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Quantum control of entangled photon-pair generation in electron-atom collisions driven by
laser-synthesized free-electron wave packets
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We propose an extension of coherent control using laser-synthesized free-electron matter waves. In contrast
to coherent control schemes exploiting optical coherences to steer the dynamics of matter waves, we analyze the
opposite and investigate the control of quantum light emission driven by laser-sculpted coherent free-electron
matter waves. We apply this concept to the control of entangled photon-pair emission in electron-atom collisions,
in which the incident electron wave packet, colliding with a target atom B, is engineered by interferometric
resonantly enhanced multiphoton ionization of a parent atom A. Each ionization pathway leads to electron wave
packets that coherently interfere during temporal evolution in the continuum. Their mutual coherence can be
controlled by adjusting the relative phases or time delays of the frequency components of the ionizing field
contributing to the interfering pathways. We report coherent control of entangled photon-pair generation in
radiative photocascade emission upon decay of the target atom after inelastic excitation triggered by the collision
with the synthesized electron wave packet.
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I. INTRODUCTION

Coherence [1] and quantum interferences [2,3] are the
cornerstones of coherent control of photoinduced processes.
A prototypical example is two-pathway coherent control of
photoionization. It exploits optical coherences to manipulate
matter-wave interferences to ultimately steer the ionization
dynamics into a desired target outcome. In its simplest form,
coherent control of photoionization is achieved by adjust-
ing the relative phase [4–10] or time delay [11,12] between
the frequency components of bichromatic fields promoting
single- and two-photon ionization. The mutual coherence be-
tween both frequency components determines the coherence
properties of the released photoelectron wave packet. These
are imprinted in the angular distribution of the photoelectron,
which has led to its use in the control of photoelectron angular
distributions (PADs) [4–9].

An experimental application of the control of free-electron
wave-packet interferences consists in shaping the three-
dimensional PAD using phase- and polarization-shaped fields.
Additional degrees of freedom can be exploited by gen-
eralizing the bichromatic scenario to cases comprising a
manifold of interfering multiphoton ionization pathways.
Recent experimental works on resonantly enhanced multipho-
ton ionization of potassium atoms using amplitude, phase-
and polarization-shaped pulses made it possible to Fourier
synthesize free-electron wave packets, i.e., to engineer photo-
electron wave packets with tailored momentum distribution,
by influencing the mutual coherence among the interfering
partial-wave components originating from the various allowed
pathways for multiphoton ionization [13–15].
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Recalling that these synthesized electron matter waves
originate from individual wave packets coherently interfering
during their temporal evolution in the continuum [13], the
question arises whether such interferences can be coherently
manipulated to further control matter-induced processes in a
target system.

In this work, we investigate the capabilities of synthesized
free-electron wave packets to control dynamical processes in
matter-matter interactions. As an application, we review and
adapt to a modern contextual technological framework the
pioneering works on coincidence detection measurements of
entangled photon-pair generation by electron bombardment
of a target atom [16] and scrutinize the control of entangled
photon-pair generation triggered by the coherent interaction
of synthesized free-electron wave packets colliding with a
target atom B. The incident photoelectron originates from
coherently controlled interferometric multiphoton ionization
of its parent atom A, as depicted in Fig. 1(a). It is composed
of two individual wave packets originating from each ion-
ization pathway, as illustrated in Fig. 1(b). Both components
propagate under the field-free Hamiltonian while coherently
interfering in the continuum as they propagate towards the
target. Interaction with the latter results in elastic scattering
of the incident wave packet and inelastic excitation of the
target. We analyze the emission of entangled photon pairs in
subsequent radiative photocascade emission from the excited
target atom.

Light-driven control of entangled photon-pair states pro-
duced by parametric down-conversion is a current topic of
active research with major impact in photonic quantum infor-
mation sciences [17–20]. Control of spontaneous fluorescence
(intensity) emission has been reported in single [21–24] and
parametric-down photon emission [25] using coherent and
chirped light sources and by exploiting the twist phase of a
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FIG. 1. Matter-wave control of correlated photon-pair genera-
tion: (a) Ionization of atom A by a classical field probing a manifold
of interfering ionization pathways generates a coherent superposition
of continuum states, resulting in (b) a coherent photoelectron wave
packet with a tailored momentum distribution. (c) Example of radia-
tive photocascade emission in the target atom B following inelastic
excitation induced by the incident photoelectron wave packet.

Gaussian beam with partial transverse spatial coherence [26].
Here, we exploit the use of laser-synthesized electron matter
waves to control the correlated angular distribution of entan-
gled photon-pair emission in electron-atom collisions.

II. THEORETICAL MODEL

The atom-photon field interaction is treated at the level of
the Weisskopf-Wigner theory for spontaneous emission [27].
Deexcitation of the target atom B occurring during and after
collision with the incident electron wave packet yields the
photon field in an excited multimode state. The basis,∣∣nk1,σ1

, nk2,σ2
, . . .

〉 = ∏
k j ,σ j

∣∣nk j ,σ j

〉
, (1)

represents nk j ,σ j photons in mode (k j, σ j ) with momentum
h̄k j and polarization ε̂σ j subject to the transversality condi-
tions ε̂σ j · k j = 0. Atom B and the photon field are coupled
via the terms Âs(r̂) · p̂ and Âs(r̂) · Âs(r̂), with

Âs(r̂) =
∑
k j ,σ j

A0(k j )
[
âk j ,σ j

eik j ·r̂ êσ j + â†
k j ,σ j

e−ik j ·r̂ êσ j

]
(2)

as the vector potential operator coupling the eigenstates of B
with the photon field. â†k j ,σ j

(âk j ,σ j ) creates (annihilates) one
photon in mode (k j, σ j ). The Hamiltonian

ĤAB(t ) = [ĤA − er̂ · Ê(r̂, t )] ⊗ 1 + V̂I

+ 1 ⊗
⎧⎨⎩∑

k j ,σ j

h̄ω(k j ) + 1

2m

[
p̂ − e

c
Âs(r̂, t )

]2⎫⎬⎭
(3a)

dictates the ionization dynamics of atom A, scattering of the
resulting photoelectron wave packet by atom B, excitation
of the latter due to collision, and photoemission upon de-
excitation of atom B. The interaction

V̂I = V B
ne(r̂ − RB) ⊗ 1 + V̂ee(r̂, r̂

′) + 1 ⊗ V B
ne(r̂ − RB) (3b)

mediates the elastic scattering as well as inelastic excitation
of atom B with no change in the distribution of the photon
modes. Ionization of atom A is controlled by the classical
field E(r, t ) = E(t ) f�A (r), with f�A (r) a Heaviside func-
tion. The latter ensures a constant spatial distribution in the
vicinity of atom A and leaves the target atom B unaffected.
V B

ne(r̂ − RB) is the potential energy due to the effective nuclear
charge distribution of atom B, with RB the (fixed) origin of
the coordinates of atom B and V̂ee(r̂, r̂

′) the potential-energy
interaction between the incident electron and the electron
in the target. To simplify the notation, Eq. (3a) is written
in the effective tensor product basis |ψA

γ A
a
〉 ⊗ |ψ̃B

γ B
b
〉, where

|�̃B
γB

〉 ≡ |�B
γB

〉 ⊗ |nk1,σ1
, nk2,σ2

, . . . 〉, with |�A
γ A

a
〉 and |�B

γ B
b
〉 as

the eigenvectors of the isolated Hamiltonians, ĤA and ĤB, of
atoms A and B, respectively, satisfying ĤA|�A

γ A
a
〉 = εA

γa
|�A

γ A
a
〉

and ĤB|�B
γ B

b
〉 = εB

γb
|�B

γ B
b
〉. With this contracted notation, the

first term on the right-hand side of Eq. (3a) applied to an el-
ement, e.g., |�A

γA
〉 ⊗ |�̃B

γB
〉, will effectively only act on |�A

γA
〉,

leaving the component |�̃B
γB

〉 unaltered. Conversely, the third
term (second line) in Eq. (3a) acts on |�̃B

γB
〉, leaving the com-

ponent |�A
γA

〉 unchanged. The same applies to Eq. (3b), where

r̂′ and r̂ in V̂ee(r̂, r̂
′) are used to symbolize a two-electron

potential-energy operator, in contrast to the one-electron op-
erators in the first and third terms; see the Appendices.

