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Duality and socle generators for
residual intersections

By David Eisenbud at Berkeley and Bernd Ulrich at West Lafayette

Abstract. We prove duality results for residual intersections that unify and complete
results of van Straten, Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and
Warmt. Suppose that I is an ideal of codimension g in a Gorenstein ring, and J � I is an ideal
with s D g C t generators such that K WD J W I has codimension s. Let I be the image of I
in R WD R=K. In the first part of the paper we prove, among other things, that under suitable
hypotheses on I , the truncated Rees ringR˚ I ˚ � � � ˚ I tC1 is a Gorenstein ring, and that the
modules Iu and I tC1�u are dual to one another via the multiplication pairing into I tC1 Š !R.
In the second part of the paper we study the analogue of residue theory, and prove that, when
R=K is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses
are satisfied, the socle of I tC1=JI t Š !R=K is generated by a Jacobian determinant.

Introduction

There are two important aspects of duality for local complete intersections. We write
T D kŒŒx1; : : : ; xn��=.a1; : : : ; an�d / for a power series ring over a field k modulo an ideal
generated by the regular sequence a1; : : : ; an�d . The first aspect is so central that it has become
a definition: such a ring T is Gorenstein – that is, T Š !T , the canonical module of T . In the
case where T is 0-dimensional, this means that T Š Homk.T; k/ as a T -module; and more
generally that T Š HomA.T; A/ as T -module, where A is a Noether normalization of T .

The second important aspect is the theory of residues, which we think of as the explicit
identification of the canonical module. Suppose that .T;m/ is a reduced, equidimensional com-
plete local k-algebra of dimension d , where k is a perfect field, and let L be its total ring of
quotients. Let A D kŒŒx1; : : : ; xd �� � T be a separable Noether normalization, that is, T is
module finite over A and L is a product of separable field extensions of K, the quotient field
of A. We think of the canonical module !T as HomA.T; A/, which, after tensoring with K,

This paper reports on work begun during the Commutative Algebra Program, 2012-13, at MSRI. We are
grateful to MSRI for providing such an exciting environment, where a chance meeting led to the beginning of the
work described here. Both authors are grateful to the National Science Foundation for partial support. The second
author was also supported as a Fellow of the Simons Foundation.



184 Eisenbud and Ulrich, Duality and socle generators for residual intersections

is generated by the trace map TrL=K . Thus there is a fractional ideal C.T=A/ � L, called the
Dedekind complementary module, such that

HomA.T; A/ D C.T=A/ TrL=K :

The resulting representation of !T as

C.T=A/ dx1 ^ � � � ^ dxd � Ldx1 ^ � � � ^ dxd D L˝T

d̂

�T=k;

where �T=k is the universally finite module of differentials, is independent of the choice of A.
The usual residue map Hdm.!T /! k, which serves to make local duality explicit, is then
defined by representing an element ˛ 2 Hdm.!T / as a Čech class

˛ D

"
fdx1 ^ � � � ^ dxd

x1 � � � xd

#
;

for suitable f 2 C.T=A/ and suitable A, and mapping ˛ to TrL=K.f /.0/. For all this, see for
example Kunz [22, Chapter 10].

A goal of the theory is thus to compute C.T=A/. When T is a complete intersection, the
classical theory says that

C.T=A/ D ��1T;

where � is the Jacobian determinant of T over A. Equivalently, TrT=A is � times a generator
� of HomA.T; A/ Š T .

Thus, if k has characteristic 0 and T is a complete intersection, then �T is the socle
of the ring T WD T=.x1; : : : ; xd /. The well-known argument goes as follows: Since T is
Cohen–Macaulay, the fact that the trace is� times � is preserved if we factor out x1; : : : ; xd to
get a 0-dimensional ring T . Since the maximal ideal mT is nilpotent, the trace TrT =k annihi-
lates mT , but, because the characteristic is 0, the trace is not zero. It follows that TrT =k D ��
generates the socle of Homk.T ; k/ D �T . Thus �T is the socle of T . In Section A we give
the classical proof for complete intersections.

In this paper we provide analogous duality results for residual intersections. We recall
the definition: Let I be an ideal of codimension g in a local Gorenstein ring R, and let s � g.
A residual intersection (or s-residual intersection) of I is a proper ideal K of codimension
at least s that can be written in the form K D J W I , where J � I is an ideal generated by s
elements. We set t D s � g. We will use this notation for the rest of this introduction. We think
of t as measuring how far J is from being a complete intersection. The case when I is unmixed
and t D 0 is the case of linkage ([27]). The class of residual intersections contains the ideals of
maximal minors of sufficiently general matrices and many other examples. Our general results
have technical hypotheses, so we begin with an example.

Duality. Suppose that I is generated by a regular sequence of length g in a local
Gorenstein ringR with infinite residue field, and J is generated by s D gCt < dimR elements
chosen generally inside the maximal ideal times I . The ideal K D J W I is then an s-residual
intersection (even a geometric s-residual intersection, as defined in Section 1). We write I for
the image of I in R WD R=K. By a result of Huneke and Ulrich [20] (see Theorem 3.1), the
canonical module of R is I tC1; in particular, when t D 0, the truncated Rees algebra R˚ I is
Gorenstein. We show for arbitrary t that the truncated Rees algebra R˚ I ˚ I 2 ˚ � � � ˚ I tC1

is Gorenstein, which implies that the complementary intermediate powers Iu and I tC1�u
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are dual to each other via the multiplication pairing into I tC1. We also prove corresponding
results for the truncated associated graded ring R=I ˚ I=I 2 ˚ � � � ˚ I t=I tC1 (Theorem 2.5
and Proposition 5.2).

Residues. To illustrate the second main result of this paper, again in the case where I
is a complete intersection, we suppose in addition to the above that R is a power series ring in
d variables xi over a field of characteristic 0. Let A D kŒŒxsC1; : : : ; xd �� be a general Noether
normalization of R. Write J D .a1; : : : ; as/ and set

� D det

0B@
àa1

àx1
: : : àa1

àxs
:::

: : :
:::

àas

àx1
: : : àas

àxs

1CA :
We strengthen the statement !R Š I

tC1 by proving in Theorem 7.4 that C.R=A/ D ��1I tC1

if R is reduced. This gives an explicit description of the complementary module of residual
intersections.

As an application, in Corollary 7.6, we give a formula for the complementary module of
any reduced ring defined by an ideal of maximal minors of generic codimension.

We also apply Theorem 7.4 to certain 0-dimensional residual intersections, with the goal
of identifying the socles of their canonical modules as Jacobian determinants. For example,
when R=K is 0-dimensional, we obtain a formula for the socle of I tC1=JI t Š !R=K : it is
generated by the image of an element of the form �C p, where p 2 .a1; : : : ; as�1/ (Theo-
rem 7.8). In general, � itself is not even in I tC1, but, when it is, it generates the socle.

We show that � 2 I tC1 when the generators aj of J are forms of the same degree and
I is radical (Theorem 7.10). In Proposition 7.12 we prove this without the radical condition
when I is principal – already a nontrivial computation. In general, we do not know whether the
radical condition is necessary.

When the generators of J have different degrees, the ideal �R depends on the choice of
generators, and in this case � may not be in I tC1 (Example 7.14). We show that this can even
happen when J is generated by the partial derivatives of a quasi-homogeneous polynomial, and
thus have the same degrees with respect to an appropriate weighting (Example 7.15).

Our results are much more general than the setting above. We assume thatR is Gorenstein
and that I satisfies two sorts of conditions: one on the local numbers of generators and the
other that depth.R=Iu/ � dimR=I � uC 1 for some range of values of u. We assume that
K D J W I is an s-residual intersection of I and we set t D s � codim I .

