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ABSTRACT

Nanopore genome sequencing is the key to enabling personalized

medicine, global food security, and virus surveillance. The state-of-

the-art base-callers adopt deep neural networks (DNNs) to trans-

late electrical signals generated by nanopore sequencers to digital

DNA symbols. A DNN-based base-caller consumes 44.5% of to-

tal execution time of a nanopore sequencing pipeline. However,

it is difficult to quantize a base-caller and build a power-efficient

processing-in-memory (PIM) to run the quantized base-caller. Al-

though conventional network quantization techniques reduce the

computing overhead of a base-caller by replacing floating-point

multiply-accumulations by cheaper fixed-point operations, it sig-

nificantly increases the number of systematic errors that cannot

be corrected by read votes. The power density of prior nonvolatile

memory (NVM)-based PIMs has already exceeded memory thermal

tolerance evenwith active heat sinks, because their power efficiency

is severely limited by analog-to-digital converters (ADC). Finally,

Connectionist Temporal Classification (CTC) decoding and read

voting cost 53.7% of total execution time in a quantized base-caller,

and thus became its new bottleneck.

In this paper, we propose a novel algorithm/architecture co-

designed PIM, Helix, to power-efficiently and accurately accelerate

nanopore base-calling. From algorithm perspective, we present sys-

tematic error aware training to minimize the number of systematic

errors in a quantized base-caller. From architecture perspective,

we propose a low-power SOT-MRAM-based ADC array to pro-

cess analog-to-digital conversion operations and improve power

efficiency of prior DNN PIMs. Moreover, we revised a traditional

NVM-based dot-product engine to accelerate CTC decoding opera-

tions, and create a SOT-MRAM binary comparator array to process

read voting. Compared to state-of-the-art PIMs, Helix improves

base-calling throughput by 6×, throughput per Watt by 11.9× and

per𝑚𝑚2 by 7.5× without degrading base-calling accuracy.

CCS CONCEPTS

• Hardware → Spintronics and magnetic technologies; • Ap-

plied computing→ Computational genomics.
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1 INTRODUCTION

Genome sequencing [8, 21, 34, 35, 37] is a cornerstone for enabling

personalized medicine, global food security, and virus surveillance.

The emerging nanopore genome sequencing technology [15] is

revolutionizing the genome research, industry and market due to

its ability to generate ultra-long DNA fragments, aka long reads,

as well as provide portability. Producing long reads [23] is the key

to improving the quality of de novo assembly, spanning repetitive

genomic regions, and identifying large structural variations. More-

over, portable real-time USB Flash drive size nanopore sequencers,

MinION [15] and SmidgION [24], have demonstrated their power

in tracking genomes of Ebola [12], Zika [6] and COVID-19 [20]

viruses during disease outbreaks.

Compared to conventional short-read Illumina sequencing, nano-

pore sequencing suffers high error rate [15], e.g., 12%. A nanopore

sequencer measures changes in electrical current as organic DNA

fragments pass through its pore. Due to the tiny amplitude of cur-

rents triggered by DNA motions, a nanopore sequencer inevitably

introduces noises into raw electrical signals, thus producing se-

quencing errors. A base-caller translates raw electrical signals to

digital DNA symbols, i.e., [𝐴,𝐶,𝐺,𝑇 ]. In order to reduce sequencing
errors, a sequencing machine generates multiple unique reads [15]

that include a given DNA symbol. These reads are base-called

individually, and then assembled to decide the correct value of

each DNA symbol. The number of unique reads containing a given

DNA symbol is called coverage. Typically, the coverage is between

30 ∼ 50 [29, 33, 36]. To further enhance base-calling accuracy,

recent works [3, 7, 29, 33, 36] use deep neural networks (DNNs)

for base-calling. A DNN-based base-caller, e.g., Guppy [36], Scrap-

pie [29], and Chiron [33], consists of convolutional, recurrent, fully-

connected layers, as well as a Connectionist Temporal Classifica-

tion (CTC) decoder. Although achieving high base-calling accuracy,

prior DNN-based base-callers are slow. For instance, Guppy with its

high base-calling accuracy obtains only 1 million base pairs per sec-

ond (bp/s) on a server-level GPU. At such a speed, it takes 25 hours

for Guppy to base-call a 3G-bp human genome with a 30× coverage.

During virus outbreaks, it is challenging for even a data center

equipped with powerful GPUs to processing base-calling for a large
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Figure 1: The pipeline of nanopore sequencing.

group of presumptive positive patients. As a result, base-calling

becomes the most time-consuming step in a nanopore sequencing

pipeline [30].

Recently, both industry [19] and academia [18, 38] proposed net-

work quantization algorithms to power-efficiently accelerate DNN

inferences without sacrificing inference accuracy by approximating

inputs, weights and activations of a DNN to fixed-point represen-

tations with smaller bit-widths. In this way, computationally ex-

pensive floating-point multiply-accumulates (MACs) in a DNN can

be replaced by fixed-point operations. Besides conventional CPUs

and GPUs, FPGAs and ASICs are adopted to accelerate quantized

DNN inferences in data centers. Moreover, to further overcome

the von Neumann bottleneck in data centers, recent search efforts

use various nonvolatile memory (NVM) technologies including

ReRAM [31, 40], PCM [1] and STT-MRAM [39] to build processing-

in-memory (PIM) accelerators to process quantized DNN inferences

in memory arrays.

However, it is difficult to apply prior network quantization tech-

niques on base-callers and accelerate quantized base-callers by state-

of-the-art NVM PIM architectures. Naïvely quantizing a base-caller

via prior network quantization algorithms substantially increases

the number of systematic errors that cannot be corrected by voting

operations among multiple reads containing the same DNA sym-

bols. Furthermore, state-of-the-art PIM accelerators take advantage

of analog computing to maximize inference throughput of quan-

tized DNNs, but the functioning of their analog computing style

heavily depends on a large number of CMOS analog-to-digital con-

verters (ADCs) that significantly increase their power consumption

and area overhead. For instance, CMOS ADCs cost 58% of power

consumption and 30% of chip area in a typical PIM design [31].

Finally, state-of-the-art NVM PIM designs cannot process some

essential operations of a base-caller such as CTC decoding and

read voting that usually consume >50% of total execution time in a

quantized base-caller.

In this paper, we propose a novel algorithm and architecture

co-designed PIM accelerator, Helix, to efficiently and accurately

process quantized nanopore base-calling. Our contributions are

summarized as:

• Systematic error aware training. We present systematic error

aware training (SEAT) to reduce the number of systematic errors

that cannot corrected by read votes in a quantized base-caller.

We introduce a new loss function to indirectly minimize the edit

distance between a consensus read and its ground truth DNA

sequence. SEAT enables 5-bit quantized base-callers to achieving

their full-precision base-calling accuracy.
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Figure 2: Base-caller comparison.
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• AnADC-free PIMaccelerator.We propose a SpinOrbit Torque

MRAM (SOT-MRAM)-based array architecture to accelerate analog-

to-digital conversion operations without CMOS ADCs. We also

show our SOT-MRAM ADC arrays are resilient to process varia-

tion. We modify a conventional NVM-based dot-product engine

to accelerate CTC decoding operations, and then present a SOT-

MRAM-based binary comparator array to process read voting

operations in a quantized base-caller.

