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Highlights 

• A successful process-comparison parameter was formulated for directed energy 

deposition of Ti6Al4V. 

• Increased laser power and scan speed results in higher track width at limited expense of 

unmelted powder. 

• Varying combinations of laser power, scan speed, and powder flowrate at constant 

comparison parameter result in quality tracks with >99% relative density when processed 

into bulk structures using industrial equipment. 

Abstract  

 Process optimization for directed-energy-deposition, an industrial laser-based additive 

manufacturing technique, is a time-intensive endeavor for manufacturers. Herein we investigate 

the use of a modified analytical process-model based on powder-bed-fusion techniques, to 

predict quality build parameters by incorporating the effects of three key parameters: laser-

power, scanning-speed, and powder flowrate. Titanium alloy (Ti6Al4V) tracks of varying 

parameters were built, studied, and used to predict parameters for quality builds used at different 

parameters. The model agreed well with experimental build quality at powder flowrates less than 

6.5g/min, whereas, higher flowrates created significant unmelted-particle regions, despite 

optimal parameter predictions. Processing of multi-layer bulk samples revealed that parameters 

in the optimal range account for relative densities >99%, indicating quality bulk processing 

parameters. Our results indicate that process modeling with the incorporation of powder feedrate 

as a key parameter is possible using a commercial laser-based additive manufacturing system. 

Keywords: additive manufacturing, process modeling, Ti6Al4V, directed energy deposition 

 

 

about:blank


1. Introduction 

 Metal additive manufacturing (AM) has rapidly changed the engineering landscape 

owing to the new designs and fabrication strategies possible in comparison to traditional 

manufacturing methods [1]. One powder-based laser metal-AM method, directed energy 

deposition (DED), has been exploited for its ability to easily repair existing structures [2], change 

feedstock composition during processing [3], and combine hybrid additive and subtractive 

processes. While promising, challenges exist optimizing many processing parameters. Current 

advances in this area involve machine learning or thermomechanical modeling-based techniques 

to predict optimal parameter ranges, but lack experimental data that are specific to each AM-

method [4–7]. Machine vision and machine learning based approaches have been successful in 

predicting optimal parameters in the case of powder-bed-fusion (PBF) [8,9], a laser-based metal-

AM technique well 

suited for small parts 

and fine features but 

with low layer 

thicknesses (20-

60µm). This previous 

work, along with the 

foundational work of 

Simchi (2003) has led 

to a key-relationship 

between the 

processing parameters 

- laser power, 

scanning speed, layer 

thickness, and hatch 

spacing, but doesn’t 

translate explicitly for 

DED-based 

processing [10], 

where building / 

 
Figure 1: Processing schematic and initial print characteristics by varying 

powder flowrate. (A) LENS™ schematic (B) Initial deposition tracks with 

variable powder flowrate (C) Characteristics of builds of variable flowrate. 

 



repairing a large structure is critical, and the 200-500µm layer thicknesses in DED are ideal. 

Among other aspects, the key difference between the PBF and DED method is the presence of 

powder flow into the focal point of the laser, resulting in variable layer thicknesses and build 

quality if parameters are not well tuned. Because of this, an experimentally-driven unifying 

comparison parameter for DED would be useful to inform the aforementioned modeling 

approaches. The current work involves the creation of a comparison parameter between laser 

power, scan speed, and powder flowrate (Eq. 1), defined in a similar manner to the PBF 

relationship [10]. Using this proposed relationship, an optimal comparison parameter value was 

experimentally determined using single-track arrays, and a second experiment designed to 

evaluate the efficacy of the model when deviating from the quality comparison parameter value. 

Bulk structures were subsequently built in high-throughput build ranges and density analysis was 

performed to demonstrate the ability to use the model in the prediction of quality parameters for 

bulk structures.  

 

2. Materials and methods 

 Experimental single-tracks (see Fig. 1A and Table 1) were deposited using Ti-6Al-4V 

Gr.5 powder (Tekna, Quebec, CA) via OPTOMEC LENS™ powder-fed additive manufacturing 

system (MR700, Albuquerque, NM), operating a 500W Nd-YAG laser, inert-gas feed system 

and environmentally-controlled chamber (O2<10ppm), more information can be found in ref. 