Our main results on duality are Theorems 2.2 and 2.6, which unify and complete a num-
ber of results of Huneke, Ulrich and van Straten. Theorem 2.2 says that

Iu

JIu�1
is dual to

I tC1�u

JI t�u
for u D 0; : : : ; t C 1,

where, in the case u D 0, we interpret JI�1 as J W I . In fact, we show that the duality is given
in the most natural way, by multiplication,

Iu

JIu�1
˝
I tC1�u

JI t�u
mult
��!

I tC1

JI t
Š !R=K :

On the other hand, Example 6.4 shows that the duality statement above can hold even when the
multiplication maps are not perfect pairings.
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Theorem 2.6 gives a deformation condition under which such dualities hold that is in
many cases more general than the condition of Theorem 2.2. In Section 6 we present examples
showing the necessity of some of the hypotheses.

In Theorems 7.4, 7.8, and 7.10 we prove theorems about C.R=A/ and the socle extending
the results described above to the more general case as well.

History. Residual intersections have a long history in Algebraic Geometry, perhaps be-
ginning with Chasles’ Theorem that there are 3,264 conics in the complex projective plane that
are tangent to five general conics [8]. The theory became part of commutative algebra with the
work of Artin and Nagata [1]. They asserted the Cohen–Macaulay property of residual inter-
sections, but stated it more generally than it is true. The error was corrected by Huneke [19],
and a series of papers, culminating in [31], gave stronger and stronger results in this direction
(see also [7, 13, 14]).

The first duality results for residual intersections were proven by Peskine and Szpiro [27]
in the case t D 0, the theory of liaison: if R is a local Gorenstein ring and J ¨ I are ideals
of the same codimension with R=I Cohen–Macaulay and J generated by a regular sequence,
then I=J is the canonical module ofR D R=K D R=.J W I /. The formula for C.R=A/ in this
case can be found in [23, 3.5 (a)].

For t > 0, such results were considered in two separate lines of work, starting about 25
years ago. In one, Duco van Straten showed that if J is 1-dimensional and t D 1, then the
module I=J is self-dual. Around the same time work of Huneke and Ulrich [20], generalizing
the corresponding statement in the theory of linkage [27], showed that, for any s and t , under
suitable hypotheses on I , the modules R=K and I tC1=JI t are dual to one another; in partic-
ular, I tC1=JI t Š !R=K . The paper [7] gives another version of the duality, to which we will
return in Section 6.

Comparing our Theorem 2.2, we see that the result of Huneke and Ulrich is the case
u D 0, while the result of van Straten is included in our result for t D 1.

Van Straten’s result, cited above, appears with geometric applications in the papers of
van Straten and Warmt [32, 33]. Sernesi [30] gives further geometric applications.

Conjectures of van Straten and Warmt. The paper of van Straten and Warmt contains
interesting conjectures, which we were able to settle in much generalized form. The conjectures
[32, Conjecture 7.1 (1)–(3)] are essentially as follows:

Conjecture 0.1. Suppose that J is an ideal of codimension g and dimension 1, with
s D g C 1 D d generators, in a power series ring R D kŒŒx1; : : : ; xd �� over a field k of charac-
teristic 0, and I is the unmixed part of J , so that I=J has finite length. (Note that in this case
van Straten’s original result shows that I=J is self-dual.) If I is a radical ideal and I ¤ J , then:

(1) The module I=J is self-dual by a pairing that factors through the multiplication map
I=J ˝ I=J ! I 2=JI .

(2) The R-module I 2=JI has a 1-dimensional socle.

(3) The socle of I 2=JI is generated by the Jacobian determinant of the generators of J .

Van Straten and Warmt were particularly interested in the case when J is generated by
the partial derivatives of a given power series f .
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In our terms (see Section 1), the ideal I in the conjecture satisfies the Strong Hypo-
thesis (Gs because it is reduced and the depth conditions because it is Cohen–Macaulay of
dimension 1). We give a proof of Conjecture (1) (Theorem 2.2) in a more general setting.
Conjecture (2) was in fact already known [31, 2.9], also in a more general setting.

As stated, Conjecture (3) is false, even for the case when the ideal J is generated by
the partial derivatives of a quasi-homogeneous polynomial, and we give a counter-example in
Example 7.15. However, we prove Conjecture (3) in Theorem 7.10, again in a more general
setting, under the additional hypothesis that J is generated by homogeneous polynomials of
the same degree.

Acknowledgement. The results of the present paper owe a great deal to the program
Macaulay2 [36], which enabled us to determine the limits of validity of many of the assertions
below; some of those computations are represented by examples in the current paper. We are
also grateful to Craig Huneke, whose work on residual intersections inspired and guided the
whole subject.

1. Definitions, hypotheses and notation

Let I be an ideal of codimension g in a Noetherian local ring R. Recall that a proper
ideal of the form K D J W I is called an s-residual intersection (of I with respect to J ), for
some integer s � g, if J � I is generated by s elements andK has codimension at least s. The
ideal K is said to be a geometric s-residual intersection if in addition codim.I CK/ � s C 1.

In order for an s-residual intersection of I to exist, it is clearly necessary that I be gen-
erated by s elements locally at every prime of codimension < s, and for a geometric s-residual
intersection to exist, this condition must also be satisfied at primes of codimension s con-
taining I . For inductive purposes, the proofs of most results in the theory require a slightly
stronger hypothesis: The ideal I is said to satisfy the condition Gs if �.IP / � codimP for all
prime ideals P � I with codimP � s � 1.

For example, the homogeneous ideal of any smooth variety in Pn satisfies GnC1.
The significance of the condition Gs is in the following result, which allows an induction

that we will use often.

Lemma 1.1. LetR be a Noetherian local ring with infinite residue field, and let I � R
be an ideal that satisfies Gs . Let a ¨ I be any ideal with codim.a W I / � s. Let a1; : : : ; as
be general elements of a, and set Ju D .a1; : : : ; au/; Ku D Ju W I . Write Ru D R=Ku. For
g � u � s the idealKu is a u-residual intersection, and this residual intersection is geometric
if u < s.

Here, and in the rest of the paper, the notion of a set of general elements may be defined as
follows. Let R be a Noetherian local ring with infinite residue field k, and let a be an ideal. We
say that the elements a1; : : : ; as � a are general in a if the image of the point .a1; : : : ; as/ 2 as

in .k ˝R a/s is general.

Proof. The result follows from the theory of basic elements [10]. For a detailed treat-
ment, see [31, Section 1], and in particular [31, 1.5 (ii)–(iii)].
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Now suppose in addition thatR is Gorenstein. We say that I satisfies the Standard Hypo-
thesis (respectively Weak or Strong Hypothesis) with respect to s D g C t if I satisfiesGs and,
in addition, the Depth Conditions

depth.R=I j / � dim.R=I / � j C 1

for j � t (respectively j � t � 1 or j � t C 1).
For example, if t D 1, then the Standard Hypothesis is equivalent to the condition that

R=I is Cohen–Macaulay and I is generically a complete intersection. Also note that if s is
equal to dimR, then the Strong Hypothesis is the same as the weak hypothesis, since the extra
requirement is that the depth of R=I tC1 is � 0.

Assuming that the ideal I satisfies Gs , the Strong Hypothesis holds, for example, if the
Koszul homology modules Hi .I / of some generating sequence of I are Cohen–Macaulay in
the range 0 � i � t (see [31, 2.10]); in particular it holds for strongly Cohen–Macaulay ideals;
thus it is satisfied by Cohen–Macaulay almost complete intersection ideals, Cohen–Macaulay
ideals of deviation 2 (see [2, p. 259]), and ideals in the linkage class of a complete intersec-
tion (see [18, 1.11]). Standard examples include perfect ideals of codimension 2 and perfect
Gorenstein ideals of codimension 3 (see [34, proof of the only theorem]).

