
Introduction to Computational Thinking: A New High School
Curriculum using CodeWorld

Fernando Alegre
Gordon A. Cain Center for STEM Literacy

Louisiana State University
Baton Rouge, LA, USA

John Underwoood
School of Education

Louisiana State University
Baton Rouge, LA, USA

Juana Moreno
Department of Physics & Astronomy and
Center for Computation & Technology

Louisiana State University
Baton Rouge, LA, USA

Mario Alegre
Department of Physics

Pennsylvania State University
University Park, PA, USA

ABSTRACT
The Louisiana Department of Education partnered with the Gordon
A. Cain Center at LSU to pilot a Computing High School Gradu-
ation Pathway. The first course in the pathway, Introduction to
Computational Thinking (ICT), is designed to teach programming
and reinforce mathematical practice skills of nine-grade students,
with an emphasis on promoting higher order thinking. In 2017-
18, about 200 students and five teachers participated in the pilot,
in 2018-2019 the participation increased to 400 students, and in
the current 2019-2020 year about 800 students in 11 schools are
involved. After describing the course content and the teacher train-
ing, we briefly discuss the data we have collected in the last two
years. The overall student reception of the course has been posi-
tive, but the course was categorized by most students as hard. The
pre-post test content assessments show that students have learned
not only the language, but also general principles of programming.
Lessons learned during the pilot phase have motivated changes,
such as emphasizing during Professional Development the need to
provide timely feedback to students, provide detailed rubrics for
the projects and reorganize the lessons to increase the initial en-
gagement with the material. After two years of running pilots, the
course is becoming student-centered, where most of the code and
image samples provided in the lessons are based on code created
by previous students.

KEYWORDS
computational thinking, K-12, high school, course, introductory pro-
gramming, functional language, Haskell, CodeWorld, professional
development, teacher training, computer science education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366960

ACM Reference Format:
Fernando Alegre, John Underwoood, Juana Moreno, and Mario Alegre. 2020.
Introduction to Computational Thinking: A New High School Curriculum
using CodeWorld. In The 51st ACMTechnical Symposium on Computer Science
Education (SIGCSE ’20), March 11–14, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366960

1 INTRODUCTION
Our project started in 2015, when we were contacted by the East Ba-
ton Rouge Parish School System (EBRPSS) to help develop computer
science curricula for a new STEM magnet high school, to offer new
opportunities to the under-served population of the district, which
consists of 85% minority and 75% economically disadvantaged stu-
dents. We were tasked with creating the curriculum, including its
assessment and the delivery of the summer teacher training. Ad-
ditionally, the curriculum had to be designed in such a way that
teachers of other academic subjects could quickly learn it, since
there were no computer science teachers available in the area. The
first course in this set is Introduction to Computational Thinking
(ICT), an introductory programming course offered to eighth or
ninth graders who are concurrently taking an Algebra I course. The
course teaches the conceptual foundations of coding in a language
syntax and semantics that follow closely the language of algebra. It
is not intended to be a math remediation course, but rather to high-
light the connections to algebra, geometry and science modeling.

During the 2016-2017 academic year, we conducted several three-
month pilot tests of the course and developed an assessment instru-
ment, the Conceptual Foundations of Coding (CFC) test, which was
vetted with about 100 students. A full-course pilot was deployed in
the 2017-2018 academic year. At that time, the Louisiana Depart-
ment of Education (DoE) became interested in the ICT curriculum
and partnered with the Cain Center to create and pilot a Computing
High School Graduation Pathway, following the model pioneered
by the EBRPSS STEM magnet high school. The Pathway offers a
hybrid curriculum that prepares students both for college and to
enter the workforce after graduation.

During 2017-2018, the course was taken by more than 200 ninth
grade students in four different schools. Approximately 400 students
in ten schools in eight school districts were enrolled in ICT for the
2018-2019 academic year, and there are 800 students enrolled in the
2019-2020 academic year.

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

992

https://doi.org/10.1145/3328778.3366960
https://doi.org/10.1145/3328778.3366960

Table 1: ICT Course outline.

