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Abstract

While the cost of sequencing genomes has decreased dramatically in recent

years, this expense often remains non-trivial. Under a fixed budget, then, scientists

face a natural trade-off between quantity and quality: spending resources to se-

quence a greater number of genomes (quantity) or spending resources to sequence

genomes with increased accuracy (quality). Our goal is to find the optimal allo-

cation of resources between quantity and quality. Optimizing resource allocation

promises to reveal as many new variations in the genome as possible. In this pa-

per, we introduce a Bayesian nonparametric methodology to predict the number of

new variants in a follow-up study based on a pilot study. We validate our method

on cancer and human genomics data. When experimental conditions are kept con-

stant between the pilot and follow-up, we find that our prediction is competitive

with the best existing methods. Unlike current methods, though, our new method

allows practitioners to change experimental conditions between the pilot and the

follow-up. We demonstrate how this distinction allows our method to be used for

more realistic predictions and for optimal allocation of a fixed budget between

quality and quantity.

1 Introduction

New genomics data promise to reveal more of the diversity, or variation, among organ-

isms, and thereby new scientific insights. However, the process of collecting genetic

data requires resources, and optimal allocation of these resources is typically a chal-

lenging task. Under a fixed budget constraint, there is often a natural trade-off between

quality and quantity in genetic experiments. Sequencing genomes at a higher qual-

ity reveals more details about individual organisms’ genomes but incurs a higher cost.

Similarly, sequencing a greater number of genomes reveals more about variation across

the population but also costs more to accomplish. It is then critical to understand how to
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optimally allocate a fixed budget between quality and quantity in genetic experiments,

in the service of learning as much as possible from the experiment.

To maximize the amount learned from a genetic experiment, we first need to quan-

tify a notion of “amount learned”. Scientists use a reference genome for a species of

interest in an experiment; a (genetic) variant is any difference in an observed genome

relative to the reference genome. Variants facilitate understanding of evolution [Con-

sortium, 2015, Mathieson and Reich, 2017], diversity of organisms [Consortium, 2015,

Sirugo et al., 2019], oncology [Chakraborty et al., 2019], and disease [Cirulli and Gold-

stein, 2010, Zuk et al., 2014, Bomba et al., 2017]. Thus, the number of observed vari-

ants is a concrete metric of “amount learned” from a genetic experiment. For optimal

budget allocation, then, we first predict the number of new variants in the follow-up

study under different allocations of budget with respect to quality and quantity; next

we choose the experimental setting that maximizes the number of new variants.

Optimal budget allocation supports scientists who face resource constraints. In

research on non-human and non-model organisms, small sequencing studies are often

conducted under limited budgets [da Fonseca et al., 2016]. The development of reliable

and inexpensive sequencing pipelines is thus an active research area [Peterson et al.,

2012, Souza et al., 2017, Aguirre et al., 2019]. Accurate prediction of the number

of new variants can also be important for understanding the site of origin of cancers

as well as the clonal origin of metastasis [Chakraborty et al., 2019]. And in precision

medicine, accurate estimation of the number of new rare variants can aid effective study

design and evaluation of the potential and limitations of genomic datasets [Momozawa

and Mizukami, 2020, Zou et al., 2016]. We detail further potential applications in

microbiome research, single-cell sequencing, and wildlife monitoring in Section 7.

There exists a rich statistical literature on prediction in a follow-up study, relative to

a pilot study, when conditions do not change between the pilot and follow-up. We may

think of each organism as belonging to multiple groups, where each group is defined by

a variant, and the goal is to discover the number of new groups in a follow-up study. A

simpler special case of this formulation occurs when each organism belongs to a single

group, which is referred to as a species [Good and Toulmin, 1956, Efron and Thisted,

1976, Lijoi et al., 2007, Orlitsky et al., 2016]. In general, as in the context of genetic

variation, organisms belong to multiple groups that we refer to as features. Researchers

have developed a wide range of approaches for predicting the number of new features,

often interpreted as amount of new genetic variation, in a follow-up study. These ap-

proaches include Bayesian methods [Ionita-Laza et al., 2009], jackknife-based estima-

tors [Gravel, 2014], linear programming methods [Gravel, 2014, Zou et al., 2016], and

variations on the classical Good-Toulmin estimator [Orlitsky et al., 2016, Chakraborty

et al., 2019]. To the best of our knowledge, though, no existing work provides predic-

tions when the experimental conditions may change between the pilot and follow-up

study. And thus no existing work can be used directly for optimal allocation of a fixed

budget in experimental design.

Moreover, while there is existing work in other forms of optimal experimental de-

sign, it does not fit our goals here. In pioneering work, Ionita-Laza and Laird [2010]

propose how to allocate a fixed budget in a pilot study, before any data is observed.

While their method treats every dataset the same, our method allows the different vari-

ation patterns in different datasets to inform the best follow-up design. Separately,
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researchers have considered how to best choose samples among a number of subpop-

ulations [e.g. Dumitrascu et al., 2018, Camerlenghi et al., 2020]. In this case, the

trade-off is between uncertainty and reward, as in classic multi-armed bandit settings,

rather than between quality and quantity.

In the present work, we propose a Bayesian nonparametric methodology to pre-

dict the number of new variants to be discovered in a follow-up study given observed

data from a pilot study. Critically, our approach works when the experimental con-

ditions change between the pilot and follow-up. We then demonstrate how to apply

the proposed methodology for optimal budget allocation in the design of a follow-up

study given data available from a pilot study. Here, for prediction, we build on a classic

Bayesian nonparametric framework for feature allocations known as the beta-Bernoulli

process [Hjort, 1990, Kim, 1999, Thibaux and Jordan, 2007, Teh and Gorur, 2009,

Broderick et al., 2012]. The posterior distributions of all our predicted quantities, such

as the number of new variants to be discovered, are available in closed-form expres-

sions. Our corresponding Bayesian estimators are simple, computationally efficient,

and scalable to massive datasets. In addition, our Bayesian nonparametric framework

captures realistic power-law behaviors in genetic data. We will see that, when the pilot

and follow-up studies are constrained to have the same experimental setup as in pre-

vious work, our predictions are competitive with the state-of-the-art and superior to a

number of recent proposals. Most importantly, though, we demonstrate that our predic-

tions maintain their accuracy when experimental conditions change between the pilot

and follow-up. Finally, we give an empirical demonstration of how our predictions can

be used for designing the follow-up study with an optimal allocation of a fixed budget

between quality and quantity. We validate the proposed methodology on synthetic and

real data, with a focus on human genomics. Specifically, we consider the TCGA and

MSK-impact datasets [Cheng et al., 2015], as well as the recent gnomAD dataset of

Karczewski et al. [2020].

2 Data and modeling assumptions

Modern high-throughput sequencing technologies allow accurate determination of an

organism’s genome [Reuter et al., 2015]. A reference genome serves as a fixed repre-

sentative, and variants relative to the reference genome can take many forms, includ-

ing deletions, inversions, translocations, and insertions; see Taylor and Taylor [2004]

and references therein. In the present work, we do not distinguish between different

forms of variants, though in Section 7 we briefly discuss how our framework could be

extended to make this distinction. To establish notation and start building up to our

Bayesian nonparametric model, we first assume that the process of observing variants

is flawless; we develop a more realistic model for observations in Section 3.2.

Suppose there are J variants observed among the N pilot genomes, 0 ≤ J <
+∞, with ψj the label of the j-th variant in order of appearance. Let xn,j equal

1 if the variant with label ψj is observed for the n-th organism; otherwise, let xn,j
equal 0. We collect data for the n-th organism in Xn :=

∑J
j=1 xn,jδψj

, which pairs

each variant observation with the corresponding variant label by putting a mass of

size xn,j at location ψj . We use the notation XN1:N2
, where N1 ≤ N2, to denote
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(XN1 , XN1+1, XN1+2, . . . , XN2). Given the observableX1:N , we consider a Bayesian

approach to predict the number of variants in the follow-up study. Specifically, letting

Θ be an appropriate latent parameter, we specify a generative model via a likelihood

function pr(X1:N |Θ) and a prior distribution pr(Θ). Technically there is a fixed, and

finite, upper bound on the number of possible variants established by the size of any

individual genome. But this bound is usually much larger, often by orders of mag-

nitude, than the number of observed variants. Moreover, in practice, we expect that

no study of any practical finite size N will reveal all possible variants, simply be-

cause some variants are so exceedingly rare. Bayesian nonparametric methods allow

us to avoid hard-coding an unwieldy, large finite bound that may cause computational

and modeling headaches. In particular, they allow the observed number of variants to

be finite for any finite dataset and grow without bound, in such a way that computa-

tion typically scales closely with the actual number of variants observed. Formally,

we imagine a countable infinity of latent variants, labelled as {ψj}j≥1, and we write

Xn :=
∑

j≥1 xn,jδψj
; since xn,j = 0 for all unobserved variants, this equation re-

duces to the previous definition of Xn above.

Following existing methods for estimating new-variant cardinality [Ionita-Laza et al.,

2009, Gravel, 2014, Zou et al., 2016, Orlitsky et al., 2016, Chakraborty et al., 2019],

we assume that every variant appears independently of every other variant; that is, xn,j
is independent of xn,k across all n for j 6= k. In reality, nearby positions on a genome

can be highly correlated; this phenomenon is called linkage disequilibrium. However,

our assumption has two principal advantages: (i) it makes our computations much eas-

ier; (ii) it is supported by our state-of-the-art empirical results in Section 6. We also

make the milder assumption that organisms are (infinitely) exchangeable; roughly, we

assume that the order in which we observe the sample organisms is immaterial for

any sample size N . Since, for the moment, we assume variant observation is flaw-

less, this assumption presently translates into an exchangeability assumption on the

observed data. More precisely, let [N ] := {1, . . . , N}, and let σN represent a permu-

tation of [N ]. Then, for the variant with label ψj , for any N and any σN , we assume

pr(x1,j , . . . , xN,j) = pr(xσN (1),j , . . . , xσN (N),j). Indeed, if we expected systematic

variation among organisms in our population between earlier and later samples, we

would find it difficult to predict future data from past data without knowing more about

the nature of the variation.

Exchangeability of {xn,j}n≥1 implies the existence of a random variable θj , i.e.

the variant’s proportion, such that the xn,j are Bernoulli draws with parameter θj , in-

dependently and identically distributed across n [de Finetti, 1931]. We pair each θj
with its variant’s label ψj in a random measure Θ :=

∑

j≥1 θjδψj
, and we assume

the Xn’s are conditionally independent and identically distributed given Θ. In addi-

tion, we make the following modeling assumptions: (i) the conditional distribution of

Xn given Θ is the distribution of a Bernoulli process (BeP) with parameter Θ, and

we write Xn |Θ iid∼ BeP(Θ); (ii) the prior distribution on Θ is the law of the three-

parameter beta process (3BP) [Teh and Gorur, 2009, Broderick et al., 2012]. In agree-

ment with the assumption of independence for {xn,j}n≥1 across j, we can interpret

the three-parameter beta process as a collection of independent priors on the θj such

that it satisfies our goals: (G1) a finite number of observed variants in any finite sam-
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ple; (G2) a number of observed variants that is unbounded as the number of samples

grows. Furthermore, the three-parameter beta process is able to capture power-law be-

haviours [Teh and Gorur, 2009, Broderick et al., 2012], which are common in physical

processes. The three-parameter beta process is characterized by: (i) a mass param-

eter α that scales the total number of variants observed; (ii) a discount parameter σ
that controls the power-law growth in observed variant cardinality; (iii) a concentration

parameter c that modulates the frequency of more widespread variants.