The ideal of the Veronese surface in P5 satisfies the Standard hypothesis with s D 4 and
the Weak Hypothesis with s D 5 – this is the ideal that appears in the five conics problem of
Chasles [8]. (It also satisfies “sliding depth” for the Koszul homology, so the general residual
intersectionK WD .a1; : : : ; a5/ W I is unmixed – see [17, 2.3 and 3.3]. By a Bertini argument as
in the proof of Proposition 3.4, the idealK is the homogeneous ideal of a set of reduced points.)

2. Duality results

We will assume throughout this section that I is an ideal of codimension g in the local
Gorenstein ringR, andK D J W I is an s-residual intersection for some s � g. We set t D s�g.
When we refer to the Standard, Weak, or Strong Hypothesis, it will always be with respect to s.

In this section we give precise statements of our main duality results. Proofs will be found
in Section 5.

Huneke gave a simple proof of van Straten’s t D 1 result in a more general context. We
include it with his gracious permission:

Theorem 2.1. Suppose that the ring R=I is Cohen–Macaulay of codimension g and
J D .a1; : : : ; agC1/� I is such thatK D J W I has codimension gC1. Then theR=K-module
I=J is self-dual; that is, I=J Š HomR.I=J; !R=K/:

Assuming the Standard Hypothesis allows us to extend the result to higher values of t ,
and to prove a statement that is stronger even in the case t D 1:

Theorem 2.2. Under the Standard Hypothesis, Theorem 4.1 applies to give an injective
map �t W I tC1=JI t ! !R=K . For 1 � u � t , both the multiplication map

m.I; u; t/ W Iu=JIu�1 ˝ I tC1�u=JI t�u
mult
��! I tC1=JI t

and the composition �t ım.I; u; t/ are perfect pairings.
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If in addition I satisfies the Strong Hypothesis, then the duality of Theorem 2.2 holds in
the full range 0 � u � tC1. Here, when u D 0, we interpret Iu=JIu�1 asR=.J W I / D R=K,
and the statement is simply that I tC1=JI t Š !R=K and R=K Š End.!R=K/, which holds by
Theorem 3.1.

Note that the hypothesis of Theorem 2.1 does not include the condition Gs; on the other
hand, Example 6.4 shows that the duality asserted in Theorem 2.1 does not necessarily come
from the multiplication map as in Theorem 2.2. Examples suggest that the weaker result should
also be true with a condition weaker than Gs:

Conjecture 2.3. The duality

Iu=JIu�1 Š HomR.I tC1�u=JI t�u; !R=K/

holds for 1 � u � t ifK D J W I is an s-residual intersection and I satisfies a weakened Stan-
dard Hypothesis with Gs replaced by Gs�1.

The conjecture is immediate in the case where R is regular and g D 1: then I D .G/
is principal, and J D .GF /, where F is a regular sequence (of length s). In this case the
pairings all reduce to the usual isomorphisms R=.F /! Hom.R=.F /;R=.F // induced by
multiplication. We will prove the conjecture under an additional assumption in Corollary 2.7
of Theorem 2.6 below.

The condition Gs in the Strong, Standard, and Weak Hypotheses is used in the induc-
tive proof of many theorems about residual intersections, but it is not clear why it should be
necessary. Recent work [7, 13, 14] has aimed at removing this hypothesis, and has had success
in the case when I is strongly Cohen–Macaulay. In particular, Chardin, Naéliton and Tran [7]
have proved an analogue of Theorem 2.2 in this setting, replacing the modules Iu=JIu�1 with
the modules Symu.I=J /. In Section 6 we will see that this statement does not extend too far
beyond the strongly Cohen–Macaulay case; see Examples 6.6 and 6.7.

Under the Strong Hypothesis we can combine all the dualities of Theorem 2.2 in the
statement that a certain quotient of the Rees algebra RŒIz� of I is Gorenstein:

Corollary 2.4. Under the Strong Hypothesis, the following ring is Gorenstein:

R WD R=K ˚ I=J ˚ I 2=JI ˚ � � � ˚ I tC1=JI t D RŒIz�=.K; J z; .Iz/tC2/:

As an application of Theorem 2.2 and Corollary 2.4 we will deduce:

Theorem 2.5. In addition to the Strong Hypothesis, suppose that K D J W I is a geo-
metric s-residual intersection.

(1) Let I � R WD R=K be the image of I . The truncated Rees algebra

R˚ I ˚ I 2 ˚ � � � ˚ I tC1

is Gorenstein. In particular, I tC1 Š !R and the multiplication maps

Iu ˝ I tC1�u ! I tC1

are perfect pairings.

(2) Let I 0 � R0 WD R=.K C I tC1/ be the image of I . The associated graded ring grI 0.R
0/

is Gorenstein.
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Sometimes the duality statements of Theorem 2.2 hold only for a restricted range of
values of u. Our most general result involves another definition: We say that a pair . QR; QI /
consisting of a Noetherian local ring QR and an ideal QI is a deformation of the pair .R; I / if QR
contains a regular sequence x1; : : : ; xn whose image in QR= QI is also a regular sequence such
that R is isomorphic to QR=.x1; : : : ; xn/ and I D QIR.

Theorem 2.6. Suppose that .R; I / has a deformation . QR; QI / such that QI satisfies the
condition Gs and the Koszul homology Hi . QI / is Cohen–Macaulay for 0 � i � t D s � g.
Assume further that I satisfies the condition GgCv for some t�1

2
� v � t . Let QJ be a lift-

ing of J to an ideal with s generators contained in QI . The ideal QK D QJ W QI is an s-residual
intersection of QI . Our hypothesis implies that Theorem 4.1 holds with QK in place of K and
gives an isomorphism �t . The inverse � W ! QR= QK ! QI tC1= QJ QI t of �t induces a map

�0 W !R=K ! I tC1=JI t :

We have:

(1) �0 is a surjection, and is an isomorphism if K is a geometric s-residual intersection.

(2) There are perfect pairings

m W Iu=JIu�1 ˝ I tC1�u=JI t�u ! !R=K

for
t � v � u � v C 1

or, equivalently, for
t C 1

2
� " � u �

t C 1

2
C ";

where " D v � t�1
2

.

(3) If the perfect pairing m is chosen as in Figure 1 in the proof, then �0 ım is the map
induced by multiplication Iu ˝ I tC1�u ! I tC1.

Under the hypotheses of Theorem 2.6, the ideal QI satisfies the Strong Hypothesis
(see [31, 2.10]). Thus the ring QR= QK is Cohen–Macaulay with canonical module QI tC1= QJ QI t

by Theorem 3.1. From the proofs below it follows that the map �0 can also be described as
a composition

!R=K ,���! R˝ QR ! QR= QK

R˝ QR�
����! R˝ QR

QI tC1= QJ QI t ���� I tC1=JI t :

We remark that all the hypotheses of Theorem 2.6 are satisfied when I is licci and satis-
fiesGgCv (see [18, 1.11] and [20, proof of 5.3]). We will see that theGgCv assumption cannot
be weakened toGgCv�1, even when I is a codimension 2 perfect ideal (Example 6.3), and also
that the deformation assumption cannot be dropped, even when I satisfies Gs (Examples 6.5
and 6.6).

Applying Theorem 2.6 with g C v D s � 1, we obtain a result extending Theorem 2.1
under the additional hypothesis that the pair .R; I / admits a “good” deformation:

Corollary 2.7. Assume that .R; I / has a deformation . QR; QI / such that QI satisfies the
condition Gs and the Koszul homology Hi . QI / is Cohen–Macaulay for 0 � i � t . If I satis-
fies Gs�1, then

Iu=JIu�1 Š HomR.I tC1�u=JI t�u; !R=K/
for 1 � u � t .
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3. Preliminary results

We will repeatedly use a number of results from [31]. For the reader’s convenience we
gather them here. Unless stated otherwise, we will assume that R is a local Gorenstein ring of
dimension d , I is an ideal of codimension g, and K D J W I is an s-residual intersection of I
for some s � g. As before, we write t D s � g, and when referring to the Weak, Standard, or
Strong Hypotheses, we mean that these hypotheses hold with respect to s.

