded by

cη

(ˆ
Rn
|ξ|

α
2α−2

) 2α−2
α

(ˆ
Rn

(ˆ ∞
0

∣∣∂tP∗ηtϕ(y)
∣∣2 dt

t

) α
2−α

dy

) 2−α
α

≤ c̃ ‖ξ‖
L

α
2α−2

|Q|
2−α
α ,

where in the last step we have used Proposition 8. Combining these estimates
with (5.19), we obtain

|IIIa111| ≤ c |Q|
1/α′

(σJ + c̃ |Q|)1/α ≤ σ

2
J + c̃ |Q| .

This finishes the proof of Lemma 3. ut

6 Proof of Uniqueness and Theorem 2

In this section, we prove the uniqueness part in the statement of Theorem 1.
One can prove the uniqueness of Lp Dirichlet problem in bounded domains
as in [17] Theorem 1.7.7. But that argument can not be modified to work for
unbounded domains. We present here a different and simpler proof that works
in a rather general setting.

Recall that we have proved that for any cube Q0 ⊂ Rn, ωXQ0 ∈ A∞(Q0),
which implies that there is some q ∈ (1,∞) such that the Radon-Nikodym
derivative k(XQ0

, ·) satifies the reverse Hölder inequality (2.4). We now show
that we have the following non-tangential maximal function estimate:

Lemma 13 Let p ≥ q′, where q is the exponent in the reverse Hölder inequal-
ity (2.4). If f ∈ Lp(Rn, dµ) and u(X) =

´
Rn f(y)k(X, y)dµ(y), then

‖Nu‖Lp(Rn,dµ) . ‖f‖Lp(Rn,dµ) . (6.1)

Moreover, u converges non-tangentially µ- a.e. to f .
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Proof We first note that (6.1) may be obtained as in the proof of Lemma
5.32 in [12]. Indeed, the argument in [12] relies only on Hölder continuity of
solutions, Harnack principle, and comparison principle. The coefficients (in
BMO) do not affect the argument since the equation is not used explicitly. It
therefore suffices to show that u converges non-tangentially µ-a.e. to f .

For any ε > 0, choose fε ∈ C0(Rn) such that ‖f − fε‖Lp(Rn,µ) < ε. Define

uε(X) =
´
Rn fε(y)k(X, y)dµ(y). Then uε ∈ C(Rn+1

+ ) and uε = fε on Rn. We
note that the latter fact may be gleaned from the analogous fact on bounded
domains (see[18]), the construction at the beginning of Section 2 (applied with
u = uε), and an equicontinuity argument using [18] Lemma 3.9, and Lemma
4.5. So

lim
Γ (x)3(y,t)→(x,0)

uε(y, t) = fε(x) ∀x ∈ Rn.

Since we have the non-tangential convergence for a dense class, the non-
tangential convergence of u follows from (6.1) and a standard argument. In
fact, we have

lim sup
Γ (x)3(y,t)→(x,0)

|u(y, t)− f(x)| ≤ |N (u− uε) (x)|+ |(f − fε) (x)| ∀x ∈ Rn.

For any λ > 0, we apply Chebyshev’s inequality and (6.1) to get

µ

({
x ∈ Rn : lim sup

Γ (x)3(y,t)→(x,0)

|u(y, t)− f(x)| > λ

})
≤ µ ({x ∈ Rn : N (u− uε) (x) > λ/2}) + µ ({x ∈ Rn : |(f − fε) (x)| > λ/2})

. λ−p
(
‖N(u− uε)‖pLp(Rn,dµ) + ‖f − fε‖pLp(Rn,dµ)

)
. λ−p ‖f − fε‖pLp(Rn,dµ) . ελ−p.