• Base-calling accuracy and throughput. We implemented all

proposed techniques of Helix and compared Helix against state-

of-the-art PIM designs that accelerate quantized DNN inferences.

Experimental results show that, compared to state-of-the-art

PIM accelerators, Helix improves base-calling throughput by

28×, throughput per Watt by 80×, and throughput per𝑚𝑚2 by

27× without degrading accuracy.

2 BACKGROUND

2.1 Nanopore Sequencing Pipeline

As Figure 1 shows, a nanopore sequencing pipeline [30] consisting

of base-calling, overlap finding, assembly, read mapping, and pol-

ishing is employed to generate a digital assembly. The input of a

pipeline is raw electrical signals produced by nanopore sequencers,

e.g., MinION [15] and SmidgION [24]. Base-calling translates raw

signal data to digital DNA symbols, i.e., [𝐴,𝐶,𝐺,𝑇 ]. Overlap find-

ing computes all suffix-prefix matches between each pair of reads,

and then generates an overlap graph, where each node denotes a

read and each edge indicates the suffix-prefix match between two

nodes. The assembly step traverses an overlap graph to construct a

draft assembly. Base-called reads are mapped to the generated draft

assembly by read mapping. Lastly, the final assembly is polished.

2.2 Nanopore Base-calling

DNN-based base-caller. DNNs are adopted to filter noises and

accurately translate raw electric signals to digital DNA symbols.

A DNN-based base-caller typically consists of multiple convolu-

tional (Conv), gated recurrent unit (GRU), and fully-connected (FC)

layers. The convolutional layers recognize local patterns in input

signals, whereas the GRU layers integrate these patterns into base-

calling probabilities. A CTC decoder is used to compute digital

DNA symbols according to the base probabilities. Compared to

the Hidden Markov Model (HMM) [22], a series of DNN-based

base-callers including Metrichor [27], Albacore [26], Flappie [7],

Scrappie [29], Guppy [36], and Chiron [33], significantly improve

base-calling accuracy, as shown in Figure 2. Among all base-callers,

the Oxford Nanopore Technologies official GPU-based base-caller,
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Guppy, achieves the best accuracy and the highest speed. We se-

lected Guppy as our base-caller baseline, and also considered other

DNN-based base-callers in §6. Due to complex DNN structures,

base-callers are generally slow [36]. As a result, base-calling con-

sumes 44.5% [30] of total execution time of a nanopore sequencing

pipeline. The details of base-callers are introduced in §5.2.

Base-calling error. We define the number of base-calling er-

rors as the edit distance between a read predicted by a base-caller

and its ground truth. The edit distance quantifies how dissimilar

two reads are to one another by counting the minimum number of

insertions, deletions, and substitutions required to transform one

into the other. To enhance base-calling accuracy, a base-caller trans-

lates each signal data multiple times and generates multiple reads

containing the same signal data. At the end of base-calling, each

DNA symbol value is decided by votes among all reads containing

its corresponding signal data. As Figure 3 shows, for a DNA symbol,

if base-calling errors randomly occur among reads, the voting result

can still be correct, since most reads have the correct value. This is

a random error. However, for a DNA symbol, if base-calling errors

happen in a systematic way, i.e., all copies of a signal are translated

to the same wrong value, it is impossible to produce the correct

value by read voting. It is a systematic error.

Convolutional layer. As Figure 4a shows, a base-caller includes

multiple convolutional layers to process raw electric signals. The

first convolutional layer receives an 𝐿×𝑁 floating-point signal vec-

tor, where 𝐿 is the input length; and 𝑁 indicates the input channel

number, e.g., 𝐿 = 5 and 𝑁 = 1. Then, it uses a 𝐾 × 𝑁 × 𝑀 weight

filter to convolve with the input vector to generate an output vector

for the next activation layer [33], where 𝐾 is the weight kernel size;

and 𝑀 means the output channel number, e.g., 𝐾 = 2, and 𝑀 = 256.

The 𝐿 × 𝑁 floating-point signal vector is generated by a fixed-size

window sliding on the entire signal data array. After a base-calling

operation, the sliding window moves forward by 𝑇 elements [33],

where𝑇 is the sliding offset, e.g.,𝑇 = 1. The base-caller then works

on a new signal vector. At the end of base-calling, �𝐿/𝑇 � reads

containing the same signal element vote for its value.

GRU Layer. A base-caller uses a set of GRU layers to integrate

patterns produced by convolutional layers into base-calling proba-

bilities. As Figure 4b describes, a GRU layer receives an input 𝑋𝑡

and its output of the last time step 𝐻𝑡−1. And then, it uses two

memory cells, 𝑅𝑡 and 𝑍𝑡 , to reset and update the gate state at the

time step 𝑡 . The output 𝐻𝑡 of a GRU layer can be computed as

𝑍𝑡 = 𝜎 (𝑊𝑧𝑋𝑡 +𝑈𝑧𝐻𝑡−1) + 𝑏𝑧

𝑅𝑡 = 𝜎 (𝑊𝑟𝑋𝑡 +𝑈𝑟𝐻𝑡−1) + 𝑏𝑟

𝐻𝑡 = ∫ (𝑊ℎ𝑋𝑡 +𝑈ℎ (𝑅𝑡 ⊗ 𝐻𝑡−1)) + 𝑏ℎ

𝐻𝑡 = 𝑍𝑡 ⊗ 𝐻𝑡−1 + (1 − 𝑍𝑡 ) ⊗ 𝐻𝑡

(1)

where𝑊𝑧 ,𝑈𝑧 ,𝑊𝑟 ,𝑈𝑟 ,𝑊ℎ and𝑈ℎ are weights for 𝑍𝑡 , 𝑅𝑡 and hidden
state 𝐻𝑡 respectively; 𝑏𝑧 , 𝑏𝑟 and 𝑏ℎ are their biases; 𝜎 is the sigmoid

activation; ∫ indicates the tanh activation; and ⊗ means element-

wise multiplications.

CTC decoder. Since it is difficult for a nanopore sequencer to

precisely control DNAmotions at uniform speed, multiple elements

in the input signal vector may be generated by a single DNA nu-

cleotide [33]. A base-caller adopts a CTC decoder [10, 11] to map an

input signal vector 𝑅 = [𝐼0, 𝐼1, . . . , 𝐼𝐿−1] to a corresponding digital

read 𝐷 = [𝐻0, 𝐻1, . . . , 𝐻𝑍−1], where 𝐿 ≠ 𝑍 ; and there is no align-

ment between 𝑅 and 𝐷 . More specifically, convolutional, GRU and

FC layers provide all symbol probabilities 𝑝𝑡 (𝑎𝑡 |𝑅) for each time

step, where 𝑎𝑡 ∈ [𝐴,𝐶,𝐺,𝑇 ,−] (− indicates blank). The probabili-

ties 𝑝𝑡 (𝑎𝑡 |𝑅) of a symbol of all time steps form a base probability

matrix, as shown in Figure 4c. By looking up the base probability

matrix, a CTC decoder can decide the probability of a read. The

probability of 𝐷 is calculated by

𝑝 (𝐷 |𝑅) =
∑

𝐴∈A𝐷,𝑅

𝐿−1∏

𝑡=0

𝑝𝑡 (𝑎𝑡 |𝑅) (2)

where A𝐷,𝑅 indicates all valid alignments between 𝐷 and 𝑅. The
CTC decoder infers the most likely read by a beam search on the

matrix. As Figure 4d highlights, during a beam search with width

2, the CTC decoder keeps only the symbols with the top-2 largest

probabilities at each time step. At 𝑡 = 0, it keeps 𝐴 and −. At 𝑡 = 1,

the decoder calculates the probabilities for various 2-symbol reads

including 𝑝 (𝐴𝐴) = 0.3 ∗ 0.3 = 0.09, 𝑝 (𝐴−) = 0.15, 𝑝 (−𝐴) = 0.12,
and 𝑝 (−−) = 0.2. Since 𝐴𝐴, 𝐴−, −𝐴 indicate 𝐴, they can be merged

to 𝐴. So 𝑝 (𝐴) = 0.09 + 0.15 + 0.12 = 0.36. The beam search finds 𝐴
as the most likely read.