We solve the time-dependent Schrödinger equation

i
∂

∂t
|
S (t )〉 = ĤAB(t )|
S (t )〉, (4a)

and write |
S (t )〉 as a coherent superposition in the antisym-
metrized tensor product space spanned by the eigenvectors of
the isolated Hamiltonians and Eq. (1), i.e.,

|
S (t )〉 =
∑
γ A

a ,γ B
b

∑
nk1,σ1

∑
nk2,σ2

. . .
∣∣�γ A

a ,γ B
b

〉⊗ ∏
k j ,σ j

∣∣nk j ,σ j

〉

× exp

[
−i

(
εA
γa

+ εB
γb

+
∑
ki,σ i

ω(ki ) nki,σ i

)
t

]
× Sγ A

a ,γ B
b

(
nk1,σ1

, nk2,σ2
, nk3,σ3

. . . ; t
)
. (4b)

The vector |�γ A
a ,γ B

b
〉 ≡ |�A

γ A
a
〉 ⊗ |�B

γ B
b
〉 − |�B

γ B
b
〉 ⊗ |�A

γ A
a
〉

represents one electron in a spin-orbital state 〈r1;ms1 |�A
γ A

a
〉

of A and the other one in 〈r2;ms2 |�B
γ B

b
〉 of B, with ms1,2 the

spin-magnetic quantum numbers for electrons 1 and 2. Note
that 〈r1, ms1 ; r2, ms2 |�γ A

a ,γ B
b
〉 = −〈r2, ms2 ; r1, ms1 |�γ A

a ,γ B
b
〉.

Summation over γ A
a includes all bound and continuum states,

and ω(k j ) = |k j | c. Matrix elements to describe the ionization
process were obtained with the B-spline R-matrix codes [28].

Due to the many-body character of the stimulated photon
field, a full time-dependent treatment of the dynamics, while
keeping track of every possible photon mode emitted and ab-
sorbed during the aforementioned processes, is a formidable
and computationally prohibitive task. To scrutinize the control
mechanisms for radiative photon-cascade emission triggered
by the collision while keeping the calculations tractable, we
resort to obtain the time-dependent coefficients in Eq. (4b)
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FIG. 2. Inelastic excitation-decay control mechanism: (a) Angular distribution of correlated photon-pair emission as a function of the
relative phase, φ, between the laser frequencies ω1 and ω3 shown in Fig. 1(a). The incident photoelectron wave packet results from a coherent
superposition of even-parity two-photon ionization pathways. Note that the angular probability of photodetection follows the relative phase.
(b) Correlated photon-pair detection scheme discussed in the text (γ = 0).

from a time-dependent perturbative series expansion up to
order k. Details are provided in the Appendices.

III. ANGLE-RESOLVED COINCIDENCE
PHOTODETECTION SCHEME

We start by considering resonantly enhanced two-pathway
coherent ionization of Ca as schematically depicted in
Fig. 1(a). Resonant excitation of the (4s5p) 1P and (4s6p) 1P
states is mediated by the frequency components ω1 =
4.554 eV and ω3 = 5.167 eV of a classical field, with both
left-circularly polarized. Their relative phase is used as a con-
trol parameter. Ionization is ensured by the linearly polarized
frequency components ω2 = 17.324 eV and ω4 = 16.721 eV
with a flat spectral phase. The frequency components have a
duration of 20 fs (FWHM) and are not time delayed. Each
ionization pathway generates a coherent superposition of scat-
tering eigenstates of A peaked at the same photoelectron
energy of 15.755 eV, as depicted in Fig. 1(b). The angular-
momentum components defining the wave packets that arise
from each of these ionization channels are coherently com-
bined, carrying the temporal coherence of the classical field.

The target atom B, initially in its ground state, is
taken as the hydrogen atom. The quantization axis is de-
fined by the vector parallel to the ẑ direction connecting
both atoms, situated at the positions RA and RB with
|RB − RA| = RB,z − RA,z = 1200 atomic units. After excita-
tion by the tailored electron wave packet, optical decay may
occur via different deexcitation pathways allowed by selection
rules, as epitomized in Fig. 1(c).

The angular distribution of the emitted photons is obtained
using the multipole expansion in Eq. (2),

e±ik j ·r = 4π
∑
λ,μ

(±i)λ jλ(k jr)Y
λ
μ (θr, φr )Y λ∗

μ

(
θk j , φk j

)
, (5)

with the spherical harmonics Y λ
μ (θk j , φk j ) for the angles of

photoemission defining the mode (k j, σ j ). The polarization
components of the emitted photons are obtained according
to êσ ja = k j × ê0/|k j × ê0| and êσ jb = k j × êσ ja/|k j × êσ ja |,

where

k j = (4π/3)1/2 |k j |
∑

q=0,±1

Y1
q

(
θk j

, φk j

)
ê∗

q, (6)

with êq the covariant spherical unit vectors. Both polarization
vectors are functions of the angles (θk j , φk j ).

The coincidence photodetection scheme is shown in
Fig. 2(b): a photodetector D2, fixed at θk2 = π/2 and
φk2 = −π/2, registers polarization- and wavelength-filtered
photons with energy hν2 = 12.078 eV, corresponding to the
energy of the transitions 3p(m = ±1, 0) → 1s in Fig. 1(c).
D2 is set to register only the wavelength-filtered photons that
are linearly polarized along the z direction in Fig. 2(b) (blue
color). Detection by D2 therefore maps the second step of the
radiative cascade decay defined by the 3p(0) → 1s transition
in Fig. 1(c). The state of such photon is hereafter referred to
as mode (2).

A second detector D1, fixed at φk1 = π/2 but free to
move along the polar coordinate θk1 , scans, along θk1 , the
direction of emission of the correlated peer defined by the
state |k1, σ1b〉 in Fig. 2(b) (red color): a photon of energy
hν1 = 0.661 eV, corresponding to the energy of the radiative
transition 4d ({m}) → 3p(±1, 0) in Fig. 1(c). The orthogonal
polarization components, σ1a and σ1b, of the photon emitted
in the first step of the cascade fulfilling the transversality
condition are depicted in Fig. 2(b) (red color). Note that these
components are correlated to that of the photon registered
by D2. Finally, as it scans θk1 , D1 is set to register only the
wavelength-filtered photons with the polarization component
along the direction êσ1b depicted in Fig. 2(b) (red color).
Explicit expressions for êσ1a and êσ1b as a function of the emis-
sion angles (θk1 , φk1 ) are given in Eq. (C6) of Appendix C,
Sec. C 1 a.

IV. ANGLE-RESOLVED PHOTON-PAIR EMISSION:
NUMERICAL RESULTS

Figure 2(a) shows the angular probability distribution of
measuring the correlated photon in coincidence with its cor-
related peer in mode (2) as a function of the relative phase
between the frequencies ω1 and ω3 of Fig. 1(a). The direction
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FIG. 3. (a) Photodetection probability at angles θk1 = 0 (solid
blue line) and θk1 = π/2 (dashed orange line) as a function of the
relative phase between the laser frequencies ω1 and ω3 shown in
(b) when a photon in mode (2) is simultaneously detected. The
incident electron wave packet originates from the ionization scheme
shown in (b). (c) Same as (a), but as a function of the relative phase
between the laser frequencies ω0 and ω3 shown in (d).

of emission exhibits a noticeable dependence on the tempo-
ral coherence conveyed by the incident photoelectron wave
packet: the probability of entangled photon-pair detection is
strongly affected by the mutual phase of the photoionization
probability amplitudes, controlled by the relative phase be-
tween the frequency components of the classical field probing
the contributing photoionization pathways.

The angle-resolved occurrence of coincident photodetec-
tion is also sensitive to the parity of the photoionization
pathways probed to engineer the incident photoelectron wave
packet. This is shown in Fig. 3, comparing, at the fixed
emission angles θk1 = 0 and θk1 = π/2, the probability of co-
incident photodetection already discussed in Fig. 2, this time
using different photoionization schemes to engineer the inci-
dent electron wave packet: same- and opposite-parity photo-
ionization pathways.