We say that the random measure Θ is distributed as a three-parameter beta process,

Θ ∼ 3BP(α, σ, c), if Θ =
∑

j≥1 θjδψj
, with {θj} drawn from a Poisson process

with rate measure

ν(dθ) = α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ(1− θ)c+σ−1

1(θ ∈ [0, 1])dθ,

where 1(A) stands for the indicator function of the event A. The ψj’s serve merely

to distinguish the variants, so it is enough to ensure that they are all almost surely

distinct. Thus we take ψj
iid∼ Uniform[0, 1]. The Poisson point process representation

is convenient in our proofs. To meet goals G1 and G2, the three-parameter beta process

hyperparameters must satisfy: α > 0, c > −σ, and σ ∈ [0, 1) [Teh and Gorur, 2009,

James, 2017, Broderick et al., 2018].

3 Predicting the number of new variants

3.1 Initial proposals for prediction

In Section 2 we introduced and motivated a Bayesian nonparametric model consisting

of: (i) a Bernoulli process likelihood function, Xn | Θ
iid∼ BeP(Θ), for observed

variants conditioned on variants’ proportions; (ii) a three-parameter beta process prior,

Θ ∼ 3BP(α, σ, c) over variants’ proportions. Now we use this model to predict the

number, U
(M)
N , of new variants in a follow-up study of size M ≥ 1 after an initial pilot

study of size N ≥ 1:

U
(M)
N :=

∑

j≥1

1

(

N
∑

n=1

xn,j = 0

)

1

(

M
∑

m=1

xN+m,j > 0

)

.

We derive the posterior distribution of U
(M)
N given X1:N . So the expected value of the

posterior distribution is a Bayesian nonparametric estimator of U
(M)
N with respect to a

squared loss function. With a slight abuse of notation, for any two random variables X
and Y defined on the same probability space we let X |Y denote the random variable

whose distribution coincides with the conditional distribution of X given Y . We write

N (µ, ρ2) for a Gaussian random variable with mean µ and variance ρ2, and we let

(a)b↑ :=
∏b
i=1(a+ i− 1) denote the rising factorial.
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Proposition 1. Let Θ ∼ 3BP(α, σ, c) and Xn | Θ iid∼ BeP(Θ) for n = 1, . . . , N and

N ≥ 1. Then,

U
(M)
N | X1:N ∼ Poisson

{

α

M
∑

m=1

(c+ σ)(N+m−1)↑
(c+ 1)(N+m−1)↑

}

. (1)

From Theorem 1, the Bayesian nonparametric estimator of U
(M)
N under squared

loss is

P
(M)
N := E

(

U
(M)
N | X1:N

)

= α

M
∑

m=1

(c+ σ)(N+m−1)↑
(c+ 1)(N+m−1)↑

.

P
(M)
N predicts the number of new variants in a follow-up study. In the next result we

show that the distribution of U
(M)
N | X1:N exhibits almost-sure power-law growth in

the sample sizeN with power determined by the three-parameter beta process hyperpa-

rameters. We also characterize asymptotic noise around the posterior predictive mean.

See Appendix A for proofs of Theorem 1 and Theorem 2.

Proposition 2. Under the setting of Theorem 1,

U
(M)
N

Mσ

∣

∣

∣

∣

X1:N
a.s.−→ ξ as M → +∞, (2)

where ξ := α
σ

Γ(c+1)
Γ(c+σ) . The Equation (2) limit holds almost surely, conditionally given

X1:N . Also,

√
Mσ

(

U
(M)
N

Mσ
− ξ

)

∣

∣

∣

∣

X1:N
d−→ N (0, ξ) as M → +∞, (3)

where the limit in Equation (3) holds true in distribution.

Besides U
(M)
N , researchers may be interested in relatively rare new variants since

rare variants are known to play a role in disease predisposition [Cirulli and Goldstein,

2010, Saint Pierre and Génin, 2014, Bomba et al., 2017]. In particular, let U
(M,r)
N

denote the number of new variants that occur exactly r times in the follow-up study,

and let U
(M,≤R)
N denote the number of new variants that occur at most R times in the

follow-up study. A suitably chosen small value of r or R encodes a notion of rareness

for variants. See Theorem 4 and Theorem 5 for a characterization of the posterior

distributions of U
(M,r)
N and U

(M,≤R)
N given X1:N .

Our propositions reveal key attributes of our Bayesian nonparametric estimators.

First and foremost, the posterior distribution of U
(M)
N depends on X1:N only via the

initial sample size N . See Equation (A.11) for similar behavior in the posterior distri-

butions of U
(M,r)
N and U

(M,≤R)
N . Moreover, from Theorem 2 we see that the large-M

asymptotic behavior of the posterior distribution of U
(M)
N is completely determined

by hyperparameters of the three-parameter beta process; see Theorem 5 for similar

behavior in the posterior distributions of U
(M,r)
N and U

(M,≤R)
N . Therefore, learning
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hyperparameters of the three-parameter beta process from the observed data is critical.

In Section 4, we propose an empirical Bayes procedure to this end.

Our Bayesian nonparametric approach above, like existing approaches for estimat-

ing the number of new variants in a follow-up study [Ionita-Laza et al., 2009, Gravel,

2014, Zou et al., 2016, Orlitsky et al., 2016, Chakraborty et al., 2019], relies on the as-

sumption that variants are always observed under the same conditions. Moreover, none

of these methods account for how improved variant observation quality may incur a

larger cost. But conditions may change between pilot and follow-up experiments, and

these changes may be informed by an experimental budget. We address these issues

below. In Section 3.2, we show how our general Bayesian nonparametric framework

can be adapted to the case where variants are not observed perfectly; in fact, we show

how we can adapt to different experimental conditions between the pilot and follow-

up. Then, in Section 5, we build on the work of Ionita-Laza and Laird [2010] to show

that we can optimize for the best conditions, to yield the most variants, in the follow-

up. That is, we next consider the challenging problem of optimal allocation of a fixed

budget between quality and quantity in genomic experiments: spending resources for

sequencing a greater number of genomes (quantity) or spending resources for sequenc-

ing with increased accuracy (quality).

3.2 Accounting for sequencing errors

We extend the Bayesian nonparametric estimator introduced in Section 3.1 to account

for non-trivial sequencing error. In Section 3.1 we have assumed that if any organism

exhibits a variant, that variant is detected, i.e., xn,j = 1 for organism n. However, in

practice, sequencing a genome is a complex and noisy process. Millions of reads of

fragments of the same genomic sequence need to be aligned and compared to the refer-

ence genome. Every position j of the genome of individual n is read a random number

Dn,j of times. Dn,j is the (random) sequencing depth of the process. Out of theseDn,j

times, Dn,j,err reads give rise to an error, due to technological imperfections, and are

discarded. Here, 0 ≤ Dn,j,err ≤ Dn,j . The remainingDn,j,noerr = Dn,j−Dn,j,err reads

are correctly processed, aligned to the reference genome, and recorded [Ionita-Laza

and Laird, 2010]. Every error-free read can either agree with the reference genome, or

disagree. We let Cn,j ∈ {0, 1, . . . , Dn,j,noerr} denote the number of times that reads

are correctly processed and we observe disagreement with the reference genome. Fi-

nally, a variant is said to be called whenever some discrepancy criterion, i.e. the variant

calling rule, is satisfied.

Following Ionita-Laza and Laird [2010], we focus on simple threshold variant call-

ing rules. That is, a variant is called whenever a sufficient number of reads disagree

with the reference genome. Given the threshold value T > 0, variation is declared if

the count Cn,j exceeds T , i.e. xn,j = 1(Cn,j ≥ T ). This threshold variant calling rule

is a simplification of actual variant callers used in modern genomic pipelines; see e.g.

[Xu, 2018] for a review of variant calling algorithms. While simplistic, the threshold

rule has the benefit of being easy to interpret; by contrast, state-of-the-art alternatives

are much more complex, to the point of being somewhat inscrutable by their users. In

fact, understanding how to tailor the variant calling rule to the data-gathering process is

itself an active area of research [Hwang et al., 2015, Cornish and Guda, 2015, Kumaran
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et al., 2019].

In setting up our model to account for sequencing error, we make the following

additional assumptions. (i) Following standard practice in the genetics literature [e.g.,

Lander and Waterman, 1988, Ionita-Laza and Laird, 2010, Sampson et al., 2011], we

assume that the sequencing depth Dn,j is a Poisson random variable with parameter

λ, which we refer to as the sequencing quality. (ii) The reads are independent and

identically distributed across individuals and positions. (iii) perr is a fixed probability

of reading error that depends on the sequencing technology. (iv) Conditionally onDn,j

total reads, the number of error-free readsDn,j,noerr is a binomial random variable, with

Dn,j as the number of trials and 1− perr as the probability of success in a trial. Under

these assumptions (i) – (iv), as showed in Theorem 6 in Appendix A.4, the probability

of obtaining at least T successful reads at any position j for any individual n is

φ(λ, T, perr) :=
∑

t≥T

e−λλt

t!

t
∑

i=T

(

t

i

)

(1− perr)
ipt−ierr =

∑

t≥T

e−λ(1−perr){λ(1− perr)}t
t!

.

(4)

We still assume Θ ∼ 3BP(α, σ, c) for the prior distribution over variant proportions.

As in Section 3.1, we draw whether organism n has variant with proportion θj accord-

ing to Bernoulli(θj). If the organism does have the variant, we now draw whether

we observe the variant according to Bernoulli(φ), with φ = φ(λ, T, perr). Hence, the

probability of declaring the presence of variant j is now given by pr(Cn,j ≥ T |
Θ) = θjφ.

Observe that φ is modulated by the parameter λ, which controls the sequencing

depth and can be set by the practitioner. Ionita-Laza and Laird [2010] considered a

setting with a single study, where that study is yet to be run. In this section, unlike the

work of Ionita-Laza and Laird [2010], we assume that we have access to data from a

pilot study when designing a follow-up study. We use subscripts to denote potentially

different values of φ across experiments. For instance, the practitioner may choose a

sequencing depth in the follow-up study that is different from the sequencing depth in

the pilot study. Hence we write φpilot = φ(λpilot, T, perr) for the pilot experiment and

φfollow = φ(λfollow, T, perr) for the follow-up. Our methods can be immediately ex-

tended to the case where there are multiple initial experiments with different φ values.

