
EXMA: A Genomics Accelerator for Exact-Matching

Lei Jiang
Indiana University Bloomington

jiang60@iu.edu

Farzaneh Zokaee
Indiana University Bloomington

fzokaee@iu.edu

Abstract—Genomics is the foundation of precision medicine,
global food security and virus surveillance. Exact-match is one of
the most essential operations widely used in almost every step of
genomics such as alignment, assembly, annotation, and compres-
sion. Modern genomics adopts Ferragina-Manzini Index (FM-
Index) augmenting space-efficient Burrows-Wheeler transform
(BWT) with additional data structures to permit ultra-fast exact-
match operations. However, FM-Index is notorious for its poor
spatial locality and random memory access pattern. Prior works
create GPU-, FPGA-, ASIC- and even process-in-memory (PIM)-
based accelerators to boost FM-Index search throughput. Though
they achieve the state-of-the-art FM-Index search throughput,
the same as all prior conventional accelerators, FM-Index PIMs
process only one DNA symbol after each DRAM row activation,
thereby suffering from poor memory bandwidth utilization.
In this paper, we propose a hardware accelerator, EXMA, to

enhance FM-Index search throughput. We first create a novel
EXMA table with a multi-task-learning (MTL)-based index to
process multiple DNA symbols with each DRAM row activation.
We then build an accelerator to search over an EXMA table.
We propose 2-stage scheduling to increase the cache hit rate of
our accelerator. We introduce dynamic page policy to improve
the row buffer hit rate of DRAM main memory. We also
present CHAIN compression to reduce the data structure size
of EXMA tables. Compared to state-of-the-art FM-Index PIMs,
EXMA improves search throughput by 4.9×, and enhances
search throughput per Watt by 4.8×.

Index Terms—Domain-Specific Hardware Accelerator, Ge-
nomics, Exact-Matching

I. INTRODUCTION

Because of the huge advancement of sequencing technolo-
gies such as Illumina [1], PacBio SMRT [2], and Oxford
Nanopore [3], sequencing a entire human genome requires
only < 1 day. The big genomic data has been a cornerstone
to enabling personalized healthcare [4], and ensuring global
food security [5]. Recently, genome sequencing becomes a
powerful tool to fight virus outbreaks, e.g., Ebola [6], Zika [7]
and COVID-19 [8].

However, it is challenging to process and analyze huge
volumes of genomic data generated by high throughput se-
quencers that scale faster than Moore’s Law [9]. For instance,
thousands of USB-drive-size Oxford Nanopore Minion se-
quencers are deployed to monitor virus outbreaks [6]–[8] in the
wild by generating several terabytes data per day. Analyzing
a single genome may take hundreds of CPU hours [10],
[11] even on high-end servers. To overcome the looming
crisis of big genomic data, the application-specific hardware
acceleration has become essential for genomics.

This work was partially supported by the National Science Foundation
(NSF) through awards CCF-1908992 and CCF-1909509.
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Fig. 1. Execution time breakdown of human genome analysis (DynPro
means dynamic programming).

A genome sequencing pipeline [4] sequences organic
genomes, archives genomic data, analyzes genome sequences,
and generates genetic variants that can used for patient treat-
ment. Therefore, the latency of genome sequencing is a matter
of life and death. Read alignment [12], which aligns reads,
i.e., small DNA fragments, against a long genome reference,
is identified as one of the most time-consuming steps [10],
[11], [13]–[15] in genome analysis. Read alignment adopts
the seed-and-extend paradigm [12], [16], and thus includes
two major stages, i.e., seeding and seed extension. During
seeding, parts of each read are mapped to their exactly matched
positions, i.e., seeds, of the long reference by hash tables [10],
[11], [17] or Ferragina-Manzini Index (FM-Index) [12], [16].
Seed extension pieces together a larger sequence with seeds
and edit distance errors, i.e., insertions, deletions (indels) and
substitutions, by dynamic programming [18]–[20].

State-of-the-art read alignment applications such as BWA-
MEM [12], MA [16] and SOAP [21] use FM-Index to build
super-maximal exact matches (SMEMs) during seeding, since
it augments the space-efficient Burrows-Wheeler transform
(BWT) [22] with accessory data structures that permit ultra-
fast exact-match operations. SMEMs generated by FM-Index
guarantee each seed does not overlap other seeds and has the
maximal length that cannot be further extended. Compared to
hash tables, FM-Index reduces not only the number of errors
in output genome mappings but also the durations of seed
extension substantially [23].

Besides read alignment, FM-Index is widely used for exact-
match operations in other time-consuming steps of genome
analysis such as genome assembly [24], annotation [25]
and compression [26]. Figure 1 shows the execution time
breakdown of various genome analysis applications on a
human genome1. On average, FM-Index searches cost 31%
∼ 81% of the execution time of these genome analysis
applications. Since Illumina, Nanopore and PacBio genome
sequencers generate reads having different lengths and error
rates, aligning and assembling these reads require different

1The experimental methodology is elaborated in §V.
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amounts of time for FM-Index searches. The reads produced
by Illumina machines have lower error rates, so an Illumina
dataset invokes FM-Index searches more frequently.

However, FM-Index is notorious for its poor spatial locality
and random memory access pattern [27]. The kernel of con-
ventional FM-Index search is pointer chasing. After activating
one DRAM row, FM-Index processes only one DNA symbol,
thereby greatly decreasing DRAM bandwidth utilization. Al-
though a recent algorithmic work, LISA [28], uses a learned
index [29] to search multiple DNA symbols after each row
activation, the learned index accuracy is low. LISA has to
search many unnecessary entries, and thus achieves only mod-
erate search throughput improvement. Beyond CPUs [12] and
GPUs [21], prior work creates FPGA [13], [30]-, ASIC [31]-
, and even processing-in-memory (PIM) [14], [15]-based de-
signs to accelerate conventional FM-Index searches processing
only one DNA symbol after each row activation. Therefore,
these accelerators are fundamentally limited by the poor
off-chip memory bandwidth utilization. Instead of searching
multiple DNA symbols after each row activation, a recent
DRAM PIM, MEDAL [15], achieves the state-of-the-art search
throughput by enabling DRAM chip-level parallelism, where
each chip can independently activate a partial row to process
a DNA symbol. However, we observe that there are a lot
of conflicts on the DDR4 address bus shared by all chips
in a rank. The shared address bus seriously limits search
throughput of MEDAL.

In this paper, we propose an algorithm and hardware co-
designed accelerator, EXMA, to process EXact-MAtch oper-
ations during genome analysis. Our contributions are summa-
rized as follows:

• An EXMA table with a MTL-based index – We propose
a novel data structure, EXMA table, that can process k
DNA symbols, i.e., a k-mer, in a DRAM row in each
FM-Index search iteration. We further present a multi-task-
learning (MTL)-based index to accelerate searches over an
EXMA table. The MTL-based index trained with multiple k-
mers uses less neural network parameters, but obtains higher
accuracy over learning to search each k-mer independently.

• A hardware accelerator – We build an accelerator to search
an EXMA table with a MTL-based index. We present a 2-
stage scheduling to increase the hit rate of on-chip caches of
our accelerator for the table and its index. We also propose
dynamic page policy to improve the row buffer hit rate
of DRAM main memory. At last, we introduce CHAIN
compression to greatly reduce the data structure size of an
EXMA table.

