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Highlights

e A successful process-comparison parameter was formulated for directed energy
deposition of Ti6Al4V.

e Increased laser power and scan speed results in higher track width at limited expense of
unmelted powder.

e Varying combinations of laser power, scan speed, and powder flowrate at constant
comparison parameter result in quality tracks with >99% relative density when processed
into bulk structures using industrial equipment.

Abstract

Process optimization for directed-energy-deposition, an industrial laser-based additive
manufacturing technique, is a time-intensive endeavor for manufacturers. Herein we investigate
the use of a modified analytical process-model based on powder-bed-fusion techniques, to
predict quality build parameters by incorporating the effects of three key parameters: laser-
power, scanning-speed, and powder flowrate. Titanium alloy (Ti6Al4V) tracks of varying
parameters were built, studied, and used to predict parameters for quality builds used at different
parameters. The model agreed well with experimental build quality at powder flowrates less than
6.5g/min, whereas, higher flowrates created significant unmelted-particle regions, despite
optimal parameter predictions. Processing of multi-layer bulk samples revealed that parameters
in the optimal range account for relative densities >99%, indicating quality bulk processing
parameters. Our results indicate that process modeling with the incorporation of powder feedrate

as a key parameter is possible using a commercial laser-based additive manufacturing system.
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1. Introduction

Metal additive manufacturing (AM) has rapidly changed the engineering landscape
owing to the new designs and fabrication strategies possible in comparison to traditional
manufacturing methods [1]. One powder-based laser metal-AM method, directed energy
deposition (DED), has been exploited for its ability to easily repair existing structures [2], change
feedstock composition during processing [3], and combine hybrid additive and subtractive
processes. While promising, challenges exist optimizing many processing parameters. Current
advances in this area involve machine learning or thermomechanical modeling-based techniques
to predict optimal parameter ranges, but lack experimental data that are specific to each AM-
method [4—7]. Machine vision and machine learning based approaches have been successful in

predicting optimal parameters in the case of powder-bed-fusion (PBF) [8,9], a laser-based metal-
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Figure 1: Processing schematic and initial print characteristics by varying processing [10],
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repairing a large structure is critical, and the 200-500um layer thicknesses in DED are ideal.
Among other aspects, the key difference between the PBF and DED method is the presence of
powder flow into the focal point of the laser, resulting in variable layer thicknesses and build
quality if parameters are not well tuned. Because of this, an experimentally-driven unifying
comparison parameter for DED would be useful to inform the aforementioned modeling
approaches. The current work involves the creation of a comparison parameter between laser
power, scan speed, and powder flowrate (Eq. 1), defined in a similar manner to the PBF
relationship [10]. Using this proposed relationship, an optimal comparison parameter value was
experimentally determined using single-track arrays, and a second experiment designed to
evaluate the efficacy of the model when deviating from the quality comparison parameter value.
Bulk structures were subsequently built in high-throughput build ranges and density analysis was
performed to demonstrate the ability to use the model in the prediction of quality parameters for

bulk structures.

2. Materials and methods

Experimental single-tracks (see Fig. 1A and Table 1) were deposited using Ti-6Al-4V
Gr.5 powder (Tekna, Quebec, CA) via OPTOMEC LENS™ powder-fed additive manufacturing
system (MR700, Albuquerque, NM), operating a S00W Nd-YAG laser, inert-gas feed system
and environmentally-controlled chamber (O2<10ppm), more information can be found in ref.

[11]. To identify the LENS™ system processing range, preliminary tracks and parameter sets

Table 1: Processing parameters used for experimental single-track study.

Strate Track Laser Power Scanning Speed = Powder Flowrate
g8y D W) (mm/min) (¢/min)

Adjust: Laser Power 1 275 217

Maintain: Powder Flowrate 2 347 273 3.1
Calculate: Scanning Speed 3 418 130

Adjust: Scanning Speed 4 241 7.3
Maintain: Laser Power 5 365 280 4.3
Calculate: Powder Flowrate 6 305 574
Adjust: Powder Flowrate 7 299 1.9
Maintain: Laser Power 8 365 277 4.3
Calculate: Scanning Speed 9 258 P



were centered around initial parameters shown to be successful in previous works [11], with only
the powder flowrate altered, and the resulting track aspect ratio and comparison parameter used
in this study plotted in Fig. 1B. The proposed comparison parameter, S, found insightful from the

preliminary data is defined as:

S =

e

Where P is the laser power (W), v is the scan speed (mm/min) and g is the powder feed
rate (g/min), for final units of W*min® g'mm™. The comparison parameter is analogous to
Simchi’s energy input relationship, where increased power and decreased scanning speed results
in higher overall energy input to the material. With the addition of powder flowrate the overall
energy input decreases due to the increase in mass delivered to the melt pool and energy required

to melt the
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value for the optimal build (14-18 W*min? g'mm™) was used to design another set of parameters
for a second set of tracks to determine the model’s validity. Three separate approaches with each
set of three tracks having one variable held constant, one varied, and the final calculated using
the proposed relationship at optimal S-value ranges. It is important to note that while the
relationship incorporates powder flowrate, the LENS™ system’s powder flowrate control is an
impeller input voltage, so the voltage value was used in the determination of quality parameters,
with flowrates calculated externally via collection container and then reported here. All
parameters were bounded by the confines of the machine (500W and externally-calculated max
powder flowrate of 7.3 g/min). Additional bulk structures were processed in a high throughput
range (1000-1300mm/min) within a FormAlloy (San Diego, CA, USA) industrial DED system
utilizing a S00W-fiber laser and coaxial feed system, with powder flowrate and laser powers
chosen that replicate similar high-quality LENS™ tracks, with relative densities evaluated using

Archimedes method (see Fig. 3).

3. Results and Discussion

All single tracks (Fig. 1) resulted in heights of 20-250um and widths of 1.8-1.4mm. The
injection of higher amounts of powder resulted in higher buildup, decreasing track aspect ratio,
and unmelted particles on the track surfaces (Fig. 1C). At lower powder flowrates and higher
overall energy input (1.9g/min & 3.7 g/min), the circular weld outline can readily be observed,
whereas at higher flowrates (lower energy input) this outline was not as apparent. From all
preliminary tracks, it was decided that a flowrate of 4.9g/min provided both sufficient melt while
also delivering track height of 178 um, which is common for DED-processed materials
(comparison parameter equal to 16). From the calculated parameters, Tracks 1 & 2 had similar
characteristics, i.e., limited unmelted particle regions and readily visible circular weld lines,
indicative of quality build parameters and input energy efficiency. Track 3, however, maintained
the same melt-track visibility while also being wider in diameter in comparison to the other
tracks, owing to the increased power provided even at higher scanning speed, indicating that the
build optimization strategy of increased power and scan speed at constant flowrate tends to
create tracks with increased width and height at limited expense of unmelted power. Further,
track 4 shows that higher powder flowrate results in a track that, despite being predicted as

adequate parameters via the model, maintains unmelted particles on the track surface. This
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in tracks that are

melted and have

visible weld-track lines, indicative of quality builds. This set of tracks confirmed that higher
flowrate at limited change in laser power or scanning speed results in poorer track quality.
Tracks 7 & 8 resulted in sufficient melt with weld tracks visibly clear at powder flowrates of
1.9g/min and 4.3g/min respectively, indicating quality build parameters. Track 9, however, at a
powder flowrate of 6.7g/min maintained high regions of unmelted particles and surface
roughness, indicative of a poor-quality build with low energy efficiency put into the track. Bulk
samples were processed in the FormAlloy system at varying parameters (Fig. 3A) resulting in
similar track qualities to tracks 5 & 6 (Fig. 3B). The bulk samples exhibited relative densities
ranging from 95.0%-99.5%, indicating that quality builds assessed in the track-scale can be

applied towards larger scale components.