Since ε > 0 is arbitrary, it shows that limΓ (x)3(y,t)→(x,0) u(y, t) = f(x) for µ-
a.e. x ∈ Rn. ut

The Lp boundedness of the non-tangential maximal function implies cer-
tain decay properties. To be precise, we have the following

Lemma 14 Let u(x, t) be a function in Rn+1
+ . If there exists some constant

C such that ‖Nu‖Lp(Rn) < C for some p > 0, then u satisfies the following
properties:

1. |u(x, t)| < C ′t−
n
p for all (x, t) ∈ Rn+1

+ , where the constant C ′ only depends
on n and C.

2. For any ε > 0, any δ > 0, there exists some R0 = R0(u, ε, δ) > 1 such that
for all |x| ≥ R0 and t ≥ δ, we have |u(x, t)| < ε.
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Proof To see (1), we observe for any fixed (x, t) ∈ Rn+1
+ , for all y ∈ ∆(x, t),

(x, t) ∈ Γ (y). So we have

|u(x, t)|p ≤ 1

|∆(x, t)|

ˆ
∆(x,t)

Nu(y)pdµ(y) ≤ CnCpt−n.

We prove (2) by contradiction. If this is not true, then there exist some ε > 0
and δ > 0 such that for any k ∈ N, we can find |xk| ≥ k and tk ≥ δ, for which
|u(xk, tk)| ≥ ε. Since tk ≥ δ, (xk, tk) ∈ Γ (y) for all y ∈ ∆(xk, δ). This implies
that

Nu(y) ≥ u(xk, tk) ≥ ε ∀ y ∈ ∆(xk, δ).

Choose a subsequence xkj so that the collection of surface balls {∆(xkj , δ)} is
pairwise disjoint. Then

Cp >

ˆ
Rn
|Nu(y)|p dµ(y) ≥

∞∑
j=0

ˆ
∆(xkj ,δ)

εpdµ(y) = Cn

∞∑
j=0

εpδn =∞,

which yields a contradiction. ut

We now prove the uniqueness of the Lp Dirichlet problem.
Proof of uniqueness. Fix q so that k(X, ·) ∈ Lq(Rn) for all X ∈ Rn+1

+ as in
(2.4), and let p = q

q−1 . We show that if u is a solution of (D)p, that is,
Lu = 0 in Rn+1

+ ,

u→ f ∈ Lp(Rn, dµ) non-tangentially µ-a.e. on Rn,
Nu ∈ Lp(Rn, dµ),

then

u(X) =

ˆ
Rn
g(y)k(X, y)dµ(y) for some g ∈ Lp(Rn, dµ). (6.2)

Then by Lemma 13, u converges non-tangentially µ-a.e. to g. This implies that
u(X) =

´
Rn f(y)k(X, y)dµ(y), which proves that the solution is unique. We

now show (6.2).
For any m ∈ N, set fm(x) := u(x, 1

m ). Note that by the interior estimates
for weak solutions, fm is continuous on Rn. Moreover,

‖fm‖Lp(Rn) ≤ sup
t>0
‖u(·, t)‖Lp(Rn) ≤ ‖Nu‖Lp <∞. (6.3)

Since Nu ∈ Lp(Rn), we can apply Lemma 14 (2) and get

lim
|x|→∞

fm(x) = 0, ‖fm‖L∞(Rn) <∞. (6.4)

We define

um(x, t) :=

ˆ
Rn
fm(y)k ((x, t), y) dµ(y), and δm(x, t) := u(x, t+

1

m
)−um(x, t).
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Since fm is continuous on Rn and satisfies (6.4), from the definition of elliptic
measures it follows that

‖um‖L∞(Rn+1
+ ) ≤ ‖fm‖L∞(Rn) . (6.5)