Theorem 3.1. If I satisfies the Strong Hypothesis, then R=K is Cohen–Macaulay of
codimension s with !R=K Š I tC1=JI t .

Proof. This is [31, 2.9].

Proposition 3.2. If I satisfies the Standard Hypothesis, then the ideal K is unmixed of
codimension exactly s.

Proof. One uses Theorem 3.1 and [31, 1.7 (a)].

Proposition 3.3. Let J D .a1; : : : ; as/. For u with 0 � u � s write Ju D .a1; : : : ; au/,
Ku D Ju W I , Ru D R=Ku, and assume that Ku is a geometric u-residual intersection of I
whenever g � u < s.

(1) If I satisfies the Weak Hypothesis and u � 1, then the element au is regular onRu�1 and
KuRu�1 D auRu�1 W IRu�1.

(2) If I satisfies the Standard Hypothesis and 2 � j � t C 1, or if I satisfies the Strong
Hypothesis and 2 � j � t C 2, then there are exact sequences

0!
I j�1

Ju�1I j�2
au
�!

R

Ju�1I j�1
!

R

JuI j�1
! 0

for u � 1.

(3) If I satisfies the Standard Hypothesis and 1 � j � t , or if I satisfies the Strong Hypo-
thesis and 1 � j � t C 1, then

depth I j =JuI j�1 � min¹d � u; dimR=I � j C 2º:

In particular, I j =JuI j�1 is a maximal Cohen–Macaulay Ru-module if in addition
j � u � g C 2.

(4) If I satisfies the Standard Hypothesis and 1 � j � t C 1, or if I satisfies the Strong
Hypothesis and 1 � j � t C 2, then

depthR=JuI j�1 � min¹d � u; dimR=I � j C 2º:

(5) If I satisfies the Standard Hypothesis, u < s, and 1 � j � t C 1, or if I satisfies the
Strong Hypothesis, K is a geometric s-residual intersection, and 1 � j � t C 2, then

I j \Ku D JuI
j�1:

Proof. First notice that if u < g, then Ku D Ju is generated by the regular sequence
a1; : : : ; au. Part (1) follows from Theorem 3.1 and [31, 1.7 (a), (c)], part (2) is a consequence
of Theorem 3.1 and [31, 2.7 (a)], and item (3) follows from Theorem 3.1 and [31, 2.7 (b)].
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We now prove (4). The assertion for j D 1 follows from Theorem 3.1 and [31, 1.7 (b)].
Thus we may assume that j � 2. We show part (4) by induction on u. The assertion is obvious
for u D 0. If 1 � u � s, we apply the exact sequence of part (2), the depth estimate of part (3),
and the induction hypothesis.

If the ideal I satisfies the Strong Hypothesis, K is a geometric residual intersection and
1 � j � t C 2, then part (5) follows from Theorem 3.1 and [31, 2.7 (c)]. If on the other hand I
satisfies the Standard Hypothesis, u < s and 1 � j � t C 1, then I satisfies the Strong Hypo-
thesis with respect to s�1,Ks�1 is a geometric residual intersection and 1 � j � .s�1�g/C2,
so the assertion follows from the previous case.

Proposition 3.4. Suppose that R satisfies Serre’s condition .Rs�1/ and contains a field
of characteristic 0. Let a1; : : : ; as�1 be general elements of J , and set Ju D .a1; : : : ; au/,
Ku D Ju W I , Ru D R=Ku. If R is reduced and I satisfies the Weak Hypothesis with respect
to s, then the factor ring Ru is reduced and equidimensional of codimension u for every u < s.

Proof. Again, if u < g, thenKu D Ju is generated by the regular sequence a1; : : : ; au.
If g � u < s, thenKu is a geometric u-residual intersection by Lemma 1.1 and hence this ideal
is unmixed of codimension u according to Proposition 3.2 because I satisfies the Standard
Hypothesis with respect to u. In either case, Ku is unmixed of codimension u and I is not
contained in any of the minimal primes of Ku.

LetP be any of these minimal primes. To show thatRu is reduced, it suffices to prove that
the ring .Ru/P is regular. Since codim.J W I / � s > u D codimP and P does not contain I ,
it follows that P cannot contain J either. Since the elements a1; : : : ; au are general in J , the
local Bertini theorems [12, 4.6] show that .R=.a1; : : : ; au//P is regular. But this ring is .Ru/P ,
again since P does not contain I .

4. Connecting the canonical module with powers of I

We next explain the maps that connect powers of I with the canonical module, refining
Theorem 3.1. As we shall see, these maps are defined under a certain assumption that is satisfied
under the Standard Hypothesis, but also in some cases of geometric residual intersections.
Unless stated otherwise, the general assumptions of Section 3 are still in effect.

Theorem 4.1. Let a1; : : : ; as be generators of J and, for every u with 0 � u � s,
let Ju D .a1; : : : ; au/ and Ku D Ju W I . Assume that codim..Ku�1; au/ W I / D u whenever
1 � u � s and that codim.I CKu/ � uC 1 whenever 0 � u < s. For every u with 0 � u � s
one has codimKu D u. Set Ru D R=Ku and R0u D R=K

0
u, where K 0u denotes the unmixed

part of Ku of codimension u. For every u with g � u � s, there are maps

Iu�gC1

JuIu�g

�u�g

����! !Ru

defined inductively:

(1) For u D g, �0 is the map induced by the inclusion of I into the double annihilator

I=Jg ,!
.Jg W .Jg W I //

Jg
D !Rg

:
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(2) For s � u > g, �u�g is the map obtained from �u�g�1 and an embedding

I!Ru�1
=au!Ru�1

,! !Ru

obtained from the diagram of homomorphisms of rings

Ru�1
�1 // // R0u�1

�2 // // R0u�1=.au/

Ru�1=.au/

�3

OOOO

�4 // // Ru�1=..au/ W IRu�1/

Ru

�5

OOOO

as explained in the proof.

If I satisfies the Standard Hypothesis with respect to s, then the map �s�g is an injection,
while if I satisfies the Strong Hypothesis with respect to s, then �s�g is an isomorphism.

Proof. We first show that codimKu D u for 0 � u � s and we compute the codimen-
sions of all the rings in the diagram.

Since the codimension of the ideal K0 is obviously 0, we assume that 1 � u � s. By
Lemma 4.2, the codimension of Ku is at least u. As Ku � .Ku�1; au/ W I and the second
ideal has codimension u by hypothesis, we see that the codimensions of the two ideals are
exactly u. Thus, the rings Ru�1 and R0u�1 have codimension u � 1 in R, and the rings Ru and
Ru�1=..au/ W IRu�1/ have codimension u.

We now claim that au is not in any codimension u � 1 prime P containing Ku�1. Since
I CKu�1 has codimension � u by hypothesis, we have I 6� P , and since Ku has codimen-
sion u, we see that IP D .Ju/P and therefore Ju 6� P . As Ju�1 � P , it follows that au … P .
From this we see that the rings Ru�1=.au/ and R0u�1=.au/ have codimension u, and moreover
au is a nonzerodivisor on R0u�1.

We take the map �0 to be the natural inclusion. Moreover, this map is an isomorphism if
the Strong Hypothesis holds since then R=I is Cohen–Macaulay. Therefore we assume from
now on that u > g.