Figure 3(a) displays the probability of coincident photode-
tection obtained when the incident photoelectron wave packet
is engineered according to the resonantly enhanced two-
photon ionization scheme promoting even-parity pathways
depicted in Fig. 3(b). As shown in Fig. 3(a), the probability for
simultaneous photon-pair detection at a given direction θk1 can
be entirely suppressed or enhanced depending on the relative
phase between the contributing photoionization pathways.

Likewise, as shown in Fig. 3(c), opposite-parity pho-
toionization pathways, as depicted in Fig. 3(d), can also be
exploited to engineer the photoelectron wave packet to ul-
timately suppress or enhance the probability of correlated
photon-pair detection. In this case, control is achieved by ma-
nipulating the relative phase between the one- and two-photon

ionization pathways through the relative phase between the
frequencies ω0 and ω3.

As defined, the relative phase corresponding to φ = 0
maximizes (minimizes) the probability of detection in the di-
rection θk1 = 0 (θk1 = π/2) for both photoionization schemes
depicted in Figs. 3(b) and 3(d) when a photon in mode (2)
is simultaneously detected. Conversely, for φ = π , the prob-
ability of detection in the direction θk1 = 0 (θk1 = π/2) is
minimized (maximized) for both schemes. In contrast, the
relative phases corresponding to φ = π/2 and φ = 3π/2 re-
sult in the suppression of photon-pair coincident detection at
angles θk1 = 0 and θk1 = π/2 for the case of an odd-even
parity photoionization pathway [cf. Fig. 3(c)], whereas its
even-parity counterpart results in an equal probability of co-
incidence photodetection [cf. Fig. 3(a)].

Control of directional correlated photon-pair detection can
also be achieved by adjusting the relative time delays between
the different pulses carrying the various frequency compo-
nents in Fig. 1(a). To illustrate this, we choose two pump-laser
frequencies, ω1 and ω3, to resonantly excite the (4s5p) 1P and
(4s6p) 1P states in atom A, creating a superposition of states
evolving according to the free-field Hamiltonian. After a delay
τ , a probe field with frequencies ω2 and ω4 is introduced,
ionizing the electron in the coherent superposition. The re-
sulting photoelectron wave packet then carries the coherence
of the superposition of bound states, defined by the phase
accumulated between the pump and probe pulses. Figure 4
shows the time-resolved probability of correlated photon-pair
detection as a function of the delay τ . The probability for co-
incident photodetection upon sequential deexcitation of atom
B, located far from atom A, is sensitive to the phase of the
coherent superposition state in atom A, carried by the col-
liding photoelectron wave packet. For a fixed direction θk1 ,
the photon yield can be controlled significantly. Compare, for
example, the yields at θk1 = 45◦ for the delays τ = −50 and
τ = −40 fs.

V. CORRELATED PHOTON-PAIR EMISSION: CONTROL
MECHANISM

A. Coherent radiative cascade-decay dynamics

If only the 4d (0) state were inelastically excited by the
incident photoelectron wave packet, the radiative cascade
transition given by, e.g., 4d (0) → 3p(1) → 1s [cf. solid (red
and blue) lines in Fig. 1(c)] could be mapped by setting D2 to
detect wavelength- and polarization-filtered left-circularly po-
larized photons only (with energy hν2 as usual), while setting
D1 for coincidence detection of right-circularly (êσ1 = ε̂+1)
polarized photons with energy hν1. A measurement by D2

then provides the complete information about the polarization
state of the photon emitted in the first step in the cascade.
More explicitly, the “which pathway information” related to
the emission of the photon with energy hν1 can be determined
by D2. Consequently, the angular distribution of photons de-
tected by D1 exhibits no sensitivity as a function of the phase
of the 4d (0) state. All features of the angular distribution
of photons registered by D1 are then solely dictated by the
transversality condition êσ1 · k1 = 0.
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FIG. 4. Time-resolved probability for coincident photodetection
as a function of the time delay between the pump and probe pulses
discussed in the text. Color map as in Fig. 2.

Conversely, if D2 is set to register linearly polarized pho-
tons only (along the ẑ direction) with energy hν2 as usual, then
only detection of linearly polarized photons with energy hν1
by D1 gives nonvanishing coincidence counts, mapping the
pathway 4d (0) → 3p(0) → 1s. Likewise, if the state 4d (−1)
[4d (+1)] is solely populated, the coincidence detection is
restricted to the case involving circularly polarized right [left]
photons with energy hν1 and the linearly polarized photons by
D2. In either case, detection byD2 unambiguously determines
the deexcitation pathways involved in the emission of the
photon registered by D1. As before, the angular distribution
of photons detected by D1 is dictated by the transversality
condition and cannot be coherently controlled.

Keeping the same detection configuration for D2, a more
interesting case occurs when the inelastic excitation triggered
by the incident electron wave packet leaves the target atom in a
coherent superposition with several states coherently excited.
In striking contrast to the previous cases, the deexcitation
pathway associated with the emission of a photon with en-
ergy hν1 can no longer be unambiguously determined by D2

alone: the photon with energy hν1 can be, e.g., circularly
right [4d (−1) → 3p(0) → 1s], left [4d (1) → 3p(0) → 1s],
or linearly [4d (0) → 3p(0) → 1s] polarized.

Each of these configurations results in a specific angu-
lar distribution registered by D1. While the which pathway
information can be restored by setting D1 to register only
those photons with the polarization of interest, this is no
longer the case if the polarization component of detection,
êσ1b in Fig. 2(b), is chosen in such a way that several de-
excitation pathways 4d (m) → 3p(0) can contribute. In this
case, a unique deexcitation path leading to the 3p(0) state can
no longer be unambiguously determined: several pathways
can contribute to the cascade 4d (m) → 3p(0) → 1s. Cor-
respondingly, the angular distribution of photons registered
by D1 contains coherent contributions of angular-momentum
components of photons arising from the possible pathways
4d (m) → 3p(0) [cf. Fig. 1(c) (dashed lines)], if these com-
ponents contribute to the same photon mode |k1, σ1b〉. Among
all possible pathways contributing to |k1, σ1b〉, only those de-
caying through the 3p(0) state will coherently contribute to
the coincidence detection, as D2 is set to only register linearly
polarized photons. The conditions for quantum interference
are then fulfilled, as several deexcitation pathways lead to the
same final quantum state.

The positions of the maxima and minima in Fig. 2(a) are
dictated by the transversality condition for the mode |k1, σ1b〉
and the magnetic quantum number m of the 4d (m) state in-
volved in the deexcitation transition to the 3p(0) state. The
photon with energy hν1 is linearly polarized, i.e., parallel to
the ẑ axis in Fig. 2(b), if the transition 4d (0) → 3p(0) takes
place. In this case, the maxima correspond to θk1 = 90◦ and
θk1 = 270◦, since σ1b is along the ẑ direction. The minima
correspond to the angles θk1 = 0◦ and θk1 = 180◦, since σ1b is
then perpendicular to the ẑ axis of polarization:D1 registering
photons with polarization component along σ1b, then parallel
to the ŷ axis, finds no signal. Conversely, if the transition
4d (±1) → 3p(0) takes place, then the photon is circularly
polarized, and the aforementioned positions for the maxima
and minima are inverted.

Correspondingly, when the target atom is in a coherent
superposition with a manifold of 4d (m) states populated, de-
excitation pathways of the type 4d (m) → 3p(0) → 1s may
contribute to the same photon modes registered in coincidence
by D1 and D2. As previously discussed, the angle-resolved
probability of correlated photon-pair emission contains coher-
ent contributions from each of these deexcitation pathways, as
long as these lead the overall system to the same final quantum
state, complying with the conditions for quantum pathway
interference. Consequently, the positions of the maxima and
minima are sensitive to the phases of the 4d (m) states. As ob-
served in Figs. 2(a) and 4, they fluctuate between the limiting
values obtained when only one 4d (m) state is populated.

B. Coherent inelastic excitation dynamics

As alluded to above, control over the angle-resolved prob-
ability of photocascade emission observed in Figs. 2, 3, and 4
is achieved by controlling the aforementioned quantum inter-
ferences leading to the same overall final quantum state. More
specifically, this involves manipulating interferences between
the relevant angular-momentum components contributing to
the same photon mode |k1, σ1b〉 for the radiative cascade decay
4d (m) → 3p(0) → 1s. Control is achieved by influencing the
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relative phase of the relevant 4d (m) states in the coherent
superposition in the target atom contributing to the cascade.