Moreover, we claim that um is a solution to the continuous Dirichlet prob-
lem, with data fm; in particular, um(x, 0) = fm(x) for all x ∈ Rn. To see
this, for R > 0 and large, let ΦR be a smooth cut-off function defined on
Rn, identically 1 in ∆(0, R), supported in ∆(0, 2R), with 0 ≤ ΦR ≤ 1. Set
fm,R := fmΦR, and let um,R be the elliptic measure solution with data fm,R.
Then um,R(·, 0) = fm,R continuously, since the data belongs to C0(Rn). In
particular, um,R(x, 0) = fm(x) for all |x| < R. Given ε > 0, we note that by
Lemma 14 (2), |fm(x)− fm,R(x)| ≤ ε, for all x ∈ Rn, provided that R is large
enough, hence also |um,R(x, t)− um(x, t)| ≤ ε, since elliptic measure has total
mass 1. The claim now follows. This means that

δm(x, 0) = 0 for all x ∈ Rn. (6.6)

Notice that δm is a solution to Lv = 0 in Rn+1
+ , which vanishes continuously

on {t ≡ 0}. We claim that δm ≡ 0 in Rn+1
+ . To prove this claim, we observe

that by the maximum principle, it suffices to show that

lim
|x|+t→∞

∣∣u(x, t+
1

m

)∣∣+ |um(x, t)| = 0.

For u
(
x, t+ 1

m

)
, this follows immediately from Lemma 14 and our assumption

that Nu ∈ Lp(Rn). To see that decay to 0 holds for um, we define fm,R, um,R
as above. Given ε > 0, fix R so that ‖fm − fm,R‖L∞(Rn) < ε, hence also

‖um − um,R‖L∞(Rn+1
+ ) < ε. By Hölder continuity at the boundary, we may

choose δ > 0 small enough that for |x| > 3R, and t < δ, we have

|um,R(x, t)| . δα||fm||∞ < ε,

and thus also |um(x, t)| < 2ε. Moreover, with this value of δ now fixed, it
follows immediately from (6.3), the definition of um and (6.1), and Lemma 14,
that

lim
|x|+t→∞

|um(x, t)|1[δ,∞)(t) = 0.

We conclude that δm ≡ 0. In turn, the latter is equivalent to

u(x, t+
1

m
) =

ˆ
Rn
fm(y)k((x, t), y)dµ(y), ∀m ∈ N. (6.7)

Since supm ‖fm‖Lp(Rn) ≤ ‖Nu‖Lp < ∞, there is some g ∈ Lp(Rn, dµ) and

{fm′} such that fm′ converges to g weakly. Note that k(X, ·) ∈ Lq(Rn, dµ)
(see (2.5)), so by letting m′ go to infinity in (6.7) we obtain (6.2). ut

From the proof of uniqueness, one can see that we actually proved the
stronger result, Theorem 2. In fact, we did not use u → f ∈ Lp(Rn, dµ) non-
tangentially µ-a.e. on Rn to obtain (6.2). Once we express u as in (6.2), we
apply Lemma 13 to conclude that the non-tangential limit of u exists µ- a.e.
and is in Lp(Rn, dµ).
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A Appendix: Weak solution of parabolic equations

Lemma 15 Suppose u, v ∈ L2
(
(0, T ),W 1,2(Rn)

)
with ∂tu, ∂tv ∈ L2

(
(0, T ), W̃−1,2(Rn)

)
.

Then

(i) u ∈ C
(
[0, T ], L2(Rn)

)
;

(ii) The mapping t 7→ ‖u(·, t)‖L2(Rn) is absolutely continuous, with

d

dt
‖u(·, t)‖2L2(Rn) = 2<〈∂tu(·, t), u(·, t)〉

W̃−1,2,W1,2 for a.e. t ∈ [0, T ].

As a consequence,

d

dt
(u(·, t), v(·, t))L2(Rn) = 〈∂tu(·, t), v(·, t)〉

W̃−1,2,W1,2+〈∂tv(·, t), u(·, t)〉
W̃−1,2,W1,2 a.e.

For the proof see, e.g., [8], Section 5.9.2, Theorem 3.
Suppose that A = A(x) = As(x) + Aa(x) is a real, n × n matrix, with As being

symmetric, elliptic with constant λ0 > 0, ‖As‖L∞(Rn) ≤ λ
−1
0 , and Aa being anti-symmetric

and ‖Aa‖BMO(Rn) ≤ Λ0.