The map �1 induces an isomorphism

.�_1 /
�1
W !Ru�1

�
�! !R0u�1

:

Since au is a nonzerodivisor on R0u�1, the connecting homomorphism of ExtR.�; !R/ applied
to the exact sequence

0 �! R0u�1
au
�! R0u�1

�2
�! R0u�1=.au/ �! 0

yields an embedding �2 W !R0u�1
=au!R0u�1

,! !R0u�1=.au/. The map �3 induces an embedding

�_3 W !R0u�1=.au/ ,! !Ru�1=.au/:

For simplicity of notation we set

! WD !Ru�1=.au/ and H WD .au/ W IRu�1 � Ru�1:
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Multiplying by I , we see that the maps .�_1 /
�1; �2 and �_3 together induce an embed-

ding
I!Ru�1

=au!Ru�1
,! I!:

On the other hand,
I! � 0 W! H D !Ru�1=H ;

and combining these two embeddings, we obtain

I!Ru�1
=au!Ru�1

,! !Ru�1=H :(1)

Finally, the map �5 induces an embedding �_5 W !Ru�1=H ,! !Ru
, which together with

the map in (1) gives an embedding

I!Ru�1
=au!Ru�1

,! !Ru
:(2)

By induction, we may assume that the process just explained induces a map

Iu�g=Ju�1I
u�g�1

! !Ru�1
;

and thus we obtain a map

Iu�gC1 C Ju�1I
u�g�1

auIu�g C Ju�1Iu�g�1
! !Ru

:

The left-hand side is obviously a homomorphic image of Iu�gC1=JuIu�g , and this gives the
desired homomorphism

�u�g W I
u�gC1=JuI

u�g
! !Ru

:

We now show by induction on u > g that if I satisfies the Standard Hypothesis or the
Strong Hypothesis, then �u�g is an injection or an isomorphism, respectively. In either case,
I satisfies the Strong Hypothesis with respect to u � 1, so in particular

�u�g�1 W I
u�g=Ju�1I

u�g�1
! !Ru�1

is an isomorphism by the induction hypothesis. Multiplying by I and factoring out auIu�g ,
we get an induced isomorphism

Iu�gC1

auIu�g C .Ju�1Iu�g�1 \ Iu�gC1/

�
�!

I!Ru�1

au!Ru�1

:

By (2), the right-hand side embeds in !Ru
. So to prove the injectivity of �u�g it suffices

to show that
auI

u�g
C .Ju�1I

u�g�1
\ Iu�gC1/ D JuI

u�g :

The right-hand side is obviously contained in the left-hand side, so it remains to prove the
opposite inclusion. We trivially have

Ju�1I
u�g�1

\ Iu�gC1 � Iu�gC1 \Ku�1;

and Proposition 3.3 (5) gives Iu�gC1 \Ku�1 D Ju�1Iu�g . This concludes the proof that
�u�g is an injection.
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We now show that if I satisfies the Strong Hypothesis, then �u�g is a surjection. To this
end, it suffices to prove that the map in (2) is a surjection. Since �5 is an isomorphism according
to Proposition 3.3 (1), it remains to show that the map in (1) is surjective. We summarize the
argument in the proof of [31, 2.9 (b)]. Recall that Ru�1 is Cohen–Macaulay by Theorem 3.1.

We first prove that I!Ru�1
is !Ru�1

-reflexive. By induction,

!Ru�1
Š Iu�g=Ju�1I

u�g�1:

Proposition 3.3 (5) shows that Ju�1Iu�g�1 D Iu�g \Ku�1 and therefore

Iu�g=Ju�1I
u�g�1

Š Iu�gRu�1:

It follows that I!Ru�1
Š Iu�gC1Ru�1. But again by Proposition 3.3 (5),

Iu�gC1Ru�1 Š I
u�gC1=Ju�1I

u�g :

Putting this together, we obtain

I!Ru�1
Š Iu�gC1=Ju�1I

u�g :

By Proposition 3.3 (3), Iu�gC1=Ju�1Iu�g is a maximal Cohen–Macaulay Ru�1-module and
thus I!Ru�1

is !Ru�1
-reflexive, which we write as I!Ru�1

D .I!Ru�1
/__.

We deduce that

I!Ru�1
=au!Ru�1

D .I!Ru�1
/__=au!Ru�1

D !Ru�1=H ;

where the last identification holds according to [31, 2.1 (a)]. Therefore the map in (1) is surjec-
tive. This concludes the proof.

Lemma 4.2. Let R be a Noetherian ring, let J � I be ideals, and let a 2 R be an
element. If

codim.J W I; a/ W I � u and codim
�
I C ..J; a/ W I /

�
� u;

then
codim.J; a/ W I � u:

Proof. One sees that�
.J W I; a/ W I

��
I C ..J; a/ W I /

�
� .J W I; a/C ..J; a/ W I / � .J; a/ W I

as desired.

For future use we record the following statements, proved in the course of the proof of
Theorem 4.1.

Corollary 4.3. With the notation and assumptions of Theorem 4.1, assume that I sat-
isfies the Strong Hypothesis. For 0 < g � u � s the rings Ru�1=.au/ and Ru are Cohen–
Macaulay of dimension d � u, and the surjection Ru�1=.au/� Ru induces an inclusion of
canonical modules

Iu�gC1=JuI
u�g
Š !Ru

,! !Ru�1=.au/ Š I
u�gRu�1=.auI

u�gRu�1/

that is compatible with the natural inclusion Iu�gC1 � Iu�g .
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Remark 4.4 (The graded case). Suppose that R is a standard graded polynomial ring
kŒx1; : : : ; xd �, that the ideal I is homogeneous and that the generators a1; : : : ; as of J are ho-
mogeneous of degrees ı1; : : : ; ıs . In this setting the construction of Theorem 4.1 yields a ho-
mogeneous map

Iu�gC1=JuI
u�g

�u�g

����! !Ru

 
d �

uX
jD1

ıj

!
:

5. Proofs of the duality theorems from Section 2

We follow a suggestion of the referee, and include the statement of each theorem from
Section 2 before its proof. Theorems from Section 2 retain the numbering that they had there.
Unless specified otherwise, I will again denote an ideal of codimension g in a local Gorenstein
ring R, the ideal K D J W I is assumed to be an s-residual intersection, and we set t D s � g.

Theorem 2.1. Suppose that the ring R=I is Cohen–Macaulay of codimension g and
J D .a1; : : : ; agC1/� I is such thatK WD J W I has codimension gC1. Then theR=K-module
I=J is self-dual, that is,

I=J Š HomR.I=J; !R=K/:

Proof (Huneke). We may suppose that J D .a1; : : : ; ag ; b/, where a1; : : : ; ag form
a regular sequence. Factoring out a1; : : : ; ag , we may assume g D 0.

Let L D 0 W b, and consider the short exact sequence

0! R=L
b
�! R! R=.b/! 0:

Dualizing into R, we obtain an exact sequence

R
ˇ
�! 0 W L �! Ext1R.R=.b/; R/ �! 0:

The image of ˇ is the ideal generated by b. Also, we claim that 0 W L D I . Because R is
Gorenstein, the ideal 0 W L D 0 W .0 W b/ is the unmixed part of .b/, which is equal to I because I
is unmixed of codimension 0 and .b/ W I has positive codimension in R. Putting these two
observations together, we get

I=.b/ Š Ext1R.R=.b/; R/:

On the other hand, because R=I is a maximal Cohen–Macaulay R-module, and R is
Gorenstein, we have

Ext1R.R=I;R/ D Ext2R.R=I;R/ D 0;

so from the short exact sequence

0! I=.b/! R=.b/! R=I ! 0

we get
Ext1R.R=.b/; R/ Š Ext1R.I=.b/; R/:

Since K is an ideal of codimension 1 in the Gorenstein ring R and K annihilates I=.b/,
it follows that Ext1R.I=.b/; R/ Š HomR.I=.b/; !R=K/, and since we already showed that
I=.b/ Š Ext1R.R=.b/; R/, we conclude that I=.b/ Š HomR.I=.b/; !R=K/ as required.
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For the proof of Theorem 2.2 we will need the following.

Lemma 5.1. In addition to the Standard Hypothesis assume that the residue field k
is infinite. Write d for the dimension of R and let x1; : : : ; xd�s be general elements in the
maximal ideal. For any 1 � u � t one has:

(1) The elements x1; : : : ; xd�s form a regular sequence on R and on R=Iu.