Unit Content
The Software Develop-
ment Cycle

Students learn how to use an IDE, how to draw basic shapes, how to overlay several pictures and move them around the
screen. They also learn about design techniques, such as creating prototypes and using pseudo-code to plan a program, and
practice collaboration with pair programming and a collaborative creation of a scene, where each team member is in charge of
a character or prop.

Abstraction and Decom-
position

Students learn to map expressions to syntax trees, handle order of operations, and use trees to represent other aspects of
code, such as dependencies between variables and organization of layout into nested layers. They also learn how to use an
object dimension as a unit of measurement for other objects (e.g., 2.5 smileys wide) and to combine rotations, translations and
scalings to create complex mosaics or quilt patterns.

Patterns and Regularity Students use repetition to create regular polygons, regular stars and create recursive patterns. They also learn about generating
random patterns and irregular grids, and use them to generate a procedural map of a neighborhood.

Data and Calculations Students learn to process lists to create bar charts and pie charts from scratch, create itemized bills including taxes and
discounts, calculate weighted averages and compute areas of complex settings, such as the area occupied by chairs and tables
in a dining hall.

Models in Space and
Time

Students create simple games (rock, paper, scissors; dice rolling games; tic-tac-toe) and simple animations (characters performing
repetitive circular or linear motion; see-saws; slide shows; marquee messages)

In the summer of 2017, we conducted our first Professional Devel-
opment program, which is an intensive five-week summer institute.
In 2017 we trained eight teachers, with an additional nine teach-
ers in 2018, and most recently nine more teachers. The teachers
were absolute novices with respect to programming. They were
placed into student roles as the first part of their training, where
they completed all the programming assignments, presented them
to their peers, and modified their code according to the feedback
received. The teachers were additionally instructed in pedagogical
techniques and lesson design. At the end of the summer Profes-
sional Development, the teachers felt comfortable enough to teach
the course and to modify the assignments to meet their school’s
unique cultures and needs. The majority of the teachers participat-
ing were certified in either secondary math or science, but, typically,
each year two social studies teachers also participate.

All the activities are programmed in CodeWorld [4], a web-based
integrated development environment initially designed for middle
school students, that uses a simplified variant of the Haskell lan-
guage. The lessons are organized in units that follow the concepts
of Computational Thinking, with the syntax of the language being
presented at the beginning of each semester. However, very little
emphasis is placed on teaching the language, whose features are
introduced only when needed. In the first semester, only expres-
sions, variables and functions are used. No conditionals, looping
constructs or data structures are needed for the programming as-
signments. In the second semester, lists and tuples are the only new
syntactic features needed, and looping constructs are based on a
second-order function, called foreach, which is a regular function
with no special syntax.

2 DEVELOPMENT PROCESS
2.1 Foundational Stages
Frameworks to introduce computer science in K-12 education, either
in isolation or integrated with other core subjects, are emerging
in many countries [10]. These new frameworks aim to present
the subject of computer science as a living discipline with connec-
tions to the real world and to other STEM subjects [2]. Learning

computer science is neither about the specifics of a programming
language nor the commands and techniques on how to program.
The term Computational Thinking (CT) was introduced in education
to describe the process of problem solving using computational
techniques within the context of other disciplines [1, 8, 9, 20, 21, 24].
Although programming is the means and not the end goal, it can be
difficult to understand CT fully without exposure to programming
[5, 8].

In our training materials, we try to provide insight about the
meaning of computational thinking. In our view, when someone is
thinking computationally they do the following:

(1) Use introspection to observe their own thought process as if
it were performed by a machine and express their thoughts
explicitly and without any ambiguity.

(2) Imagine in their head a computer running a given program
and anticipate the outcome without actually running the
program.

(3) Reason constructively: the purpose of computing is to con-
struct a solution. Computing works under a closed world
assumption, where only those entities explicitly built are
assumed to exist.

(4) Invent a process to solve a problem as a series of mechan-
ical steps, where each step requires no intelligence to be
performed. The intelligence contained in a program is an
emergent feature and cannot be pinpointed to any particular
line in the code.