To rationalize how the incident wave packet exerts control
over the phases in the coherent superposition, it is convenient
to consider the states of the incident and target electrons
before and after their mutual interaction. To simplify the dis-
cussion and for general orientation only, we shall neglect in
the following discussion the photon field and exchange terms.
A more involved and complete description can be found in
the Appendices. Then the probability amplitude for inelastic
excitation to the final states |�A

p′
a
〉 and |�B

γ ′
b
〉 for the incident

and target electrons, respectively, is given, to the lowest order,
by

C
(
p′

a, γ
B
b′ ; t
) = −i

2∑
k=1

∫
d pA

a

〈
�A

p′A
a
;�B

γ ′B
b

∣∣V̂ee

∣∣�A
pA

a
;�B

γ o
b

〉
×
∫ t

−∞
c(w)
pa

(t ′) e
i(εA

p′a
+εB

γ ′
b
−εA

pa
−εB

γ o
b
)t ′

dt ′, (7)

with εB
γ o

b
(εB

γ ′
b
) the initial (final) energy associated with the ini-

tial (final) state, |�B
γ o

b
〉 (|�B

γ ′
b
〉), of the target electron, initially

in the ground state |�B
γ o

b
〉. Furthermore, εA

pa
(εA

p′
a
) denotes the

initial (final) energy of the incident (scattered) electron wave
packet, and V̂ee is the potential-energy operator describing
their mutual electrostatic interaction.

The resonantly enhanced two-pathway ionization of atom
A dictates the spectral amplitude distribution cpa

(t ) of the in-
cident electron wave packet. To proceed with our discussion,
cpa

(t ) in Eq. (7) is approximated by its asymptotic form in
the absence of atom B, i.e., c(w)

pa
(t ′ → ∞) in Eq. (8), thus

describing an electron wave packet arriving from the remote
past, similarly to the standard treatment of inelastic scattering
by a plane wave. The first-order correction (w = 1) reads

c(1)pa
(t ) = i

∑
j

〈
�A

pa

∣∣d̂∣∣�A
γ o

a

〉 · e( j)
∫ t

−∞
ei(εA

pa
−εA

γ o
a
)t ′

Ej (t
′)dt ′,

(8a)

with d̂ the dipole operator weighted with the spatial Heaviside
step function f�A (r) and |�A

γ o
a
〉 the ground state of atom A.

The summation is carried out over the frequency compo-
nents of the ionizing field, indexed by the labels j, polarized
in the e( j) direction with respect to the quantization axis
(RB − RA)/|RB − RA|. Correspondingly, the second-order
correction (w = 2) reads

c(2)pa
(t ) = −

∑
γ A

a

∑
j, j′

e( j) · 〈�A
pa

∣∣d̂∣∣�A
γ A

a

〉 〈
�A

γ A
a

∣∣d̂∣∣�A
γ o

a

〉 · e( j′ )

×
∫ t

−∞
e

i(εA
pa

−εA
γ A

a
)t ′

Ej (t
′)dt ′

∫ t ′

−∞
e

i(εA
γ A

a
−εA

γ o
a
)τ

Ej′ (τ )dτ.

(8b)

For the case corresponding to the resonantly enhanced
two-photon ionization of Fig. 1(a), this can be recast into two
individual electron wave packets arising from each ionization
pathway and interfering at a common energy εA

pa
and momen-

tum pa. From Eq. (8), it is apparent that the spectral coherence
in the incident photoelectron wave packet, contained in the

coefficients c(w)
pa

, can be controlled, for example, by adjusting
the spectral phases of the ionizing fields Ej (t ) contributing
to the interfering ionization pathways. In turn, it immediately
follows from Eq. (7) that the relative phases associated with
the angular-momentum components carried by each of the
two partial electron wave packets can coherently influence
the population of the states |�B

γ ′
b
〉 in the target. While inelastic

excitation mediated by these angular-momentum components
is dictated by the selection rules arising from the matrix ele-
ments in Eq. (7), coherent control over the inelastic excitation,
on the other hand, will be achieved if at least two inelastic
channels leave the quantum system in the same final (excited)
state. This is ensured by the individual photoelectron wave
packets originating from each photoionization pathway, in-
elastically exciting the same final state |�B

γ ′B
b
〉 with different

phases. Consequently, the relative phases of the 4d (m) states
can be adjusted by coherently tailoring the incident elec-
tron wave packet through interfering multiphoton ionization,
which in turn influences the coherent deexcitation dynamics
and corresponding photocascade emission.

VI. CONCLUSIONS

Motivated by the recent developments in free-electron
wave-packet interferometry and engineering, and the in-
creasingly active research in coherent control of entangled
photon-pair generation, we investigated the control of an-
gular distributions of correlated photon pairs emitted after
electron-atom collisions. In contrast to standard approaches,
we demonstrated the possibility of controlling quantum light
by employing engineered matter waves. Using calcium and
hydrogen as prototypes to control two-photon cascade emis-
sion triggered by electron-atom collisions, we demonstrated
that laser-synthesized free-electron matter waves can be used
to coherently control processes in matter-matter interactions.
The tailored electron wave packet is engineered by exploiting
interfering multiphoton-ionization pathways, and its coher-
ence properties are controlled by adjusting the spectral phase
of the ionizing field. The mutual coherence carried by the
individual electron wave packets arising from each ioniza-
tion pathway are in turn exploited to coherently control
the inelastic excitation dynamics in the target atom. Such
control ultimately dictates the underlying deexcitation dy-
namics in the target and corresponding radiative cascade
emission. Control over the angle-resolved correlated photon-
pair emission demands coherent manipulation of the different
deexcitation pathways yielding the overall electron-target-
atom-photon-field system to the same final quantum state
or, equivalently, manipulation of the quantum interferences
between the different cascade deexcitation pathways con-
tributing to the same photon modes registered in coincidence
detection by the detectors D1 and D2. The angle-resolved
correlated photon-pair emission is then sensitive to the phases
of the inelastically excited states. These are controlled by
adjusting the coherence properties of the laser-synthesized
photoelectron wave packet. The sensitivity in the correlated
angular distribution for the photon modes registered in co-
incidence detection on the ionizing laser field spectral phase
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is a manifestation of quantum interferences in electron-atom
collisions.

Taking advantage of coherently driven electron-electron
interactions to induce, e.g., population transfers may be bene-
ficial when the efficiency to accomplish the same task using
light sources is restricted by electric dipole selection rules.
Our results can be extended to more complex cases, such
as chiral molecules, with the potential to reveal further in-
sights into the interaction of quantum light with chiral matter
waves. We also foresee extending our approach to electron-ion
collisions to investigate the control of correlated photon-pair
emission after capture of the incident coherent electron wave
packet by the target ion.
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APPENDIX A: HAMILTONIAN SYSTEM

1. Isolated hamiltonians

In order to keep the calculations tractable, we consider
two initially isolated, noninteracting atomic systems, labeled
A and B, with Hamiltonians

ĤA =
NA∑
i=1

(
p̂2

i

2m
+ V A

ne(r̂i − R̂A) +
NA∑
i′>i

Vee(r̂i − r̂i′ )

)
,

(A1a)

corresponding to that of the atom from which the photoelec-
tron wave packet is released, and

ĤB =
NB∑
j=1

(
p̂2

j

2m
+ V B

ne(r̂ j − R̂B) +
NB∑

j′> j

Vee(r̂ j − r̂ j′ )

)
(A1b)

for the target atom. They fulfill ĤA|�A
γ A

a
〉 = εA

γa
|�A

γ A
a
〉 and

ĤB|�B
γ B

b
〉 = εB

γ B
b
|�B

γ B
b
〉 with eigenvalues εA

γa
(εB

γb
), where γ A

a

(γ B
b ) collectively denotes a set of quantum numbers that

uniquely defines the states |�A
γ A

a
〉 and |�B

γ B
b
〉. The summations

are over the NA and NB electrons of atoms A and B, respec-
tively. V̂ee is the electron-electron potential-energy operator,
and R̂A (R̂B) is the position operator acting on the nuclear
wave function of A (B).