• Search throughput and throughput per Watt – We eval-
uated and compare EXMA to prior CPU-, GPU-, FPGA-,
ASIC-, and PIM-based FM-Index accelerators. Compared to
the state-of-the-art DRAM PIM MEDAL, EXMA improves
search throughput by 4.9×, and enhances search throughput
per Watt by 4.8×.

reference CT GG AA GG A

CT TG
GC AG

GG AA

GA GG
GG AG

GG AA
reads

sequencing error genetic variation

(a) Read alignment

reference CT GG

seed
CT G

C TGquery1

query0

not seed
(b) seed-&-extend

Fig. 2. Read alignment
II. BACKGROUND

A. Read Alignment
Seed-and-Extend: As one of the bottlenecks in genome

analysis, read alignment may consume hundreds of CPU
hours [10], [11], [13]. During read alignment, DNA reads
generated by various sequencing machines, e.g., Illumina,
PacBio SMRT, and Oxford Nanopore, are mapped to a pre-
existing genome reference, as shown in Figure 2(a). Read
alignment is complicated by the fact that there are genetic
variations in the human population, and sequencing machines
also introduce sequencing errors [32]. The overall variation
of human population has been estimated as 0.1% [9], while
the sequencing error rate of various sequencing machines is
0.2% ∼ 30% [32]. To reduce sequencing errors, a sequencing
machine produces 30 ∼ 50 reads to cover every position in
the genome. As Figure 2(b) shows, read alignment adopts
the seed-and-extend paradigm [12], [16], [24], [33]–[35] to
accommodate sequencing errors and genetic variations. During
seeding, a read is divided into multiple smaller parts that are
aligned against the reference. If a part is exactly matched,
it becomes a seed. The computationally expensive Smith-
Waterman algorithm [10], [11], [13] is invoked only around
seeds to handle sequencing errors and genetic variations.
Exact-Match Operation: The alphabet

∑
of DNA includes

A, C, G and T . Given a genome reference G ∈ ∑∗ of length
|G| and a query Q ∈ ∑∗ of length |Q|, the seeding, aka
exact-match problem, is to find all occurrences of Q in G.
A naı̈ve algorithm of exhausting all possible positions for Q
will take O(|G||Q|) comparisons, which is infeasible for large
genome. It is possible to use a hash table [10], [11], [17]
to support exact-match operations with hundreds of gigabytes
DRAM, but the hash-table-based seeding not only degrades
genome mapping quality but also prolongs seed extension du-
rations [23]. State-of-the-art alignment algorithms [12], [16],
[21] use FM-Index for seeding. To search a query Q over
the reference genome G, FM-Index occupies O(|G|log(|G|))
DRAM space and does O(|Q|) comparisons during a search.
B. FM-Index
1) Burrows-Wheeler Transform

FM-index is built upon BWT [22]. To compute the BWT
of a genome reference G, we can list all its circularly shifted
sequences. For instance, Figure 3(a) shows G = CATAGA$,
where $ indicates the end of the sequence and it is the lexico-
graphically smallest symbol. Circularly shifted sequences of
G = CATAGA$ can be listed as $CATAGA, A$CATAG,
. . ., and CATAGA$, which can be sorted in the lexico-
graphical order to form a Burrows-Wheeler (BW)-matrix.
The last column of the BW-matrix is the BWT of G, i.e.,
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0   6   $  C  A  T  A  G  A
1   5   A  $  C  A  T  A  G
2   3   A  G  A  $  C  A  T
3   1   A  T  A  G  A  $  C
4   0   C  A  T  A  G  A  $
5   4   G  A  $  C  A  T  A
6   2   T  A  G  A  $  C  A

i SA BW matrix

(a) BWT
BWT=AGTC$AA

0  0  0  0  0
1  1  0  0  0
2  1  0  1  0
3  1  0  1  1
4  1  1  1  1
6  2  1  1  1
7  3  1  1  1
5  1  1  1  1

i A C G T

1  4  5  6
A C G T

(b) Occ(s,i) table

(c) Count(s)

//BWT: the genome reference BWT; 
//Q: the query; 
//|Q|: the query length; 
0: low= 0;                high= MAX_OCC; 
1: for (i=|Q|-1; i  0; i--) { 
2:  low  = Count(Q[i])+Occ(Q[i], low);
3:  high = Count(Q[i])+Occ(Q[i], high);
4:  if (low  high) return;
5: }
6: for (i=low; i < high; i++) {
7:  final=SA[i];   // reference positions
8: }

(d) Backward search

query: TAG 
ref: CATAGA

(e) Example

(0,7) (5,6)
Iter 0 for G

Iter 1 for A
(5,6) (2,3)

Iter 2 for T
(2,3) (6,7)

 SA[6]=2
(f) FM-Index

A C G T
1 4 5 6

Bucket-0
BWT: AGTC

Marker

A C G T
2 5 6 7

Bucket-1
BWT: $AA-

Marker

Fig. 3. FM-Index overview: (a) the BWT of a genome reference G = CATAGA$; (b) an Occ(s, i) table; (c) a Count(s) table; (d) backward search; (e)
a search example; and (f) a bucket-based data structure
BWT (G) = AGTC$AA. The sub-sequence ending with $
in each row of the BW-matrix is a suffix of G, which can
be denoted by an integer (SA in Figure 3(a)) recording its
starting position in the reference. For example, ATAGA$ is
SA[3] = 1, which means it starts from the position 1 of G.
2) FM-index

The data structure and search algorithm of FM-Index can
be summarized as:
• Occ and Count. FM-index searches are implemented with

two functions Occ(s, i) and Count(s) over the BWT of
G. As Figure 3(b) exhibits, Occ(s, i) returns the number of
symbol s in the BWT from the position 0 to the position
i − 1, e.g., Occ(C, 5) = 1, which means that there is only
1 C from the position 0 to the position 4 of BWT (G) =
AGTC$AA. Count(s) shown in Figure 3(c) computes the
number of symbols in the BWT that are lexicographically
smaller than the symbol s, e.g., Count(T ) = 6, which indi-
cates that there are 6 symbols in BWT (G) = AGTC$AA
lexicographically smaller than T .

• Backward Search. An exact-match operation is imple-
mented by backward search, whose algorithm can be viewed
in Figure 3(d). The interval (low, high) covers a range
of indices in the BW-matrix where the suffixes have the
same prefix. The pointer low locates the index in the BW-
matrix where the pattern is first found as a prefix, while
the pointer high provides the index after the one where the
pattern is last found. At first, low and high are initialized
to the minimum and maximum indexes of the Occ table
respectively. And then, they iterate from the last symbol in
a query Q to the first. The pointer pos is updated by

Count(Q[i]) +Occ(Q[i], pos) (1)

where Q[i] indicates the ith symbol in the query Q. The
pointer pos can be low or high, as shown from the lines 2
to 3 in Figure 3(d). The computations of low and high
are pointer chasing and thus suffer from poor spatial
locality [14], [15], [30]. Finally, the interval (low, high)
gives the range of indexes in the BW-matrix where the
suffixes have the target query as a prefix. These indexes
are converted to reference genome positions using SA.
Figure 3(e) illustrates an example of searching a query TAG
in the reference G = CATAGA$. Before a search happens,

(low, high) is initialized to (0, 7). In the iteration 0, the last
symbol G is processed, and then (low, high) is updated to
(5, 6). After three iterations, (low, high) eventually equals
(6, 7). By looking up SA[6] = 2 in Figure 3(a), we find that
the query TAG in reference G = CATAGA$ starts from
the position 2.