2.3 Network Quantization

To reduce the computing overhead of DNNs, recent work proposes

network quantization [18, 19, 38] that approximates 32-bit floating-

point inputs, weights and activations to their fixed-point represen-

tations with smaller bit-widths. In this way, the quantized networks

perform quantized inferences by low-cost fixed-point MACs.

2.4 NVM-based Dot-Product Engine

Various NVM-based dot-product engines (e.g., STT-MRAM [39],

PCM [1], ReRAM [31]) are used to improve performance per Watt
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of vector-matrix multiplications by ∼ 103 over conventional CMOS

ASIC designs. One example of a NVM-based dot-product engine is

shown in Figure 5, where the array consists of word-lines (WLs),

bit-lines (BLs) and NVM cells. Each cell on a BL is programmed

into a certain resistance (𝑅), e.g., 𝑐𝑒𝑙𝑙2𝑥 on 𝐵𝐿2 is written to 𝑅2𝑥 ,
where 𝑥 = 0, 1, 2. The cell conductance (𝐺) is the inverse of the

cell resistance ( 1𝑅 ), e.g., 𝑐𝑒𝑙𝑙2𝑥 has a conductance of 𝐺2𝑥 = 1
𝑅2𝑥

. A

voltage (𝑉𝑥 ) can be applied to each WL, so that the current, e.g.,

𝐼2𝑥 , passing through a cell (𝑐𝑒𝑙𝑙2𝑥 ) to the BL is the product of the

voltage and the cell conductance (𝑉𝑥 ·𝐺2𝑥 ). Based on the Kirchhoff’s

law, the total current (e.g., 𝐼2) on a BL (𝐵𝐿2) is the sum of currents

passing through each cell on the BL, so 𝐼2 =
∑2
0 (𝑉𝑥 · 𝐺2𝑥 ). All

BLs in the array produce the current sums simultaneously with

the same voltage inputs along WLs. In this way, in each cycle, a

vector-matrix multiplication between the input vector 𝑉 and the

conductance matrix 𝐺 stored in the array is computed by the dot-

product engine. The conversion between analog and digital signals

is necessary for dot-product engines to communicate with other

digital circuits. A digital-analog converter (DAC) converts digital

inputs into corresponding voltages that are applied to each WL,

while an ADC converts the outputs of a dot-product engine, i.e.,

the BL accumulated currents, to digital values.
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2.5 SOT-MRAM

Spin Orbit Torque MRAM (SOT-MRAM) [13] emerges as one of

the most promising nonvolatile memory alternatives to power hun-

gry SRAM. To record data, SOT-MRAM uses a heavy metal and a

perpendicular Magnetic Tunnel Junction (MTJ) consisting of two

ferromagnetic layers separated by a thin insulator (MgO), as shown

in Figure 6. A reference layer has a fixed magnetic direction, while

the magnetic direction of the free layer can be switched by an in-

plane current flowing through the heavy metal. When two layers

have parallel magnetic direction, the MTJ has low resistance state

(LRS) and indicates “0”. In contrast, if two layers are in anti-parallel

direction, the MTJ has high resistance state (HRS) and represents

“1”. To write a cell, a write word-line (WWL) is first activated. When

the write bit-line (WBL) voltage is larger than the source line (SL)

voltage by a threshold, “1” is written to the cell. On the contrary,

if the WBL voltage is smaller than the SL voltage by a threshold,

“0” is written to the cell. To read a cell, a read word-line (RWL) is

activated, read voltage is applied on the read bit-line (RBL) and the

SL is grounded.

2.6 Integration of NVM Technologies

Most emerging NVM technologies, e.g., SOT-MRAM [13], PCM [1],

ReRAM [31], are generally CMOS-compatible, so they can be in-

tegrated with each other and CMOS logic in the same chip. For

orginal
16-bit

0% 20% 40% 60% 80% 100%
Execution time breakdown

 Align  CTC 
 FC       GRU 
 CNN

Figure 9: Execution time breakdown of Guppy.

instance, a MTJ, i.e., the core of a SOT-MRAM cell, is successfully

fabricated with ReRAM cells in a single chip [41]. Furthermore, the

monolithic 3D stacking technology [28] can also integrate various

NVM technologies including ReRAM and STT-MRAM into a 3D

vertical memory array to offer complementary tradeoffs among

high density, low latency, and long endurance.

3 MOTIVATION

It is challenging to accelerate nanopore base-calling from both algo-

rithm and architecture perspectives. If we naïvely accelerate a base-

caller using prior network quantization techniques, the quantized

base-caller greatly increases the number of systematic errors that

cannot be corrected by read voting. State-of-the-art NVM-based

PIMs suffer from huge power consumption and area overhead of

CMOS ADCs, when executing a quantized base-caller. New bot-

tlenecks, CTC decoding and read voting operations, emerge in a

quantized base-caller, but no prior PIM supports these operations.

3.1 More Systematic Errors in a Quantized

Base-caller

We applied the latest network quantization technique, FQN [18],

on Guppy to improve its base-calling speed. As Figure 7 shows, the

Conv, GRU, FC, and CTC layers of Guppy are quantizedwith various

bit-widths from 4-bit to 32-bit. We executed the quantized Guppy

on an NVIDIA Tesla T4 GPU. Although quantizing Guppy with a

smaller bit-width, e.g., 4-bit, increases base-calling throughput by

2.75×, base-calling accuracy of the quantized Guppy after reads

vote decreases by 4.3%, which dramatically jeopardizes the quality

of final DNA mappings. The base-calling accuracy includes two

parts: one is the read accuracy before reads vote; the other is the

vote accuracy after reads vote. The base-calling accuracy after reads

vote is more important, since read voting operations eliminate all

random errors and leave only systematic errors. Even the 16-bit

quantized Guppy suffers from significant systematic errors that

cannot be corrected by read voting operations.

