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Self-stabilizing exchange-mediated spin transport
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Long-range spin transport in magnetic systems can be achieved by means of exchange-mediated spin textures
with robust topological winding, a phenomenon referred to as spin superfluidity. Its experimental signatures
have been discussed in antiferromagnets, which are nearly free of dipolar interaction. However, in ferromagnets,
which possess non-negligible dipole fields, realization of such spin transport has remained a challenge. Using
micromagnetic simulations, we investigate coherent exchange-mediated spin transport in extended thin ferro-
magnetic films. We uncover a two-fluid state in which the long-range spin transport by spin textures coexists
with spin waves, as well as a soliton-screened spin transport regime at high spin injection biases. Both states are
associated with distinct spin texture reconstructions near the spin injection region and sustain spin transport over
large distances.
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I. INTRODUCTION

The field of magnon-spintronics opens new possibilities for
energy-efficient information storage [1,2], transport, and pro-
cessing. Achieving low-dissipation long-range spin transport
is one of the main goals of spintronics research. In magnetic
insulators, spin currents are carried by spin waves, free of un-
desired electric currents [3]. However, despite low damping,
spin waves exhibit exponential decay over distances that can
be short at high frequencies.

The bosonic nature of spin excitations in ordered mag-
netic materials can benefit from magnon-magnon interactions
[4,5] and the ensuing coherence. Bose-Einstein condensation
of magnons, which was experimentally observed in various
systems [6–10], is a notable example. Another phenomenon
characteristic of bosonic systems is superfluidity; resistance-
free charge transport in superconductors and viscosity-free
mass transport in superfluid helium are some prominent ex-
amples [11–13].

In Ref. [14], Halperin and Hohenberg proposed a hydro-
dynamic theory of magnons, which is formally related to
superfluidity. Extending this analogy further [15], exchange-
mediated spin transport (EMS) by spin textures with
metastable winding can be dynamically induced in easy-plane
ordered spin systems. Upon nonequilibrium spin injec-
tion with perpendicular-to-plane polarization [16], a global
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texture winding of magnetic order parameter develops in the
form of a topologically robust winding spiral [Fig. 1(a)].
The order parameter precesses coherently in time at low
frequencies, transporting spin over macroscopic distances
[15] with slow algebraic decay [16,17] governed by Gilbert
damping [18–21]. The resultant spin transport is thus intrinsi-
cally long ranged, beyond the decay length of ordinary spin
waves. While EMS bears similarities to mass superfluidity
(the equation of spin motion resembles Josephson relations
for superfluidity, and superflow is characterized by the gradi-
ent of the phase) [15,16,22–34], it must be stressed that this
phenomenon is not truly dissipationless.

Recently, signatures of EMS were experimentally observed
in antiferromagnetic spin systems [35,36]. A realization of
EMS in ferromagnets remains an unsolved challenge. Pre-
vious theoretical works have revealed the potential of EMS
[15,16,22–32,34] for spintronics applications but have not
systematically studied the role of dipolar interactions. Numer-
ical calculations in Ref. [37] for micrometer-scale thin-film
ferromagnets have demonstrated that dipolar interaction can
destroy EMS; moreover, numerical simulations in thin fer-
romagnetic stripes [25,26] have shown that EMS can be
achieved despite the dipolar interaction, sparking a discussion
of the experimental feasibility of such states.

Here we present a micromagnetic study of EMS in ex-
tended ferromagnetic thin films and investigate the role of
dipolar interaction. We find that a stable EMS state can, in
fact, be achieved and that it allows for long-range spin trans-
port in a wide range of spin biases.
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FIG. 1. EMS in the absence of dipolar interaction. (a) Schematic view of the thin film. The spin injector provides spin current with
out-of-plane polarization (blue arrows). The spin sinks are shown. The red arrows represent a magnetization snapshot. (b) Initial EMS velocity
(black circles) and base frequency (red circles) as functions of the current density. Three regimes of the EMS are marked. Black lines show
transmitted spin current τ (in the same units as the EMS velocity) calculated based on the analytical model. Spatial dependence of the EMS
velocity (c) in regime I, (d) in regime II at j = 3.1 × 1011 A m−2, and (e) in regime III at j = 4.6 × 1011 A m−2.