(5) Think in terms of causality. A function is not just a rela-
tionship between an input and an output, as it would be in
mathematics. It is also a process that causes the computer to
produce an output when the given input is consumed. This
process occurs in time, and so the input must exist before
the output can exist. Computations change the world.

(6) Reason by proxy: Distinguish between what a concept is and
how it is represented. For example, represent a polygon as a
list of pairs of coordinates.

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

993

Figure 1: Six examples of cells designed by different students in the 2017-2018 academic year.

Figure 2: Four examples of end-of-unit projects made by different students.

(7) Establish relationships between concepts by writing equa-
tions between their corresponding representations. For ex-
ample, move a polygon horizontally by adding the same
number to each X coordinate in the corresponding list.

Computational thinking is about expressing thoughts formally,
in a way that is actionable by an automated system. Programming
languages are not the only possible formal systems in which compu-
tational thinking can be expressed, but they are the most accessible
and prone to automation. Thus, using programming as a vehicle
for computational thinking is a natural choice.

Unfortunately, in many elementary and middle school settings,
the term CT has become synonymous with either computing with
no programming or block-based programming. This interpretation
omits the central tenet of Computational Thinking, which is the
building of high-level abstractions that can be executed by a computer
[25]. Currently, there is a need to have a high school course that
introduces CT with substantial amounts of programming and con-
nections to math and science. This CT course should depend as little
as possible on the extensive knowledge of a particular language
or technology. The CT course would be a natural progression for
students to take along with Exploring Computer Science (ECS) and
Computer Science Principles (CSP).

For the most part, ECS, CSP and block-based programming
courses rely on the teachers to act as facilitators of instruction
provided by an online system. This instructional model is based on
the idea that students will learn even if they are not being directly
instructed by their teacher. However, a flaw of the model is the
fact that many concepts, such as abstraction, are only developed
through higher-order learning [15, 19].

A recognizable factor for why this model is on the rise is due to
a current scarcity of teachers who know how to program. However,

students need direct interaction with a teacher to master higher or-
der thinking concepts. There is great value in having a teacher who
can evaluate the students work, reflect on the student’s progress,
offer guidance to the student on ways that they may correct habits,
and examine unique work products from the perspective of the stu-
dent’s intellectual evolution. These attributes have proven difficult
to evaluate effectively in an automated way.

2.2 Learning Objectives
ICT is an elective course in Louisiana, where a majority of the
students have historically demonstrated weak mathematical skills
for all grade levels. In designing the course, additional attention
was given to ways to help students improve their math skills as
they learn computer science. This course was not intended to be
strictly a math remediation or math intervention course, but rather
an integrated component of a STEM elective pathway. The learning
objectiveswere established and designed to be recurring throughout
each of the units, and not isolated to specific lessons. The learning
objectives include:

• Develop a procedural understanding of the pillars of Com-
putational Thinking: recognize patterns and regularity, de-
compose problems into smaller parts, formulate and solve
simplified problems, generalize solutions and encapsulate
solutions.
• Acquire experience with algebraic manipulation of complex
expressions.
• Use mathematical functions to model artifacts, such as dia-
grams or animations.
• Transform many data items as if they were a single entity.
• Organize data hierarchically.

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

994

• Calculate totals, averages and quantities using rates, such as
taxes and discounts.
• Use random sampling to explore instances of relationships
and find the general case.

2.3 Conceptual Framework
The idea of using coding to help students learn mathematics and
science has a long history. Early attempts to use coding as a tool
were based on unguided discovery [13]. This approach proved to
be ineffective for transfer [12]. Over the years, it has become clear
that transfer between programming and mathematics is difficult
to initiate, and whether it occurs or not depends strongly on the
teaching methodology used [3, 11, 14]. Recent attempts to establish
the link between programming and mathematics have been based
on a modern framework of computational thinking [8, 24, 25] and
supported by modern theories such as convergent cognition [16].

One of the few cases in which a project targeted the learning of
mathematics with coding and showed promising results is Boot-
strap, a 17-hour curriculum designed to be used either standalone
or embedded in a computer science or mathematics course. It is one
of the few documented instances of transfer between programming
and algebra. Schanzer et al. [17, 18] attribute the favorable results
of their intervention to their use of a functional language as the
medium and to the absence of distracting features.