• Bucket-based Storage. Both Count(s) and Occ(s, i) can
be pre-calculated and stored. However, the storage overhead
of Occ(s, i) is proportional to the genome reference length
|G|, and thus significant. To keep the storage overhead in
check, the Occ(s, i) values are sampled into buckets of
width d shown in Figure 3(f) (d = 4). The Occ(s, i) values
are stored each d positions as markers to reduce the storage
overhead by a factor of d. The omitted Occ(s, i) values
can be reconstructed by summing the previous marker and
the number of symbol s from the remaining positions in
the BWT bucket. To simplify searches, Count(s) values of
each symbol are added to corresponding markers. Markers
and BWT buckets are interleaved to build a FM-Index.

3) Multi-step FM-Index
i AA AC TTTG...
0 
1
2
3

f0 f1 f15f14...

4
5
6

0 0 00...
0 1 00...
1 1 00...
2 1 00...
2 1 01...
2 1 11...
3 1 11...... ... ... ... ...

|G|

Fig. 4. A 2-step table.

During an iteration of the FM-Index
backward search, two memory accesses
for low and high are issued for each
symbol in a query Q. Totally, 2|Q| mem-
ory accesses are required for an exact
match operation of a query. The FM-
Index backward search performance is
seriously limited by random memory ac-
cesses [14], [15], [30], since each access

opens a DRAM row but fetches only 64B. k-step FM-
Index [36] is proposed to reduce the number of memory
accesses to 2|Q|

k by updating a k-mer, i.e., k DNA symbols,
in each search iteration. The idea of k-step FM-Index is to
enlarge the alphabet size from Σ to Σk. For instance, if
k = 2, instead of single DNA symbols, as Figure 4 shows,
the enlarged alphabet includes 16 2-mers: AA, AC, . . ., TT .
We can construct a BWT with the enlarged alphabet and its
corresponding FM-Index to perform k-step backward search
in the same way. The trade-off for k-step FM-Index is the
increase in its size, which is calculated as

F =
�log2(|G|)� · |G| · |Σ|k

8d
+

|G| · �log2(|Σ|k + 1)�
8

(2)
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(a) IP-BWT (b) Example

Iter 1 for TA
[TA,1] 6
[TA,7] 6

(c) Learned Index

[CA, 6]  [GA, 0] [TA,5]...

i

6  T  A  5

0  $  C  3 
1  A  $  4  
2  A  G  1
3  A  T  2
4  C  A  6
5  G  A  0

 

 

[GT,6] 1
 

[G$,0]
Iter 0 for G

query: TAG
  TA, G

6+1=7

 SA[6]=2 IP-BWT

Nk-mer

Fig. 5. LISA: (a) an IP-BWT array; (b) a search example; (c) a learned index.

where k is the number of DNA symbols updated in each search
iteration. The size of multi-step FM-Index exponentially in-
creases with an enlarging k.
4) Learned Indexes for Sequence Analysis

To support multi-step searches with smaller DRAM over-
head, a recent work proposes Learned Indexes for Sequence
Analysis (LISA) [28] consisting of an Index-Paired BWT (IP-
BWT) array and a learned index.
• IP-BWT. In Figure 5(a), each entry of the IP-BWT is a

pair of [k-mer, N ], where k-mer is the first k symbols of
the corresponding BW-matrix row, and N is the row number
of the sequence with the first k and the last |G|−k symbols
swapped in the BW-matrix. For example, if k = 2, the k-
mer of the row 0 of the IP-BWT can be derived from the
row 0 of the BW-matrix, $CATAGA, shown in Figure 3(a)
using only the first 2 symbols $C. By sweeping the first 2
symbols and the other 5 symbols of $CATAGA, we can
have ATAGA$C, which is the row 3 of the BW-matrix. So
the row 0 of the IP-BWT is [$C, 3].

• Backward Search. The backward search of LISA finds the
lower bound position of a [k-mer, N ] pair in the IP-BWT.
Since the IP-BWT is sorted, LISA adopts binary search
for backward searches. As Figure 5(b) shows, to search the
query TAG, we first break it into TA and G, since each
iteration can process a 2-mer. In the first iteration, we start
with G. The padding algorithm [28] of LISA converts G to
G$ for low and GT for high. low and high are initialized
to 0 and 6 respectively. ❶ To search [G$, 0], a binary search
is performed over the IP-BWT. ❷ During the binary search,
G$ is first compared against AT , i.e., the row 3 of the IP-
BWT. ❸ Because G$ > AT , the binary search goes to the
row 5, i.e., GA of the IP-BWT. ❹ Finally, it ends with the
row 4 of the IP-BWT, i.e., CA. ❺ Since G$ > CA, the
new low is calculated as 6 + 1 = 7. high can be computed
in the same way. Each search iteration requires log2(|G|)
comparisons due to binary search.

• Learned Index. To reduce the number of comparisons
during binary searches, LISA adopts a learned index [29],
i.e., a model hierarchy consisting of multiple neural network
models, as shown in Figure 5(c), where mi is the neural
network model i. The learned index enables LISA to do
only one comparison during each iteration in the best case.
To search [G$, 0] by the learned index, we can traverse down
lower-level neural network models based on the output of

the higher-level neural network models. Finally, a leaf neural
network model predicts the position of [G$, 0] in the IP-
BWT. However, if the predicted position does not contain
[G$, 0], a linear search over the IP-BWT starts from the
predicted position to find its actual position.

III. RELATED WORK AND DESIGN MOTIVATION

It is challenging to achieve high-throughput and power-
efficient FM-Index searches by state-of-the-art FM-Index al-
gorithms and accelerators.
A. Algorithm Inefficiency
Intractable Size of k-step FM-Index. We recorded the row

IDs of 200 consecutive 1-step FM-Index search iterations in
Figure 6(a), where 197 different rows are accessed. Because 1-
step FM-Index processes only 1 DNA symbol in each iteration,
in most cases, searching a DNA symbol by 1-step FM-Index
requires one row activation. Prior accelerators [14], [15] for
1-step FM-Index expect no row buffer hit and thus adopt
close-page policy. Though k-step FM-Index can search k DNA
symbols by activating a row, as Figure 6(b) shows, its data
structure size exponentially increases with the step number
k. For instance, 5-step FM-Index costs 105GB, while 6-step
FM-Index occupies 374GB. As a result, 5-step FM-Index
(FM-5) improves search throughput by only 1.21× over 1-
step FM-Index, as shown in Figure 6(d). Further enlarging the
step number of k-step FM-Index (FM-6) decreases its search
throughput improvement, due to more TLB misses.
Weakness of LISA Learned Index. LISA can search