In ferromagnetic films, the breakdown of the EMS cor-
responds to a sudden alignment of the magnetization out of
plane, which disrupts the spin transport [15]. When the spin-
injection bias is increased, the driven easy-plane spin-winding
state reaches an instability at the injection site. We find that
this, in turn, triggers a nonlinear dynamic state with significant
out-of-plane character. By decreasing the injection efficiency,
a stable easy-plane spin-winding state with a reduced spin flux
can be recovered at some distance from the injector. We find
that the spin bias applied to the injector does not determine the
spin current flowing through the magnet. Instead, the latter
is established self-consistently, as a result of the nonlinear
feedback of the magnetic dynamics near the injector. This
feedback regulates the spin injection through spin wave emis-
sion and/or coherent soliton formation. In effect, the spin
superflow away from the injector can stay below the instability
threshold even at large spin biases.

II. RESULTS

We simulate extended ferromagnetic films in the thickness
range of d = 2–30 nm by applying periodic boundary con-
ditions in the film plane to a 50 × 5 μm2 patch. Magnetic
parameters of the film are chosen (see the Appendix) to mimic
Y3Fe5O12 (YIG), a magnetic insulator with low damping that
may be considered as a candidate for experimental realiza-
tion of EMS. Magnetization dynamics is excited by locally
injecting a continuous pure spin current with out-of-plane spin
polarization. It is simulated through spin-transfer torque in
the middle of the film underneath a narrow spin injector. The
spin injector carries electric current [38,39] that translates into

spin current with a conversion efficiency of θs = 0.07 (see the
Appendix). At the short edges of the film patch, spin sinks
are simulated by a local increase of the Gilbert damping as
explained in the Appendix. The spin sinks are representative
of spintronics devices fed and operated with spin current sup-
plied through EMS. All calculations in this study are carried
out at 0 K, i.e., without thermal excitations. Figure 1(a) shows
the sample geometry, spin injector, and spin sinks.

A. Behavior without dipolar interaction

First, we investigate the case of omitted dipolar interaction
by enforcing zero dipole fields in our simulations and intro-
ducing an artificial easy-plane anisotropy Ku = −10 kJ m−3

approximating the shape anisotropy of a thin film [16,40,41].
For each current value, the simulations are carried out until
steady state or dynamic equilibrium is reached. In Fig. 1(a),
a snapshot of magnetization is shown for the steady state at
a current density j = 1011 A m−2 in the spin injector. The
magnetization exhibits continuous 2π rotations in the film
plane, characteristic of the EMS state [15]. The EMS velocity
is defined as u(x) = −∇φ(x), where φ is the azimuthal angle
of magnetization [15,16] (it is also the local order parameter
of the EMS state). Figure 1(b) shows the initial velocities u0

(calculated in the vicinity of the injector region as described
in the Appendix) as a function of the current density. Three
distinct regimes can be identified, as indicated in Fig. 1(b).

Regime I. At low current densities, the EMS velocity
increases linearly with increasing current density, in good
agreement with the analytical predictions of Ref. [42]. The
EMS velocity decreases smoothly and slowly with increasing
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distance from the spin injector [Fig. 1(c)]. At the spin sink, it
decreases more rapidly and reaches zero value. The longitudi-
nal spin density n = mz (equal to the polar component of the
normalized magnetization) [25] is well below 0.5.

Regime II. At the first critical current density j (1)
crit , the

EMS starts to exhibit oscillations in real space, as shown
in Fig. 1(d). The initial EMS velocity is calculated by aver-
aging out these oscillations. It shows a notable drop at the
first critical current [Fig. 1(b)]. Underneath the injector, the
magnetization is partially tilted out of the film plane by the
spin current. Outside of the injector region, the longitudinal
spin density remains n < 0.5.

Analysis of the temporal evolution of magnetization
reveals large oscillations in the injector region. It emits inco-
herent spin waves into the rest of the film which superimpose
with the EMS state [Fig. 1(d)]. We observe spin wave emis-
sion and the drop in the EMS velocity for various injection
widths w = 30–300 nm. The injector width does not affect the
critical current but modifies [26] the critical current density
through geometrical renormalization j (1)

crit ∝ Icrit/w (see Fig. 4
in the Appendix).