Proposition 3. Let Θ ∼ 3BP(α, σ, c), that is Θ :=
∑

j≥1 θjδψj
. Furthermore, let

Xn | Θ iid∼ BeP(Θpilot), where Θpilot :=
∑

j≥1 φpilotθjδψj
, for n = 1, . . . , N and

N ≥ 1, and let XN+m | Θ iid∼ BeP(Θfollow), where Θfollow :=
∑

j≥1 φfollowθjδψj
, for

m = 1, . . . ,M and M ≥ 1. Then,

U
(M)
N | X1:N ∼ Poisson(γ), (5)

with γ := αφfollow
∑M
m=1E{(1− φfollowB)m−1(1− φpilotB)N} and B ∼ Beta(1−

σ, c+ σ).

The expected value of the posterior distribution in Theorem 3 provides a Bayesian

nonparametric estimator, with respect to a squared loss function, of U
(M)
N . Namely,
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this estimator is

αφfollow

M
∑

m=1

E{(1− φfollowB)m−1(1− φpilotB)N},

where B ∼ Beta(1 − σ, c + σ). This new estimator extends Section 3.1 to the case

where sequencing error is taken into account. We defer the proof of Theorem 3 to

Appendix A.

4 Empirics for the prediction

Our more realistic model of variant observation sets up a prediction framework for

the number of new variants in a follow-up experiment. But without further develop-

ment, we still face the difficulty that our predictor from Equation (1) does not use any

information about the pilot experimental data except its cardinality. Recall that the hy-

perparameters α, σ, c control the behavior of the estimator (Theorem 2). So we will

induce a dependency on the observed pilot data by fitting these hyperparameter val-

ues to the pilot data. One common approach in empirical Bayes is to maximize the

probability of the data given the hyperparameters: argmaxα,σ,c pr(X1:N |α, σ, c) with

pr(X1:N |α, σ, c) =
∫

Θ
pr(X1:N |Θ)pr(dΘ|α, σ, c). In the case without sequencing er-

rors, this probability can be expressed in closed form as the exchangeable feature prob-

ability function (EFPF) [Broderick et al., 2013]. However, with sequencing errors, the

integral can be very high-dimensional and expensive to compute with Markov chain

Monte Carlo. Moreover, even without sequencing errors, the exchangeable feature

probability function for the beta process is a complex function of sums, products, quo-

tients, and exponentiation of gamma functions [Broderick et al., 2013, Eq. 8], which

we find can lead to numerical instability in the optimization.

An easier choice is to treat the prediction from our model as a regression function

with its own parameters α, σ, c. We can fit these parameters to the pilot project data by

imagining subsets of the true pilot data as mini-pilot projects themselves and directly

minimizing error in prediction on the remaining pilot data. In particular, consider index

n ∈ [N ] as the size of the imagined mini-pilot. Then, by our earlier definition, P
(m)
n is

the prediction for the number of new variants in the next m data points given the first n

data points. Here we write P
(m)
n (α, σ, c) to emphasize the hyperparameter dependence.

Let U
(m)
n | X1:N be the true number of new variants in the next m data points (for m

such that n+m ≤ N ) given the first n data points. Then we solve

α̂, σ̂, ĉ := argmin
α,σ,c:

α>0, σ∈[0,1),c>−σ

N−n
∑

m=1

{

P (m)
n (α, σ, c)−

(

U (m)
n | X1:N

)}2

. (6)

We set n = ⌊2/3 × N⌋, a choice that works well across all applications we con-

sider here. To find α̂, σ̂, ĉ we use the differential evolution algorithm [Storn and Price,

1997]. We also considered using multiple folds of the pilot study, in the style of cross

validation, instead of a single train-test split. In our experiments, we did not observe
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a noticeable difference between our proposal in Equation (6) and this more-involved

procedure. We choose to minimize the 2-norm, but Equation (6) can be straightfor-

wardly adapted for other standard choices of error (e.g., 1-norm). Finally, we use

P̂
(M)
N := P

(M)
N (α̂, σ̂, ĉ) as our estimator for the number of new variants in the follow-

up study of size M after observing data from the pilot study of size N .

5 Sequencing errors and optimal experimental design

Our goal is to maximize the number of variants we expect to observe under a fixed

budget. To see how the budget comes into play, note two cost sources in the follow-

up study. (i) It costs more to increase the number of samples M since sequencing

each additional sample adds an additional cost. (ii) Likewise, it costs more to increase

the quality of each sample, where increasing quality is accomplished by increasing

the sequencing quality in the followup, λfollow. We might encode the total cost as a

function of these settings: f(M,λfollow). Here, f is increasing in both of its arguments.

Conversely, we expect to discover more variants as either ofM or λfollow increases and

fewer variants as either quantity decreases. Therefore, we face a trade-off in where to

best allocate experimental budget between M and λfollow.

Our framework allows us to precisely quantify and optimize this trade-off. In par-

ticular, we now emphasize the dependence of P̂
(M)
N on λfollow, via φfollow, by writ-

ing P̂
(M,λfollow)
N for P̂

(M)
N computed with λfollow. Since we can compute P̂

(M,λfollow)
N

across values of M and λfollow using Equation (5), we can optimize to find the maxi-

mum possible predicted variants under some budget C. We are interested in the exper-

imental settings under which this maximum is achieved:

argmax
M,λfollow

P̂
(M,λfollow)
N subject to f(M,λfollow) ≤ C. (7)

To the best of our knowledge, no previous methods [Ionita-Laza et al., 2009, Ionita-

Laza and Laird, 2010, Gravel, 2014, Zou et al., 2016, Orlitsky et al., 2016, Chakraborty

et al., 2019] have been designed or modified to predict variants under different exper-

imental conditions in a follow-up study given results from a pilot. We believe the

Bayesian nonparametric framework we adopt here allows particularly straightforward

handling of different sequencing depths, and more generally different experimental se-

tups. Notably, Ionita-Laza and Laird [2010] consider experimental design, but only for

a single future study, without observing any pilot data. Given its Bayesian grounding,

their associated estimator might be adapted to our pilot and follow-up framework using

similar techniques to those we introduce above. But we will see in Section 6 that the

quality of their estimator is much worse than that of our method; any corresponding

experimental design would therefore suffer. We suspect our gains are due to the flex-

ibility of the Bayesian nonparametric framework and ability to capture power laws in

the data.

Note that practitioners might instead be interested in maximizing the number of

new rare variants in the follow-up study, i.e. variants that appear at most R times in

the follow-up sample. In this case, we can still apply empirical Bayes estimates of
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hyperparameters α̂, σ̂, ĉ obtained via Equation (6). In particular, let P̂
(M,≤R,λfollow)
N be

the Bayesian nonparametric estimator of the number of new rare variants, with hyper-

parameter values set to α̂, σ̂, ĉ and follow-up sequencing quality set to λfollow. Then, to

maximize the number of new rare variants, we solve the optimization problem in Equa-

tion (7) with P̂
(M,≤R,λfollow)
N in place of P̂

(M,λfollow)
N . We highlight that we still sug-

gest learning the hyperparameters α̂, σ̂, ĉ via the original optimization problem, with

the predictor P̂
(M,λfollow)
N of all new variants. We make this recommendation since rare

variants may be sparser in the pilot study and thereby provide less information about

these hyperparameters.

6 Experiments

6.1 Experimental setup

We evaluate our methods on both synthetic and real data. Code is available at https:

//bitbucket.org/masoero/moreforless_bayesiandiscovery/src/

master. For real data, we use human cancer genomics datasets. In cancer genomics,

rare variants may be useful in developing effective clinical procedures and understand-

ing cancer biology, and researchers have recognized the importance of appropriate se-

quencing depth in the data-gathering process [Griffith et al., 2015, Rashkin et al., 2017].

Following the setup of Chakraborty et al. [2019], we consider the Cancer Genome Atlas

(TCGA), a large and publicly available cancer genomics dataset. It contains somatic

mutations from N = 10,295 patients and spans 33 different cancer types. See Ap-

pendix F for more details on the data. In what follows, we show that our method pro-

duces accurate predictions when the sequencing depth is kept constant (Section 6.2);

we show it is the only method that can produce accurate predictions under changing

conditions (Section 6.3) and the only method that can inform optimal design of ex-

periments (Section 6.4). In Appendix F we report additional cancer genomics results,

including with the MSK-impact database, a targeted sequencing study also used by

Chakraborty et al. [2019].

In Appendix G, we report results for the Genome Aggregation Database [Kar-

czewski et al., 2020], a recent extension of the Exome Aggregation Consortium data

set [Lek et al., 2016] and the largest publicly available human genomic dataset. We

include additional experiments on synthetic data in Appendix H, to illustrate when and

why different methods may fail.

6.2 Prediction with no sequencing errors

Researchers have developed several approaches for predicting the number of new vari-

ants in a follow-up study under the assumption of perfect recovery of variants: e.g.,

parametric Bayesian methods [Ionita-Laza et al., 2009], linear programming methods

[Gravel, 2014, Zou et al., 2016], a harmonic jackknife [Gravel, 2014], and a smoothed

version of the classic Good-Toulmin estimator [Chakraborty et al., 2019]. To assess the

prediction error under constant sequencing conditions, we focus on the TCGA dataset.
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Bayesian method and smoothed Good-Toulmin estimator. In this case without sequenc-

ing error, our method has roughly the same performance as the harmonic jackknife and

linear programming.

To more directly compare performance of the methods across all 33 cancer types,

we calculate the error of each method across all types and all folds within each type;

see Figure 2. More precisely, for each of the 33 cancer types and for each of the 20
folds we compute the trimmed absolute percentage prediction error incurred by the five

methods at the largest possible extrapolation value. See Equation (F.1) in Appendix F.

In Figure 2, we summarize these 33 ∗ 20 = 660 error values for each method in a

boxplot. Lower errors are better. We find that our Bayesian nonparametric methods

performs similarly to the linear programming method and to the harmonic jackknife.

Our method outperforms the smoothed Good-Toulmin estimator and the parametric

Bayesian approach. In Appendix F, we also follow Chakraborty et al. [2019] and run an

experiment with an entirely separate pilot and follow-up study. In terms of comparison

among estimators, these additional experiments lead to similar conclusions.

We performed additional experiments to better understand how our method com-

pares to existing methods. In Appendix H.1 we run both the Bayesian parametric ap-

proach and our method on data simulated (a) under the parametric Bayesian model used

by Ionita-Laza et al. [2009] and (b) under our own 3-parameter beta process model. We

find that the approach of Ionita-Laza et al. [2009] works well with data simulated from

their model but poorly with the three-parameter beta process data. Our results sug-

gest that the parametric Bayesian method [Ionita-Laza et al., 2009] struggles with data

exhibiting power laws, which we expect in real life.

While the method of Zou et al. [2016] performs well in our experiments above, we

found serious numerical issues in other cases. In particular, Zou et al. [2016] exploits a

linear programming approach to estimate rare variant proportions; the authors approx-

imate proportions of common variants with the corresponding empirical frequencies.