Recoil is not considered. The origins of the coordinate
systems are R0,A (R0,B), defined by the (fixed) position of
the pointlike nuclear charge distribution assumed to be of the
form ZA δ(R − RA) [ZB δ(R − RB)], with ZA (ZB) as the effec-
tive nuclear charge. The distance |RA − RB| is taken such that
〈�A

γ A
a
|�B

γ B
b
〉 = 0 for all bound states considered. For the nu-

merical calculations, we have set |RB − RA| = RB,z − RA,z =
1200 atomic units. This axis of quantization defines the frame
for the electric-field polarization given in Sec. A 2. We denote
byHA andHB the Hilbert spaces spanned by the eigenvectors
of the Hamiltonians defined in Eqs. (A1a) and (A1b), respec-
tively.

2. Optical preparation and laser-induced ionization

The optical preparation and ionization of atom A is medi-
ated by a classical field E(r, t ) parameterized as

E(r, t ) =
∑
μ0

N∑
n=1

h(n)
μ0
(t − τn) Re

{
e−i�n (t−τn ) eμ0

}
f�A (r),

(A2)

with N frequency components ωn and instantaneous fre-
quencies �n(t ) = ωnt + ϕ̃n, where ϕ̃n = −ωnτn + φn is the
spectral phase, φn the carrier envelope phase (CEP), and
τn the time delay with respect to t = 0. h(n)(t − τn) is a
Gaussian function with adjustable amplitude centered around
τn. Left-circular [e−1 = (ex − iey)/

√
2], right-circular [e+1 =

−(ex + iey)/
√
2], and linear (e0 = ez) polarization states are

described by eμ0 . The photoelectron wave packet resulting
from ionization of A is controlled by means of these field
parameters.

To avoid treating the collision dynamics in the presence
of a dressing background field, the Heaviside function f�A (r)
ensures a constant amplitude for the spatial distribution of E
within the region defined by the extension of the outermost
excited state of atom A. Being zero elsewhere, the target atom
B is not affected by the field.

APPENDIX B: EQUATIONS OF MOTION

1. Perturbation expansion

To illustrate our idea of coherent control at a reduced
computational cost, we treat the ionization of atom A (here,
calcium) and the collision of the resulting photoelectron wave
packet with the target atom B (here, atomic hydrogen) as an
effective two-electron problem. The Hamiltonian

ĤAB(t ) = [ĤA − e r̂ · Ê(r̂, t )] ⊗ 1 + V̂I

+ 1 ⊗
⎧⎨⎩∑

k j ,σ j

h̄ω(ki ) + 1

2m

[
p̂ − e

c
Âs(r̂, t )

]2⎫⎬⎭,

(B1)

with Âs the vector potential describing the photon field, dic-
tates the ionization dynamics of atom A, scattering of the
resulting photoelectron wave packet by atom B, collision-
induced excitation of the latter, and photoemission upon
deexcitation of atom B. The interaction V̂I , mediating elas-
tic scattering from, as well as excitation of, atom B without
change in the distribution of photon modes is defined in
Eq. (3b).

We search for a solution, |
S (t )〉, satisfying

i
∂

∂t
|
S (t )〉 = ĤAB(t )|
S (t )〉. (B2a)

To keep the calculations tractable, we employ a time-
dependent perturbative series expansion for

|
S (t )〉 ≈ ∣∣
 (0)
S (t )

〉+ kmax∑
k=1

∣∣
 (k)
S (t )

〉
. (B2b)
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The zeroth-order term |
 (0)
S (t )〉 describes the isolated atoms

A and B in their respective ground states |�A
γ 0

a
〉 and |�B

γ 0
b
〉 and

the photon field in the vacuum state,

∣∣
 (0)
S (t )

〉 = e
−i
(
εA
γ 0a

+εB
γ 0b

)
t

× [∣∣�A
γ 0

a

〉⊗ ∣∣�B
γ 0

b

〉− ∣∣�B
γ 0

b

〉⊗ ∣∣�A
γ 0

a

〉]⊗ |0〉.
(B2c)

The phase associated to the zero-point energy has been omit-
ted in Eq. (B2c), as the corresponding phase exp[ih̄ω0t/2]
cancels out in both sides of the equations when con-
structing the equations of motion for the expansion co-
efficients. At intermediate times, |
S (t )〉 is written as
a coherent superposition in the antisymmetrized tensor
product space spanned by the eigenvectors of the iso-
lated Hamiltonians and a coherent multimode photon
field,

∣∣
 (k+1)
S (t )

〉 = ∑
γ A

a ,γ B
b

∑
nk1,σ1

∑
nk2,σ2

. . .
∣∣�γ A

a ,γ B
b

〉⊗ ∏
k j ,σ j

∣∣nk j ,σ j

〉

× exp

{
−i

[
εA
γa

+ εB
γb

+
∑
ki,σ i

ω(ki ) nki,σ i

]
t

}

× S(k+1)
γ A

a ,γ B
b

(
nk1,σ1

, nk2,σ2
, nk3,σ3

. . . ; t
)
, (B2d)

where |�γ A
a ,γ B

b
〉 ≡ |�A

γ A
a
〉 ⊗ |�B

γ B
b
〉 − |�B

γ B
b
〉 ⊗ |�A

γ A
a
〉.

2. Observables

The expansion coefficients in Eq. (B2d) are used to eval-
uate the angle-resolved correlated probability of photon-pair

emission according to

d2σn f

d (hν1) d�k̂1

=
∫

d3pA
a

∣∣∣∣∣
kmax∑
k=0

S(k)
pA

a ,γ B
b0
(n f ; t → ∞)

∣∣∣∣∣
2

, (B3)

where the incoherent summation (integration) is performed
over the momenta of the scattered photoelectron. Ionization of
atom B by electron impact is not considered. Thus, at t → ∞,
atom B returns to its ground state defined by the quantum
numbers γ B

b0 . At intermediate times, the photon field may be
excited following complex emission and absorption dynam-
ics. The photon-field configuration n f in Eq. (B3) specifies
the distribution of the photon modes of interest at t → ∞.

The photon-field configuration corresponding to the ra-
diative two-photon cascade emission depicted in Figs. 1(c)
and 2(b) corresponds to the distribution of modes defined by
n f = [0, 0, . . . , 1m1 , . . . , 0, . . . , 1m2 , 0, . . . ]

T, where m2 de-
notes the mode of photon (2). It is defined by the photon
energy hν2 = 12.078 eV, polarization component along σ2a

in Fig. 2(b), and direction of photodetection defined by the
(fixed) angles θk2 = π/2 and φk2 = −π/2 in Fig. 2(b). For
additional details, see Sec. C 1 b below. On the other hand,
m1 denotes the photon mode defined by hν1 = 0.661 eV, and
polarization component along σ1b(θk1 ) in Fig. 2(b), as the
photon in mode (1) is detected as a function of the angle θk1 ;
cf. Sec. C 1 b.

3. Propagation of the time-dependent coefficients

To alleviate the notation, we introduce the occupa-
tion number representation n = [n1, n2, . . . np . . . ] describing
np photons in mode p. Analogously, we define n ± 1p =
[n1, n2, . . . np ± 1 . . . ] and n ± 2p = [n1, n2, . . . np ± 2 . . . ]
and |n〉 = |n1, n2, . . . , np, . . . 〉. The indices run over all pho-
ton modes, hereafter referred to as �γ .