From Fig. 2, the proposed model predicts adequate processing parameters for all

combinations of laser power and scanning speed, with powder flowrate in the range from 1.9-



4.3g/min. As shown in experimental tracks 1-3, 5-6, 7-8 (powder flowrates below 6.7g/min), the
tracks exhibit sufficient melting and readily-visible weld-track lines. It is clear from tracks 4 and
5, that powder flowrates above 6.7g/min result in significant amounts of unmelted particles and
limited visibility of weld-track lines, where powder feed rate becomes too high and most of the
particles are no longer able to melt completely. Similar overall features have been observed in
PBF-tracks where lower energy results in unmelted regions, and the converse resulted in more
visible track features [12]. In comparison to PBF, DED machines can adjust parameters in situ,
indicating that PBF tracks that have a poor combination of high laser power/low scan speed will
result in melt-pool keyholes [13], which (in DED) can be alleviated via powder flowrate
adjustment (as is shown from tracks 1-3 in Fig. 2). To this end, it is envisioned that a feedback
loop workflow similar to that shown in Fig. 3C could be realized with inputs such as the
material, geometry and machine information, fed into a GUI where the use of the developed
governing equations calculate the optimal processing parameters. A build file is then generated
and then ex situ/in situ quality analysis is performed to determine the efficacy of the parameters
for generating a quality build, adding to an existing database to improve future builds with

varying geometry and material/machine information.

4. Conclusions

Processing-parameter modeling was investigated for laser-based additive manufacturing
using directed energy deposition method. The model sufficiently predicted quality build
parameters for all combinations of laser power and scanning speed, with powder flowrates in the
range of 1.9-4.3g/min, while higher powder flowrates tended to dominate the melt pool and
result in significant unmelted particle regions. Our parameters (translating to >99% relative
density parts) indicate that an analytical approach can be used to determine processing

parameters for next generation additive manufacturing equipment.

5. Acknowledgements

Authors would like to acknowledge financial support from the National Science
Foundation under the grant number NSF-CMMI 1538851 (PI - Bandyopadhyay) and NSF-
CMMI 1934230 (PI - Bandyopadhyay).



6. Declaration of Interest: None

7. References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C.
Additive manufacturing: scientific and technological challenges, market uptake and
opportunities. Mater Today 2018;21:22-37. https://doi.org/10.1016/j.mattod.2017.07.001.
Shamsaei N, Yadollahi A, Bian L, Thompson SM. An overview of Direct Laser
Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter
optimization and control. Addit Manuf 2015.
https://doi.org/10.1016/j.addma.2015.07.002.

Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater
Sci Eng R Reports 2018;129:1-16. https://doi.org/10.1016/j.mser.2018.04.001.
Bandyopadhyay A, Traxel KD. Invited review article: Metal-additive manufacturing—
Modeling strategies for application-optimized designs. Addit Manuf 2018;22:758-74.
https://doi.org/10.1016/j.addma.2018.06.024.

Qi X, Chen G, LiY, Cheng X, Li C. Applying Neural-Network-Based Machine Learning
to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives.
Engineering 2019;5:721-9. https://doi.org/10.1016/j.eng.2019.04.012.

Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform 2014;23:1917—
28. https://doi.org/10.1007/s11665-014-0958-z.

Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S. Application of supervised machine
learning for defect detection during metallic powder bed fusion additive manufacturing
using high resolution imaging. Addit Manuf 2018;21:517-28.
https://doi.org/10.1016/j.addma.2018.04.005.

Aoyagi K, Wang H, Sudo H, Chiba A. Simple method to construct process maps for
additive manufacturing using a support vector machine. Addit Manuf 2019;27:353—-62.
https://doi.org/10.1016/j.addma.2019.03.013.

Scime L, Beuth J. Using machine learning to identify in-situ melt pool signatures
indicative of flaw formation in a laser powder bed fusion additive manufacturing process.
Addit Manuf 2019;25:151-65. https://doi.org/10.1016/j.addma.2018.11.010.

Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure
and densification of iron powder. Mater Sci Eng A 2003. https://doi.org/10.1016/S0921-
5093(03)00341-1.

Traxel KD, Bandyopadhyay A. Reactive-deposition-based additive manufacturing of Ti-
Zr-BN composites. Addit Manuf 2018;24. https://doi.org/10.1016/j.addma.2018.10.005.
Caggiano A, Zhang J, Alfieri V, Caiazzo F, Gao R, Teti R. Machine learning-based image
processing for on-line defect recognition in additive manufacturing. CIRP Ann
2019;68:451-4. https://doi.org/10.1016/j.cirp.2019.03.021.

Teng C, Pal D, Gong H, Zeng K, Briggs K, Patil N, et al. A review of defect modeling in
laser material processing. Addit Manuf 2017;14:137-47.
https://doi.org/10.1016/j.addma.2016.10.009.