The temporal base frequency � of the EMS spiral is ex-
tracted for each current density by calculating the fast Fourier
transformation of the time evolution of the in-plane mag-
netization components in the injector region. The frequency
governs the Gilbert dissipation of the EMS as α�2, where α

is the Gilbert damping constant (see the Appendix). Moreover,
it is a temporal characteristic of the EMS spin dynamics that
can be observed in experiment. As shown in Fig. 1(b), both u0

and � exhibit the distinct breakdown in regime II.
Regime III. Above the second critical current density j (2)

crit ,
the EMS velocity is again a smooth function of the distance
[Fig. 1(e)]. No spin waves are observed. The magnetization
underneath the injector is almost fully aligned out of plane
and does not vary with time. Both initial velocity and base
frequency show a reduced growth rate with increasing spin
current and saturate around j = 8 × 1011 A m−2 [Fig. 1(b)].

B. Analytical model

We strive to develop [43] a minimal analytical model to
explain the observed phase diagram; we thus neglect dipolar
interaction and magnetic damping. With exchange constant
Aex, we employ the free energy:

F =
∫

dx3
[
Aex(∇m)2 − Kum2

z

]
. (1)

Taking into account that magnetization m does not vary along
the y and z directions, the Landau-Lifshitz equation assumes
the form

dm
dt

= −m ×
(

∂2m
∂x2

− mz ẑ
)

, (2)

where x and t are rescaled in units of
√

Aex/Ku and
μ0Ms/2γ Ku, respectively (with the permeability of free
space μ0 and gyromagnetic ratio γ ). By parametriz-
ing the magnetization with spherical coordinates, m =
(sin θ cos φ, sin θ sin φ, cos θ ), Eq. (2) becomes

θ̇ sin θ = −∂x(sin2θ ∂xφ), (3)

φ̇ sin θ = ∂2
x θ + 1 − (∂xφ)2

2
sin 2θ. (4)

Equation (3) corresponds to a continuity equation for the
longitudinal spin density. We are interested in solutions which
satisfy boundary conditions of the form

−∂xφ(0) = τi − γ̃ ∂tφ(0), −∂xφ(L) = γ̃ ∂tφ(L), (5)

where τi is the spin torque from the injection site and γ̃ param-
eterizes the edge damping effects of spin pumping [28,44].
General soliton solutions of Eq. (2) were studied in Ref. [43].
Here we develop soliton solutions with boundary conditions
(5). Assuming soliton solutions have the form θ = θ (x − ct )
results (see the Appendix) in

φ − φ0 = �t −
∫ x

0
dx′ c cos θ + a1

sin2θ
, (6)

x − ct = x0 ± 1√
2

∫ θ (x,t )

θ1

dθ ′
√

f (θ ′)
, (7)

where f (θ ) = a2 − � cos θ − 1
2 sin2θ − 1

2 (c2 − a2
1) csc2(θ ) −

ca1 cot(θ ) csc(θ ). Here �, c, φ0, a1, and a2 are integration
constants. We consider the case in which f (θ ) > 0 for some
open interval (θ1, θ2) ⊂ (0, π/2), where θ1 and θ2 are zeros
of f (θ ). The soliton expression (7) results in a solution of the
form (x − ct )(θ ), which is multivalued; that is, it has multiple
branches that need to be pieced together to obtain the inverted
result of the form θ (x − ct ). In this patching procedure, solu-
tion branches are selected that produce physically meaningful
results. The procedure is guided by the results of the micro-
magnetic simulations and is carried out in compliance with the
spatial continuity of magnetization and its first derivative, as
well as satisfying the boundary conditions (injector and sink).
The resulting soliton solution, θ (x − ct ), is symmetric about
its minimum θ1 (corresponding to a spike in mz) centered at
x0 at t = 0. One such solution is an isolated soliton traveling
at speed c through a surrounding EMS which has constant
polar angle θ2. The length of the soliton is determined by the
characteristic length scale

√
Aex/Ku.