The time-dependent expansion coefficients in Eq. (B2d)
are obtained by projecting Eq. (B2a) onto |�A

γ ′A
a
�B

γ ′B
b
; n′〉 and

iteratively solving the recursive equation

S(k+1)
γ ′A

a ,γ ′B
b
(n′; t ) =

∫ t

−∞

〈
�A

γ ′A
a
�B

γ ′B
b
; n′∣∣
̃ (k)(t ′)

〉
dt ′ +

∑
γ A

a ,γ B
b

[
S(k)

γ A
a ,γ B

b
(n′; t ) e

i(εA
γ ′

a
+εB

γ ′
b
−εA

γa −εB
γb
)t ]t

t0

〈
�A

γ ′A
a

∣∣�B
γ B

b

〉〈
�B

γ ′B
b

∣∣�A
γ A

a

〉
, (B4a)

with t0 → −∞. The integrand in Eq. (B4a) reads〈
�A

γ ′A
a
�B

γ ′B
b
; n′∣∣
̃ (k)(t ′)

〉 = ∏
s∈�γ

ei(εA
γ ′a+εB

γ ′b+h̄n′
sωs )t ′ 〈

�A
γ ′A

a
�B

γ ′B
b
; n′∣∣ĤI (t

′)
∣∣
 (k)

S (t ′)
〉
. (B4b)

Here we have defined, upon expansion of the quadratic term in Eq. (B1),

ĤI (t ) = [− e r̂ · Ê(r̂, t ) + V B
ne(r̂ − RB)

]⊗ 1 + V̂ee(r̂, r̂
′) + 1 ⊗

[
− e

mc
Âs(r̂) · p̂ + e2

2mc
Âs(r̂) · Âs(r̂)

]
, (B4c)

with V B
ne(r̂ − RB) ⊗ 1 the potential-energy interaction between the incident electron and the nuclear charge distribution of atom

B, and V̂ee(r̂, r̂
′) the potential-energy interaction between the incident and the target electron. The second term in Eq. (B4a),

proportional to 〈�A
γ ′A

a
|�B

γ B
b
〉〈�B

γ ′B
b
|�A

γ A
a
〉, arises from the antisymmetrization of the two-electron state vector in Eq. (B2d) and may

not vanish due to the overlap between the scattering states of A and the bound states of B.
After using Eqs. (B4a), (B4b), and (B1), and carrying out some straightforward algebra, the expression for the expansion

coefficients can be recast into the form

S(k+1)
γ ′A

a ,γ ′B
b
(n′; t ) = C(k+1)

[E ]

(
γ ′A

a , γ ′B
b ,n′; t

)+ C(k+1)
[VB]

(
γ ′A

a , γ ′B
b ,n′; t

)+ C(k+1)
[VAB]

(
γ ′A

a , γ ′B
b ,n′; t

)
+C(k+1)

[hν]

(
γ ′A

a , γ ′B
b ,n′; t

)+ C(k+1)
[X ]

(
γ ′A

a , γ ′B
b ,n′; t

)
. (B4d)
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4. Coherent electron-impact dynamics

Defining γ ′ ≡ (γ ′A
a , γ ′B

b ), the first term in Eq. (B4d),

C(k+1)
[E ] (γ ′,n′; t ) = ie

∑
μ0,γ A

a

〈
�A

γ ′A
a

∣∣r̂μ0 f�A (r̂)
∣∣�A

γa

〉
×
∫ t

−∞
S(k)

γ A
a ,γ ′B

b
(n′; t ′)ei(εA

γ ′
a
−εA

γa )t
′
Eμ0 (t

′)dt ′,

(B5)

accounts for the correction to the expansion coefficients due
to the classical field defined in Eq. (A2). The second term,

C(k+1)
[VB]

(γ ′,n′; t ) = −i
∑
γ A

a

〈
�A

γ ′A
a

∣∣V̂ne(r̂ − RB)
∣∣�A

γa

〉
×
∫ t

−∞
S(k)

γ A
a ,γ ′B

b
(n′; t ′)ei(εA

γ ′
a
−εA

γa )t
′
dt ′, (B6)

accounts for the correction to the scattering component γ ′A
a

of the expansion coefficients due to the potential-energy in-
teraction between the incident electron and the nuclear charge
density at r0,B, while leaving the component γ ′B

b and the pho-
ton field unchanged. Next,

C(k+1)
[VAB]

(γ ′,n′; t ) = −i
∑
γ A

a ,γ B
b

〈
�A

γ ′A
a
�B

γ ′B
b

∣∣V̂ee(r̂, r̂
′)
∣∣�A

γa
�B

γb

〉
×
∫ t

−∞
S(k)

γ A
a ,γ B

b
(n′; t ′) eiϕ(γ ′,γ A

a ,γ B
b )t ′

dt ′, (B7)

where ϕ(γ ′, γ A
a , γ B

b ) ≡ εA
γ ′

a
+ εB

γ ′
b
− εA

γa
− εB

γb
, accounts for the

interaction between the incident electron and the electron

initially in atom B. More precisely, Eq. (B7) accounts for the
elastic and inelastic excitation of atom B triggered by the inci-
dent wave packet. It describes, to lowest order, the scattering
of an initial continuum-state component along |�A

γ A
a
〉 to |�A

γ ′A
a
〉,

leading to excitation of atom B from |�B
γ B

b
〉 to |�B

γ ′B
a
〉 without

change in the distribution of photon modes.

5. Single photons and sequentially or simultaneously emitted
(absorbed) photon pairs

a. One-photon exchange

Deexcitation of atom B following the excitation triggers
the dynamics of photon emission (absorption) dictated by the
fourth term in Eq. (B4d). The latter can be split according to
the net number of exchanged photons as

C(k+1)
[hν]

(
γ ′A

a , γ ′B
b ,n′; t

) = −i κ1ph C(k+1)
[1ph] (γ

′,n′; t )

− iκ2ph C(k+1)
[2ph] (γ

′,n′; t ), (B8)

with κ1ph = −e/mc and κ2ph = e2/2mc. The first (second)
term in Eq. (B8) describes the exchange of one (two) pho-
tons. The first term arises from the contribution ∝ Âs(r̂) · p̂ in
Eq. (B4c). It can be written as

C(k+1)
[1ph] (γ

′,n′; t ) = W (k+1)
[abs] (γ ′,n′; t ) + W (k+1)

[em] (γ ′,n′; t ).

(B9)

The two parts in Eq. (B9) dictate the absorption and emission
of one net photon according to

W (k+1)
[abs] (γ ′,n′; t ) =

∑
γ B

b

∑
q∈�γ

Aq

√
n′

q + 1
〈
�B

γ ′B
b

∣∣eikq·r̂ p̂
∣∣�B

γ B
b

〉 · εq

∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ + 1q; t

′) e
i(εB

γ ′
b
−εB

γb
−h̄ωq )t ′

dt ′, (B10a)

W (k+1)
[em] (γ ′,n′; t ) =

∑
γ B

b

∑
q∈�γ

Aq

√
n′

q

〈
�B

γ ′B
b

∣∣e−ikq·r̂ p̂
∣∣�B

γ B
b

〉 · εq

∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ − 1q; t

′) e
i(εB

γ ′
b
−εB

γb
+h̄ωq )t ′

dt ′. (B10b)

Here we used the convention of Sec. B 3 and defined
Aq = √h̄/2ωqε0V0. The photon mode labeled as q is defined
by the momentum h̄kq and polarization εq of the emitted
(absorbed) photon. Emission (absorption) of a photon in mode
q yields deexcitation (excitation) of atom B from |�B

γ B
b
〉 to

|�B
γ ′B

b
〉. For photon pairs sequentially emitted in a radiative

photon-cascade process, the largest contributing term is given
by Eq. (B10b), although the dynamics of photoemission may
also be affected by additional terms describing absorption and
emission involving two-photon exchange processes.

b. Two-photon exchange

The coefficient C(k+1)
[2ph] (γ

′,n′; t ) in Eq. (B8) arises from the

term proportional to Âs(r̂) · Âs(r̂) in Eq. (B4c). It describes
real and virtual two-photon emission (absorption) in the same
or different modes with effective two or zero net photon-
exchange processes between atom B and the photon field.
Compared to its counterpart proportional to κ1ph in Eq. (B8),

this term is ∝ e2. Consequently, it provides a weaker contri-
bution to one-step cascade processes. However, it must be
taken into account for radiative processes involving two or
more optical cascades, as the multiplying factors appearing
in powers of e for both terms may become commensurate. We
define this term according to whether or not the exchanged
photons are in the same or different modes, namely,

C(k+1)
[2ph] (γ

′,n′; t ) = P(k+1)(γ ′,n′; t ) + Q(k+1)(γ ′,n′; t ).
(B11)

The first (second) term in Eq. (B11) describes the exchange of
two photons in the same (or different) mode(s). The first term
in Eq. (B11) may be decomposed as

P(k+1)(γ ′,n′; t ) = P(k+1)
[em,em](γ

′,n′; t ) + P(k+1)
[abs,abs](γ

′,n′; t )

+ P(k+1)
[em,abs](γ

′,n′; t ), (B12)
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where we have defined (using |�B
γ B

b
〉 ≡ |�B

γb
〉)