k DNA symbols after each row activation by its IP-BWT.
Moreover, as Figure 6(b) shows, the size of LISA linearly
increases with the step number k. However, the learned
index of LISA suffers from low accuracy and low cache
hit rate. First, the LISA learned index has to index |G| IP-
BWT entries, where |G| is the length of reference genome.
For a human genome, |G| = 3G. When the learned index
of LISA predicts a wrong position, LISA has to linearly
search up to |G| IP-BWT entries. As Figure 6(c) describes,
on average, LISA has to search ∼ 3K extra IP-BWT en-
tries during each iteration, due to the low accuracy of its
learned index. Consequently, compared to 1-step FM-Index,
21-step LISA (LISA-21) improves search throughput by only
2.15× in Figure 6(d). But if LISA has a perfect learned
index (LISA-21P) which always predicts the right position,
compared to 1-step FM-Index, LISA-21P improves search
throughput by 5.1×. Further increasing the step number of
LISA (LISA-32) also introduces more TLB misses, thereby
achieving smaller search throughput improvement. Second,
traversing the learned index’s hierarchical models is also
pointer chasing. The LISA learned index consumes ∼ 1.5GB.
If we assume a perfect cache (100% hit) for LISA-21P
(LISA-21PC), LISA-21PC improves search throughput by
8.53× over 1-step FM-Index.
Algorithmic Takeaways. (1) Implementing k-step search

with moderately enlarged data structure is important for
FM-Index. However, a larger step number, i.e., k, may not
necessarily lead to better search throughput. (2) A more
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Fig. 7. The address bus bottleneck of MEDAL.

accurate learned index reduces linear search overhead to
improve search throughput. (3) A higher cache hit rate of
learned index also improves search throughput by reducing
redundant memory accesses to learned index.
B. Hardware Incapacity
FPGAs and ASICs. Most prior FM-Index hardware ar-

tifacts such as CPUs [12], GPUs [21], FPGAs [13], and
ASICs [37] can accelerate only 1-step FM-Index searches. A
recent FPGA design [30] supports 2-step FM-Index searches,
while k-step LISA is built merely on CPUs. Existing FM-
Index application-specific accelerators including FPGAs [13],
[30], and ASICs [37] can search only 1 or 2 DNA symbols
after each DRAM row activation. Therefore, they cannot fully
exploit the maximal DRAM bandwidth.
Processing-In-Memories. Though recent works [14], [15],

[38], [39] propose PIM accelerators to process FM-Index
searches, they cannot fully utilize the available DRAM band-
width either. Most NVM-based PIMs [14], [38], [39] focus
on processing simple arithmetic computations of FM-Index by
NVM arrays, but ignore optimizing external memory accesses.
For instance, a ReRAM-based FM-Index PIM, FindeR [14],
has only 2.6GB memory arrays, so it still suffers from low
DRAM bandwidth utilization when fetching FM-Index buckets
that cannot fit into its internal arrays from external DRAMs.
Only a DRAM PIM, MEDAL [15], modifies its DRAM
main memory for higher FM-Index search throughput. Instead
of processing multiple DNA symbols during a DRAM row
activation, MEDAL enables chip-level parallelism where each
chip in a rank can independently process a DNA symbol by
opening its partial row. In ideal case, 16 chips in a rank
can enlarge FM-Index search throughput by 16×, and each
chip has only 1/16 row size. However, we find the DDR4
address bus shared by all chips in a rank seriously limits search
throughput of MEDAL. The DDR4 address bus is only 17-
bit wide [40]. During each access, the row activation and the
column access serially pass their addresses via the same 17-
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Fig. 8. A 2-step EXMA table (MAX means the end of increments of a
k-mer; and fi indicates the number of increments of the ith k-mer).

bit bus. As Figure 7 shows, MEDAL can sequentially activate
a 1/16 partial row in chip0∼2. But when activating a 1/16
partial row in chip3, its row address (R-A3) and the column
address of chip0 (C-A0) compete for the same address bus.
The activation in chip3 has to be delayed to CK12. And idle
bubbles appear in the DDR4 data bus. Because of address bus
conflicts, although MEDAL claims a 68× search throughput
improvement over a multi-core CPU baseline, we observe it
improves search throughput by only 11×.

IV. EXMA
We first create a row-buffer-friendly alternative to FM-

Index, EXMA table, to process multiple DNA symbols in each
search iteration. And then, we present a Multi-task-Learning
(MTL)-based index to accelerate searches over an EXMA
table. Compared to LISA learned index, the MTL-based index
is more accurate, although it has less parameters.
A. EXMA Table
Data Structure. The major reason why the learned index

of LISA is not accurate is that it has to index |G| IP-BWT
entries. To reduce the problem size for a learned index, we
propose a novel data structure, EXMA table. In each row of
the Occ table, only one k-mer can increase its value by one.
For instance, in the 2-step Occ table shown in Figure 4, only
“AC” increases its value from 0 to 1 in the row 1. Based on
this observation, as Figure 8 shows, for each k-mer, an EXMA
table stores only the row numbers of the Occ table, where its
value increases. For example, for “AA”, its value increases in
the row 2, 3, 6, and others. We store these row number as
the increments of “AA”. Totally, we have f0 “AA”s, f1 “AC”s,
. . ., and f15 “TT”s in the Occ table, where f0, . . . , f15 are
non-negative integers and

∑15
i=0 fi = |G|. So in the EXMA

table, each 2-mer has fi increments, where 0 ≤ i ≤ 15. We
add a symbol MAX to indicate the end of the increments
of a k-mer, where MAX = |G| + 1. The increments of an
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Fig. 9. MTL-based EXMA index.

EXMA table has the space complexity of O(|G|log(|G|)). For
a 3G-base human genome, the increments occupy 12GB. We
can consecutively store the increments of all k-mers to take
advantage of the row buffer locality. Each k-mer needs a base
to point to its first increment. For instance, the base of “AC”
is f0+1 indicating its first increment is in the position f0+1.
Totally, a k-step EXMA table stores 4k bases, each of which
is related to a k-mer. Even if a k-mer has no increment, e.g.,
“TC”, its base is set to MAX = |G|+1. The bases of a k-step
EXMA table have the space complexity of O(4klog(|G|)).
Backward Search. Each iteration in a backward search

computes Equation 1. The entire Count table costs only
several bytes, so the bottleneck is the Occ table lookups.
To compute Occ(k-mer, pos) in each search iteration, we
compare pos against all increments of the k-mer and find the
first increment larger than pos, where pos can be low or high.
For instance, to compute Occ(AA, 4), we first read the base
of “AA”, which is 0. And then, we initialize a counter and
start a linearly search from the position 0 of “AA” to MAX .
If an increment is smaller than 4, we increase the counter by
1. When 6 is found, we stop, since 6 > 4. At last, the counter
value is 2, i.e., Occ(AA, 4) = 2.
Naı̈ve Adoption of Learned Index. Since all increments

of each k-mer are sorted, similar to LISA, we can adopt
learned index [29] to perform only one comparison to compute
Occ(k-mer, pos) in the best case. We build a learned index
model hierarchy for each k-mer that has > 256 increments.
As Figure 9(a) shows, similar to LISA [28], to build learned
indexes, we use a fixed ratio between the number of parameters
of a learned index model and the number of increments
that need to be indexed. As a result, if a k-mer has more
increments, its learned index model has more parameters.
For instance, the model of “TT” (mTT ) owns more weights
and biases than that of “AA” (mAA), since “TT” has more
increments. To compute Occ(AA, pos) in a search iteration,
we first read all the parameters of mAA, and input only pos
to the model. If the prediction is not correct, we start a linear
search from the predicted position to find the correct position.
However, since an EXMA table have to index totally |G|
increments, the learned index of EXMA does not have higher
accuracy than that of LISA.
Step # of an EXMA Table. We tuned the step number k

of an EXMA table to balance the DRAM overhead and search
throughput. For a genome reference G, the size of increments
in an EXMA table is constant, while the size of bases in
the table is proportional to 4k. Although a small k has few
bases, the search throughput is low. For instance, for a 3G-
base human genome, if k = 2, the bases require only 32-byte.
But each time, only a 2-mer can be processed by a search
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Fig. 11. Increment distributions of 15-mers.