3.2 Large ADC Overhead in NVM-based

Dot-product Engines

Although prior PIM designs process DNN inferences using ReRAM-

[9, 31], PCM- [1], and STT-MRAM [39]-based dot-product engines,

the power efficiency and scalability of these PIMs are limited by

CMOS ADCs. The in-situ analog arithmetic computing fashion

is the key for a NVM-based dot-product engine [1, 9, 31, 39] to

substantially improving computing throughput of vector-matrix

multiplications. However, as Figure 8 highlights, CMOS ADCs cost

82% ∼ 85% of power consumption and 87% ∼ 91% of area over-

head in a ReRAM- [31], PCM- [1] and STT-MRAM [39]-based dot-

product engine. Although ReRAM, PCM and STT-MRAM has the

cell size of 4𝐹 2, 4𝐹 2, 60𝐹 2, respectively, the power and area of array
in various NVM dot-product engines are similar, since peripheral

Session 5: Best Paper  PACT '20, October 3–7, 2020, Virtual Event, USA

296



(a) Full-precision model training (b) 8-bit quantized model training

Figure 10: The training of full-precision and quantized base-callers with different loss functions.

circuits including row decoders, column multiplexers and sense

amplifiers dominate power consumption and area overhead of a

dot-product engine. As a result, CMOS ADCs cost 58% of power

consumption and 30% of chip area in a typical NVM-based PIM

design [31]. The power density of recent NVM-based PIMs has al-

ready exceeded thememory thermal tolerance evenwith active heat

sinks. Particularly, a 416𝑊 ReRAM-based PIM [9] has the power

density of 842𝑚𝑊 /𝑚𝑚2, much larger than the thermal tolerance

of a ReRAM chip with active heat sinks [42]. CMOS ADCs seri-

ously limit the scalability and power-efficiency of state-of-the-art

NVM-based PIM accelerators.
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Figure 11: Systematic error aware training.

3.3 New Bottlenecks in a Quantized Base-caller

Besidesmore systematic errors, new performance bottlenecks emerge

in a 16-bit quantized Guppy. As Figure 9 shows, CTC decoding op-

erations consume 16.7% of base-calling latency, while read voting

operations cost 37% of base-calling latency in the 16-bit quantized

Guppy. The Conv, GRU and FC layers in the quantized Guppy heav-

ily rely on 16-bit fixed-point vector-matrix multiplications that can

be efficiently executed by a state-of-the-art GPU. Therefore, we

anticipate these Conv, GRU and FC layers can be completed by a

NVM-based PIM with a shorter latency. In contrast, CTC decoding

and read voting operations of a base-caller are not fully optimized

on the GPU. Moreover, no prior PIM design supports CTC decoding

or read voting.

4 HELIX

4.1 Systematic Error Aware Training

To reduce the systematic errors that cannot be corrected by read

votes, we propose Systematic Error Aware Training (SEAT) that

aims to minimize the edit distance between a consensus read and

its ground truth DNA sequence by a novel loss function during the

training of a quantized base-caller.

Baseline training. During the training of a base-caller [7, 36],

the gradient is not computed through the edit distance between the

predicted DNA sequence and its corresponding ground truth, since

the computation of edit distance is non-differentiable. As Figure 11a

shows, the Conv, GRU and FC layers generate the base probability

matrix by an input signal vector 𝑅𝑖 . Instead of edit distances, the

CTC decoder [7, 33] computes the probability of the ground truth

read 𝐺𝑖 , 𝑝 (𝐺𝑖 |𝑅𝑖 ), as the loss function by applying Equation 2 on

the base probability matrix. For a training set D, the weights of the

base-caller are tuned to minimize:

𝑙𝑜𝑠𝑠0 =
∑

(𝐺𝑖 ,𝑅𝑖 ) ∈D

(− ln 𝑝 (𝐺𝑖 |𝑅𝑖 )) (3)

where the more similar to 𝐺𝑖 the predicted read is, the smaller

− ln(𝑝 (𝐺𝑖 |𝑅𝑖 )) is. By making each predicted read more similar to

the ground truth, state-of-the-art base-callers indirectly minimizes

the number of random and systematic errors. However, random

errors can be corrected by read voting operations, whereas only

systematic errors are the “real” errors that degrade the quality of

final DNA mappings.

Systematic-error-aware training. The number of systematic

errors significantly increases in a quantized base-caller. We created

SEAT for the quantized base-caller to minimize the number of

systematic errors. SEAT is shown in Figure 11b. The base-caller uses

multiple input signal data vectors, i.e.,𝑅𝑖−1,𝑅𝑖 , and𝑅𝑖+1, to generate
multiple predicted reads, i.e.,𝑂𝑖−1,𝑂𝑖 , and𝑂𝑖+1, that vote to create a

consensus read𝐶𝑖 . Instead of minimizing the edit distance between

𝐶𝑖 and the ground truth read 𝐺𝑖 , we build a new loss function to

make 𝐶𝑖 more similar to 𝐺𝑖 . For a training set D, the parameters of

the base-caller are tuned to minimize:

𝑙𝑜𝑠𝑠1 =
∑

(𝐺𝑖 ,𝑅𝑖 ) ∈D

[−𝜂 · ln 𝑝 (𝐺𝑖 |𝑅𝑖 )+

(ln 𝑝 (𝐺𝑖 |𝑅𝑖 ) − ln 𝑝 (𝐶𝑖 |𝑅𝑖 ))
2]

(4)

where − ln 𝑝 (𝐺𝑖 |𝑅𝑖 ) makes each predicted read more similar to 𝐺𝑖 ;

(ln 𝑝 (𝐺𝑖 |𝑅𝑖 ) − ln 𝑝 (𝐶𝑖 |𝑅𝑖 ))
2 minimizes the probability difference

between the consensus read 𝐶𝑖 voted by multiple predicted reads

and 𝐺𝑖 ; and 𝜂 ∈ [0, 1] is a floating-point constant regulating the

impact of − ln 𝑝 (𝐺𝑖 |𝑅𝑖 ).
The effect of SEAT. As Figure 10(a) shows, we trained a full-

precision Guppy by Equation 3 (𝑙𝑜𝑠𝑠0) and Equation 4 (𝑙𝑜𝑠𝑠1). If
we set 𝜂 in 𝑙𝑜𝑠𝑠1 to 0, the training cannot converge, since it has

no motivation to improve the accuracy of each read. When we set

𝜂 to 1, compared to 𝑙𝑜𝑠𝑠0, 𝑙𝑜𝑠𝑠1 slows down training convergence.

When the read error rate is high, it is faster to improve the quality

of each read independently. However, two loss functions achieve
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Figure 12: The ADC SOT-MRAM array.
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pulse duration.

similar base-calling accuracy at the end of the training of Guppy.

Full-precision Guppy is powerful enough to minimize the number

of systematic errors even without read voting operations. In con-

trast, the training of 8-bit quantized Guppy with 𝑙𝑜𝑠𝑠0 and 𝑙𝑜𝑠𝑠1 is
shown in Figure 10(b). For the 8-bit quantized Guppy, compared

to 𝑙𝑜𝑠𝑠0, 𝑙𝑜𝑠𝑠1 increases base-calling accuracy by 6% and obtains

the same base-calling accuracy as the full precision model. After

the systematic error reduction capability of Guppy is damaged by

network quantization, 𝑙𝑜𝑠𝑠1 can reduce the systematic errors for

the quantized Guppy.

4.2 ADC-free PIM Accelerator

To reduce area overhead and power consumption of CMOS ADCs

in prior NVM-based PIM accelerators, we propose a SOT-MRAM-

based ADC array to reliably process analog-to-digital conversions.