(2) The image I of I in R=.x1; : : : ; xd�s/ satisfies the condition Gs .

(3) We adopt the notation of Theorem 2.2. The image J defines an s-residual intersection
J W I in R=.x1; : : : ; xd�s/. If m.I ; u; t/ is a perfect pairing, then so are m.I; u; t/ and
�t ım.I; u; t/.

Proof. (1) By the Standard Hypothesis,

depth.R=Iu/ � dim.R=I / � uC 1 � dim.R=I / � t C 1 D d � s C 1:

In particular, the elements x1; : : : ; xd�s form a regular sequence on R and on R=Iu.
(2) The conditionGs is equivalent to the condition that the codimension of ICFitti�1.I /

is at least i for 1 � i � s. The Fitting ideals of the image I of I in R=.x1; : : : ; xd�s/ contain
the image of the Fitting ideals, and so the codimensions of I C Fitti�1.I / satisfy the same
inequalities because the elements x1; : : : ; xd�s are general and dimR=.x1; : : : ; xd�s/ D s.

(3) By Proposition 3.2, the codimension of K is exactly s. Let y1; : : : ; ys be a regular
sequence inside K, and set A D R=.y1; : : : ; ys/. Note that x1; : : : ; xd�s is a regular sequence
on A.

We recall the map �t of Theorem 4.1, which in an embedding under the present assump-
tions. The maps

Iu=JIu�1 ˝R I
tC1�u=JI t�u

m.I;u;t/
������! I tC1=JI t

�t

,����! !R=K ,����! !A

induce maps

I tC1�u=JI t�u
˛
�! HomR.Iu=JIu�1; I tC1=JI t /
ˇ
,! HomR.Iu=JIu�1; !R=K/
Š
�! HomR.Iu=JIu�1; !A/;

where the last map is an isomorphism by Hom-tensor adjointness. We must show that under
our hypothesis ˛ and ˇ are both isomorphisms.

By Proposition 3.3 (3), the module Iu=JIu�1 is a maximal Cohen–MacaulayA-module.
AsA is Cohen–Macaulay, we infer that HomR.Iu=JIu�1; !A/ is a maximal Cohen–Macaulay
A-module too. Thus x1; : : : ; xd�s form a regular sequence on this module.

LetA D A=.x1; : : : ; xd�s/ andR D R=.x1; : : : ; xd�s/; we write I ; J ;K for the images
of I; J;K in R, respectively. We will show that .ˇ˛/˝R R is an isomorphism. This implies
that ˇ˛ is surjective, and thus ˇ is surjective and consequently ˇ is an isomorphism. It follows
that ˛ is also surjective, and x1; : : : ; xd�s is a regular sequence on the image of ˛. Because
˛ ˝R R is an injection and x1; : : : ; xd�s is a regular sequence on the image of ˛, it follows
that ˛ is a monomorphism.

It remains to show that .ˇ˛/˝R R is an isomorphism. The ideal I satisfies the Standard
Hypothesis by items (1) and (2). Since s D dimR, the Standard Hypothesis is the same as the
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Strong Hypothesis in this case. The idealK has codimension s and is contained in J W I , hence
J W I is an s-residual intersection. Arguing as above, there are maps

I tC1�u=J I t�u
˛
�! HomR.I

u=J Iu�1; I tC1=J I t /

ˇ
,! HomR.I

u=J Iu�1; !R=.J W I//

Š
�! HomR.I

u=J Iu�1; !A/;

induced bym.I ; u; t/ and �t . By assumption, ˛ is an isomorphism. Moreover, since I satisfies
the Strong Hypothesis, ˇ is an isomorphism by Theorem 4.1.

Because x1; : : : ; xd�s form a regular sequence on R=Iu by item (1), it follows that
Iu=J Iu�1 Š Iu=JIu�1 ˝R R. Further,

HomR.I
u=J Iu�1; !A/ Š HomR.I

u=JIu�1 ˝R R;!A ˝R R/

Š HomR.Iu=JIu�1; !A/˝R R;

where the second isomorphism holds because Iu=JIu�1 is a maximal Cohen–Macaulay
A-module.

In the commutative diagram

I tC1�u=JI t�u ˝R R

Š

.ˇ˛/˝RR // HomR.Iu=JIu�1; !A/˝R R

Š

I tC1�u=J I t�u
Š // HomR.I

u=J Iu�1; !A/

we can take the vertical maps and the bottom horizontal map to be the isomorphisms established
above. Thus .ˇ˛/˝R R is an isomorphism as required.

Theorem 2.3. Under the Standard Hypothesis, Theorem 4.1 applies to give an injective
map �t W I tC1=JI t ! !R=K . For 1 � u � t , both the multiplication map

m.I; u; t/ W Iu=JIu�1 ˝ I tC1�u=JI t�u
mult
��! I tC1=JI t

and the composition �t ım.I; u; t/ are perfect pairings.

Proof. The injectivity of �t was proven in Theorem 4.1, so it suffices to prove the
duality statements. We proceed by induction on t � 0, the case t D 0 being vacuous.

We may assume that the residue field k is infinite. We may harmlessly replaceR byRŒŒx��
and replace I; J by .I; x/; .J; x/. In this new setting we have g > 0. After proving the result
in this new setting, the original result is recovered by taking the degree 0 part with respect to x.
By Lemma 5.1, we may further assume that d D s.

In this case the extra strength of the Strong Hypothesis is vacuous. Thus we may apply
Theorem 3.1 to deduce that I tC1=JI t Š !R=K . Further, I=J has finite length, and it follows
that the lengths of the modules Iu=JIu�1 and Hom.Iu=JIu�1; I tC1=JI t / are equal. We
will prove that

JI t W Iu � JI t�u(3)

for all 1 � u � t . It will follow that the map

I tC1�u=JI t�u ! Hom.Iu=JIu�1; I tC1=JI t /
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induced by multiplication is injective, and thus

length.I tC1�u=JI t�u/ � length Hom.Iu=JIu�1; I tC1=JI t /

D length.Iu=JIu�1/:

Since this set of inequalities is symmetric under interchanging u and t C 1 � u, it follows that
length.Iu=JIu�1/ D length.I tC1�u=JI t�u/, and thus the injective map above is an isomor-
phism.

It remains to prove equation (3). We use Lemma 1.1 with a D J , and we adopt the nota-
tions Js�1, as and Ks�1 from that lemma. We write R D R=Ks�1 and I D IR. By Propo-
sition 3.3 (5), Iu Š Iu=Js�1Iu�1. By the induction hypothesis, m.I; u; t � 1/ is a perfect
pairing. That is, for 1 � u � t � 1 the natural maps

I t�u ! HomR.I
u; I t /

are isomorphisms, and this condition holds also for u D t because R is Cohen–Macaulay with
canonical module I t , by Theorem 3.1 and Proposition 3.3 (5). Recall that JR D asR � I . By
Proposition 3.3 (1), as is regular on R. Since the ideal I contains a nonzerodivisor, there is
a natural isomorphism HomR.I

u; I t / Š I t WQ.R/ I
u, where Q.R/ denotes the total ring of

quotients of R. Therefore
I t WQ.R/ I

u
D I t�u:

Since JR is generated by the nonzerodivisor as , it follows that

.J I t / WQ.R/ I
u
D .asI

t / WQ.R/ I
u
D as.I

t
WQ.R/ I

u/ D asI
t�u:

In particular,
.J I t / WR I

u
� J I t�u;

and hence

(4) .JI t / WR I
u
� JI t�u CKs�1:

On the other hand, our assumptions on I imply that locally on the punctured spectrum
of R, the associated graded ring grI .R/ is Cohen–Macaulay (Theorem 3.1, [17, 3.4], and
[16, 6.1]). Since g > 0, it follows that locally on the punctured spectrum of R, the irrelevant
ideal of grI .R/ has positive grade and therefore I tC1 W Iu D I tC1�u. Since by the Standard
Hypothesis the maximal ideal is not an associated prime of R=I tC1�u, we conclude that
I tC1 W Iu D I tC1�u globally in R. In particular, JI t W Iu � I tC1�u, so equation (4) gives

JI t W Iu � JI t�u CKs�1 \ I
tC1�u:

Finally, by Proposition 3.3 (5),

Ks�1 \ I
tC1�u

D Js�1I
t�u;

which completes the proof of (3).