P(k+1)
[abs,abs](γ

′,n′; t ) =
∑
γ B

b

∑
q∈�γ

Aq Aq
〈
�B

γ ′
b

∣∣e2ikq·r̂∣∣�B
γb

〉√
nq + 1

√
nq + 2

∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ + 2q; t

′) e
i(εB

γ ′
b
−εB

γb
−2h̄ωq )t ′

dt ′, (B13a)

P(k+1)
[em,em](γ

′,n′; t ) =
∑
γ B

b

∑
q∈�γ

Aq Aq
〈
�B

γ ′
b

∣∣e−2ikq·r̂∣∣�B
γb

〉 √
n′

q − 1
√

n′
q

∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ − 2q; t

′) e
i(εB

γ ′
b
−εB

γb
+2h̄ωq )t ′

dt ′, (B13b)

P(k+1)
[em,abs](γ

′,n′; t ) =
∑
q∈�γ

Aq Aq (2n′
q + 1)

∫ t

−∞
S(k)

γ ′A
a ,γ ′B

b
(n′; t ′)dt ′. (B13c)

Equation (B13a) describes the absorption of two photons in the same mode q and subsequent excitation of atom B from |�B
γ B

b
〉

to |�B
γ ′B

b
〉, leaving the scattered photoelectron unaffected if two photons in the same mode q are present in the field at the previous

iteration step (k), and if the state |�B
γ B

b
〉 is populated. The distribution of modes then goes from n′ + 2q to n′

q photons in mode q,

i.e., compare the terms S(k)
γ ′A

a ,γ B
b
(n′ + 2q; t ′) (uncorrected) and P(k+1)

[em,em](γ
′,n′; t ) (corrected).

Next, Eq. (B13b) accounts for the emission of two photons in the same mode q. For kqr � 1, the description of excitation
(deexcitation) induced by simultaneous two-photon absorption (emission) requires both terms to be treated beyond the dipole
approximation. Note that the emission and absorption of photons may occur without excitation (deexcitation), even in the dipole
approximation. Simultaneous emission of a photon in mode q and absorption of a photon in the same mode with no electron
dynamics involved is described by Eq. (B13c).

Finally, the second term in Eq. (B11), describing the simultaneous exchange of two photons in different modes, reads

Q(k+1)(γ ′,n′; t ) = Q(k+1)
[abs,abs](γ

′,n′; t ) + Q(k+1)
[em,em](γ

′,n′; t ) + Q(k+1)
[em,abs](γ

′,n′; t ), (B14)

where, in analogy with Eq. (B13), we have defined

Q(k+1)
[abs,abs](γ

′,n′; t ) =
∑
γ B

b

∑
p, q ∈ �

p �= q

Ap
q (n

′
p + 1, n′

q + 1)
〈
�B

γ ′
b

∣∣ei(kp+kq )·r̂∣∣�B
γb

〉 ∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ + 1p + 1q; t

′)e
i[εB

γ ′
b
−εB

γb
−h̄(ωp+ωq )]t ′

dt ′,

(B15a)

Q(k+1)
[em,em](γ

′,n′; t ) =
∑
γ B

b

∑
p, q ∈ �

p �= q

Ap
q (n

′
p, n′

q )
〈
�B

γ ′
b

∣∣e−i(kp+kq )·r̂∣∣�B
γb

〉 ∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ + 1p + 1q; t

′) e
i[εB

γ ′
b
−εB

γb
+h̄(ωp+ωq )]t ′

dt ′,

(B15b)

Q(k+1)
[abs,em](γ

′,n′; t ) =
∑
γ B

b

∑
p, q ∈ �

p �= q

Ap
q (n

′
p + 1, n′

q )
〈
�B

γ ′
b

∣∣ei(kp−kq )·r̂∣∣�B
γb

〉 ∫ t

−∞
S(k)

γ ′A
a ,γ B

b
(n′ + 1p + 1q; t

′) e
i[εB

γ ′
b
−εB

γb
+h̄(ωq−ωp)]t ′

dt ′,

(B15c)

with Ap
q (n′

p, n′
q ) = Ap Aq

√
n′

p

√
n′

q (ep · eq). Equation (B15a) accounts for the simultaneous absorption of two photons in
different modes, while Eq. (B15b) describes the simultaneous emission of two photons in different modes. Finally, Eq. (B15c)
accounts for the exchange of photon pairs without a net change in the photon number: it describes the simultaneous absorption
and emission of one photon in different modes. The matrix elements and angular distributions involving simultaneously emitted
(absorbed) photon pairs are evaluated following the prescription given in Sec. C 2 b.

For the photon wavelengths considered in this work, the contribution due to the term Âs(r̂) · Âs(r̂) driving simultaneous
photon-pair emission via optical deexcitation is expected to be less important compared to the case of sequential photon-pair
emission mediated by the term Âs(r̂) · p̂, since the matrix elements corresponding to the former would vanish in the dipole
approximation. It is worth mentioning that Eq. (B10b) or, more specifically, a two-step sequential application of Eq. (B10b)
provides the leading contribution to the emission of photon pairs with energies hν1 and hν2: the correlated photon pair originates
from sequential emission from the target atom B, following the deexcitation pathways depicted in Fig. 1(c).
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6. Exchange term C(k+1)
[X ] (γ ′A

a , γ ′B
b ,n′; t )

Finally, proper antisymmetrization of the two-electron wave function is ensured by the last term in Eq. (B4d):
C(k+1)
[X ] (γ ′A

a , γ ′B
b ,n′; t ). The latter updates the expansion coefficients to ensure the required exchange symmetry via the iterative

correction,

C(k+1)
[X ]

(
γ ′A

a , γ ′B
b ,n′; t

) = i
∑
γ A

a ,γ B
b

〈
�A

γ ′A
a

∣∣V̂ne(r̂ − RB)
∣∣�B

γ B
b

〉〈
�B

γ ′B
b

∣∣�A
γ A

a

〉 ∫ t

−∞
S(k)

γ A
a ,γ B

b
(n′; t ′)e

i(εA
γ ′

a
+εB

γ ′
b
−εA

γa −εB
γb
)t ′

dt ′

+ i
∑
γ A

a ,γ B
b

〈
�A

γ ′A
a
�A

γ ′B
b

∣∣V̂ee(r̂, r̂
′)
∣∣�B

γ B
b
�A

γ A
a

〉 ∫ t

−∞
S(k)

γ A
a ,γ B

b
(n′; t ′)e

i(εA
γ ′

a
+εB

γ ′
b
−εA

γa −εB
γb
)t ′

dt ′

−
∑
γ A

a

C(k+1)
[hν]

(
γ A

a , γ ′B
b ,n′; t

) +
∑
γ A

a ,γ B
b

Oγ ′A
a ,γ ′B

b

γ A
a ,γ B

b

[
S(k)

γ A
a ,γ B

b
(n′; t ′) e

(εA
γ ′

a
+εB

γ ′
b
−εA

γa −εB
γb
)t ′]t

−∞, (B16a)

where the overlap matrix, already appearing in Eq. (B4a), reads

Oγ ′A
a ,γ ′B

b

γ A
a ,γ B

b
= 〈�A

γ ′A
a

∣∣�B
γ B

b

〉〈
�B

γ ′B
b

∣∣�A
γ A

a

〉
. (B16b)

The double underline in the third term in Eq. (B16a) indicates that the expressions (εB
γ ′

b
− εB

γb
) as well as all transition matrix

elements of the form 〈�B
γ ′B

b
|T |�B

γ B
b
〉 appearing though Eqs. (B10a)–(B15c) must be replaced with (εA

γ ′
a
+ εB

γ ′
b
− εA

γa
+ εB

γb
) and

〈�B
γ ′B

b
|T |�A

γ A
a
〉〈�A

γ ′A
a
|�A

γ B
b
〉, respectively. Note that the classical field does not contribute to the exchange term because of f�A (r)

and the localized character of HB, i.e., the expansion coefficients vanish for the continuum states of atom B: ionization of atom
B by electron impact is not considered. The maximum number of sequential radiative cascade steps describing the deexcitation
pathways from an excited state to the ground state is determined by the maximum order in the perturbation expansion, kmax. The
reported results were obtained by iterating the expansion coefficients up to kmax = 6, corresponding to the lowest order needed
to describe the process of radiative two-photon cascade emission while considering the feedback effects of the emitted photons
on the scattered electron wave packet.