ADC array. An example of a 2-bit ADC array is shown in Fig-

ure 12. To distinguish 2 bits, an ADC array produces four refer-

ence voltages ([𝑉𝑟𝑒 𝑓 0 − 𝑉𝑟𝑒 𝑓 3] = [3𝑉 , 2.91𝑉 , 2.82𝑉 , 2.73𝑉 ]) by a

MTJ-based reference voltage generator. In the ADC array, all write

word-lines (WWLs) and read word-lines (RWLs) are set to 1, and

source lines (SLs) are set to 0. Input voltages are applied to write

bit-lines (WBLs), and reference voltages are assigned to read bit-

lines (RBLs). As Figure 13 highlights, due to the spin hall effect

and voltage-controlled magnetic anisotropy [17], the write voltages

of SOT-MRAM are different under various RBL voltages. When a

larger voltage is applied on the RBL, the SOT-MRAM write voltage

reduces significantly. There are four cases, i.e., 1000, 1100, 1110 and

1111, when an input voltage writes four cells in the ADC Array. By

a small encoder, these four cases are encoded to 0, 1, 2 and 3. In this

way, the input voltage is converted to a 2-bit digital value. Although

a recent work [4] leverages the MTJ stochasticity to build an 8-bit

ADC by MTJ, the design relies on CMOS counters and registers

that introduce large power consumption and area overhead.

Resolution and frequency. We need to precisely control write

pulses in order to enable a higher resolution for the ADC array.

There is a trade-off between the resolution and frequency of an ADC

array. Figure 14 shows the switching probability of a SOT-MRAM

cell under different voltages and pulse durations. The shorter the
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Table 1: Process variation of SOT-MRAM

Parameter 𝜇 𝜎

WR/RD transistor width (𝑊𝑤𝑡 ) 384𝑛𝑚 10%

WR/RD transistor length (𝐿𝑤𝑡 ) 192𝑛𝑚 10%

Threshold voltage (𝑉𝑡ℎ) 0.2𝑉 10%

MTJ resistance area product (𝑅 · 𝐴) 25Ω · 𝜇𝑚2 8%

Cross section area of MTJ (𝐴) 64𝑛𝑚 × 128𝑛𝑚 5%

Magnetization stability (Δ) 22 27%

pulse duration is, the higher frequency an ADC array can be op-

erated at. With a shorter write duration, a higher write voltage is

required to reliably switch a cell. Under a fixed maximum input

voltage, e.g., 3𝑉 , we can distinguish fewer levels of the input voltage

(fewer bits) in Figure 13. For a higher resolution under 3𝑉 , a smaller

write voltage is preferred. In this case, we have to use a longer write

pulse duration resulting in lower ADC frequency. To balance the

trade-off, we use a 1.56𝑛𝑠 write pulse to switch a SOT-MRAM cell

with 0.05𝑉 . In this way, 32 levels of the input voltage, i.e., 5-bit, can

be distinguished. The ADC array can be operated at 640𝑀𝐻𝑧.
Reliability. SOT-MRAM has no endurance issue, since on av-

erage a cell tolerates 1015 writes [16]. However, process variation

makes a SOT-MRAM ADC array to generate wrong outputs. The

relation between write current 𝐼 and pulse duration 𝑡 can be ap-

proximated as

𝑡 = 𝜏0𝑒
(1− 𝐼

𝐴·𝐽𝑐0
)Δ

(5)

where 𝐴 is the cross sectional area of the MTJ free layer; 𝐽𝑐0 is

the critical current density at zero temperature; Δ is the magne-

tization stability energy height; and 𝜏0 is a fitting constant. Δ is

decided by the MTJ volume. Due to process variation, different

SOT-MRAM cells have different critical parameters including MTJ

size, Δ, write transistor width, length and threshold voltage, thereby
requiring different write pulse durations. We iteratively increase

the write transistor size to guarantee that the worst case cell can

be switched in 1.56𝑛𝑠 by considering process variation. To model

the process variation on SOT-MRAM, we adopted the parameters

shown in Table 1 from [25]. In each iteration, we conducted 10

billion Monte-Carlo simulations with Cadence Spectre to generate

a write duration distribution under a certain SOT-MRAM cell size,

which is dominated by the write transistor size. At last, we show

the relation between the worst case cell write duration and the cell

size in Figure 16. We selected 60𝐹 2 to tolerate process variation and

guarantee the worst case cell write duration is 1.56𝑛𝑠 .
Pipelined dot-product engine. SOT-MRAM ADC arrays can

be easily integrated with prior NVM-based dot-product engines.

As Figure 17 shows, the pipeline of a fixed-point vector-matrix

multiplication includes fetching data, MAC, ADC, shift-&-add, and
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Figure 17: The pipeline of a NVM-based dot-product engine.

storing result. � During the stage of fetching data, 128 1-bit fixed-

point inputs are read from input registers. The 2-bit weights are

stored in a 128×128 array of a NVM-based dot-product engine. � A

NVM-based dot-product engine converts 1-bit fixed-point inputs to

analog voltages by DACs, and performs 1-bit×2-bit matrix-vector

multiplications [31]. � Multiple ADC arrays digitize a MAC result.

The NVM-based dot-product engine generates 128 MAC results

simultaneously. � After encoding, digital values are sent to shift-&-

add units to generate final dot-product results. � At last, the final

dot-product results are written into output registers.
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Figure 18: CTC decoding in a NVM dot-product engine.

4.3 CTC Decoding and Read Vote

CTC decoding. To process CTC beam searches, we rely on a NVM-

based dot-product array. Figure 18 shows how to process a CTC

beam search with width of 2. The top-2 largest probabilities of bases

(i.e.,𝐴1 and −1) at the time step 1 (𝑡 = 1) in the CTC base probability

matrix are written to the diagonal line cells of a NVM-based dot-

product array. Since the search width is 2, each probability of a

base at 𝑡 = 1 is written twice in two different cells in the diagonal

line of the dot-product array. All the other cells in the array are

initialized to 0s. We can input the top-2 largest probabilities of bases

(i.e.,𝐴0 and −0) at 𝑡 = 2 to the corresponding WLs, so that 𝑝 (𝐴0𝐴1),

𝑝 (𝐴0−1), 𝑝 (−0𝐴1), and 𝑝 (−0−1) can be concurrently computed. To

support the merges of probabilities of multiple-base sequences, we

proposed to add a transistor to each BL to connect itself and its

neighboring BL. By closing all transistors (𝑆0 ∼ 𝑆2), we merged

the probabilities of four 2-base sequences. In this way, we have

𝑝 (𝐴) = 𝑝 (𝐴0𝐴1) + 𝑝 (𝐴0−1) + 𝑝 (−0𝐴1) + 𝑝 (−0−1).

Reliability of NVM dot-product arrays. Since each BL has

only one base’s probability, the resistance of the transistor we add

on each BL is too small to introduce errors in CTC decoding. Since

a NVM dot-product array can operate at only 10MHz [31], the extra

transistor does not slow down the dot-product array. However, our

design increases writes to a NVM dot-product array. A ReRAM

cell stands for 1011 writes. A recent ReRAM-based PIM [9] can

reliably run back-propagation for 15.7 years. Compared to back-

propagation, the Conv, GRU, FC layers and a CTC decoder of a

base-caller have much less writes. Based on our estimation, the

NVM dot-product arrays of Helix can reliably work for >20 years
even when running Chiron having the most complex architecture

and the largest number of parameters among all base-callers.
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Figure 19: Read voting.