Corollary 2.4. Under the Strong Hypothesis, the following ring is Gorenstein:

R WD R=K ˚ I=J ˚ I 2=JI ˚ � � � ˚ I tC1=JI t D RŒIz�=.K; J z; .Iz/tC2/:
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Proof. As a graded R-algebra R is generated in degree 1 and concentrated in degrees
0; : : : ; t C 1, so the Gorenstein property is equivalent to the statements:

(1) R is a maximal Cohen–Macaulay module over R0.

(2) RtC1 D !R0
.

(3) For u D 1; : : : ; t , the pairings Ru ˝RtC1�u ! RtC1 induced by multiplication are
perfect.

Here items (2) and (3) are equivalent to the existence of an isomorphism of graded R-modules

HomR0
.R; !R0

/.�t � 1/ Š R:

Item (1) follows from Theorem 3.1 and Proposition 3.3 (3). Item (2) follows from Theorem 3.1,
while item (3) is the conclusion of Theorem 2.2.

For the proof of Theorem 2.5 we will use the following general result:

Proposition 5.2. Let R be a local Cohen–Macaulay ring, let I � R be an ideal of
positive codimension, and let t � 0 be an integer. If the truncated Rees ring R.I /=R.I /�tC2
is Gorenstein, then so is the truncated associated graded ring grI .R/=grI .R/�tC1 and the
ring R=I tC1.

Proof. We may assume that I ¤ R. Write d D dimR and set

A WD R.I /=R.I /�tC2 D R˚ I ˚ � � � ˚ I
tC1;

B WD grI .R/=grI .R/�tC1 D R=I ˚ I=I
2
˚ � � � ˚ I t=I tC1:

Since A is a Cohen–Macaulay ring, finite over R, the ideal I j is a maximal Cohen–Macaulay
module for j � t C 1, and it follows that R=I j is a Cohen–Macaulay ring of dimension d � 1
for j � t C 1. From this we see that I j =I jC1 is a maximal Cohen–Macaulay R=I -module
for j � t . Thus B is a Cohen–Macaulay ring of dimension d � 1.

To prove that the ring B is Gorenstein, we will show that !B D Ext1R.B; !R/ is cyclic
as a B-module by showing that there is a surjection of A-modules from the cyclic A-module
!A.�1/ to !B . The exact sequence of A-modules

0! A�1 ! A! R! 0

is split as a sequence of R-modules, so there is a surjection of A-modules

!A D HomR.A; !R/� HomR.A�1; !R/:

On the other hand, from the exact sequence of A-modules

0! A�1.1/! A=AtC1 ! B ! 0

we get a map
HomR.A�1; !R/.�1/! Ext1R.B; !R/ D !B

that is surjective because A=AtC1 is a maximal Cohen–Macaulay R-module.
Finally, sinceB is Gorenstein andB is the associated graded ring ofR=I tC1 with respect

to the ideal I=I tC1, it follows that R=I tC1 is Gorenstein as well.
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Theorem 2.5. In addition to the Strong Hypothesis, suppose that K D J W I is a geo-
metric s-residual intersection.

(1) Let I � R WD R=K be the image of I . The truncated Rees algebra

R˚ I ˚ I 2 ˚ � � � ˚ I tC1

is Gorenstein. In particular, I tC1 Š !R and the multiplication maps

Iu ˝ I tC1�u ! I tC1

are perfect pairings for 0 � u � t C 1.

(2) Let I 0 � R0 WD R=.K C I tC1/ be the image of I . The associated graded ring grI 0.R
0/

is Gorenstein.

Proof. Recall that R is Cohen–Macaulay according to Theorem 3.1. By assumption,
the residual intersection is geometric, so I has positive codimension in R by Proposition 3.2.
The truncated Rees algebra R.I /=R.I /�tC2 is equal to RŒIz�=.K; J z; .Iz/tC2/ by Proposi-
tion 3.3 (5). From Corollary 2.4 we see that this ring is Gorenstein. Thus, by Proposition 5.2, the
truncated associated graded ring grI .R/=grI .R/�tC1 is Gorenstein. Since R0 D R=I tC1, the
associated graded ring grI 0.R

0/ is equal to grI .R/=grI .R/�tC1, completing the argument.

Theorem 2.6. Suppose that .R; I / has a deformation . QR; QI / such that QI satisfies the
condition Gs and the Koszul homology Hi . QI / is Cohen–Macaulay for 0 � i � t D s � g.
Assume further that I satisfies the condition GgCv for some t�1

2
� v � t . Let QJ be a lift-

ing of J to an ideal with s generators contained in QI . The ideal QK D QJ W QI is an s-residual
intersection of QI . Our hypothesis implies that Theorem 4.1 holds with QK in place of K and
gives an isomorphism �t . The inverse � W ! QR= QK ! QI tC1= QJ QI t of �t induces a map

�0 W !R=K ! I tC1=JI t :

We have:

(1) �0 is a surjection, and is an isomorphism if K is a geometric s-residual intersection.

(2) There are perfect pairings

m W Iu=JIu�1 ˝ I tC1�u=JI t�u ! !R=K

for
t � v � u � v C 1

or, equivalently, for
t C 1

2
� " � u �

t C 1

2
C ";

where " D v � t�1
2

.

(3) If the perfect pairing m is chosen as in Figure 1 in the proof below, then �0 ım is the
map induced by multiplication Iu ˝ I tC1�u ! I tC1.

Proof. We first show that QK D QJ W QI is an s-residual intersection of QI , that is, we have
codim QK � s. To this end, note that QKR � K and, by [20, 4.1], K �

p
QKR. Thus we obtain

codim QKRD codimK � s. Since codim QK � codim QKR, we see that codim QK � s as required.
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The ideal QI satisfies the Strong Hypothesis, by the discussion in Section 1. If we had
assumed that the residue field was infinite, Lemma 1.1 would give the appropriate lower bounds
for codimensions of ideals in the assumptions of Theorem 4.1. The lower bounds follow even
without an infinite residue field from the references in the proof of Lemma 1.1. On the other
hand, the necessary upper bounds follow from Proposition 3.3 (1) and Proposition 3.2. Hence
Theorem 4.1 gives an isomorphism �t W QI

tC1= QJ QI t ! ! QR= QK .
Since QI satisfies the Strong Hypothesis, we also know from Theorem 3.1 and Proposi-

tion 3.2 that QR= QK is Cohen–Macaulay and QK has codimension exactly s. It follows that

codim QK D codim QKR D codimK:

Thus . QR; QK/ is a deformation of .R; QKR/, and !
R= QKR

Š ! QR= QK ˝ QR R. From the surjection
R= QKR! R=K and the equality of dimensions, we get an inclusion

!R=K ,! !
R= QKR

Š ! QR= QK ˝ QR R

that identifies !R=K with the set of elements of !
R= QKR

that are annihilated by K. From this
inclusion and the isomorphism

� W ! QR= QK !
QI tC1= QJ QI t

of Theorem 4.1 we derive a map �0 W !R=K ! I tC1=JI t .
Next we will show that QIu ˝ QR R Š I

u for all u � vC1. Because . QR; QI / is a deformation
of .R; I /, we may write R D QR=.x/, where x is a regular sequence on QR and on QR= QI . It
suffices to show x is a regular sequence modulo QIu for u in the given range. Since we know
this for u D 1, we may do induction on u, and it is enough to show that x is a regular sequence
on QIu�1= QIu.