Proposition 13 For any u0 ∈ L2(Rn), the initial value problem{
∂tu− div(A∇u) = 0 in Rn × (0,∞),

u(x, 0) = u0(x),
(A.1)

has a unique weak solution u(x, t) = e−tL(u0)(x). Here, div = divx and ∇ = ∇x.

Proof Existence.
Since the domain of L (denoted by D(L)) is dense in W 1,2(Rn), and thus dense in

L2(Rn), we can find a sequence {u0,ε} ⊂ D(L) such that u0,ε converges to u0 in L2(Rn).
Denote uε(x, t) := e−tL(u0,ε)(x). Then by semigroup theory,

∂tuε + Luε = 0 in L2(Rn) ∀ t ≥ 0. (A.2)

For any 0 < τ < T , and any ϕ ∈ L2
(
(0, T ),W 1,2(Rn)

)
, with ∂tϕ ∈ L2

(
(0, T ), W̃−1,2(Rn)

)
,

(A.2) implies ˆ T

τ
(∂tuε, ϕ)L2 dt+

ˆ T

τ
(Luε, ϕ)L2 dt = 0. (A.3)

Since ∂tuε ∈ L2
loc

(
(0,∞), L2(Rn)

)
(see [13] Theorem 4.9), and by Lemma 15 (ii), (A.3)

can be written as

ˆ
Rn

uε(x, T )ϕ(x, T )dx+

ˆ T

τ

ˆ
Rn

A∇uε · ∇ϕdxdt

=

ˆ
Rn

uε(x, τ)ϕ(x, τ)dx+

ˆ T

τ
〈∂tϕ, uε〉W̃−1,2,W1,2 . (A.4)

Notice that uε → u in C((τ, T ),W 1,2(Rn)) (see [13] Theorem 4.9), and so letting ε → 0+

we get

ˆ
Rn

u(x, T )ϕ(x, T )dx+

ˆ T

τ

ˆ
Rn

A∇u · ∇ϕdxdt

=

ˆ
Rn

u(x, τ)ϕ(x, τ)dx+

ˆ T

τ
〈∂tϕ, u〉W̃−1,2,W1,2 . (A.5)
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Letting ϕ = uε in (A.4) and applying Lemma 15 (ii) again, one obtains

ˆ
Rn
|uε(x, T )|2 dx+ 2<

ˆ T

τ

ˆ
Rn

A∇uε · ∇uεdxdt =

ˆ
Rn
|uε(x, τ)|2 dx.

By ellipticity and the definition of uε, we have

2λ0

ˆ T

τ

ˆ
Rn
|∇uε|2 dxdt ≤

∥∥∥e−τL(u0,ε)
∥∥∥2
L2(Rn)

≤ 2
∥∥∥e−τL(u0,ε − u0)

∥∥∥2
L2(Rn)

+ 2
∥∥∥e−τL(u0)

∥∥∥2
L2(Rn)

.

Letting ε → 0+, τ → 0+, T → ∞, we obtain
´∞
0

´
Rn |∇u|

2 dxdt ≤ λ−1
0 ‖u0‖

2
L2 < ∞. This

enables us to take limit as τ go to 0+ on both sides of (A.5) and get

ˆ
Rn

u(x, T )ϕ(x, T )dx+

ˆ T

0

ˆ
Rn

A∇u·∇ϕdxdt =

ˆ
Rn

u(x, 0)ϕ(x, 0)dx+

ˆ T

0
〈∂tϕ, u〉W̃−1,2,W1,2 ,

i.e. u(x, t) is a weak solution of (A.1).

Uniqueness.

Let v be a weak solution of (A.1). We first show that ∂tv ∈ L2
(

(0, T ), W̃−1,2(Rn)
)

for any T ∈ (0,∞). Define a semilinear functional F on L2
(
[0, T ],W 1,2(Rn)

)
as follows: for

any ϕ ∈ L2
(
[0, T ],W 1,2(Rn)

)
, let

〈F, ϕ〉 :=

ˆ T

0

ˆ
Rn

A∇v · ∇ϕdxdt.