The authors define a variant as “rare” if it has frequency less than κ/100, for a user-

defined threshold κ ∈ (0, 100), interpreted as a percent. In practice, we found that the

output of the algorithm is very sensitive to the choice of κ; see Appendix H.3. The

authors suggest κ = 1 as a default setting, but we observed numerical instability and

poor predictive performance for this value. This observation holds especially when the

pilot size N is small, which we believe to be a particular case of interest in designing

experiments for further data collection (i.e., for the follow-up study). For instance, we

expect the small-N case to arise in the study of non-model organisms [Russell et al.,

2017]. In Figure 1, we chose κ = 20, which led to convergence of the optimization

algorithm in all cases. We explore other values of κ in Appendix H.3. Beyond these

issues, we sometimes found that the method of Zou et al. [2016] failed to converge.

While the convergence issue did not arise for our experiments in this section, it did

arise for another analysis of the TCGA data; see Appendix F.2.

The Good-Toulmin method used in Chakraborty et al. [2019] performs poorly in

our experiments above (Figure 1 and Figure 2), as well as in our further real-data

experiments in Appendix G. However, we find that this method seems competitive

with the best alternative on other cancer genomics data; see Appendix F.2. Further

understanding of the variable performance of this estimator would be an important

first step before any potential future use. By contrast, we find that jackknife Gravel
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2019], as well as (ii) defining best-practice protocols for data collection processes [Hill-

mann et al., 2018, Bharti and Grimm, 2021]. Indeed, scientists have already expressed

an interest in optimal allocation of a budget given information from a pilot experiment

[Zaheer et al., 2018, Pereira-Marques et al., 2019]. Second, in single-cell sequencing,

scientists are interested in reliably estimating important gene properties. In this case,

there exists a vast and growing literature that highlights the importance of establish-

ing the optimal trade-off between the quality (sequencing depth) of the experiment,

and the number of cells to be sequenced. See, for example, Bacher and Kendziorski

[2016], Li and Li [2018], Zhang et al. [2020]. Third, it is becoming common prac-

tice to use modern, non-invasive approaches for surveying wildlife populations, such

as camera-traps [Tarugara et al., 2019, Welbourne et al., 2020]. Accurate estimation

of the living population and timely adoption of preventive measures are crucial for the

survival of endangered species [Johansson et al., 2020]. But conservation groups often

face a limited budget. These groups might benefit from trading off equipment density

and quality.

While the present paper has focused on data that can be represented as collections

of binary features (e.g. variants and non-variants), our method may be extended to

the case in which the observations are vectors of counts, as well as the case in which

there exist multiple categories for each feature (e.g. different types of variants). In

particular, by means of the Bayesian nonparametric conjugacy framework of James

[2017], Broderick et al. [2018], we may extend our method to use a categorical (or

multinomial) likelihood process with a conjugate Bayesian nonparametric prior for the

now-multiple frequencies per variant location. Our Bayesian nonparametric method

may also be easily extended to accommodate multiple different pilot studies. For the

latter extension, we would still generate variant proportions according to the three-

parameter beta process; we would then generate variants in each pilot study according

to different damped Bernoulli processes. The ultimate effect would be to introduce

more distinct, but workable, Bernoulli terms in Equation (5). Moreover, in this work

we have focused on threshold variant calling rules, which are a simplification of state-

of-the art variant callers [Xu, 2018]. Extending our framework to encompass more

realistic variant calling rules is an interesting future research direction. An important

practical challenge in this case will be even specifying a formula or series of formulas

to describe how popular variant callers work.
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Appendix

This document contains the supplementary material for “More for less: predicting and

maximizing genomic variant discovery via Bayesian nonparametrics”. In Appendix A

we present the proofs of the results presented in Section 2. We next provide detail

about the competing methods we considered. In Appendix B the Bayesian parametric

estimator of Ionita-Laza et al. [2009], in Appendix C the linear program proposed

by Zou et al. [2016], in Appendix D the Jackknife estimator used in Gravel [2014],

and in Appendix E the Good-Toulmin estimator used in Chakraborty et al. [2019].

We conclude providing additional experimental results. In Appendix F we present

additional detail about the data used in Chakraborty et al. [2019], and considered in

the analysis in the main text. In Appendix G we report results for the gnomAD project

[Karczewski et al., 2020], an extension of the datasets previously considered in Gravel

[2014], Zou et al. [2016]. We conclude with extensive experiments on simulated data

in Appendix H.

A Additional results and proofs

Proof of Theorem 1

Proof. By construction, the variant frequencies {θj} are formed from a Poisson point

process with rate measure

ν(dθ) = α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ(1− θ)c+σ−1

1[0,1](θ)dθ. (A.1)

Recall that a variant with frequency θj appears in organism n with Bernoulli prob-

ability θj , independently across n. Therefore, the collection of variant frequencies

whose corresponding variants have not yet appeared after N organisms comes from

a thinned Poisson point process relative to the original Poisson point process gener-

ating the {θj}; the thinned process has rate measure ν(dθ) · Bernoulli(0|θ)N and is

independent of the collection of frequencies that did appear in the first N organisms.

Similarly, the collection of variant frequencies corresponding to variants that did not

appear in the first N organisms but then did appear in the first follow-up organism

comes from a thinned Poisson point process with rate measure ν(dθ)·Bernoulli(0|θ)N ·
Bernoulli(1|θ) and is independent of the collection of frequencies that did not appear

in the first N +1 organisms. Recursively, for m ≥ 1, the collection of variant frequen-

cies corresponding to variants that did not appear in the first N + m − 1 organisms

but then did appear in the mth follow-up organism comes from a thinned Poisson point
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process with rate measure

ν(dθ)Bernoulli(0|θ)N+m−1Bernoulli(1|θ)

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ+1(1− θ)c+σ−1+N+m−1

1[0,1](θ)dθ

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
· Γ(1− σ)Γ(c+ σ − 1 +N +m)

Γ(c+N +m)

· Beta(θ | 1− σ, c+ σ − 1 +N +m)dθ

= α
(c+ σ)(N+m−1)↑
(1 + c)(N+m−1)↑

Beta(θ | 1− σ, c+ σ − 1 +N +m)dθ.

Finally, we observe that the number of points in a Poisson point process is Poisson

distributed with mean equal to the integral of its rate measure. Each of these Poisson

point processes is independent, and the sum of independent Poissons is Poisson with

mean equal to the sum of the means. So, since U
(M)
N is the sum of points in these M

Poisson point processes with m ∈ [M ], we have U
(M)
N is Poisson with mean

M
∑

m=1

∫ 1

0

α
(c+ σ)(N+m−1)↑
(1 + c)(N+m−1)↑

Beta(θ|1− σ, c+ σ − 1 +N +m)dθ

=

M
∑

m=1

α
(c+ σ)(N+m−1)↑
(1 + c)(N+m−1)↑

,

as was to be shown.

Proof of Theorem 2

In the following we make use of the O notation, indeed we will write f(x) = O(g(x))
to mean that the ratio |f(x)/g(x)| is a bounded function of the variable x; we also write

f(x) = o(g(x)) as x→ x0 (little o notation) to mean that limx→x0
f(x)/g(x) = 0. A

preliminary result is needed.

Lemma 1. For any c > 0, N ≥ 1 and σ ∈ (0, 1) we have that

1

Mσ

M
∑

m=1

Γ(c+N +m− 1 + σ)

Γ(c+N +m)
=

1

σ
+O(M−σ) (A.2)

is satisfied as M grows to +∞.

Proof. As in the proof of Berti et al. [2015, Lemma 2], we know that for any x > 0,

Γ(x+ σ)

Γ(x+ 1)
= xσ−1(1 + g(x)),

where g : (0,+∞) → R is such that supx≥0 |g(x)x| < +∞. Putting x = c + N +
m − 1, where m ≥ 1 while c and N are fixed constants, this very last condition on
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g is equivalent to supy≥c+N−1 |g(y)y| < +∞. Hence there exists K > 0 such that

|g(y)| ≤ K/y for any y ≥ c+N − 1. With this in mind we focus on the left hand side

of Equation (A.2) in the statement of Lemma 1:

1

Mσ

M
∑

m=1

Γ(c+N +m− 1 + σ)

Γ(c+N +m)
(A.3)

=
1

Mσ

M
∑

m=1

(c+N +m− 1)σ−1(1 + g(c+N +m− 1))

=
1

Mσ

M
∑

m=1

(c+N +m− 1)σ−1 (A.4)

+
1

Mσ

M
∑

m=1

(c+N +m− 1)σ−1g(c+N +m− 1). (A.5)

As for the sum of Equation (A.4) note that the following inequalities hold true

(c+N +M)σ − (c+N)σ

σMσ
=

∫ M+1

1

(c+N +m− 1)σ−1

Mσ
dm

≤
M
∑

m=1

(c+N +m− 1)σ−1

Mσ

≤
∫ M

0

(c+N +m− 1)σ−1

Mσ
dm

=
(c+N +M − 1)σ − (c+N − 1)σ

σMσ
, (A.6)

where we have used the fact that (c+N +m− 1)σ−1 is decreasing in m, and used the

corresponding integrals to bound the sum. We can use an asymptotic expansion of the

upper and the lower bound in Equation (A.6) to get

1

σ

(

σ(c+N)

M
+ o
( 1

M

)

− (c+N)σ

Mσ

)

≤
M
∑

m=1

(c+N +m− 1)σ−1

Mσ
− 1

σ

≤ 1

σ

(

σ(c+N − 1)

M
+ o
( 1

M

)

− (c+N − 1)σ

Mσ

)

,

which entails that

M
∑

m=1

(c+N +m− 1)σ−1

Mσ
=

1

σ
+O

( 1

Mσ

)

. (A.7)
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As for Equation (A.5), we exploit the properties of g to get

∣

∣

∣

1

Mσ

M
∑

m=1

(c+N +m− 1)σ−1g(c+N +m− 1)
∣

∣

∣

≤ K

Mσ

M
∑

m=1

(c+N +m− 1)σ−2

≤ K

Mσ

∫ c+N+M−1

c+N−1

1

x2−σ
dx

=
K

Mσ(1− σ)

{

1

(c+N − 1)1−σ
− 1

(c+N +M − 1)1−σ

}

The last inequality implies that

∣

∣

∣

1

Mσ

M
∑

m=1

(c+N +m− 1)σ−1g(c+N +m− 1)
∣

∣

∣ = O
( 1

Mσ

)

. (A.8)

Putting Equation (A.6) and Equation (A.8) in Equation (A.4) and Equation (A.5) the

thesis follows.