Read vote. After a base-caller generates multiple consecutively

predicted reads, a read vote is required to produce a consensus read.

A voting example is shown in Figure 19, where there are three reads,

i.e., 𝑅1=“ACTA”, 𝑅2=“CTAG”, and 𝑅3=“GAGAT”. A vote finds the

longest matches between all reads (Figure 19a), aligns reads, and

computes the consensus (Figure 19b). Finding the longest matches

between all reads is the most important operation in a read vote. To

find the longest match between 𝑅1 and 𝑅2, all of their sub-strings
have to be compared. As Figure 19(c) describes, we encoded each

DNA symbol by 3-bit. The string match problem is converted to

comparing two binary vectors. We propose a SOT-MRAM-based

binary comparator array to accelerate binary vector comparisons.
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Figure 20: A binary comparator array.

Binary comparator array. We wrote all sub-strings of 𝑅1, e.g.
“ACTA” and “CTA”, into a SOT-MRAM array shown in Figure 20.

Each sub-string stays in a row of the array. For instance, “ACTA”

is in the first row, while “CTA” is in the second row. We used a

2-cell pair in a row to record each bit in the encoding of a DNA

symbol. 0 is represented by a low resistance state (LRS) cell and

a high resistance state (HRS) cell, while 1 is indicated by a HRS

cell and a LRS cell. Therefore, in Figure 20, 6 cells in the first row

indicate the first “A” of “ACTA”, while 6 cells in the second row

represent the first “C” of “CTA”. We applied the corresponding

voltages representing a sub-string of 𝑅2, e.g., “C”, on the RBLs of

the binary comparator array. Each bit in the encoding of “C” (010) is

represented by two voltages applied on the two RBLs of a 2-cell pair

respectively, i.e., 0 is represented by low and high voltages, while

1 is denoted by high and low voltages. If two DNA symbols are

the same, there is no current accumulated on the SL, e.g., 𝑆𝐿1. The
sense amplifier can sense a current on the SL, e.g., 𝑆𝐿0, if two DNA

symbols are different. Unlike alignment and assembly, aligning

reads during read voting is easy [33], because the order of these

reads is already known and the length of each read is only 10 ∼ 30

bases.

Reliability of binary comparator arrays. To compare two

30-base reads, a binary comparator array requires > 180 cells on

a RWL. We used the 60𝐹 2 cell size to build 256 × 256 arrays as

binary comparators to study process variation. We also adopted

the same process variation parameters in Table 1. We performed

10 billion Monte-Carlo simulations to profile the error rate with

random 30-base read inputs. The error rate for reading a single

Session 5: Best Paper  PACT '20, October 3–7, 2020, Virtual Event, USA

299



Table 2: The area and power of Helix

Component Params Spec Power (𝑚𝑊 ) Area (𝑚𝑚2)

eDRAM bank num 4 20.7 0.083

Buffer capacity 64KB

Bus wire num 384 7 0.09

Router flit size 32 10.5 0.0378

Activation number 2 0.52 0.0006

S+A number 1 0.05 0.00006

MaxPool number 1 0.4 0.0024

OR size 3KB 1.68 0.0032

Total 40.9 0.215

NVM number 8

Array size 128×128 2.4 0.0002

bits/cell 2

S+H number 8×128 0.001 0.00004

S+A number 4 0.2 0.00024

IR size 2KB 1.24 0.0021

OR size 256B 0.23 0.00077

DAC resolution 1 bit 4 0.00017

number 8×128

resolution 8 bits

ADC frequency 1.28 GSps 16 0.0096

number 8

ISAAC Total number 12 289 0.157

ISAAC Tile Total 330 0.372

ISAAC Total tile num 168 55.4W 62.5

SOT-MRAM size 32×32

ADC array frequency 640MHz 0.6 0.00005

number 8×4

voltage ref number 1 0.02 0.00003

encoder number 8×4 0.001 0.000002

Helix Total number 12 122 0.0439

Helix Tile Total 163 0.259

SOT-MRAM size 256×256 1.3W 0.11

binary cmp number 1024

Helix Total tile num 168 25.7W 43.83

cell is low, i.e., 10−11. After comparing 556 million 30-base reads,

on average, our binary comparator array makes 1 mistakes. We

believe this error rate is acceptable for Helix, since assembly, read

mapping, and polishing in the nanopore sequencing pipeline may

correct systematic errors.

4.4 Design Overhead

For the algorithm modification, our systematic error aware training

increased the training time of quantized base-callers by 32% ∼ 52%

(∼ 2 days). For the NVM PIM design, we developed Helix based on a

well-known ReRAMPIM ISAAC [31], because we showed that PCM-

, STT-, and ReRAM-based dot-product engines have similar power

consumption and area overhead (Figure 8). Although recent search

efforts on NVM PIMs propose compilation support [9], data flow

optimization [2], and sparsity reduction [40], all their architectures

are built upon ISAAC [31]. To estimate the hardware overhead of

Helix, we modeled the leakage power, dynamic energy, latency and

area of Helix by NVSim [5] with 32nm process technology. The

Table 3: The architecture of various base-callers

Scrappie Chiron Guppy

Input 300 × 1

Conv

layer # 1 3 1

filter size 11 × 1 1 × 1/3 11 × 1

filter # 96 256 96

strides 5 1 2

output 60 × 96 60 × 256 150 × 96

MAC # 0.063M 570M 0.2736M

Param # 1056 1.9M 0.0018M

RNN

type GRU LSTM GRU

layer # 5 6 5

filter 96 100 256

output 60 × 1025 300 × 100 150 × 40

MAC # 8.1M 45M 36M

Param # 0.14M 0.15M 0.23M

FC

layer # 1 1 1

filter 1025 × 5 100 × 5 40 × 5

output 60 × 5 300 × 5 60 × 5

MAC # 0.31M 0.15M 0.012M

Param # 0.31M 0.15M 0.012M

CTC output 60 × 1 and then merge

Align align multiple reads

Total MAC # 8.47M 615.2M 36.3M

Total Param # 0.45M 2.2M 0.244M

power consumption and area overhead of Helix is described in

Table 2. The NVM dot-product pipeline is operated at 10MHz [31].

8-bit [31], 6-bit [40], and 5-bit [9] ADCs are adopted by prior PIMs.

Although we selected 8-bit ADCs in our baseline, we perform a

sensitivity study on the ADC resolution in §6. To support CTC

decoding, we add a transistor to each BL of a NVM-based dot-

product engine introducing insignificant power and area overhead.

To accelerate read votes, we also integrated 1K 256×256 SOT-MRAM

arrays that cost only 1.3W power and occupy 0.11𝑚𝑚2.

5 EXPERIMENTAL METHODOLOGY

5.1 Simulation and Evaluation

We adopted a NVM dot-product engine simulator from [40] and

modified it to cycle-accurately study the performance, power and

energy consumption of Helix and our baseline NVM-based PIM

accelerator. According to a user-defined accelerator configuration

and a DNN topology description, the simulator generates the perfor-

mance and power details of the accelerator inferring the DNN. We

integrated the ADC array and binary comparator arrays of Helix

into the pipeline and data flow of the simulator. We implemented

our systematic error aware training in base-callers [29, 33, 36] that

are trained on either an NVIDIA Tesla T4 GPU or an Intel Xeon

E5-4655 v4 CPU.