iteration. In contrast, a large k improves the search throughput
but significantly increases the number of bases and thus the
size of an EXMA table. For a human genome, as Figure 10(a)
shows, a 15-step EXMA table (15) costs 29.5GB, while a 16-
step EXMA (16) occupies 41.5GB. Increasing k from 15 to 16
increases 12GB DRAM overhead. As Figure 10(b) describes,
EXMA (EXMA-15) achieves its best search throughput with
15-step. Compared to LISA-21, EXMA-15 degrades search
throughput by 7.3%, since it has a smaller step number.
B. Multi-task-Learning Index for EXMA
MTL-based Index. To more accurately approximate the

cumulative distribution function of increments of each k-
mer in an EXMA table with less parameters, we propose
a Multi-Task-Learning [41]–[43] (MTL)-based index for the
increments of an EXMA table. As Figure 11 shows, the
increments of various k-mers in 15-EXMA exhibit similar
random distributions. Based on Stein’s paradox [44], it is more
accurate to approximate many independent random distribu-
tions using samples from all of them rather than approximating
them separately. The MTL-based index is trained with the
increments of multiple k-mers to obtain superior accuracy
over learning the increments of each k-mer independently.
We adopt the hard-parameter-sharing MTL [43] that shares
a subset of parameters between the learned index models of
k-mers having different numbers of increments. For instance,
as Figure 9(b) shows, “AA” uses the smallest model (mAA) to
index its increments, since it has the fewest increments among
all 2-mers. “TT” has more increments, and thus a larger model
(mTT ) which contains the entire mAA. Besides mAA, mTT

comprises more levels of nodes to index its increments more
accurately. Compared to the naı̈ve learned index, we add more
neurons in the hidden layers of each non-leaf node of a MTL-
based index to accommodate two inputs, i.e., pos and k-mer.
But the size of a MTL-based index is smaller that of the naı̈ve
learned index, since the k-mers share most parameters of a
MTL-based index.
Inference. The MTL-based index of an EXMA table effec-

tively approximates Occ(k-mer, pos) as
p = F (k-mer, pos) ∗ fk-mer (3)
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Fig. 12. Profiling EXMA-15 : (a) increment #; (b) search time breakdown.
where p is the predicted position of pos in the increments
of the k-mer; F (., .) is the neural network model hierarchy
to estimate the probability to observe an increment ≤ pos;
fk-mer is the number of increments of the k-mer, and can be
stored along the k-mer base. After each inference, we read
both p and p + 1 to check whether the prediction is correct.
If not, we start a linear search to find the correct position.
Therefore, the accuracy of a MTL-based index decides search
throughput of FM-Index, but has no impact on the quality of
final DNA mapping. A MTL-based index model hierarchy is
a tree structure. To keep the index size in check, we deploy
simple linear regression models [45] as leaf nodes in the model
hierarchy of the MTL-based index. A linear regression model
contains only one weight and one bias. Each non-leaf node
is a neural network having a fully-connected layer, each of
which contains 10 neurons with sigmoid activation.
Training. The MTL-based index is built for the increments

of p k-mers {Ti}pi=1. For a k-mer {Ti}, its training dataset
includes fi increments {xi,j}fij=1 and their positions {yi,j}fij=1.
The learning function for the k-mer Ti is defined as wT

i x+bi.
Based on [42], [43], [46], we formulate the loss function to
learn the relations between k-mers as

min
W,b

p∑

i=1

βi

fi

fi∑

j=1

l(wT
i xi,j + bi, yi,j) (4)

where W = (w1, . . . ,wp); b = (b1, . . . , bp)
T ; l(·, ·) means

the cross-entropy loss function; βi is the importance of k-
mer {Ti}. We trained the MTL-based index to minimize this
equation by an Adam optimizer. Similar to LISA [28], the
training and testing of a MTL-based index use the same
dataset, an EXMA table of a reference. Training a MTL-based
index for a reference typically takes 1 ∼ 2 days. Once a MTL-
based index is trained, billions of exact match operations can
happen on its reference.
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100
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Fig. 13. Prediction errors of learned and MTL indexes.

MTL-based Index Performance. We profiled the perf-
ormance of EXMA-15 equipped with a naı̈ve learned index
in Figure 12. As Figure 12(a) shows, 2.5E-5% and 4E-6%
of 15-mers have 64K∼256K and >1M increments, respec-
tively. However, searching the 15-mers having 64K∼256K
and >1M increments consumes 36% and 20.5% of the
search time respectively, as shown in Figure 12(b). This
is because the naı̈ve learned index predicts a lot wrong
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Fig. 14. The architecture of EXMA accelerator.
positions, and the linear search overhead is large. The pre-
diction errors of the naı̈ve learned index for the 15-mers
having 64K∼256K (learn-256K) and >1M (learn-1M)
increments are shown in Figure 13. On average, we have
to search 917 and 2133 more increments to find the correct
one for the 15-mers having 64K∼256K and >1M increments
respectively. The MTL-based index greatly improves index
prediction accuracy by simultaneously learning from multiple
15-mers having similar amounts of increments. The MTL-
based index (MTL) further reduces the mean of prediction
errors to 45 and 182 for the 15-mers having 64K∼256K and
>1M increments respectively. As a result, the MTL-based
index (EXMA-15M) improves search throughput by 75% over
LISA-21 with only a half number of parameters, as shown
in Figure 10(b).
C. EXMA Accelerator

We propose a hardware accelerator to process search op-
erations over an EXMA table using a MTL-based index. We
integrate two caches for the bases and the MTL-based index
of an EXMA table to reduce unnecessary DRAM accesses.
And then, we present EXMA scheduling to improve cache
hit rate. We also introduce dynamic page policy to improve
DRAM row buffer hit rate during searching the increments of
an EXMA table. At last, we create CHAIN compression to
reduce the EXMA table size.
1) Accelerator Architecture