If X is a real valued random element, we denote by ΦX(t) = E(eitX) its char-

acteristic function, where i is the imaginary unit. We also assume that all the random

variables are defined on a probability space (Ω,A, pr), and we denote by prN the prob-

ability pr givenX1:N ;EN and varN will stand for the expected valued and the variance

given X1:N , respectively.

of Theorem 2. We start by showing the strong law of large numbers of Equation (2) in

the main text. From Lemma 1 we deduce that

EN (U
(M)
N )

Mσ
=

α

Mσ

Γ(c+ 1)

Γ(c+ σ)

M
∑

m=1

Γ(c+ σ +N +m− 1)

Γ(c+N +m)
→ αΓ(c+ 1)

σΓ(c+ σ)
(A.9)

as M → +∞. We observe that U
(M)
N = H

(1)
N + · · · + H

(M)
N , where H

(m)
N are inde-

pendent Poisson random variables with mean

α(c+ σ)(N+m−1)↑
(c+ 1)(N+m−1)↑

,

for m = 1, . . . ,M and M is arbitrary large. H
(m)
N is the number of new variants

that have been observed in the (N + m)-th individual, conditionally on the first N
individuals. As a consequence we may write

U
(M)
N − EN

(

U
(M)
N

)

Mσ
=
H

(1)
N − EN (H

(1)
N ) + · · ·+H

(M)
N − EN (H

(M)
N )

Mσ
.
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The Kronecker’s lemma [Shiryaev, 1995, Lemma IV.3.2] implies that

lim
M→+∞

U
(M)
N − EN

(

U
(M)
N

)

Mσ
= 0 prN − almost surely,

provided that the following condition is satisfied

+∞
∑

m=1

varN (H
(m)
N )

m2σ
< +∞. (A.10)

This may be easily verified as follows:

+∞
∑

m=1

varN (H
(m)
N )

m2σ
=

+∞
∑

m=1

α

m2σ

(c+ σ)N+m−1↑
(c+ 1)N+m−1↑

= α
Γ(c+ 1)

Γ(c+ σ)

+∞
∑

m=1

{

1

m2σ

Γ(c+ σ +N +m− 1)

Γ(c+N +m)

}

< +∞.

The series turns out to be convergent because the following asymptotic relation holds

true:
Γ(c+ σ +N +m− 1)

Γ(c+N +m)
∼ α

m1+σ

Γ(c+ 1)

Γ(c+ σ)
.

Hence Equation (A.10) is satisfied, so we conclude that

lim
M→+∞

U
(M)
N − EN

(

U
(M)
N

)

Mσ
= 0 almost surely,

which is equivalent to the thesis thanks to Equation (A.9).

We now prove the central limit theorem stated in Equation (3) in the main text. We

prove the result using the convergence of characteristic functions. We use the fact that

the posterior distribution of U
(M)
N is Poisson to evaluate the characteristic function a

posteriori: for convenience, let Ũ
(M)
N :=

√
Mσ

(

U
(M)
N

Mσ − ξ

)

, where we recall that ξ

is defined as

ξ :=
α

σ

Γ(c+ 1)

Γ(c+ σ)
.

Then,

Φ
Ũ

(M)
N

|X1:N
(t) = EN

[

exp
{

itŨ
(M)
N

}]

= exp

{

−itξ
√
Mσ + α(eit/

√
Mσ − 1)

M
∑

m=1

(c+ σ)N+m−1↑
(c+ 1)N+m−1↑

}

= exp

{

−itξ
√
Mσ + (eit/

√
Mσ − 1)

αΓ(c+ 1)

Γ(c+ σ)

M
∑

m=1

Γ(c+N +m− 1 + σ)

Γ(c+N +m)

}

.
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We now use Lemma 1 and the asymptotic expansion of the exponential function to

get

Φ
Ũ

(M)
N

∣

∣X1:N
(t) =

= exp

{

−itξ
√
Mσ +

αΓ(c+ 1)

Γ(c+ σ)

(

it√
Mσ

− t2

2Mσ
+O(M− 3

2σ)

)(

Mσ

σ
+O(1)

)}

= exp

{

−itξ
√
Mσ +

α

σ

Γ(c+ 1)

Γ(c+ σ)

(

it
√
Mσ − t2

2
+O

(√
Mσ

)

)}

= exp

{

−itξ
√
Mσ + ξ(it

√
Mσ − t2

2
+O

(√
Mσ

)

)

}

= exp

{

−ξt
2

2
+O

(√
Mσ

)

}

,

where in the penultimate line we substituted

ξ =
α

σ

Γ(c+ 1)

Γ(c+ σ)
.

Therefore, as M grows to infinity, we get

Φ√
Mσ

(

U
(M)
N
Mσ −ξ

)

∣

∣X1:N

(t) −→ exp

{

−ξt
2

2

}

,

and the thesis follows.

Proof of Theorem 3

Proof. To see the almost sure finiteness of the Poisson parameter and hence of the ran-

dom variables U
(M)
N and of U

(M,r)
N , and U

(M,≤R)
N , note that the parameter constraints

for the three-parameter beta process are specifically constructed so that θν(dθ) is a

proper beta distribution; see the end of section 2 and James [2017], Broderick et al.

[2018]. The θ factor will arise from Bernoulli(1 | φfollowθ).
The exact form of the Poisson parameter in Equation (5) arises by following the

same thinning argument as in the proof of Theorem 1. To see the beta representation,

Bernoulli(1 | φfollowθ)Bernoulli(0 | φfollow)m−1Bernoulli(0 | φpilot)Nν(dθ)

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ((1− θ)c+σ−1×

× (φfollowθ)(1− φfollowθ)
m−1(1− φpilotθ)

N
1[0,1](θ)dθ

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
φfollow(1− φfollowθ)

m−1(1− φpilotθ)
N · Γ(1− σ)Γ(c+ σ)

Γ(c+ 1)

· Beta(θ | 1− σ, c+ σ)dθ

= αφfollowBeta(θ | 1− σ, c+ σ)dθ.

27



The exact form of the Poisson parameter γr in Equation (A.24) arises by following the

same thinning argument as in the proof of Theorem 4. To see the beta representation,

Bernoulli(1 | φfollowθ)rBernoulli(0 | φfollowθ)M−rBernoulli(0 | φpilotθ)Nν(dθ)

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ((1− θ)c+σ−1×

× (φfollowθ)
r(1− φfollowθ)

M−r(1− φpilotθ)
N
1[0,1](θ)dθ

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
φrfollow(1− φfollowθ)

M−r(1− φpilotθ)
N · Γ(r − σ)Γ(c+ σ)

Γ(c+ r)

· Beta(θ | r − σ, c+ σ)dθ

= αφrfollow
(1 + c)(r−1)↑
(1− σ)(r−1)↑

· Beta(θ | r − σ, c+ σ)dθ.

A.1 Number of new rare variants

Proposition 4 (Number of new rare variants). Assume the model in Theorem 1. Let

U
(M,r)
N represent the number of new variants that occur r times in a follow-up sample

of size M after a preliminary study of size N . I.e., we count the variants that do

not occur in the preliminary N samples but then occur r times in the follow-up M

samples. Let U
(M,≤R)
N similarly represent the number of new variants that occur at

most R times. Here r,R ∈ [M ]. Define

U
(M,r)
N :=

∞
∑

j=1

1

(

N
∑

n=1

xn,j = 0

)

1

(

M
∑

m=1

xN+m,j = r

)

.

Then

U
(M,r)
N | X1:N ∼ Poisson(λr), (A.11)

for λr := α
(

M
r

) (1−σ)(r−1)↑(c+σ)(N+M−r)↑

(c+1)(N+M−1)↑
. Moreover, for

U
(M,≤R)
N :=

R
∑

r=1

U
(M,r)
N ,

it holds

U
(M,≤R)
N | X1:N ∼ Poisson

(

R
∑

r=1

λr

)

.

Just like for U
(M)
N , the Bayesian nonparametric predictors of U

(M,r)
N and U

(M,≤R)
N

correspond to the expected values ofU
(M,r)
N | X1:N andU

(M,≤R)
N | X1:N , respectively,

i.e. the parameters of the posterior predictive Poisson distributions displayed in (A.11).

Similarly to Proposition (2), the large M asymptotic behaviour of U
(M,r)
N | X1:N and

U
(M,≤R)
N | X1:N display very specific power law behavior almost surely.
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Proof. Analogous to the proof of Theorem 1, we consider the Poisson point process

{θj} and thin it to those frequencies corresponding to variants chosen no times in the

preliminary N samples and chosen exactly r times out of the follow-up M samples.

The probability of being chosen to be thinned, then, is Bernoulli(0 | θ)N ·
(

M
r

)

·
Bernoulli(0 | θ)M−r · Bernoulli(1 | θ)r. The thinned process therefore has rate

measure

ν(dθ) · Bernoulli(0 | θ)N ·
(

M

r

)

· Bernoulli(0 | θ)M−r · Bernoulli(1 | θ)r

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ+r(1− θ)c+σ−1+N+M−rdθ

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)

Γ(r − σ)Γ(c+ σ +N +M − r)

Γ(c+N +M)
×

× Beta(r − σ, c+ σ +N +M − r)dθ

= α
(1− σ)(r−1)↑(c+ σ)(N+M−r)↑

(1 + c)(N+M−1)↑
Beta(r − σ, c+ σ +N +M − r)dθ.

Since U
(M,r)
N counts the thinned atoms, it has Poisson distribution with mean equal to

the integral of the rate measure, i.e. mean equal to

α
(1− σ)(r−1)↑(c+ σ)(N+M−r)↑

(1 + c)(N+M−1)↑
, (A.12)

as was to be shown.

The distribution of U
(M,≤R)
N follows immediately from the observation that the

U
(M,r)
N are independent Poisson random variables, where the independence is inherited

from the independent thinned Poisson point processes.

A.2 Asymptotics for number of new rare variants

Proposition 5 (Asymptotics for number of new rare variants). Under the setting of

Theorem 4,

U
(M,r)
N

Mσ

∣

∣

∣

∣

X1:N
a.s.−→ ξr as M → ∞, (A.13)

and

U
(M,≤R)
N

Mσ

∣

∣

∣

∣

X1:N
a.s.−→

R
∑

r=1

ξr as M → ∞, (A.14)

where ξr :=
α
r! (1− σ)(r−1)↑

Γ(c+1)
Γ(c+σ) , and the limits hold true almost surely, condition-

ally given X1:N . In addition,

√
Mσ

(

U
(M,r)
N

Mσ
− ξr

)

∣

∣

∣

∣

X1:N
d−→ N (0, ξr) as M → ∞ (A.15)
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and

√
Mσ

(

U
(M,≤R)
N

Mσ
−

R
∑

r=1

ξr

)

∣

∣

∣

∣

X1:N
d−→ N

(

0,

R
∑

r=1

ξr

)

as M → ∞. (A.16)

The limits displayed in Equation (A.15) and Equation (A.16) hold in distribution con-

ditionally given X1:N .

Proof. We start by proving Equation (A.14) in the main text, but in order to do this we

have to define some other statistics:

U
(M,≤R)
N :=

R
∑

r=1

U
(M,r)
N and U

(M,≥R)
N :=

M
∑

r=R

U
(M,r)
N (A.17)

which have to be respectively interpreted as the number of new genomic variants ob-

served at most R times and the number of new genomic variants observed at least R

times. Our strategy is the following: we prove that U
(M,≥R)
N /Mσ converges almost

surely to a constant and then we use the relation

U
(M,R)
N = U

(M,≥R)
N − U

(M,≥R+1)
N (A.18)

to prove the convergence of U
(M,R)
N .