The analytically calculated transmitted spin current per
spin density (τ = −∇φ sin2 θ ) is shown in Fig. 1(b) by
the black solid lines. The analytical spin current plot shows
three distinct phases, similar to the three phases identified in
micromagnetic simulations. The low-current regime (I) corre-
sponds to the conventional EMS, i.e., a coherently precessing
constant-θ superflow as derived in Ref. [27].

For high-injection currents of regime III, on the other hand,
we find a stationary soliton solution c = 0 of particular inter-
est. The soliton is placed with the peak at the injection region
boundary. The injector region is nearly fully polarized out of
plane, θ → 0, and the local time-dependent oscillations in θ

cease. As micromagnetic simulations show, this configuration
lacks the spin wave noise. The spin current is reduced by
the injector edge soliton due to the high out-of-plane mag-
netic polarization near the injector. This configuration with
high out-of-plane polarization diminishes the transmitted spin
current at the same EMS velocity u. The polarization in the
injector region partially blocks the spin injection, and the
transmitted spin current asymptotically behaves as ∝ 1/ j for
j → ∞. By virtue of this self-regulation in the injector region,
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the EMS persists above biases expected for the instability (for
this reason, we refer to it as screened EMS or screened spin
superfluid).

In a previous analytical study [27], the drop in the trans-
mitted spin current to zero after the first critical current has
been associated with EMS becoming fully polarized out of
plane (θ = 0). However, such a state is, in fact, unstable, even
in the undamped model. It has a mode of instability which
forms near the boundaries and propagates into the rest of the
film. This mode of instability has EMS-like precession and
grows exponentially with time. Furthermore, the micromag-
netic simulations suggest that neither the conventional EMS of
regime I nor the screened EMS of regime III is stable when the
two independent solutions of the analytical model overlap in
regime II [Fig. 1(b)]. Instead, the simulations show that EMS
persists in the form of a nontrivial dynamic state. The solution
may be a hybrid periodically transitioning between the con-
ventional EMS and screened EMS. This transitioning results
in injector region oscillations and spin waves propagating into
the film.

C. Impact of dipolar interaction

A previous study [37] on micron-sized ferromagnetic thin
films pointed out a detrimental effect of the dipolar interaction
on the EMS, leading to a collapse of the operable bias range.
Here we investigate extended systems by employing periodic
boundary conditions. In the following micromagnetic simu-
lations, the dipolar interaction is enabled, and the previously
used uniaxial anisotropy Ku is set to zero.

First, we find that the presence of the dipolar interaction
suppresses EMS at low currents and imposes a threshold j0
for its formation [37]. The uniaxial anisotropy Ku, introduced
in the previous simulations to mimic the shape anisotropy,
has enabled a simple easy-plane magnetic system in which
the EMS can form without an injection threshold. On the
other hand, the nonlocal nature of the dipolar interaction in-
troduces an effective magnetic anisotropy—an energy barrier
to overcome—for the formation of the spatially periodic spin
texture of the EMS [15,25,26]. The effective dipole energy
increases with the thickness of the film d , which is varied be-
tween 2 and 30 nm in our simulations. For comparison across
different film thicknesses, the current needs to be scaled by
d . Indeed, Fig. 2(a) shows that a normalized threshold current
j0/d increases nearly linearly with increasing film thickness.

Upon the formation of the EMS, its initial velocity u0

shows nonmonotonous dependence on the current density.
Figure 2(b) shows a behavior qualitatively similar to omitted
dipolar interaction. Employing spatiotemporal analysis of the
magnetization dynamics, we find again: (I) the low-current
regime free of incoherent spin waves, (II) the intermediate
regime with coexisting EMS and incoherent spin waves, and
(III) the high-current regime of screened EMS, free of inco-
herent spin waves. An additional notable drop of the initial
velocity and base frequency is observed in the middle of the
intermediate regime (II). A detailed evaluation of the data
reveals that u0 and � show multiple nonmonotonicities for
both the dipole and dipole-free cases. While the currents at
which they occur differ, their presence seems to be universal

FIG. 2. EMS in the presence of dipolar interaction. (a) Threshold
current as a function of film thickness. (b) Initial EMS velocity and
base frequency as functions of the current density for a 5-nm-thick
film (subthreshold regime omitted for clarity). (c) Spatial dependence
of the EMS velocity.

and is likely related to the nonlinear generation of spin waves
in regime II.