5.2 Base-callers and Datasets

Base-callers. Oxford nanopore technology had updated its pore

type to R9.4. Among all base-callers, only Metrichor [27], Alba-

core [26], Flappie [7], Scrappie [29], Guppy [36], and Chiron [33]

can base-call R9.4 reads. Metrichor is a cloud-based base-caller
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whose details are unknown, while Albacore is deprecated by Ox-

ford nanopore technology. Albacore has been replaced by its GPU-

version successor Guppy andCPU-version successor Flappie. Guppy

and Flappie share the same DNN topology. In this paper, we include

three base-callers: Guppy, Scrappie, and Chiron. Guppy and Chiron

are GPU-based base-callers, while Scrappie can be executed on only

a CPU. We redesigned Scrappie using TensorFlow, so that it can

also be processed by a GPU. The base-caller architectures can be

viewed in Table 3. All base-callers share a similar network architec-

ture including convolutional, recurrent neural network (RNN), and

fully-connected layers. The RNN can be a GRU or Long Short Term

Memory (LSTM) layer. Chiron has the most complex DNN topology.

Particularly, its convolutional layers have the largest number of

weights, while its RNN is a LSTM layer having more recurrent

gates. We assume the beam search width of the CTC decoder in

each base-caller is 10.

Table 4: The dataset for various base-callers.

Sample # of reads Median read length

Phage Lambda 34,383 5,720 bases

E.coli 15,012 5,836 bases

M.tuberculosis 147,594 3,423 bases

Human 10,000 6,154 bases

Datasets. We used R9.4 training datasets [32] including E. coli,

Phage Lambda,M. tuberculosis and human to train base-callers. The

input signal is normalized by subtracting the mean of the entire

read and dividing by the standard deviation. At the beginning of

each training epoch, the dataset was shuffled first and then fed into

the base-caller by batch. Training with this mixed dataset enabled

each base-caller to have better performance both on generality and

base-calling accuracy. The datasets for the evaluation of various

base-callers are summarized in Table 4.

Table 5: The comparison between CPU, GPU and Helix.

Parameter CPU GPU Helix

core # 8 2560 16128

Frequency 3.2GHz 1.5GHz 10MHz

Area 450𝑚𝑚2 515𝑚𝑚2 43.83𝑚𝑚2

TPD 135W 70W 25.7W

Cache 30MB L3 6MB L2 -

Memory 32GB DDR4 16GB GDDR6 32GB NVDIMM

5.3 Schemes

We compared our Helix PIM against the state-of-the-art CPU, GPU

and NVM PIM baselines summarized as:

• CPU. Our CPU baseline is a 3.2GHz Intel Xeon E5-4655 v4 CPU,

which has 8 cores and 30MB last level cache. More details can be

viewed in Table 5.

• GPU. We selected NVIDIA Tesla T4 GPU as our GPU baseline,

since it can support INT8 and INT4 MAC operations. A 1.5GHz

NVIDIA Tesla T4 GPU has 2560 cudaCores and a 16GB GDDR6

main memory.

• ISAAC. We also chose ISAAC [31] as our NVM PIM baseline. We

assumed ISAAC has the same processing throughput of CTC

decoding and read vote without introducing extra power con-

sumption and area overhead. By studying the sensitivity of the

ADC resolution, we compared Helix against two successors of

ISAAC including IMP [9] and SRE [40].

• 16-bit. We quantized base-callers with 16-bit and without sys-

tematic error aware training (SEAT) to achieve no obvious accu-

racy degradation. The quantized base-callers are ran on ISAAC.
• SEAT. We quantized base-callers with 5-bit and SEAT to guarantee

no accuracy loss. The quantized base-callers are ran on ISAAC.
• ADC. We replaced CMOS ADCs of SEAT by our proposed ADC

arrays.

• CTC. We used NVM-based dot-product arrays to process CTC

decoding operations for ADC.
• Helix. We used SOT-MRAM-based binary comparator arrays to

accelerate read votes for CTC. All techniques we proposed in this

paper are accumulated in this scheme.
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Figure 21: SEAT on Guppy.
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6 EVALUATION AND ANALYSIS

6.1 Systematic Error Aware Training

SEAT & quantization. Though naïvely applying the quantization

scheme FQN [18] on base-callers improves base-calling throughput,

the number of systematic errors that cannot be corrected by read

votes greatly increases. After we trained Guppy with our system-

atic error aware training (SEAT), we can reduce the number of

systematic errors. As Figure 21 shows, SEAT makes the quantized

Guppy have no accuracy loss by reducing the number of systematic

errors in its loss function, if it is quantized with ≥ 5-bit. In contrast,

without SEAT, the 16-bit quantized Guppy starts to suffer from a

significant number of systematic errors. In this way, SEAT enables

more aggressive quantization with smaller bit-widths. We show

base-calling accuracy of various quantized base-callers in Figure 22.

We find that with 5-bit, no quantized base-caller suffers from ac-

curacy degradation. However, with smaller bit-widths, e.g., 4-bit,

Scrappie and Guppy suffer from obvious accuracy degradation,

since they have compact architectures and less parameters. The

parameter-rich Chiron does not decrease its base-calling accuracy,

even when quantized with 3-bit.

base-call draft
polished

base-call draft
polished

base-call draft
polished80

85
90

100

Ac
cu

ra
cy

 (%
)

 Guppy  Scrappie  Chiron

5-bit quantizedfull-precision 4-bit quantized

Figure 23: The comparison of base-callers with SEAT.
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Figure 24: The performance, power and area comparison between various accelerators.

Quality of final genome mappings. We fed base-called DNA

reads generated by quantized base-callers with SEAT into the nanopore

sequencing pipeline to evaluate the quality of final DNA mappings.

The accuracy comparison of various DNA mappings generated

by both the full-precision, 4-bit, and 5-bit quantized base-callers

with SEAT is shown in Figure 23, where “base-call” indicates the

accuracy of reads generated by base-callers; “draft” represents the

accuracy of alignment produced by read mapping; and “polished”

means the accuracy of final read mapping after the polishing step.

Compared to full-precision base-callers, the accuracy of reads, cor-

responding draft alignment, and final mapping generated by 5-bit

quantized base-callers with SEAT has no accuracy loss. However, if

we quantize the base-callers with 4-bit, the accuracy of base-called

reads, their alignment and final mapping significantly degrades

even with SEAT. Particularly, the 4-bit quantized Scrappie reduces
the accuracy of the final mapping by 6%. Low quality genome map-

pings substantially increased the probability of misdiagnosis and

false negative testings. Therefore, we used 5-bit to quantize these

base-callers with SEAT.