We evaluate the fist moment of U
(M,≥R)
N /Mσ a posteriori: for notation purpose, let

Ũ
(M)
N

1

Mσ
EN

(

U
(M,≥R)
N

)

=
EN [U

(M)
N ]

Mσ
−
R−1
∑

r=1

EN

(

U
(M,r)
N

)

Mσ

−→ αΓ(c+ 1)

σΓ(c+ σ)
− α

Γ(c+ 1)

Γ(c+ σ)

R−1
∑

r=1

(1− σ)R−1↑
R!

, (A.19)

as M → ∞, where we have used Equation (A.23) and Equation (A.9). It then follows

that

EN [U
(M,r)
N ] ≍ c1M

σ

for some positive constant c1 > 0. Besides for the variance of U
(M,≥R)
N we get

varN

(

U
(M,≥R)
N

)

= varN

(

U
(M)
N − U

(M,≤R−1)
N

)

= EN

{

U
(M)
N −

R−1
∑

r=1

(

U
(M,r)
N

)

− EN

(

U
(M)
N

)

+

R−1
∑

r=1

EN (U
(M,r)
N )

}2

≤ EN

{

∣

∣

∣U
(M)
N − EN

(

U
(M)
N

)∣

∣

∣+

R−1
∑

r=1

∣

∣

∣U
(M,r)
N − EN

(

U
(M,r)
N

)∣

∣

∣

}2

≤ R · EN
{

∣

∣

∣U
(M)
N − EN

(

U
(M)
N

)∣

∣

∣

2

+

R−1
∑

r=1

∣

∣

∣U
(M)
N − EN

(

U
(M,r)
N

)∣

∣

∣

2
}
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where the last inequality follows by a simple application of the discrete version of the

Hölder’s inequality. Then, using also the fact that we get that U
(M)
N and U

(M)
N are

Poisson random variable a posteriori, we obtain:

varN (U
(M,≥R)
N ) ≤ r

(

varN (U
(M)
N ) +

R−1
∑

r=1

varN (U
(M,r)
N )

)

= R

{

EN [U
(M)
N ] +

R−1
∑

r=1

EN

(

U
(M,r)
N

)

}

≍ c2M
σ

where c2 > 0 is a positive constant. From all the previous considerations and by an

application of the Markov inequality we obtain that for any ε > 0

prN







∣

∣

∣

U
(M,≥R)
N

En

(

U
(M,≥R)
N

) − 1
∣

∣

∣ ≥ ε







≤
varN

(

U
(M,≥R)
N

)

ε2
{

EN

(

U
(M,≥R)
N

)}2

.
c2M

σ

ε2(c1Mσ)2
≍ 1

Mσ
(A.20)

hence we can conclude that the ratio

U
(M,≥R)
N

EN

(

U
(M,≥R)
N

)

converges in probability to 1. Besides if we choose the subsequence Mk := k2/σ ,

as k = 1, 2, . . ., an application of the first Borel-Cantelli lemma leads us to state that

the ratio converges to 1 almost surely. Since U
(M,≥R)
N is an increasing process as M

increases, for any M in the interval {⌊mk⌋, . . . , ⌊mk+1⌋} we have that

U
(⌊mk⌋,≥R)
N ≤ U

(M,≥R)
N ≤ U

(⌊mk+1⌋,≥R)
N

where ⌊x⌋ denotes the integer part of x. Hence we also have that

U
(⌊mk⌋,≥R)
N

EN

(

U
(⌊mk+1⌋,≥R)
N

) ≤ U
(M,≥R)
N

EN

(

U
(M,≥R)
N

) ≤ U
(⌊mk+1⌋,≥R)
N

EN

(

U
(⌊mk⌋,≥R)
N

) .

Leveraging the fact that the lower and upper bound of the central term converge to 1 as

k → ∞,

U
(M,≥R)
N

EN [U
(M,≥R)
N ]

→ 1,

in an almost sure sense as M → +∞. In other words, using Equation (A.19), we have

just proved that

U
(M,≥R)
N

Mσ
−→ αΓ(c+ 1)

σΓ(c+ σ)
− α

Γ(c+ 1)

Γ(c+ σ)

R−1
∑

r=1

(

(1− σ)r−1↑
r!

)

, (A.21)
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prN -almost-surely as M → ∞.

The thesis now follows by Equation (A.21) and the Equation (A.18), indeed:

U
(M,R)
N

Mσ
=
U

(M,≥R)
N

Mσ
− U

(M,≤R+1)
N

Mσ
→ α

Γ(c+ 1)

Γ(c+ σ)

(1− σ)r−1↑
r!

,

PN -almost surely as M grows.

To prove Equation (A.15) in the main text, one has to prove that the characteristic

functions converge, more precisely

Φ√
Mσ

(

U
(M,R)
N
Mσ −ξR

)

∣

∣

∣

∣

X1:N

(t) −→ exp

(

− t
2ξR
2

)

for any t ∈ R,

as M goes to infinity.

First of all observe that the (posterior) expectation of U
(M,R)
N is such that

EN

(

U
(M,R)
N

)

= α

(

M

R

)

(1− σ)R−1↑(c+ σ)N+M−R
(c+ 1)N+M−1↑

=

(

Γ(M + 1)

Γ(M −R+ 1)

Γ(c+ σ +N +M −R)

Γ(c+N +M)

)

× (A.22)

× α
(1− σ)R−1↑
Γ(R+ 1)

Γ(c+ 1)

Γ(c+ σ)

=Mσ
(

1 + o(M−1)
)

α
(1− σ)R−1↑
Γ(R+ 1)

Γ(c+ 1)

Γ(c+ σ)
, (A.23)

where we have used the asymptotic expansion of ratios of gamma functions given by

Tricomi and Erdélyi [1951]. Let Ũ
(M,R)
N :=

√
Mσ

(

U
(M,R)
N

Mσ − ξR

)

. Using the expan-

sion given in Equation (A.23) it is easy to see that

Φ
Ũ

(M,R)
N

∣

∣

∣

∣

X1:N

(t) =

= exp

{

−it
√
MσξR +MσξR

(

1 + o(M−1)
)

(

it√
Mσ

+
t2

2Mσ
+ o(M−1+σ)

)}

= exp

{

− t
2ξR
2

+ o(1)

}

,

therefore the thesis follows.

A.3 Number of new rare variants in presence of noise

Similarly, for U
(M,r)
N and U

(M,≤R)
N defined in Theorem 4 with r,R ∈ [M ], we have

that these quantities are almost surely finite with respective distributions

U
(M,r)
N | X1:N ∼ Poisson (γr) , U

(M,≤R)
N | X1:N ∼ Poisson

(

R
∑

r=1

γr

)

, (A.24)
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where

γr :=

(

M

r

)∫ 1

θ=0

Bernoulli(1 | φfollowθ)rBernoulli(0 | φfollowθ)M−r

Bernoulli(0 | φpilotθ)Nν(dθ)

= α

(

M

r

)

φrfollow
(1 + c)(r−1)↑
(1− σ)(r−1)↑

EB{(1− φfollowB)M−r(1− φpilotB)N},

for B ∼ Beta(θ | r − σ, c+ σ).

A.4 Proof of equality in Equation (4)

To show that φ(λ, T, perr) is the right tail of a Poisson distribution, we recur to the

Binomial thinning of Poisson random variables.

Proposition 6 (Binomial thinning of Poisson random variables). LetN ∼ Poisson(λ).
Let X1, . . . , Xn ∼ Bernoulli(q) independently and identically distributed. Then,

SN := X1 + . . . XN ∼ Poisson(λq), and

Pr(XN ≥ T ) =
∑

t≥T

e−λqλq

t!
. (A.25)

Proof. Let Sn ∼ Binomial(n, q) be a binomial random variable with success prob-

ability q and n draws. The moment generating function of the binomial distribution

is

E
[

tSn
]

= (1− q + qt)n,

while the moment generating function of the Poisson distribution with parameter λ > 0
is

E
[

tN
]

=
∑

k≥0

(λt)k

k!
e−λ = exp{λt− λ}.

Hence,

E
[

tSN
]

=
∑

n≥0

E
[

tSn
]

λne−λ

n!
=
∑

n≥0

(1− q + qt)nλne−λ

n!

= exp {λ(1− q + qt)− λ} = exp {λqt− λq} , (A.26)

which implies SN ∼ Poisson(λq).

In light of this proposition, the equality in Equation (4) follows.

B Bayesian prediction with the Beta-Bernoulli product

model

We here review the approach proposed by Ionita-Laza et al. [2009]. The authors con-

sider the same problem of genomic variation described in Section 2.
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Ionita-Laza et al. [2009] assume that there exists a finite, albeit unknown, number

of loci at which genomic variation can be observed. We denote such quantity with the

letter K. Given a pilot study X = X1:N with J distinct variants, we can obtain the

site-frequency-spectrum (or fingerprint) of the sample,

fN = [fN,1 . . . , fN,J ] with fN,j =

J
∑

ℓ=1

1

(

N
∑

n=1

xn,ℓ = j

)

, (B.1)

so that fN,1 counts the number of variants observed only once among the N samples,

fN,2 the number of variants observed in exactly two samples etc. The input data X1:N

is here viewed as a binary matrix, X1:N ∈ {0, 1}N×J , in which all positions at which

variation is not observed are discarded, and the order of the columns is immaterial. This

binary matrix is modeled via a parametric beta-Bernoulli model: the authors assume

that there exists a fixed, unknown number K < ∞ of loci at which variation can

be observed. For each j ∈ [K], they assume that there exists an associated variant,

labelled by index j, displayed by any observation (row) with probability θj ∈ [0, 1].
The frequencies θj , j = 1, . . . ,K are distributed according to a beta distribution with

parameters a, b, i.e.

θ =
[

θ1 . . . θK
]

, with θj ∼ Beta(a, b) ∀j,

independently and identically distributed. Conditionally on θ,

Xn =
[

xn,1 . . . xn,K
]

, with xn,j∼Bernoulli(θj).

Therefore, the columns of the matrix X1:N are independently and identically dis-

tributed, while the rows are made of independent, but not identically distributed en-

tries. Under this model, the number of counts of each variant is binomially distributed,

conditionally on the latent frequency of such variant, i.e.

zN,j | θj :=
n
∑

i=1

xn,j | θj ∼ Binomial(N, θj).