We further find differences of the spatial profile of EMS ve-
locity compared to the dipole-free case. As shown in Fig. 2(c),
the gradient of the azimuthal angle exhibits spatial modu-
lations. Due to the continuous rotations of magnetization,
dipolar interaction introduces perturbations of the energy
landscape with uniaxial symmetry—the dipolar field alter-
nates at every π rotation. The in-plane components of the
magnetization [Fig. 3(a)] display a distorted sinusoidal profile
as a function of distance. Thus, the angle gradient shows a
small-magnitude modulation with the period of the π rota-
tions. The out-of-plane component of magnetization reveals
spikes at the extrema of mx (Fig. 3), which reduces the ex-
change energy. This modulation can be considered a soliton
lattice, resulting in an EMS state with broken symmetry. The
symmetry is broken by the spin injector and mediated to the
EMS by virtue of the dipolar interaction.

III. CONCLUSIONS

In this study, the EMS was found to persist over a large
range of bias currents. The magnetization pinning [45] by
the dipole fields [37] does not fully suppress the EMS at
high biases for the case of extended films [25]. The threshold
suppression of the EMS at low biases was previously
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FIG. 3. Perturbations of the magnetization spiral in the pres-
ence of dipolar interaction, a snapshot after 500 ns for j = 4 ×
1010 A m−2. (a) In-plane components of the normalized magneti-
zation, mx (blue solid line) and my (red solid line), deviate from
the sinusoidal behavior. (b) The out-of-plane component mz reveals
peaks when mx has an extremum. (c) The divergence of the magneti-
zation is linked to the magnetostatic field.

discussed [15,28] for symmetry-breaking magnetic
anisotropy. In contrast to the effect of such local anisotropy,
the symmetry breaking investigated in this study is mediated
by the nonlocal dipolar interaction [26]. We found the
threshold current to increase linearly with increasing dipole
energy.

A coupling between the EMS order parameter (azimuthal
angle φ) and the longitudinal spin density n was observed.
The longitudinal spin density shows oscillations at twice the
base frequency [26], in agreement with the symmetry order of
the effective (uniaxial) magnetic anisotropy due to the dipole
fields. The oscillations correspond to excitations of the soliton
lattice. No such behavior is observed in the absence of the
dipolar interaction.

We identified three regimes of the EMS, universally
present, with and without dipolar interaction. In the low-
current regime, conventional EMS is found. Above the first
critical current, the EMS coexists with incoherent non-
thermally populated magnons. Above the second critical
current, the incoherent magnons are suppressed, and a soliton-
screened EMS is found.

We discovered that the EMS can self-stabilize beyond
the anticipated critical injection bias. The spin superflow
is not determined by the injection current alone but self-

consistently, taking into account the spin reconstruction in
the injector region. At high biases, the EMS is partially
screened from injected spin current by soliton formation. For
the intermediate-current regime, we identified that nonlinear
magnon scattering plays a role in EMS self-stabilization.

Recently, spin injection with perpendicular polarization
due to the spin-orbit effect with spin rotational symmetry [46]
and due to planar Hall effect [47] was experimentally realized
using metallic ferromagnets. Moreover, efficient thermal spin
injection [48] with polarization not bound by injector geom-
etry was achieved [4,49]. These developments may benefit
designing novel ferromagnetic spin injectors and instigate
research on thin-film-based EMSs. Questions on spin texture
formation in the injector region due to interaction with the
injector, thermal stability of the superflow, and accessible spin
bias ranges are likely to arise. Our work points out the impact
of injector spin texture formation and incoherent spin waves
on stabilization of EMS and extending the range of achievable
spin biases.
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APPENDIX

1. Micromagnetic simulations

Micromagnetic simulations were carried out by numer-
ically solving the Landau-Lifshitz equation using MUMAX

software [50]. The sample volume was discretized into a mesh
with a cell size of 24.41 nm × 19.53 nm × d . The validity of
the results was validated by carrying out control simulations
with a reduced cell size. Periodic boundary conditions within
the MUMAX code were used. For the dipole-free simulations,
dipolar interaction was disabled within the code. For the sim-
ulations with the dipolar interaction, the magnetostatic field
was accounted for using the approach presented in Ref. [51].