Our approach is inspired by the works of Felleisen et al. [7]
and Bootstrap [17, 18], due to their promising results concerning
transfer between programming and mathematics [17, 18]. They
introduced the design recipe, which is a series of steps for guiding
students when they are trying to create a function: write a definition
in English, then describe the inputs and outputs, then provide at
least 3 examples, then look at what is common in those examples
(the template) and what changes from example to example (the
variables), and finally give names to those variables.

However, we differ from Bootstrap in several ways. We have de-
veloped a full-year curriculum centered on CT instead of a 17-hour
intervention focused on math word problems. Our use of Haskell
makes writing function definitions very lightweight, so students
are encouraged to create lots of functions. Also, the lazy evaluation
model relieves us from the need to have special syntax for program
control. We have also extended the design recipe with the introduc-
tion of random variables, so that students create random samples
of uses of a function after (or instead of) providing examples with
fixed numbers. Finally, we put more emphasis on modeling tech-
niques and using the software development cycle rather than on
guided exercises based on code templates.

2.4 CodeWorld activities
All the activities are programmed in CodeWorld [4], which uses a
very limited set of graphical primitives to draw circles, rectangles,
and text. It is then possible to apply translations, rotations, scal-
ings and colors to them. Smaller elements can be combined into
more complex shapes via the overlay operator (denoted by &). Ani-
mations are represented as functions that depend on a parameter,
namely the time in seconds since the animation started. The lan-
guage follows a syntax very similar to mathematical notation, and
the evaluation semantics follows exactly the same rules as algebra.

Here is a complete CodeWorld program to draw a house:
program = drawingOf(house(red,yellow)

& coordinatePlane)
house(rcolor,fcolor) =

colored(roof,rcolor)
& windows & door
& colored(facade,fcolor)
& pathway

roof = solidPolygon([(-4,4),(4,4),(0,6)])
windows = floor2 & floor3
floor2 = translated(window,-2,1)

& translated(window,2,1)
floor3 = translated(floor2,0,2)
window = solidRectangle(1,1)
door = translated(solidRectangle(1,2),0,-1)
facade = translated(solidRectangle(8,6),0,1)
pathway = overlays(tile,8)
tile(n) = translated(stone,-(n-1)/2,-1.5-(n+1)/2)
stone = colored(oval,translucent(grey(0.2)))
oval = scaled(solidCircle(0.5),2,1)

Figure 3: A drawing of a house

Practically all the syntax of the language is illustrated in the
previous program, and all programs are written in exactly the same
format (a list of lines that read head = body) with program be-
ing the starting point of the execution of the program. Functions
are defined in the same way as variables, but the head includes
parameters. No special constructions for loops or conditionals are
necessary. Definite loops are provided by library functions, such as
overlays, which works as follows: the expression overlays(f,n)
is equivalent to f(1) & f(2) & ... & f(n). Indefinite loops
are created by recursive definitions. Conditionals are produced by
having functions with special cases, which are created by adding
a vertical bar and a condition to their definition. For example, the
absolute value would be defined by the following two lines:
absoluteValue(x) | x < 0 = -x
absoluteValue(x) | x >= 0 = x

In the second semester, lists and tuples are introduced. Basic list
usage needs 3 additional symbols: [,] and #, to build a literal list,
and to access the nth element, respectively.

The simplified version of Haskell we are using stops here. No ad-
vanced features of the language (such as typeclasses, IO or monads)
are exposed to students. In a sense, our use of Haskell provides the
same affordances that a block-based language would, because the
key features of block-based languages are their simple, bare-bones

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

995

syntax, as opposed to regular programming languages, and the
avoidance of errors due to misspelling or misuse of variables and
constructs placed in the wrong spot [22, 23]. Haskell shares both of
these features, because in addition to the simple syntax explained
above, the advanced type-inference features of Haskell catch prac-
tically all misspellings and misuses of variables and functions.