Recalling that fN,j =
∑J
ℓ=1 1(zN,ℓ = j) is the number of variants which appear

exactly j times among the firstN samples, and letting g(x; a, b) be the density function

of a beta random variable with parameters a, b evaluated at x,

g(x; a, b) =
xa−1(1− x)b−1

B(a, b)
1[0,1](x),

with B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx = Γ(a)Γ(b)/Γ(a+ b), then the probability that

exactly j of the N individuals show variation at a given site is given by

pN,j =

∫ 1

0

(

N

j

)

θk(1− θ)N−jg(θ; a, b)dθ

=

(

N

j

)∫ 1

0

θN+a−1(1− θ)N−j+b−1

B(a, b)
dθ =

(

N

j

)

(a)j↑(b)N−j↑
(a+ b)N↑

. (B.2)
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Because we can’t observe more than N variants in N trials, and since we don’t know

anything about variants which are yet to be observed, probabilities of Equation (B.2)

are then normalized as follows:

λN,j =
pN,j

∑N
ℓ=1 pN,ℓ

=

(

N
j

)

(a)j↑(b)N−j↑
∑N
ℓ=1

(

N
ℓ

)

(a)ℓ↑(b)N−ℓ↑
,

for all ℓ = 1, . . . , N . It follows that the log likelihood for the observed data X1:N is

given by

ℓBBPM
a,b (X1:N ) = log





N
∏

j=1

λ
fN,j

N,j



 =

N
∑

j=1

fN,j log(λN,j).

Notice that the expected number of variants appearing exactly once in a sample of

N observations can be computed in closed form,

ηN,1 := E[fN,1] = E







K
∑

j=1

(

N

1

)

1

(

N
∑

n=1

xn,j = 1

)







= KN

∫

[0,1]

θa−1(1− θ)b−1

B(a, b)
θ(1− θ)N−1dθ

= KN
B(a+ 1, N + b− 1)

B(a, b)
=

aKN

N + b− 1

B(a,N + b)

B(a, b)
,

where we used independence of the variants, linearity of the expectation operator and

the properties of the beta function. Letting M = tN be the number of additional sam-

ples to be observed, we can compute the expected number of hitherto unseen variants,

to be observed in additional M samples after N samples have been collected as

∆N (M) = E







K
∑

j=1

1

(

M
∑

m=1

xm,j > 0

)

1

(

N
∑

n=1

xn,j = 0

)







=
K

B(a, b)

∫

[0,1]

(1− (1− θ)(t+1)N )− (1− (1− θ)N )θa−1(1− θ)b−1dθ

=
K

B(a, b)

∫

[0,1]

{

(1− θ)N − (1− θ)(t+1)N
}

θa−1(1− θ)b−1dθ

= K
B(a,N + b)

B(a, b)
−K

B(a,N(t+ 1) + b)

B(a, b)

Now, noting that

K
B(a,N + b)

B(a, b)
=
ηN,1
a

N + b− 1

N
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and

K
B(a,N(t+ 1) + b)

B(a, b)
=
ηN,1
a

N + b− 1

N

B(a,N(t+ 1) + b)

B(a,N + b)
,

it follows that

∆N (M) =
ηN,1
a

N + b− 1

N

{

1− B(a,N(t+ 1) + b)

B(a,N + b)

}

. (B.3)

Importantly, ∆N (M) depends on K only via ηN,1. To use the estimator ∆N (M),
Ionita-Laza et al. [2009] substitute ηN,1 with its empirical counterpart fN,1, the number

of variants which have been observed exactly once in the sampleX1:N . The parameters

a, b are found via maximization of the log-likelihood of the model,

{a∗, b∗} = argmax
a>0,b>0

{

ℓBBPM
a,b (X1:N )

}

Remark 7. The estimator obtained in Equation (B.3) crucially relies on the empirical

frequency of variants observed once among the first N draws, fN,1. For example, if a

dataset had fN,1 = 0, ∆N (M) = 0 for every M > 0.

C Linear program to estimate the frequencies of fre-

quencies

Zou et al. [2016] assume, in the same way as Ionita-Laza et al. [2009], that there

exists a finite albeit unknown number of sites at which variants can be observed. They

formalize the problem of hitherto unseen variants prediction as that of recovering the

distribution of frequencies of all the genetic variants in the population, including those

variants which have not yet been observed.

They assume that each possible variant in a sample is independent of the other

variants, and that the j-th variant appears with a given probability θj conditionally in-

dependently and identically distributed across all the individuals observed - i.e. the θj
are parameters of independent Bernoulli random variables xn,j for all n ≥ 1 and j.
Therefore the pilot study X1:N is modeled by a collection of independent Bernoulli

random variables, which are also identically distributed along each column, and the

sum zN,j | θj :=
∑N
n=1 xn,j | θj ∼ Binomial(N, θj). From the frequencies

zN,1, . . . , zN,J of the J variants observed among the first N samples, it is possible

to compute the fingerprint of the sample, fN . Given the fingerprint, the goal is to re-

cover the population’s histogram, which is a map quantifying, for every θ ∈ [0, 1], the

number of variants such that θj = θ. Formally, learn a map h from the distribution of

frequencies to integers

h : (0, 1] → N ∪ {0} (C.1)

Because for N large enough the empirical frequencies associated to common vari-

ants should be well approximated by their empirical counterpart, Zou et al. [2016]
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only consider the problem of estimating the histogram from the truncated fingerprint

f
(κ)
N = {fN,j : j/N ≤ 100× κ}. In their analysis, the authors only consider κ = 1,

i.e. they consider “common” variants all those variants that appear in more than 1%
of the sample elements. Moreover, rather than learning a continuous function as de-

scribed by Equation (C.1), they solve a discretized version of the problem. They fix

a discretization factor δ ≥ 1, and then set up a linear program in which the goal is

to correctly estimate the population histogram associated to the frequencies in the set

S =
{

1
1000N , δ

1
1000N , . . . , δ

i 1
1000N , . . . , κ

}

. The value δ, given κ, determines how

many frequencies are going to be estimated in (0, κ]: the lower δ, the finer the dis-

cretization. The authors suggest using δ = 1.05. In our experiments, we set δ = 1.01,

for which we find the method to produce better results, at the cost of a small addi-

tional computational effort. Finally, the problem of recovering the histogram is solved

through the following optimization:

min
h(θ),θ∈S

∑

j:j≤Nκ

1

1 + fN,j

∣

∣

∣

∣

∣

fN,j −
∑

θ∈S
h(θ)Binomial(N, θ, j)

∣

∣

∣

∣

∣

subject to

h(θ) ≥ 0,
∑

θ∈S
h(θ) ≤ K,

∑

θ∈S
θ · h(θ) +

J
∑

j:j>Nκ

j

N
fN,j =

J

N
,

where K is an upper bound on the total number of variants, and Binomial(N, θ, j) is

the probability that a Binomial draw with bias θ and N rounds is equal to j.
Given the histogram ĥ which solves the linear program above, one can obtain an

estimate of the number of unique variants at any sample size M using

V (ĥ,M) =
∑

θ:ĥ(θ)>0

ĥ(θ)(1− (1− θ)M ).

Following Zou et al. [2016], we refer to this estimator as the “unseenEST” estimator.

D Jackknife estimators

Jackknife estimators for predicting the number of hitherto unseen species were first

introduced by in the capture-recapture literature by Burnham and Overton [1978].

Given X1:N
iid∼ F (ψ) for some distribution F and some parameter ψ, let ψ̂N =

ψ̂N (X1:N ) be an estimator of ψ with the property that

E[ψ̂N ] = ψ +
a1
N

+
a2
N2

+ . . . , (D.1)

for fixed constants a1, a2, . . . . Without loss of generality assume ψ̂N to be symmetric

in its inputs X1:N , and denote with I ⊂ [N ] a subset of given size p, let ψ̂N−p,I be the
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estimate obtained by dropping the observations whose indices are in I. Similarly, let

ψ̂
(p)
N =

(

N

p

)−1
∑

I:|I|=p
ψ̂N−p,I (D.2)

The idea of the Jackknife estimator is that, if the assumption of Equation (D.1) holds,

we can improve over ψ̂N by using a correction originating from Equation (D.2). The

p-th order Jackknife estimator is defined as

ψ̂
Jp
N =

1

p

p
∑

ℓ=0

{

(−1)ℓ
(

p

ℓ

)

(N − ℓ)pψ̂
(ℓ)
N

}

. (D.3)

Under the assumption of Equation (D.1), the estimator of Equation (D.3) has bias ap-

proaching zero polynomially fast in the correction order, Bias(ψ̂
Jp
N ) ∼ N−p−1.

D.1 An estimator for the population size

Burnham and Overton [1978] introduced a nonparametric procedure to estimate the

total number of animals present in a closed population when capture-recapture data

is available. Assume that there is a fixed, but unknown number K of total species.

Over the course of N repeated observational experiments, J ≤ K distinct species are

observed.

Let X1:N be the collection of available data, in which Xn = [xn,1, . . . , xn,J ], with

xn,j = 1 if species j has been observed on the n-th experiment, and 0 otherwise.

Moreover, assume that each species j ∈ [K] has a fixed, but unknown probability

θj ∈ (0, 1] of being observed.

Notice that while Burnham and Overton [1978] developed the estimator having in

mind a fixed and finite population of animals, we can also think of each sample Xn

as a genomic sequence characterized by the presence or absence of genetic variants at

different sites.

The nonparametric MLE for the total support size K is given by K̂MLE(X1:N ) =
K̂MLE
N = J . Clearly J ≤ K, therefore J is a biased estimate for K. If one assumes,

in a similar spirit to Equation (D.1), that

E[K̂MLE
N ] = K +

a1
N

+
a2
N2

+ . . . , (D.4)

then one could use the jackknife estimator of Equation (D.3) to estimate K. This

requires computing ψ̂
(ℓ)
N for ℓ = 1, . . . , p, which are linear functions of the observed

fingerprint fN .

The case p = 1: We outline the approach for p = 1. Let qN,n be the number of

animals which have been observed only once out of the N trials, exactly on the n-th,

qN,n =
∑

j≥1

1(xn,j = 1)1





∑

n′ 6=n
xn′,j = 0




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Then, because qN,1 + . . .+ qN,N = fN,1 by construction,

K̂
(1,\n)
N = J − qN,n and K̂

(1)
N =

1

N

N
∑

n=1

K̂
(1,\n)
N = J − fN,1

N
. (D.5)

Therefore, the order 1 jackknife estimator for the total population size is obtained by

plugging in ψ̂
(0)
N = J and ψ̂

(1)
N = J − fN,1

N in Equation (D.3):

K̂J1
N = J +

N − 1

N
fN,1 (D.6)

The case for general p: For any p ≤ N , it always holds that

K̂
(p)
N = J −

(

N

p

)−1 p
∑

ℓ=1

(

N − ℓ

p− ℓ

)

fN,ℓ (D.7)

This formula allows to obtain the general Jackknife estimator of order p, which is a

linear function of the observed number of species J and correction terms which depend

on the fingerprint fN ,

K̂
Jp
N =

p
∑

ℓ=1

a
(p)
N,ℓfN,ℓ.

D.2 Estimators for the number of hitherto unseen genomic vari-

ants

Taking inspiration from the approach of Burnham and Overton [1978], Gravel et al.