The spin current injection was simulated via the spin-
transfer (Slonczewski) torque within the code. The electric
current density given throughout the paper corresponds to
the injected spin current via js = θs

h̄
e j, with the spin conver-

sion efficiency θs, the Planck constant h̄, and the elementary
charge e.

The spin sinks were designed to emulate spintronic de-
vices, fed by the spin current transmitted through the EMS.
They were modeled by a nonuniform increase of the Gilbert
damping over the width (4 μm) of the spin sink regions. From
the sink edge closer to the injector to the edge at the end
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FIG. 4. Impact of the injector width on EMS. (a) Base frequency
� for different injector widths. (b) The first critical current density
decreases as ∝ 1/w (red line), where w is the injector width.

of the film patch, the damping constant α was increased
exponentially from 0.002 to 0.11. Such modification of damp-
ing emulates extraction of angular momentum from the EMS
and prevents potential reflections of spin excitations at the
edges of the patch, which is necessary to simulate an extended
spin system.

In the simulations, the magnetization dynamics was
evolved for several hundreds of nanoseconds. The data shown
in the figures correspond to snapshots of the spatially de-
pendent magnetization. The snapshots were taken after the
magnetization field had reached the dynamic steady state.
Typically, a simulation time of 500 ns was chosen to ensure
that the system reached the steady state. Control calculations
with various simulation times were performed to ensure the
validity of the steady state.

The position-dependent EMS velocity u(x) = −∇φ(x)
was calculated from the position-dependent azimuthal an-

gle φ, determined from the magnetization snapshots after
reaching the steady state. The initial EMS velocity u0 was
obtained from the position-dependent EMS velocity in the
direct vicinity of the injector edge (and by averaging out the
spatial modulations in this region). The base frequency was
determined as a maximum-amplitude frequency of the Fourier
transformation of the time-dependent in-plane magnetization
data within the injector region (Fig. 4).

The material parameters were chosen to simulate
YIG films [52–55]: the saturation magnetization Ms =
130 kA m−1, and the exchange constant Aex = 3.5 pJ m−1.
Control simulations with the magnetocrystalline anisotropy
of YIG (0.6 kJ/m3) were carried out. The anisotropy results
in an increase of the threshold current consistent with pre-
vious studies [26]. This effect is small compared with the
threshold induced by the dipolar interaction. Moreover, mag-
netocrystalline anisotropy induces a spatial modulation of the
EMS velocity (with a smaller wavelength than the dipolar
modulation of the velocity) that is consistent with the mag-
netocrystalline anisotropy symmetry [26]. This modulation,
together with the modulation due to the dipolar interaction,
leads to an overall complex spatial profile of the EMS velocity.
As it does not contribute to the discussion of this study, the
magnetocrystalline anisotropy was omitted in the simulations.

2. Analytical model

Numerical calculations of the analytical model resort to
the same material parameters as micromagnetic simulations
but do not include magnetic damping. The parameters of
the analytical model, spin sink (edge damping γ̃ ) and spin
conversion efficiency at the interface, were fixed by fitting the
low-bias analytical model to the results from the micromag-
netic simulations.

Here we derive Eqs. (5) and (6). The assumption θ =
θ (x − ct ) implies that the left-hand side of Eq. (3) can be
written as a derivative in x, thus allowing Eq. (3) to be inte-
grated. The result can be solved for ∂xφ and integrated again to
express φ in terms of θ . In general, the constants of integration
can depend on t , i.e.,

φ = C2(t ) −
∫ x

dx′ c cos θ + C1(t )

sin2θ
. (A1)

However, the time dependence is restricted by substituting
the expression for φ in terms of θ into Eq. (4). Once θ has
been isolated, the resulting equation should not have explicit
t dependence because, by assumption, θ depends on only x −
ct . This implies that C1 is independent of time and restricts C2

to, at most, linear dependence on t , thus resulting in Eq. (6).
Once φ dependence has been eliminated in Eq. (4), Eq. (7)
follows by direct integration with the integrating factor ∂xθ .
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