2.5 Curriculum content
The ICT curriculum comprises five units, where the first two units
take approximately eight weeks each, and the last three units take
approximately five weeks each. Table 1 lists the title and a brief
summary of the content of each unit. In the 2019-2020 version of the
curriculum, all the activities in the first four units include samples
created by students who took the course in the previous two years.
See Fig. 1 for samples of student work in an activity where students
are asked to create a diagram of a cell.

Assessment is based on a project at the end of each unit, plus a
midterm project and a final project. See Fig. 2 for samples of such
projects. Our team developed analytical rubrics that present the
criteria and levels of performance for each assignment. The rubrics
are tiered from minimal, to lower, to mid-level, and finally high
attainment. Each tier contained descriptors with point values. Each
attribute was aligned to the learning objectives, which are stated at
the start of each lesson and integrated in the activities that build to
the project. Table 2 has examples of high and low attainment in a
project to create an analog clock face.

2.6 Technical considerations
Our choice of programming environment was also influenced by the
following properties: 1) The programming language should make it
easy for students to build high level abstractions; 2) The language
should also have a syntax and semantics as similar to algebra as
possible; 3) No prior or additional knowledge of coding or software
should be needed by teachers to produce code for the lessons; 4)
Execution of any component of the system should not depend
on any third party service or product; and 5) The programming
paradigm should preferably be functional.

One technical restriction on our choice of programming environ-
ment was due to the fact that many Louisiana schools have policies
concerningwhich software can be run on their computers. Often the
computing environment is optimized for use on standardized test-
ing platforms, which can prevent root access and local installation
of software. In addition, policies in many schools prevent students
from being required to register with third-party organizations or
submit their work to external web sites. Given these conditions,
we elected to use a Web-based environment that required no local
installation and could be used without restrictions and without the
need for students to register or provide any personal information.
The next requirement our team faced was that we were required by
the Louisiana Department of Education, which partially funded our
project, to rely upon fully open source software. Our final require-
ment was that as a team we wanted to do graphics-based programs
rather than text-based programs. Given all of the aforementioned
requirements the number of possibilities we considered was limited.
For example, at the project’s onset there was no fully open source,
fully online version of Python for graphics programming.

Table 2: Clock Face Example Rubric

High Attainment Low Attainment
Used expressions with variables Used magic numbers
Created a function to draw clock
hands

Repeated code for hour hand
and minute hand

Created different nested layers for
hour ticks, minute ticks, and so on

Used a flat layout

Handled ranges properly Printed redundant elements, e.g.
printing 12 o’clock twice

Used local variables Only used global variables
Followed good practices when nam-
ing, indenting, and grouping code

Did not follow good practices

Calculations to convert hours and
minutes to rotations were correct

Calculations were not correct

Output shows analog clock with all
elements placed appropriately

Elements misplaced or missing

3 IMPACT
3.1 Results and Analysis
In 2017-2018 the course was deployed at four schools with five
teachers and 208 students. Ten schools, 13 teachers and 395 students
participated during the 2018-2019 academic year. Unfortunately, due
to time constraints near the end of the school year, post-assessments
were not collected for many students, so we only have matched
data for 325 students, or about 54% of the total enrollment.

The Conceptual Foundations of Coding (CFC) test is a multiple-
choice test with four choices given on most questions. It was de-
veloped by the authors due to the lack of suitable tests designed
to measure computational thinking as we define it. Fig. 4 displays
histograms comparing the distribution in scores of the pre- and
post- tests, showing that the post-test results are on average 24%
higher, although the distribution is also significantly wider. The ini-
tial average score was 29.5± 0.6%, which increased to 53.8± 1.1% at
the end of the course. The difference between the distributions was
found to be statistically significant (p < 2.2 · 10−16), as determined
by the Wilcoxon signed rank test.

Fig. 5 displays the pre- and post-test results for the four cate-
gories included in the CFC test: variables, expressions and func-
tions, CodeWorld specifics, mathematical modeling, and logic and
programming. The average of the post-results is higher than the
average of the pre-results in all four categories. The difference be-
tween the pre- and post- distributions is significant (p < 10−12) for
all the categories.

In the analysis of the Computing Attitudes Survey (CAS) [6] data,
we found that the student attitudes did not significantly change
(p > 0.07) after completing the course, as can be determined the
minuscule shift in attitudes (0.02 ± 0.02), and the fact that the
pre- and post-test results were very strongly correlated (R = 0.54,
p = 1.3 · 10−10).