[2011] and Gravel [2014] developed Jackknife estimators for the number of hitherto

genomic variants which are going to be observed in M additional samples given N
initial ones. Let V (N) denote the total number of variants observed in N samples, and

let ∆(N +M,N) := HN+M−1 −HN−1 =
∑M+N−1
ℓ=N 1/ℓ, where

HN = 1 + 1/2 + . . .+ 1/N

is theN -th harmonic number. To derive their estimators, the authors use the assumption

that for a given order p ≥ 1 the total number of variants present in N +M samples can

be estimated as follows:

V̂
(M)
N = V (N) +

p
∑

ℓ=1

a
(p)
N,ℓ∆(N +M,N)ℓ, (D.8)

where a
(p)
N = [a

(p)
N,1, . . . , a

(p)
N,p] are constants which depend on the initial sample size

N , on the order p and on the fingerprint of the sample fN . This assumption is exact in

the case of a constant size and neutrally evolving population (Gravel et al. [2011]). For

a given order p the unknown coefficients are obtained by solving the following system

of equations:

V̂
(M)
N = V̂

(M)
N−1 = . . . = V̂

(M)
N−p. (D.9)
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Equating V̂
(M)
N to V̂

(M)
N−j using Equation (D.8) for j = 1, . . . , p, we obtain a system of

p− 1 equations of the form

V (N)− V (N − j) =

p
∑

ℓ=1

a
(p)
N,ℓ(∆(N +M,N − j)ℓ −∆(N +M,N)ℓ). (D.10)

Using the additional equality

V (N)− V (N − ℓ) =

ℓ
∑

j=1

(

ℓ
j

)

(

N
j

)fN,j . (D.11)

we can solve for a
(p)
N,ℓ and express these in terms ofN,∆(N+M,N) and the fingerprint

fN , and the final estimator is a linear function of the fingerprint fN .

D.3 Choice of the jackknife order

As pointed out in Burnham and Overton [1978], the optimal order p of the jackknife

estimator heavily depends on the data under consideration. It is therefore desirable to

obtain a procedure which uses the data to guide the choice of such order. Burnham and

Overton [1978] phrase this decision problem as a sequential hypothesis test, in which

one keeps increasing the order of the jackknife until the data suggests that the drop

in bias obtained by increase the jackknife order is exceeded by the gain in variance.

Precisely, for p = 1, 2, . . . one sequentially performs the following test:

H0,p : E(K̂
Jp+1

N − K̂
Jp
N ) = 0 versus Ha,p : E(K̂

Jp+1

N − K̂
Jp
N ) 6= 0. (D.12)

IfH0,p is rejected, this has to be interpreted as evidence that the bias reduction provided

by the p + 1-th order (with respect to the p-th) is larger than the associated increase

in variance, and p + 1-th order should be preferred to the p-th order [Burnham and

Overton, 1978]. The first order p for which the test fails to reject the null hypothesis is

chosen as the jackknife order.

The test relies on the following observation: the difference between two jackknife

estimators of different orders p+ 1 and p is given by

K̂
Jp+1

N − K̂
Jp
N =

p+1
∑

ℓ=1

ã
(p+1,p)
N,ℓ fN,p, (D.13)

again a linear combination of the fingerprint. Because the conditional distribution of

the fingerprint is independent of K given J , the minimum variance estimator of the

conditional variance is given by

est var(K̂
Jp+1

N − K̂
Jp
N | J) = J

J − 1

{

p
∑

ℓ=1

(ã
(p+1,p)
N,ℓ )2fN,ℓ

(K̂
Jp+1

N − K̂
Jp
N )2

J

}

.

(D.14)
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Under H0,p, the test statistic

Tp =
K̂
Jp+1

N − K̂
Jp
N

√

est var(K̂
Jp+1

N − K̂
Jp
N | J)

(D.15)

is approximately normally distributed.

For a given extrapolation sizeM , we can apply the same procedure to the estimators

derived in Gravel et al. [2011] and Gravel [2014], which are again linear combinations

of the fingerprint.

E Good-Toulmin estimators

In recent work, Chakraborty et al. [2019] used the classic smoothed Good-Toulmin

estimator [Good and Toulmin, 1956, Efron and Thisted, 1976, Orlitsky et al., 2016] in

the context of rare variants prediction. Under the same sampling model assumed by

Zou et al. [2016], this method allows to predict the number of additional variants that

will be observed in M additional samples by using the formula

∆N (M) | X1:N =

{

∑∞
r=1(−1)r+1

(

M
N

)r
fr if M/N ≤ 1

∑∞
r=1(−1)r+1

(

M
N

)r
frP (M,N, r) if M/N > 1

, (E.1)

where

P (M,N, r) = Pr(Binomial(κ(M,N)), θ(M,N) ≥ r) (E.2)

where the smoothing parameters κ and θ can take two different forms: either

κ(M,N) = ⌊0.5 log2((M2/N)/(M/N − 1))⌋ and θ(M,N) = 1/(M/N + 1)
(E.3)

or

κ(M,N) = ⌊0.5 log3((M2/N)/(M/N − 1))⌋ and θ(M,N) = 2/(M/N + 2).
(E.4)

F Additional details and experiments on the TCGA and

MSK-impact dataset

F.1 Details about the experimental setup

The TCGA and the MSK-impact datasets are two publicly available cancer genomics

datasets, containing somatic variants from N = 10,275 and N = 9,091 samples re-

spectively. In both datasets, for each patient-id, we have access to a list of recorded

variants, together with (i) the gene at which the variant was observed, (ii) and the type

of cancer the patient was diagnosed with. The TCGA dataset contains variants from
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For the experiments under changing experimental conditions, i.e. in the setting in

which samples are noisy, we perform further thinning to generate the data. That is to

say, given K variants across samples, each with empirical frequency θ̂k, k = 1, . . . ,K
and for a given choice of T , sampling error perr and sequencing quality λ, we obtain

the associated probability φ that at least T successful reads are obtained at any position

k for any individual n, i.e.

φ(λ, T, perr) :=
∑

t≥T

1

t!
e−λ(1−perr){λ(1− perr)}t.

Then, an individual observation Xn = [xn,1, . . . , xn,K ] is obtained by independently

sampling Bernoulli random variables,

xn,k | θ̂k, φ(λ, T, perr) ∼ Bernoulli(θ̂jφ(λ, T, perr)).

F.2 Prediction across genes with the same experimental conditions

We replicate the setup of Chakraborty et al. [2019] and use the TCGA dataset as a

pilot study and the MSK-impact as a follow-up study. We restrict our attention to the

412 targeted genes in the MSK-impact. For each targeted gene, in a similar way as

to what done for the experiments in Section 6, we create ten different folds of the

data, by sampling (without replacement) for each fold a random subset of 80% of the

data. We train on these folds of the TCGA dataset our BNP predictor, as well as the

Good-Toulmin method used in Chakraborty et al. [2019] and the Jackknife estimators

proposed by Gravel [2014] to predict both (1) the expected number of new variants in a

single new sample in MSK-impact and (2) the total number of new variants we expect

to see in a total cohort of the same size as the MSK-impact (M = 9,091 samples). The

linear programming of Zou et al. [2016] failed to provide reliable prediction, especially

for those genes in which very few observations showed variation (i.e. those genes with

few “active” patients). We therefore we excluded it in our analysis. As shown in

Figure 8, the three methods considered (Good-Toulmin, fourth order Jackknife and our

BNP predictor) performed similarly.

To quantify the predictive performance of the different methods we used the fol-

lowing setup: for gene g, let ZTCGA,g ∈ {0, 1}N×K be the binary matrix of variation

in gene g in the TCGA and similarly ZMSK,g ∈ {0, 1}M×K the corresponding matrix

for the MSK-impact. Let p1,g be, across all patients in the MSK-impact, the average

observed number of new variants displayed by one individual in gene g which are not

displayed by any patient in the TCGA dataset in gene g:

p1,g :=
1

M

∑

m

[

∑

k

1(ZMSK,g
m,k = 1)1

{

∑

n

(

ZTCGA,g
n,k = 0

)

}]

.

Similarly, let pM,g be the total number of new variants displayed in the MSK-impact

that were not present in the TCGA dataset for gene g:

pM,g =
∑

k

{

1

(

∑

m

Zm,k > 0

)

1

(

∑

n

Zn,k = 0

)}

.
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as follows: first a Poisson random variable Yn,k ∼ Poisson(λ) is drawn, and then

Xn,k = 1(Yn,k ≥ T ) is kept. We pick λ = 100 and T = 90 in our experiment. On the

new dataset, again, our predictor outperforms alternative methods (see Figure 11). The

explanation follows the one given in Section 6: our method can adapt to the changing

conditions whereas competing methods cannot.

F.4 Optimal design of experiments

Last, we use prediction under changing conditions to inform the (optimal) design of a

follow up study. We choose again the cost function C(m,λ) = m log λ, to sample m
new observations at depth λ. We fix a budget which allows us to sample at full depth

(λ = 480) only M ′ =M/2 observations, half of the MSK-impact sample size.

We find that the same trade-off observed in Section 6.4 is also present here. Across

genes, we can find a configuration of the sequencing depth (λ = 62) that leads to

a median gain of 6 additional new variants discovered (per gene), that is an average

increase of 10.56% with respect to the number of variants we would have discovered

if we had used the full-sequencing depth available alternative under the same budget

constraint and cost function.

G Additional experimental results: GnomAD data

G.1 Experimental setup

In order to run our experiments, we use data from the gnomAD (genome aggrega-

tion dataset) discovery project [Karczewski et al., 2020], the largest and most com-

prehensive publicly available human genome dataset. This dataset contains 125’748

exomes sequences (i.e. protein-coding regions of the genome), from 8 main popula-

tions (African American, Latino, Ashkenazi Jewish, East Asian, Finnish, Non-Finnish

European, South Asian, Other1). Sample size varies widely across sub populations, e.g.

the “Other” subgroup counts only 3’070 observations, while “Non-Finnish European”

contains 56’885 individuals. Moreover, some of these main populations are further

split into additional sub populations, e.g. “Non-Finnish European” contains the “Bul-

garian”, “Estonian”, “Northern European”, “Southern European”, “Swedish”, “Other

European” sub populations, while the “East Asian” sub population is further split into

the “Korean”, “Japanese” and “Other East Asian” sub populations (see Karczewski

et al. [2020] for additional details). We ran our analysis on all populations and sub

populations.

Because for privacy reasons not all individual sequences are accessible, in order to

run our analysis we generate synthetic data which closely resembles the true data as

follows. For every subpopulation with N individuals and every position j = 1, . . . ,K
in the exome, we have access to the total number of individuals Nj showing variation

at position j. We compute the empirical frequency of variation at site j, θ̂j := Nj/N
for all j = 1, . . . ,K. Our data is then generated by sampling independent Bernoulli

1The “Other” subgroup contains all “individuals were classified as ”other” if they did not unambiguously

cluster with the major populations in a principal component analysis”
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