The architecture of our EXMA accelerator is shown in
Figure 14. The kernel of the EXMA accelerator is an inference
engine computing predictions of a MTL-based index. We
adopt the state-of-the-art Tangram neural network accelera-
tor [47] as the inference engine. The Tangram accelerator
consists of a number of processing elements (PEs) organized
in a 2D array. Each PE includes a simple ALU for multiply-
accumulate (MAC) operations and a small register file of
32B. A larger SRAM buffer is shared by all PEs. We add
two small caches for the bases and MTL-based index of an
EXMA table. Data fetched and stored by the accelerator goes
through a de/compression unit (§IV-C4) that de/compresses
the bases and increments of an EXMA table. We integrate a
scheduling queue into the EXMA accelerator to implement 2-
stage EXMA scheduling (§IV-C2). At last, the dynamic page
management (§IV-C3) switching between open and close page
policies is implemented in the CPU memory controller.
2) EXMA Scheduling
Poor Locality of MTL-based Index. The conventional

first-ready first-come-first-serve (FR-FCFS) policy is adopted
by almost all accelerators [13]–[15], [30], [37], [38] to
schedule FM-Index searches. However, FR-FCFS significantly
degrades the hit rates of our base cache and index cache.
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We show an example of FR-FCFS in Figure 15, where there
are 4 FM-Index requests in the form of [k-mer, pos], i.e.,
R0 = [TTTT, 998], R1 = [AAAA, 29], R2 = [TTTG, 1]
and R3 = [AAAC, 99]. As Figure 15(a) shows, all bases
are stored consecutively in the lexicographical order of k-
mers. Each base occupies 4-byte. So the bases of AAAA
and AAAC (TTTC and TTTT ) are stored in the same 64-
byte. The MTL-based index used by four requests is shown
in Figure 15(b). To predict the increments of pos 1 and 29
(99 and 998), the MTL index nodes of m0, m1 and m3

(m0, m2 and m18) are required. Assume the base cache can
contain only one 64-byte line, while the index cache can store
three index nodes. Four requests are scheduled by FR-FCFS
in Figure 15(c). When R0 arrives, both caches are empty and
thus have a miss. And then, the bases of “TTTG” and “TTTT”
are stored in the base cache, while the index nodes of m0, m2

and m18 used by R0 are stored in the index cache. For R1,
both caches also suffer from a miss. The bases of “AAAA”
and “AAAC” are fetched to the base cache, while m0, m1 and
m3 used by R1 are installed into the index cache. For R2, the
base cache has a miss, but the index cache has a hit. At last,
both cache have a miss for R3. Totally, four misses happen in
the base cache, while three misses occur in the index cache.
2-Stage Scheduling. We propose a 2-stage EXMA schedul-

ing technique to enhance the hit rates of the base and index
caches. Unlike FR-FCFS scheduling requests based on their
addresses and order, EXMA re-orders the requests according
to their data including k-mers and positions (pos). In the
first stage, EXMA sorts the FM-Index requests based on their
k-mers. By consecutively issuing FM-Index requests in the
lexicographic order of their k-mers, the hit rate of the base
cache increases, since the bases of the k-mers sorted in the
lexicographic order tend to have stronger spatial locality. As
Figure 16(a) shows, the first stage of EXMA scheduling issues
four requests in the order of R1, R3, R2, and R0. The base
cache has two hits and two misses, but the index cache has all
four misses. This is why EXMA needs to do the second stage
of scheduling. During the second stage of EXMA scheduling,
four requests are ranked according to their pos values. Through
consecutively computing inferences of MTL indexes of the

requests having small differences between their pos values,
the index cache can expect more hits. This is because the
smaller difference the pos values of two requests exhibit,
the more likely these two requests use the same MTL index
nodes during searches. As Figure 16(b) shows, the index cache
has two misses and two hits. Totally, the 2-stage EXMA
scheduling has 4 misses and 4 hits.
Implementation. Our 2-stage EXMA scheduling is imple-

mented with the scheduling queue that is a content-addressable
memory (CAM). A CAM can perform sorting operations [48].
The k-mer and pos of a request can be stored in one row of
the CAM. Each DNA symbol in a k-mer is denoted by 3 bits,
since we need to encode $, A, C, T and G. Requests can be
sorted in the CAM based on their k-mers or pos values.
3) Dynamic Page Policy
Dynamic Page Policy. Prior FM-Index accelerators [13]–

[15], [30], [37], [38] adopt close-page policy in their DRAM
main memories. They always pre-charge a DRAM row after
each access, since conventional 1-step FM-Index searches
have little spatial locality, as shown in Figure 6(a). On the
contrary, our EXMA table stores the increments of a k-mer
consecutively in DRAM rows. As the algorithm of FM-Index
backward search (line 2∼3 in Figure 3(d)) indicates, each
iteration issues two requests searching the same k-mer but with
different position values. In a search iteration, we compute
Occ(k-mer, low) and Occ(k-mer, high). Both search the
increments of the same k-mer that are very likely stored in the
same row. So our accelerator asks the CPU memory controller
(MC) to keep the DRAM row open after the first request in
a search iteration is processed, since we expect the second
request can hit in the row buffer. However, the row will be
pre-charged, after the second is processed.
Implementation. The dynamic page policy can be imple-

mented in the CPU MC. When searching a request, if there
is another request pending in the scheduling queue of the
accelerator searches the same k-mer, the CPU MC keeps
the DRAM row open after the ongoing request completes.
Otherwise, it pre-charges that DRAM row. The CPU MC
maintains a register to indicate whether all rows are closed,
and another register to record which row is open for each bank.
4) CHAIN compression
BΔI. The state-of-the-art cache compression technique,

BΔI [49], breaks a 64-byte cache line into eight 8-byte data
sections. As Figure 17(a) shows, to compress the cache line,
BΔI records the first data section (data0) and stores only
the difference (Δi) between each data section (datai) and
data0. To decompress a data section, BΔI simply calculates
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datai = data0+Δi. BΔI typically reduces data size of SPEC-
CPU2006 applications by ∼ 50%. In these applications, data
sections in a cache line are not sorted.
CHAIN. Since both increments and bases of each k-mer are

sorted and stored consecutively in a DRAM row, we believe
they are more compressible than the data of SPEC-CPU2006
applications. Therefore, we propose a novel compression tech-
nique, CHAIN, to more aggressively compress an EXMA
table. As Figure 17(b) describes, to compress the increments
in a 64B memory line, CHAIN first stores the first increment
(incr0). And then, it stores the value difference (Δi) between
two consecutive increments. So we have Δi = incri−incri−1.
To decompress an increment incri in a 64B memory line,
CHAIN simply computes incri = incr0 +

∑i
j=1 Δj . Bases

of an EXMA table can be (de)compressed in the same way.
Implementation. The CHAIN compression and decompres-

sion require only 64-bit adders. Multiple adders concurrently
operate for the CHAIN compression, while the CHAIN de-
compression requires only one adder for accumulations. The
CHAIN decompression slightly prolongs FM-Index search
latency but greatly increases FM-Index search throughput.

5) Putting all together

As Figure 14 describes, ❶ after receiving FM-Index requests
from the CPU, the accelerator stores them in its scheduling
queue and performs the first stage scheduling. ❷ Based on
their k-mers, the accelerator checks whether the bases of
the requests stored in the queue are in the base cache or
not. ❸ If misses occur, DRAM accesses are issued to fetch
the bases. Otherwise, the accelerator does the second stage
scheduling. ❹ The accelerator checks whether the MTL index
nodes required by the requests in the queue are in the index
cache or not, according to both k-mer and pos values. ❺ If
misses happen, DRAM accesses are issued to fetch MTL index
nodes. Otherwise, the inference engine computes with MTL
index nodes. ❻ Until the inference of a leaf node is finished,
the accelerator issues a DRAM access to read the increment
in the predicted position. If the increment is correct, the
computation of Occ(k-mer, pos) is completed. Otherwise, it
linearly searches DRAM rows to find the correct increment. ❼
All DRAM accesses from the EXMA accelerator are managed
by its DMA controller communicating with the CPU MC,
which decides whether to pre-charge opened rows based on
the requests in the scheduling queue of the accelerator.