[11]. To identify the LENS™ system processing range, preliminary tracks and parameter sets 

Table 1: Processing parameters used for experimental single-track study. 

Strategy Track 

ID 
Laser Power 

(W) 
Scanning Speed 

(mm/min) 
Powder Flowrate 

(g/min) 

Adjust: Laser Power 

Maintain: Powder Flowrate 
Calculate: Scanning Speed 

1 275 217 

3.1 2 347 273 

3 418 330 

Adjust: Scanning Speed 

Maintain: Laser Power 

Calculate: Powder Flowrate 

4 

365 

241 7.3 

5 280 4.3 

6 305 2.74 

Adjust: Powder Flowrate 
Maintain: Laser Power 
Calculate: Scanning Speed 

7 

365 

299 1.9 

8 277 4.3 

9 258 6.7 

 



were centered around initial parameters shown to be successful in previous works [11], with only 

the powder flowrate altered, and the resulting track aspect ratio and comparison parameter used 

in this study plotted in Fig. 1B. The proposed comparison parameter, S, found insightful from the 

preliminary data is defined as: 

𝑆 =
𝑃

𝑣 ∗ 𝑔
     (1) 

 Where P is the laser power (W), v is the scan speed (mm/min) and g is the powder feed 

rate (g/min), for final units of W*min2 g-1mm-1. The comparison parameter is analogous to 

Simchi’s energy input relationship, where increased power and decreased scanning speed results 

in higher overall energy input to the material. With the addition of powder flowrate the overall 

energy input decreases due to the increase in mass delivered to the melt pool and energy required 

to melt the 

subsequent 

material [10]. 

Adequate 

melting of 

particles was 

the main 

determining 

factor for a 

quality build, 

where other 

factors such as 

aspect ratio and 

build height 

were secondary 

indications of a 

parameter set’s 

efficacy. From 

the preliminary 

builds, the S-

 
Figure 2: Micrographs of three separate sets of parameters used in the 

development experiment (S-parameter ranging from 14-18 W*min2 g-1mm-1). 

 



value for the optimal build (14-18 W*min2 g-1mm-1) was used to design another set of parameters 

for a second set of tracks to determine the model’s validity. Three separate approaches with each 

set of three tracks having one variable held constant, one varied, and the final calculated using 

the proposed relationship at optimal S-value ranges. It is important to note that while the 

relationship incorporates powder flowrate, the LENS™ system’s powder flowrate control is an 

impeller input voltage, so the voltage value was used in the determination of quality parameters, 

with flowrates calculated externally via collection container and then reported here. All 

parameters were bounded by the confines of the machine (500W and externally-calculated max 

powder flowrate of 7.3 g/min). Additional bulk structures were processed in a high throughput 

range (1000-1300mm/min) within a FormAlloy (San Diego, CA, USA) industrial DED system 

utilizing a 500W-fiber laser and coaxial feed system, with powder flowrate and laser powers 

chosen that replicate similar high-quality LENS™ tracks, with relative densities evaluated using 

Archimedes method (see Fig. 3).   

 

3. Results and Discussion 

 All single tracks (Fig. 1) resulted in heights of 20-250µm and widths of 1.8-1.4mm. The 

injection of higher amounts of powder resulted in higher buildup, decreasing track aspect ratio, 

and unmelted particles on the track surfaces (Fig. 1C). At lower powder flowrates and higher 

overall energy input (1.9g/min & 3.7 g/min), the circular weld outline can readily be observed, 

whereas at higher flowrates (lower energy input) this outline was not as apparent. From all 

preliminary tracks, it was decided that a flowrate of 4.9g/min provided both sufficient melt while 

also delivering track height of 178µm, which is common for DED-processed materials 