Additionally, we found a positive correlation between the post-
test CAS results and the shifts in CFC scores (R = 0.29, p = 0.001),
indicating that those students who had a more positive attitude
at the end of the course also tended to have the higher gains in
learning.

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

996

Figure 4: Histograms comparing the results of the CFC pre- and
post-tests. Figure 5: Box plots comparing results of the CFCTest by categories.

Boxes stretch from the 25th to 75th percentile of the distribution.

The overall reception of the course has been positive, but the
course was uniformly categorized by most students as hard. Our
qualitative in-class observations found that students were not accus-
tomed to having to use more than one mathematical idea in a single
problem, and were also unsettled by the fact that the same image
could be generated in many different ways (i.e., that there is no
canonically correct way to write code to produce a certain output).
Nevertheless, the Computing Attitude Survey analysis indicates
that the difficulty of the course did not demotivate the students.
The pre-post test analysis shows that the students learned not only
the language, but also general principles of programming, logic and
modeling, as well as use of variables, expressions and functions.

3.2 Future work
The results of the preliminary analysis seem encouraging, but fur-
ther data collection and analysis will be required to determine
exactly how effective the ICT curriculum is. Our plans for future
years include increased emphasis on collecting post-assessments
so matched data can be obtained for a larger percentage of the
student body, more extensive validation of the CFC test so it can be
published for the benefit of the wider computer science education
community, and identification (or if no suitable test exists, devel-
opment) of an assessment that can be used to measure if students’
math skills have changed significantly between the beginning and
end of the ICT course.

Additionally, as the ICT course continues to be adopted across
Louisiana, a growing number of students will have taken ICT in
eighth or ninth grade. This large pool of student participants could
be tracked longitudinally, and compared with control groups from
the same schools, to determine if participation in the ICT course
has had an effect on their performance in subsequent math courses.

Furthermore, as more math and science teachers are trained to
teach ICT, we will be able to develop a bank of coding activities
for math and science courses, which could then be made available
to teachers via an online portal. The teachers would then be able
to adapt and incorporate these coding activities into their regular
lessons. Using this population of students and teachers trained in

our ICT course, we will be able to study whether the incorpora-
tion of functional programming into math and science curricula
promotes deeper understanding of those subjects.

3.3 Conclusion
While the need for teaching computational thinking is already well
established, there is still controversy about whether programming
should be included or not, or, as Denning [5] calls it, the clash be-
tween Traditional CT and New CT. Courses such as ECS or CSP
are examples of New CT, but there is not much available in terms
of courses that focus on Traditional CT. Due to its capacity for
automation and formalization, programming is a natural vehicle
for learning computational thinking. While Python and JavaScript
courses are relatively available, they do not usually focus on CT.
Instead, they follow traditional syntax-oriented approaches to teach-
ing computing, with few connections to math and science. Those
courses are more useful for students aspiring to be software devel-
opers than for the general student population. We have presented
an alternative approach.

We have described the design and implementation of a sec-
ondary Computational Thinking course based on programming
with connections to science and math. This course provides a proof
of concept for curricula halfway between traditional programming
language courses and recent computational thinking courses with
limited programming content. This course addresses the need for
computational thinking courses intended not only for future soft-
ware developers but for all students no matter what they do later
in their lives. We find that a focus on programming content does
not need to be discouraging to students. Our approach is highly
student-centered, and has been proven to be suitable for tradition-
ally under-served populations. We also build on Bootstrap ideas and
techniques and have opened a way to investigate many interesting
connections between the learning of programming and the learning
of mathematics and science, and we are excited to delve into them.

Acknowledgment. This work is partly supported by NSF award
CNS-1923573.

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

997

REFERENCES
[1] Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce

Malyn-Smith, and Jason Zagami. 2016. A K-6 computational thinking curricu-
lum framework: implications for teacher knowledge. Journal of Educational
Technology & Society 19, 3 (2016), 47.