TABLE I
THE HARDWARE CONFIGURATION OF EXMA.

Component Description Area (mm2) Energy/Op (pJ)
Infer. engine 4 8× 8 PE arrays 0.512 0.25
Sch. queue SRAM, 128-bit×256 0.023 1.9
Index cache SRAM, 32KB, 16-way 0.084 2.62
Base cache eDRAM, 1MB, 8-way 0.667 17.2

De/compress 32 64-bit adders 0.091 0.21
Sch. & row 2-stage sch. & dyn. page 0.035 1.02
DMA ctrl adopted from [52] 0.21 3.42

EXMA accelerator: area 1.62mm2, and leakage 223.8mW

CPU 2.5GHz, 16-core, 40MB LLC, 64 LLC MSHRs
DRAM DDR4-2400, 384GB, 4 channels, 3 DIMMs / channel,

main 4 ranks / DIMM, 2 bank groups / rank, 16 chips / rank,
memory 2 banks / bank group, FR-FCFS, close-page, row size 2KB
system 2 chips / data buffer, tRCD-tCAS -tRP : 16-16-16

6) System Integration
Our EXMA is connected to a CPU processor as a loosely-

coupled non-coherent accelerator [50], [51] by a Network-on-
Chip (NoC). EXMA accesses DRAM via two DMA-dedicated
planes of the NoC, bypassing the cache hierarchy of the CPU.
The EXMA data region must be flushed from the CPU cache
hierarchy before FM-Index searches start. We chose the non-
coherent model [50] for better performance, since the memory
footprint of FM-Index searches is always larger than the CPU
LLC capacity.
D. Design Overhead

The training overhead of a MTL-based index is shown
in the Section of Training in §IV-B. The hardware over-
head of the EXMA accelerator is summarized in Table I.
From [47], we adopted the inference engine, which runs at
800MHz and is synthesized with Synopsys 28nm generic
library. We quantized the model hierarchy of MTL index
with 8-bit without accuracy degradation. A PE has an 8-bit
MAC ALU and a 32B register file. The inference engine
contains 4 8× 8 PE arrays, each of which has a 16KB shared
SRAM buffer and an activation unit. The EXMA accelerator
also includes a scheduling queue (SRAM CAM) with 512
128-bit entries, a 32KB 16-way SRAM index cache, and
a 1MB 8-way eDRAM base cache. We modeled the area
and power of memory components including registers, buffers
and caches by CACTI [53]. We used the same DDR4-2400
DRAM main memory configuration as the recent FM-Index
PIM MEDAL [15]. The EXMA accelerator connects to four
DRAM channels, with a total 384GB capacity. We adopted
DRAMPower [54] to model the power consumption of our
DDR4 main memory.

V. EXPERIMENTAL METHODOLOGY

Simulation. We used gem5-aladdin [55] to model our CPU
baseline and our EXMA accelerator. The configuration of our
CPU baseline is shown in Table I. We used McPAT [56] to
calculate the power consumption of the CPU processor. We
implemented the main memory system using DRAMsim2 [57].
Accelerator Baselines. Besides CPU, we also ran the FM-

Index search kernel on an Nvidia Tesla P100 GPU [58],
a Stratix-V FPGA [30], and a 28nm ASIC design [37].
We compared EXMA against recent FM-Index PIM designs,
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Fig. 18. The search throughput of EXMA (norm. to CPU).

MEDAL [15] and FindeR [14]. We used gem5-gpu [59] to
simulate the GPU, and gem5-aladdin to model the computing
units of FPGA, ASIC and PIMs. All their DRAM main
memories are implemented by DRAMsim2. The power data
of the GPU, FPGA, ASIC and PIMs are adopted from [14],
[15], [30], [37], [58]. The power of DRAM main memories is
also modeled by DRAMPower.
Workloads. To evaluate EXMA, we adopted FM-Index-

based genome analysis applications: BWA-MEM [12] for short
read alignment, MA [16] for long read alignment, SGA [24]
for read assembly, ExactWordMatch [25] for annotation and
a reference-based compression algorithm [26]. SGA for long
reads uses the FM-Index-based error correcting scheme [33]
to reduce errors.
Datasets. For alignment, annotation and compression, we

used human (human, 3G-bp), picea glauca (picea, 20G-bp),
and pinus lambertiana (pinus, 31G-bp) genomes as reference
genomes. To study short reads, we adopted DWGSim [60] to
generate 101-bp short reads with 50× coverage. To evaluate
long reads, we created long reads (with length of 1K-bp) by
PBSIM [61]. The error profiles of reads is summarized in
the format of (name, mismatch%, insertion%, deletion%, total
error%), i.e., (Illumina, 0.18%, 0.01%, 0.01%, 0.2%) [62],
(PacBio, 1.50%, 9.02%, 4.49%, 15.01%), and (ONT 2D,
16.50%, 5.10%, 8.40%, 30.0%) [10].
Schemes. The schemes we studied can be summarized as:

• CPU: We ran LISA-21 for FM-Index searches in genome
applications on our CPU baseline. We also applied BΔI [49]
compression on LISA data for three datasets.

• EXMA-15: EXMA-15 with the MTL-based index and
CHAIN compression is used to replace LISA-21 in CPU.

• EX-acc: We ran EXMA-15 on the EXMA accelerator.
• EX-2stage: 2-stage scheduling is added to EX-acc.
• EXMA: Dynamic page policy is enabled on EX-2stage.

VI. RESULTS AND ANALYSIS
Throughput Comparison against CPU. As Figure 18

shows, we compare FM-Index search throughput of EXMA
and CPU by running the seeding of short read alignment, since
FM-Index searches consume 99% of the seeding time in short
read alignment. Compared to CPU, on average, EXMA-15
improves search throughput by 80%. Our MTL-based index
achieves high accuracy on picea, since the increment distribu-
tions of its different k-mers are more similar to each other.
EX-acc improves search throughput by 7.25× over CPU.
Our EXMA accelerator can support more concurrent search
operations, while CPU has only a limited number of LLC
MSHRs. Compared to CPU, EX-2stage increases search
throughput by 15×. Pinus with EX-2stage has the smallest
throughput improvement. Because the size of the pinus MTL-
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Fig. 19. The speedup of EXMA in genome analysis (norm. to CPU).
based index is the largest among 3 datasets, and thus its index
cache has the lowest hit rate. On average, EXMA increases
search throughput by 23.6× over CPU.
Performance Comparison against CPU. We report and

compare the speedup achieved by EXMA in various genome
applications in Figure 19, where we list 3 sets of “alignment
and assembly” for reads generated by Illumina, Nanopore,
and PacBio respectively. For each application, although EXMA
obtains smaller FM-Index search throughput improvement on
larger datasets (Figure 18), e.g., pinus, EXMA improves the
application performance more significantly on larger datasets.
This is because CPU consumes a larger portion of the execu-
tion time of a genome analysis application to perform FM-
Index searches when processing larger datasets that introduce
more TLB and data cache misses. EXMA achieves larger
performance improvement on alignment and assembly for Illu-
mina, annotation, and compression, since FM-Index searches
dominate the execution of these applications. On average,
EXMA improves the performance of genome applications by
2.5× ∼ 3.2×, when processing various datasets.
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Fig. 20. The energy reduction of EXMA in genome analysis (norm. to
CPU. DRAM-chip/IO indicates the energy of DRAM chips/DDR4 interface.
EXMA-leak/dyn is the static/dynamic energy of the EXMA accelerator).