(comparison parameter equal to 16). From the calculated parameters, Tracks 1 & 2 had similar 

characteristics, i.e., limited unmelted particle regions and readily visible circular weld lines, 

indicative of quality build parameters and input energy efficiency. Track 3, however, maintained 

the same melt-track visibility while also being wider in diameter in comparison to the other 

tracks, owing to the increased power provided even at higher scanning speed, indicating that the 

build optimization strategy of increased power and scan speed at constant flowrate tends to 

create tracks with increased width and height at limited expense of unmelted power. Further, 

track 4 shows that higher powder flowrate results in a track that, despite being predicted as 

adequate parameters via the model, maintains unmelted particles on the track surface. This 



specific 

parameter 

combination 

included the 

highest amount of 

powder flowrate 

attempted 

(7.3g/min). For 

tracks 5 & 6, 

higher scan speed 

(280-

305mm/min) and 

corresponding 

lower powder 

flowrate (as-

calculated) results 

in tracks that are 

completely 

melted and have 

visible weld-track lines, indicative of quality builds. This set of tracks confirmed that higher 

flowrate at limited change in laser power or scanning speed results in poorer track quality. 

Tracks 7 & 8 resulted in sufficient melt with weld tracks visibly clear at powder flowrates of 

1.9g/min and 4.3g/min respectively, indicating quality build parameters. Track 9, however, at a 

powder flowrate of 6.7g/min maintained high regions of unmelted particles and surface 

roughness, indicative of a poor-quality build with low energy efficiency put into the track. Bulk 

samples were processed in the FormAlloy system at varying parameters (Fig. 3A) resulting in 

similar track qualities to tracks 5 & 6 (Fig. 3B). The bulk samples exhibited relative densities 

ranging from 95.0%-99.5%, indicating that quality builds assessed in the track-scale can be 

applied towards larger scale components.  

 From Fig. 2, the proposed model predicts adequate processing parameters for all 

combinations of laser power and scanning speed, with powder flowrate in the range from 1.9-

 
Figure 3: Translating single layer model into a multi-layer components. (A) 

Measured densities of bulk samples built in regions defined by optimal 

parameters. (B) Top surface optical micrograph of the 300W, 1200mm/s 

processing parameters. (C) Proposed workflow for using the present model 

when developing parameter sets for directed energy deposition. 



4.3g/min. As shown in experimental tracks 1-3, 5-6, 7-8 (powder flowrates below 6.7g/min), the 

tracks exhibit sufficient melting and readily-visible weld-track lines. It is clear from tracks 4 and 

5, that powder flowrates above 6.7g/min result in significant amounts of unmelted particles and 

limited visibility of weld-track lines, where powder feed rate becomes too high and most of the 

particles are no longer able to melt completely. Similar overall features have been observed in 

PBF-tracks where lower energy results in unmelted regions, and the converse resulted in more 

visible track features [12]. In comparison to PBF, DED machines can adjust parameters in situ, 

indicating that PBF tracks that have a poor combination of high laser power/low scan speed will 

result in melt-pool keyholes [13], which (in DED) can be alleviated via powder flowrate 

adjustment (as is shown from tracks 1-3 in Fig. 2). To this end, it is envisioned that a feedback 

loop workflow similar to that shown in Fig. 3C could be realized with inputs such as the 

material, geometry and machine information, fed into a GUI where the use of the developed 

governing equations calculate the optimal processing parameters. A build file is then generated 

and then ex situ/in situ quality analysis is performed to determine the efficacy of the parameters 

for generating a quality build, adding to an existing database to improve future builds with 

varying geometry and material/machine information.  

 

4. Conclusions 

 Processing-parameter modeling was investigated for laser-based additive manufacturing 

using directed energy deposition method. The model sufficiently predicted quality build 

parameters for all combinations of laser power and scanning speed, with powder flowrates in the 

range of 1.9-4.3g/min, while higher powder flowrates tended to dominate the melt pool and 

result in significant unmelted particle regions. Our parameters (translating to >99% relative 

density parts) indicate that an analytical approach can be used to determine processing 

parameters for next generation additive manufacturing equipment. 
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