Obviously,

|〈F, ϕ〉| ≤ C ‖∇v‖L2([0,T ],L2(Rn)) ‖∇ϕ‖L2([0,T ],L2(Rn)) .

Then by Riesz representation theorem, there exists w(x, t) ∈ L2
(
[0, T ],W 1,2(Rn)

)
such that

〈F, ϕ〉 =

ˆ T

0

ˆ
Rn

(∇w · ∇ϕ+ wϕ)dxdt

=

ˆ T

0
〈−∆w(·, t) + w(·, t), ϕ〉

W̃−1,2,W1,2dt,

and

‖−∆w + w‖
L2
(
[0,T ],W̃−1,2(Rn)

) ≤ ‖w‖L2([0,T ],W1,2(Rn)) ≤ C ‖∇v‖L2([0,T ],L2(Rn)) .

Choose ϕ(x, t) = Ψ(x)η(t) as a test function in (A.1), where Ψ ∈ W 1,2(Rn), η ∈
C1

0 ((0, T )). Then since v is a weak solution, we have

ˆ T

0
(v(·, t), Ψ)L2 η

′(t)dt =

ˆ T

0

ˆ
Rn

A∇v · ∇Ψη(t)dxdt

=

ˆ T

0
〈−∆w(·, t) + w(·, t), Ψ〉

W̃−1,2,W1,2η(t)dt.

Since Ψ ∈W 1,2(Rn) is arbitrary,

ˆ T

0
v(x, t)η′(t)dt =

ˆ T

0
(−∆w + w)η(t)dt in W̃−1,2(Rn),
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which gives ∂tv = ∆w − w ∈ L2
(

(0, T ), W̃−1,2(Rn)
)

. Therefore, we can take ϕ = v as a

test function in (A.1) and get

ˆ
Rn
|v(x, T )|2 +

ˆ T

0

ˆ
Rn

A∇v · ∇vdxdt =

ˆ T

0
〈∂tv, v〉W̃−1,2,W1,2 +

ˆ
Rn
|v(x, 0)|2 dx.

Using this and Lemma 15 (ii), we have

ˆ
Rn
|v(x, T )|2 + 2<

ˆ T

0

ˆ
Rn

A∇v · ∇vdxdt =

ˆ
Rn
|v(x, 0)|2 dx.

So we get

ˆ
Rn
|v(x, T )|2 + 2λ0

ˆ T

0

ˆ
Rn
|∇v|2 dxdt ≤

ˆ
Rn
|v(x, 0)|2 dx,

which implies that if v(x, 0) = 0 then v ≡ 0. ut

Remark 3 Let u(x, t) be the weak solution to (A.1). Since the coefficients are indepen-
dent of t, a standard argument shows that ∂tu is a weak solution to ∂tv − div(A∇v) = 0
in Rn × (0,∞). That is, for any T > 0, any ϕ ∈ L2

(
[0, T ],W 1,2(Rn)

)
with ∂tϕ ∈

L2
(

[0, T ], W̃−1,2(Rn)
)

and ϕ = 0 when 0 ≤ t ≤ ε for some 0 < ε < T ,

ˆ
Rn

∂tu(x, T )ϕ(x, T )dx+

ˆ T

0

ˆ
Rn

A∇(∂tu) · ∇ϕdxdt =

ˆ T

0
〈∂tϕ, ∂tu〉W̃−1,2,W1,2dt.

Moreover, since ∂ltu ∈ L2
loc

(
(0,∞), L2(Rn)

)
and ∂lt∇u ∈ L2

loc

(
(0,∞), L2(Rn)

)
for any

l ∈ N, one can show that for any l ∈ N, ∂ltu is a weak solution to ∂tv − div(A∇v) = 0 in
Rn × (0,∞).
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