Energy Comparison against CPU. We compare the energy
reduction obtained by EXMA in various genome applications
in Figure 20, where we list 3 sets of “align(ment) and
asse(mbly)” for reads generated by Illumina, Nanopore, and
PacBio respectively. On average, EXMA reduces total energy
consumption of genome analysis by 61% ∼ 70% when
processing different datasets. The major part of the energy
reduction comes from voiding using the CPU processor dur-
ing FM-Index searches. The more time FM-Index searches
consume in a genome analysis application, the more energy
reduction EXMA can achieve in that application. On average,
the EXMA accelerator consumes only < 3% of the total
energy consumption of various genome applications. The vast
majority of energy consumption is consumed by the DRAM
main memory and the CPU handling non-FM-Index-search
parts in genome analysis applications.
Comparison against Accelerators. We evaluated EXMA

and compare it against various hardware accelerators including
a GPU [58], a FPGA [30], an ASIC [37], and two PIMs [14],
[15] when processing pinus in Table II. Not all accelerators
can run the whole genome applications, so we use “million
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TABLE II
THE COMPARISON OF ACCELERATORS WHEN PROCESSING PINUS .

GPU FPGA [30] ASIC [37] MEDAL [15] FindeR [14] EXMA
Algorithm LISA-21 FM-2 FM-1 FM-1 FM-1 EXMA-15
Mem (GB) 384 384 384 384 384 384
Acc Power (W) 182 11 9.4 0.011 0.28 0.89
Mem Power (W) 72 72 72 72 72 72
Mbase/s 157 96 34 102 93 504
Mbase/s/Watt 0.61 0.6 0.42 1.42 1.28 6.9

base per second” (Mbase/s) as the performance metric to eval-
uate only FM-Index search throughput. Different accelerators
adopt different search algorithms. We implemented LISA-21
on the Tesla P100 GPU. The FPGA design [30] supports FM-2
(conventional 2-step) searches. EXMA performs EXMA-15
searches. The other accelerators can conduct only FM-1
searches. Since the capacity of internal memories of the GPU
(16GB HBM) and the PIM FindeR (2.6GB ReRAM) is smaller
than the pinus data size. We provide the same DDR4 main
memory configuration shown in Table I to all accelerators.
The power values of both the accelerator (Acc Power) and
the DDR4 main memory (Mem Power) are listed in Ta-
ble II. The search performance is decided by two factors, i.e.,
the memory bandwidth utilization, and the number of DNA
symbols searched during each iteration. For the bandwidth
utilization, only EXMA supports dynamic page policy, while
the other use only close page policy. MEDAL can support
chip-level parallelism, but its search throughput is limited by
the address bus. So EXMA achieves the highest bandwidth
utilization. For the number of DNA symbols searched during
each iteration, only the GPU and EXMA can process > 2 DNA
symbols in each iteration. But the low accuracy of learned
index makes the GPU to search many unnecessary IP-BWT
entries to find the correct one. Therefore, EXMA obtains the
best search throughput. The throughput per Watt of the GPU
and FPGA designs is low, since the power consumption of
their computing parts is not trivial. For the PIMs and EXMA,
the power consumption is dominated by the DRAM main
memory. Compared to the PIM MEDAL, EXMA improves
search throughput per Watt by 4.8×.
Bandwidth utilization. Figure 21 shows the comparison of

bandwidth utilization, which is defined as the ratio between
the data capacity fetched from DRAM and total DRAM band-
width. ASIC using FM-1 has only 26% of the total DRAM
bandwidth, since it uses close-page policy and fetches only
64B after activating a 2KB row. GPU implementing LISA-21
fetches entire rows from host memory, so it achieves higher
bandwidth utilization. MEDAL increases bandwidth utilization
by activating each individual chips. However, due to conflicts
on the address bus, MEDAL uses only 67% of the DRAM
bandwidth. In contrast, EXMA obtains 91% bandwidth utiliza-

tion by switching between close-page and open-page policies.
DIMM number. We studied the sensitivity of EXMA and

MEDAL to the DIMM number in Figure 22. With 2 DIMMs,
EXMA improves search throughput by 29% over MEDAL. By
having 3 DIMMs, EXMA linearly scales its throughput up by
40%, since a single EXMA accelerator can maintain all the
DIMMs. However, MEDAL increases its throughput by only
14.5% with 3 DIMMs. Each MEDAL PIM accelerator sits on
a DIMM. More DIMMs bring more ranks. MEDAL suffers
from non-trivial inter-DIMM communication overhead. When
the number of DIMM increases to 4, the search throughput of
neither EXMA nor MEDAL increases significantly. The data
bus (bandwidth utilization) of EXMA is saturated, while the
address bus of MEDAL is saturated.
PE Array number. We show search throughput of EXMA

with a varying number of PE arrays in Figure 22. Two PE
arrays of EXMA already achieve 89% of the search throughput
of the configuration with four PE arrays. This is because the
computations of MTL-based indexes are not intensive. Further
increasing the PE array number to 8 increases search through-
put by only 3% over the configuration with four PE arrays.
So we selected 4 PE arrays in our baseline configuration.
CAM & Cache. We explored search throughput of EXMA

with varying CAM and base cache sizes in Figure 22. We use
a CAM consisting of 256, 512, and 1024 entries to serve as the
scheduling queue of EXMA. A 256-entry CAM cannot fully
satisfy 2-stage scheduling and scheduling for dynamic page
policy, and thus achieves only 77% of search throughput of
the configuration with a 512-entry CAM. Further increasing
the CAM entry number to 1K improves search throughput
by only 2% over the configuration with a 512-entry CAM.
Compared to the index cache, the search throughput is more
sensitive to the capacity of the base cache, since the global
buffer and register file of PE arrays can temporarily store
MTL-based index nodes. We tried 512KB, 1MB and 2MB
for the base cache. The search throughput stops increasing
significantly, when the base cache capacity reaches 1MB. So
we selected a 512-entry CAM and a 1MB base cache in our
baseline configuration.
CHAIN. We show the compression result of CHAIN on

pinus in Figure 23. Since the size of the IP-BWT table of
LISA-21 is proportional to its step number, the total data size
of LISA-21 (original) is 2.2× larger than that of EXMA-15
(original). After BΔI compresses the data size of LISA-21
to 50%, i.e., 152GB. On the contrary, CHAIN compresses the
data size of EXMA-15 to only 25%, i.e., 40GB. We observed
similar compression rates of BΔI and CHAIN on the other
genome datasets.
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VII. CONCLUSION

Though state-of-the-art genome analysis adopts FM-Index
to process exact-matches, FM-Index is notorious of random
memory access patterns. In this paper, we first present a
row-buffer-friendly and highly-compressible EXMA table with
a MTL-based index to process multiple DNA symbols by
activating a DRAM row during each search iteration. And
then, we build a hardware accelerator to process FM-Index
searches on a EXMA table. Compared to the state-of-the-art
FM-Index PIM MEDAL, EXMA improves search throughput
by 4.9×, and enhances search throughput per Watt by 4.8×.
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