Performance, power and area. The performance, power and

area comparison between our CPU, GPU, and NVM-based PIM

baselines is shown in Figure 24. Besides the CPU and GPU, we ran the

DNN part of full-precision base-callers with 32-bit weights on our

PIM baseline ISAAC, but left the other parts of base-callers including
CTC decoding and aligning on the GPU without introducing extra

power consumption and area overhead. As Figure 24(a) shows, on

average, ISAAC greatly improves base-calling throughput by 25×

and 2.15× over the CPU and GPU, respectively. Among all base-

callers, Chiron achieves the largest speedup by running its DNN

part on ISAAC, since 95% of the base-calling time is consumed by

its DNN part. ISAAC improves base-calling throughput of Chiron

by 7.16× over GPU. ISAAC also increases base-calling throughput

per Watt and per𝑚𝑚2 by 127% and 25× over GPU respectively, as
shown in Figure 24(b) and 24(c). If we quantize base-callers with

16-bit, 16-bit improves base-calling speed by 6.25% over ISAAC.
On the contrary, if we use SEAT to aggressively quantize base-

callers with 5-bit, SEAT improves base-calling speed by 11.1% over

ISAACwithout accuracy loss. Although the base-calling throughput

improvement achieved by SEAT is not dramatically significant,

SEAT is the key to enabling our power-efficient SOT-MRAM ADC

arrays with lower resolution.

6.2 ADC-free PIM Accelerator

Performance per Watt and per 𝑚𝑚2. Because of SEAT, base-

callers can be quantized with 5-bit without accuracy loss. In this

way, we can use our SOT-MRAM-based ADC arrays with lower
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Figure 25: The comparison against various CMOS ADCs.

resolution to reduce power consumption and area overhead of our

PIM accelerator. After we replace the CMOS ADCs in SEAT by our

SOT-MRAM-based ADC arrays (ADC), the PIM accelerator running

5-bit quantized base-callers can still achieve the same performance

as SEAT, as shown in Figure 24(a). However, ADC significantly re-

duces power consumption and area overhead of the PIM accelera-

tor. As Figure 24(b) shows, on average, ADC improves base-calling

throughput per Watt by 127% over SEAT. Moreover, ADC increases
base-calling throughput per𝑚𝑚2 by 42.9%, as shown in Figure 24(c).

Comparison against ADCs with lower resolution. Recent

works rely on CMOS ADCs with lower resolutions, e.g., 5-bit [9]

and 6-bit [40], to reduce power consumption and area overhead

of NVM-based dot-product engines. The lower resolution a CMOS

ADC achieves, the smaller power consumption and area overhead

it costs. We showed the comparison of performance per Watt and

per𝑚𝑚2 between NVM-based dot-product engines with our ADC

arrays and with low-resolution CMOS ADCs in Figure 25. As Fig-

ure 25(a) shows, on average, our ADC arrays improve base-calling

throughput per Watt by 27.9% and 37.3% over 5-bit and 6-bit CMOS

ADCs respectively. Furthermore, on average, our ADC arrays in-

crease base-calling throughput per𝑚𝑚2 by 21.8% and 21.3% over

5-bit and 6-bit CMOS ADCs respectively, as shown in Figure 25(b).

This is because a 5-bit CMOS ADC has similar area overhead to

that of a 6-bit CMOS ADC.

6.3 CTC Decoding and Read Vote

CTC decoding. After we processed CTC decoding operations by

NVM-based dot-product engines, as Figure 24(a) show, on average,

CTC improves base-calling throughput by 67.8% over ADC. Particu-
larly, CTC boosts base-calling throughput of Chiron to 2.74×. More-

over, CTC also reduces the data transfers between the GPU and our

PIM accelerator. In CTC, CTC decoding operations and DNN infer-

ences share the same NVM-based dot-product engines, so CTC does
not increase power consumption or area overhead. As a result, CTC
improves base-calling throughput per Watt and per𝑚𝑚2 by 64%

and 69% over ADC respectively, as shown in Figure 24(b) and 24(c).
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Figure 26: The comparison w. varying beam search widths.

Sensitivity to beam search width. Figure 26 exhibits the sen-

sitivity of base-calling throughput of CTCwith varying beam search

widths. With an enlarging width of beam search in the CTC decoder,

CTC achieves larger improvement on base-calling throughput per

Watt and per 𝑚𝑚2. This is because, with a larger width of beam

search in the CTC decoder, the execution time of CTC decoding

operations becomes more and more significant. A NVM-based dot-

product engine requires more iterations to process a CTC decoding

operation with larger beam search width.

Read voting. By enabling SOT-MRAM-based binary comparator

arrays to process read votes, we have all proposed techniques for

Helix. On average, Helix improves base-calling throughput by

2.22× over CTC, as shown in Figure 24(a). Helix can concurrently

compare up to 256 reads by only one binary comparator array

during each read voting without introducing significant power

consumption or area overhead. As Figure 24(b) and 24(c) show,

Helix boosts base-calling throughput per Watt and per 𝑚𝑚2 to

3.06× and 3.22× over CTC, respectively. Overall, on average, Helix
achieves 6× base-calling throughput of ISAAC.

7 RELATEDWORK

Nanopore sequencing. Nanopore sequencing [15] emerges as

one of the most promising genome sequencing technologies to

enabling personalized medicine, global food security, and virus

surveillance, because its capability of generating long reads and

good real-time mobility. In a nanopore sequencing pipeline, the step

of base-calling costs 44.5% of total execution time, because of high

computing overhead of state-of-the-art DNN-based base-callers. It

takes more than one day for a server-level GPU to base-call a 3G-bp

human genome with a 30× coverage by a DNN-based base-caller.

This is unacceptably slow particularly during virus outbreaks.

Network quantization. Although prior works propose net-

work quantization [18, 19, 38] to approximate floating-point net-

work parameters by fixed-point representations with lower bit-

widths, naïvely applying prior network quantization on base-callers

greatly increased the number of systematic errors that cannot be

corrected by read votes, thereby substantially degrading the quality

of final genome mappings.

NVMdot-product engines. Although ReRAM- [9, 31, 40], PCM-

[1] , and STT-MRAM [39]-based dot-product engines are proposed

in order to accelerate DNN inferences, their power efficiency and

scalability are limited by power-hungry CMOS ADCs. CMOS ADCs

cost 58% of power consumption and 30% of chip area in a well-

known ReRAM-based PIM [31]. Another recent ReRAM-based

PIM [9] consumes 416𝑊 and has power density of 842𝑚𝑊 /𝑚𝑚2,

much larger than the thermal tolerance of a ReRAM chip with

active heat sinks [42].

Hardware acceleration for genome sequencing. Hardware

specialized acceleration is an effective way to overcome the big

genomic data problem. However, most prior works focus on only

accelerating genome alignment and assembly [34], particular short

read alignment [8, 14, 21, 35, 37, 43]. However, long read alignment

and assembly are not the most-time consuming steps in a nanopore

sequencing pipeline.

8 CONCLUSION

In this paper, we proposed an algorithm/architecture co-designed

PIM accelerator, Helix, to process nanopore base-calling. We pre-

sented systematic error aware training to decrease the bit-width of a

quantized base-caller without increasing the number of systematic

errors that cannot be corrected through read voting operations. We

also create a SOT-MRAM ADC array to accelerate analog-to-digital

conversion operations. Finally, we revised a traditional NVM-based

dot-product engine to accelerate CTC decoding operations, and

then introduced a SOT-MRAM binary comparator array to pro-

cess read voting operations at the end of base-calling. Compared

to state-of-the-art PIM accelerators, Helix improves base-calling

throughput by 6×, throughput per Watt by 11.9×, and per𝑚𝑚2 by

7.5× without degrading base-calling accuracy.
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