APPENDIX C: POLARIZATION STATES AND
PROPAGATION DIRECTION OF EMITTED (ABSORBED)

PHOTONS

1. Transversality condition and polarization components

a. General scheme

Throughout the text, we used the shorthand notation

σ j ≡ (σ ja, σ jb), (C1)

when referring to the indices of the two mutually orthogonal
polarization components ε̂σ ja and ε̂σ jb satisfying the transver-
sality conditions

ε̂σ j · k j = 0. (C2)

Within this convention, summation over the indices σ j , e.g.,
in Eq. (B2d), implies summation over their components in
Eq. (C1) for each momentum h̄k j . To construct εσ j or, equiv-
alently, εσ ja and εσ jb satisfying Eq. (C2), we write k j in polar
coordinates,

k j =
√
4π

3

(ω j

c

) ∑
q=0,±1

Y1
q

(
θk j

, φk j

)
ê∗

q, (C3)

with Y 1
q (θk j , φk j ) as the spherical harmonic for the prop-

agation direction of the mode (k j, σ j ) and êq denoting
the covariant spherical unit vectors e−1 = (ex − iey)/

√
2,

e+1 = −(ex + iey)/
√
2, and e0 = ez. We then construct the

orthogonal triad of unit vectors (k j/|k j |, εσ jq , εσ jq ) as

ε̂σ ja = k j × ê0
|k j × ê0| = 1√

2

[
i cos(θk j ) − sin(φk j )

]
e+1

+ 1√
2

[
i cos(θk j ) + sin(φk j )

]
e−1, (C4)

for the first polarization component, and

ε̂σ jb = k j × ε̂σ ja

|k j × ε̂σ ja |

= − 1√
2

[
i sin(φk j ) cos(θk j ) + cos(φk j ) cos(θk j )

]
e+1

− 1√
2

[
i sin(φk j ) cos(θk j ) − cos(φk j ) cos(θk j )

]
e−1

− sin
(
θk j

)
e0, (C5)

for the second polarization component, with (×) denoting
the vector cross product. They both fulfill the transversality
condition ε̂σ j · k j = 0.

In Cartesian coordinates, [êx, êy, êy], εσ ja and εσ jb are

ε̂σ ja ≡
⎡⎣ sin(φk j )

− cos(φk j )
0

⎤⎦; ε̂σ jb ≡
⎡⎣ cos(φk j ) cos(θk j )

− sin(φk j ) cos(θk j )
− sin(θk j )

⎤⎦. (C6)

b. Application to the correlated photodetection scheme

Following the photodetection scheme of Fig. 2(b), a photon
in mode (2) is detected at the fixed angles θk2 = π/2 and φk2 =
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−π/2. This gives, according to Eq. (C6), εσ2a = [−1, 0, 0]
and εσ2b = [0, 0,−1]. The first detector D2 measures the pho-
ton with energy hν2 with polarization component along εσ2b ,
i.e., along ẑ.

A second detector D1 detects the photon with energy hν1
at fixed φk1 = π/2, but it is free to move and hence scan along
θk1 . According to Eq. (C6), this corresponds to εσ1a = [1, 0, 0]
and εσ1b = [0,− cos(θk1 ),− sin(θk1 )]. The detector D1 mea-
sures the correlated photon pair with energy hν1 with the
polarization component along εσ1b as it scans along θk1 .

2. Angular distributions and transition matrix elements

a. Angular distributions of single photons and sequentially
emitted (absorbed) photon pairs

The directions of propagation of the emitted (absorbed)
photons are evaluated by means of a multipole expansion of
the exponential terms, exp(ikr), which appear in the matrix
elements of the expansion coefficients defined throughout

Sec. B 5. Specifically,

e±ik j ·r = 4π
∑
λ,μ

(±i)λ jλ(k jr)Y
λ
μ (θr, φr )Y λ∗

μ

(
θk j , φk j

)
, (C7)

where jλ(k jr) denotes a spherical Bessel function. For the
photon energies considered in this work, the wavelengths
defining the modes emitted and absorbed during the prop-
agation of the expansion coefficients are several orders of
magnitude larger than the extension of the most diffuse bound
state of the target atom B. The Bessel functions can therefore
be approximated by

jλ(k jr) ≈ (k jr)
λ/(2λ + 1)!!, (C8)

since k jr � 1. This allows us to obtain the transition matrix
elements as a power series in rλ. Following this prescription,
the matrix elements defined in Eqs. (B10a) and (B10b) are
given by

〈
�B

γ ′B
b

∣∣e±k j ·r̂p̂μ0

∣∣�B
γ B

b

〉 = ∑
λ,μ

〈
�B

γ ′B
b

∣∣D[λ,±]
μ,μ0

(k j )
∣∣�B

γ B
b

〉
Yλ∗

μ

(
�k j

)
, (C9a)

with �k j ≡ (θk j , φk j ). The multipole coefficients are obtained by standard angular-momentum techniques as〈
�B

γ ′B
b

∣∣D[λ,±]
μ,μ0

(k j )
∣∣�B

γ B
b

〉
= C

(±i)λ (k j )λ

(2λ + 1)!!
(−1)l

′+m′
l ′+λ∑

q=|l ′−λ|

[
(2l ′ + 1)(2λ + 1)

1/(2q + 1)

] 1
2
(

l ′ λ q
−m′ μ m + μ0

)(
l ′ λ q
0 0 0

)
δm′−μ,m+μ0

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ +∞
0 rλ+2 fn′,l ′ (r)

(
∂
∂r − l

r

)
fn,l (r)dr

[(
l+1
2l+3

) 1
2 (−1)l−1+m+μ0

(
l 1 l + 1
m μ0 −m − μ0

)]
δq,l+1

− ∫ +∞
0 rλ+2 fn′,l ′ (r)

(
∂
∂r + l

r

)
fn,l (r)dr

[(
l

2l−1

) 1
2 (−1)l−1+m+μ0

(
l 1 l − 1
m μ0 m + μ0

)]
δq,l−1

, (C9b)

with C = −ih̄
√
36π . Furthermore, (n′, l ′, m′) and (n, l, m) denote the quantum numbers corresponding to γ ′B

b and γ B
b , while

fn′,l ′ (r) and fn,l (r) are the radial components of the orbital wave functions 〈r|�B
γ ′B

b
〉 and 〈r|�B

γ B
b
〉, respectively.

b. Angular distributions of simultaneously emitted (absorbed) photon pairs

Analogously, the matrix elements describing simultaneous two-photon exchange, i.e., emission (s = −1) or absorption
(s = +1) of a photon in mode qs with momentum h̄ks and emission (s′ = −1) or absorption (s′ = +1) of another photon in mode
qs′ with momentum h̄ks′ , such as those appearing in Eqs. (B15), are obtained according to the multipole expansion involving the
product of two spherical harmonics. Specifically,〈

�B
γ ′B

b

∣∣ei(sks+s′ks′ )·r̂∣∣�B
γ B

b

〉 = ∑
λs′ , μs′
λs, μs

〈
�B

γ ′B
b

∣∣O[λs,λs′ ]
μs,μs′

(vs′
s )
∣∣�B

γ B
b

〉
Yλs∗

μs

(
�ks

)
Yλs′ ∗

μs′

(
�ks′
)
, (C10a)

where we have defined vs′
s ≡ [ks, s, k′

s, s′]. The coefficients are again obtained after straightforward angular-momentum algebra.
The result is〈

�B
γ ′B

b

∣∣O[λs,λs′ ]
μs,μs′

(vs′
s )
∣∣�B

γ B
b

〉 = (4π )2
(is)λs (is′)λs′

(2λs + 1)!!

(ksks′ )λs+λs′

(2λs′ + 1)!!
(−1)l

′+m′−μs−μs′
∫ +∞

0
fn′,l ′ (r) rλs+λs′ +2 fn,l (r) dr

×
λs+λs′∑

�=|λs−λs′ |
(−1)�

(
λs λs′ �

μs μs′ −μs − μs′

)(
λs λs′ �

0 0 0

)(
l ′ � l

−m′ μs + μs′ m

)(
l ′ � l
0 0 0

)

×
[
(2λs + 1)(2λs′ + 1)

4π/(2� + 1)

] 1
2

δm′−m,μs+μs′ . (C10b)
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