[2] Austin Cory Bart, Eli Tilevich, Simin Hall, Tony Allevato, and Clifford A Shaffer.
2014. Transforming introductory computer science projects via real-time web
data. In Proceedings of the 45th ACM technical symposium on Computer science
education. ACM, 289–294.

[3] Earl C Butterfield and Gregory D Nelson. 1989. Theory and practice of teaching
for transfer. Educational Technology Research and Development 37, 3 (1989), 5–38.

[4] Codeworld. 2019. An educational environment using Haskell. https://github.
com/google/codeworld.

[5] Peter J Denning. 2017. Remaining trouble spots with computational thinking.
Commun. ACM 60, 6 (2017), 33–39.

[6] Brian Dorn and Allison Elliott Tew. 2015. Empirical validation and application of
the computing attitudes survey. Computer Science Education 25, 1 (2015), 1–36.

[7] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2004. The structure and interpretation of the computer science curriculum.
Journal of Functional Programming 14, 4 (2004), 365–378.

[8] Shuchi Grover and Roy Pea. 2013. Computational Thinking in K–12: A Review
of the State of the Field. Educational Researcher 42, 1 (2013), 38–43.

[9] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning
in a blended computer science course for middle school students. Computer
Science Education 25, 2 (2015), 199–237.

[10] Fredrik Heintz, Linda Mannila, and Tommy Färnqvist. 2016. A review of models
for introducing computational thinking, computer science and computing in
K-12 education. In 2016 IEEE Frontiers in Education conference (FIE). IEEE, 1–9.

[11] D Midian Kurland, Roy D Pea, Catherine Clement, and Ronald Mawby. 1986. A
study of the development of programming ability and thinking skills in high
school students. Journal of Educational Computing Research 2, 4 (1986), 429–458.

[12] Richard E Mayer. 2004. Should there be a three-strikes rule against pure discovery
learning? American Psychologist 59, 1 (2004), 14.

[13] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

[14] Roy D. Pea. 1983. Logo Programming and Problem Solving. [Technical Report
No. 12].

[15] Chaitanya Ramineni and David Williamson. 2018. Understanding Mean Score
Differences Between the e-rater® Automated Scoring Engine and Humans for
Demographically Based Groups in the GRE® General Test. ETS Research Report
Series 2018, 1 (2018), 1–31.

[16] Peter J. Rich, Keith R. Leatham, and Geoffrey A. Wright. 2013. Convergent
cognition. Instructional Science 41, 2 (2013), 431–453.

[17] Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2013. Bootstrap:
Going Beyond Programming in After-School Computer Science. SPLASH-E (Educa-
tion track of the OOPSLA/SPLASH conference).

[18] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.
2015. Transferring Skills at Solving Word Problems from Computing to Algebra
Through Bootstrap. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. ACM, 616–621.

[19] T. Feathers. 2019, August 20. Flawed algorithms are grading millions of students
essays wrong. https://www.vice.com.

[20] Joke Voogt, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. 2015. Com-
putational thinking in compulsory education: Towards an agenda for research
and practice. Education and Information Technologies 20, 4 (2015), 715–728.

[21] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-
matics and science classrooms. Journal of Science Education and Technology 25, 1
(2016), 127–147.

[22] David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-based Programming. In Proceedings
of the 14th International Conference on Interaction Design and Children (IDC ’15).
ACM, New York, NY, USA, 199–208.

[23] David Weintrop and Uri Wilensky. 2015. Using commutative assessments to
compare conceptual understanding in blocks-based and text-based programs.
In 11th Annual ACM Conference on International Computing Education Research,
ICER 2015. Association for Computing Machinery, Inc.

[24] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[25] Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366, 1881 (2008), 3717–3725.

Paper Session: Computational Thinking B SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

998

https://github.com/google/codeworld
https://github.com/google/codeworld
https://www.vice.com

	Abstract
	1 Introduction
	2 Development Process
	2.1 Foundational Stages
	2.2 Learning Objectives
	2.3 Conceptual Framework
	2.4 CodeWorld activities
	2.5 Curriculum content
	2.6 Technical considerations

	3 Impact
	3.1 Results and Analysis
	3.2 Future work
	3.3 Conclusion

	References