Fix a set of generators of QI , and their images in I . Using these generators, we define
surjective maps from free modules QF ! QI and F WD QF ˝ QR R! I and compute Koszul
homology modules QHi WD Hi . QI / and Hi WD Hi .I /.

We now form the approximation complexes (see [15, p. 470])

0! QHu�1 ˝ Sym0 QF ! � � � ! QH0 ˝ Symu�1 QF ! QIu�1= QIu ! 0;

0! Hu�1 ˝ Sym0 F ! � � � ! H0 ˝ Symu�1 F ! Iu�1=Iu ! 0:

Since u � 1 � v � t , our hypothesis shows that the modules QHi are either 0 or are maximal
Cohen–Macaulay QR= QI -modules whenever 0 � i � u � 1. This implies, in the given range, that
x is a regular sequence on the nonzero QHi , that Hi Š QHi ˝ QR R, and that the latter modules
are Cohen–Macaulay R=I -modules.

Since u � 1 � v, both QI and I satisfyGgCu�1, and it follows from [15, the proofs of 2.5
and 2.3] that both approximation complexes are exact. Since x is a regular sequence on all the
nontrivial QHi that appear, and Hi Š QHi ˝ QR R, the exactness of the complexes implies that x
is a regular sequence on QIu�1= QIu.

This completes the argument that QIu ˝ QR R Š I
u for all u � v C 1. From this isomor-

phism, we see that
QIu= QJ QIu�1 ˝ QR R Š I

u=JIu�1:

Now let
t C 1

2
� " � u �

t C 1

2
C ":
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QIu

QJ QIu�1
˝
QI tC1�u

QJ QI t�u
˝ QR R

Iu

JIu�1 ˝
I tC1�u

JI t�u

QI tC1

QJ QI t
˝ QR R

I tC1

JI t

! QR= QK ˝ QR R

!R=K

m. QI ;u;t/˝R

m.I;u;t/

Š

Š

m

�0

Figure 1. Definition of m.

Note that u � v C 1 and t C 1 � u � v C 1 so, by what we have just proven,

QIu= QJ QIu�1 ˝ QR R Š I
u=JIu�1;

QI tC1�u= QJ QI t�u ˝ QR R Š I
tC1�u=JI t�u:

Theorem 3.1 shows that ! QR= QK Š QI
tC1= QJ QI t . By the argument at the beginning of this proof,

!R=K can be identified with the submodule of ! QR= QK ˝ QR R consisting of all elements annihi-
lated by K. Thus we obtain the commutative diagram of solid arrows as shown in Figure 1.
From the left-hand vertical isomorphism we see that the source of the map m. QI ; u; t/˝ QR R is
annihilated by K. Hence its image in QI tC1= QJ QI t ˝ QR R Š ! QR= QK ˝ QR R is contained in !R=K ,
yielding a map m indicated by the dotted arrow in the diagram.

By our assumption on v, there exists u with tC1
2
� " � u � tC1

2
C ", and then the sur-

jectivity of m.I; u; t/ implies that �0 is surjective. To prove that the surjection �0 is an iso-
morphism if K is a geometric s-residual intersection, it suffices to verify that the source and
target of �0 are isomorphic locally at every associated prime P of the R-module !R=K . But
we have seen before that K has codimension s, hence every such P has codimension s, and
therefore cannot contain I . It follows that the source and target of .�0/P are both isomorphic
to the Gorenstein ring .R=J /P .

To prove that m is a perfect pairing, recall that m. QI ; u; t/ is a perfect pairing by Theo-
rem 2.2. According to Theorem 3.1 and Proposition 3.3 (3), the module QIu= QJ QIu�1 is a max-
imal Cohen–Macaulay module over the Cohen–Macaulay ring QR= QK. We proved above that x
is a regular sequence on QR= QK, so it is also a regular sequence on QIu= QJ QIu�1. It follows that

Hom QR. QI
u= QJ QIu�1; ! QR= QK/˝ QR R Š HomR. QIu= QJ QIu�1 ˝ QR R;! QR= QK ˝ QR R/:

The right-hand module is isomorphic to

HomR.Iu=JIu�1; ! QR= QK ˝ QR R/;

and because Iu=JIu�1 is annihilated by K, this is isomorphic to

HomR.Iu=JIu�1; !R=K/:
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Since

Hom QR. QI
u= QJ QIu�1; ! QR= QK/˝ QR R Š

QI tC1�u= QJ QI t�u ˝ QR R Š I
tC1�u=JI t�u;

there is a composite isomorphism

I tC1�u=JI t�u
Š
�! HomR.Iu=JIu�1; !R=K/:

The commutativity of the diagram in Figure 1 shows that this isomorphism is induced bym, so
we are done.

6. Examples and counterexamples on duality

Residual intersections of codimension 2 ideals.

Example 6.1 (Explicit duality). Let R be a local Gorenstein ring and suppose that C
is an .nC 1/ � .nC s/ matrix with entries in R, where n � 1 and s � 2. Suppose that the
maximal minors of C generate an ideal K of codimension s, the generic value. Set t WD s � 2
and M WD cokerC . Buchsbaum and Eisenbud [4] (see also [9, Appendix A.2.6]) computed
minimal free R-resolutions of the first t C 1 symmetric powers of M , and observed that,
for 0 � u � t C 1, these are perfect R-modules of codimension s, and that the resolutions
of Symu.M/ and SymtC1�u.M/ are dual to one another; that is,

SymtC1�u.M/ Š ExtsR.Symu.M/;R/ Š HomR.Symu.M/; !R=K/:

If we assume that the entries of C are in the maximal ideal and the residue field of R is
infinite, then, possibly after column operations, we may suppose the .nC 1/ � n submatrix A
consisting of the first n columns of C has the property that the n � n minors of A generate an
ideal I of codimension 2. (Reason: SinceK has codimension s, we see thatN WD coker.C �/ is
locally free of rank s � 1 in codimension< s inR. It follows from the theory of basic elements
that after factoring out s general generators ofN we obtain a module of codimension� 2. This
is the module presented by A�.)

In this situation, the ideal I is strongly Cohen–Macaulay. Huneke [19] showed that K
is an s-residual intersection of I , see also Theorem 6.2. In [7] the duality statement above is
generalized to residual intersections of any strongly Cohen–Macaulay ideal.

In addition, Andy Kustin and the second author observed (unpublished) that for geometric
residual intersections of codimension 2 perfect ideals, the symmetric power Symu.I=J / is
isomorphic to Iu=JIu�1 in the range of u that we consider, and we reprove this in Theorem 6.2
below. This gives a concrete example of our theory.

Let B be the .nC 1/ � s matrix made from the last s columns of C , so that C D .AjB/.
Let J be the image of the composite map

Rs
B
�! RnC1 Š

n̂

RnC1�
Vn

A�

����!

n̂

Rn� Š R:

By the Hilbert–Burch Theorem,

cokerA Š image
n̂

A� Š I ;

and thus
M D coker.AjB/ Š I=J :
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Theorem 6.2. With notation and hypotheses as above, K D J W I and thus K is an
s-residual intersection of I . Let I be the image of I in the ring R WD R=K. If I CK has
codimension � s C 1 (so that K is a geometric s-residual intersection of I ), then

Iu=JIu�1 Š Iu Š Symu.cokerC/

for 0 � u � t C 1 (interpreting Iu=JIu�1 as R when u D 0). In particular, Iu=JIu�1 and
I tC1�u=JI t�u have dual, finite free R-resolutions.

Note that this does not require the condition Gs .

Proof. By assumption, the codimension of the ideal K of .nC 1/ � .nC 1/ minors
of C is s, so by [5], ann.cokerC/ D K. But ann.cokerC/ D ann.I=J / D J W I .

There are natural surjections

Symu.I=J /� Iu=JIu�1� Iu:

Recall that the determinantal ideal K is perfect of codimension s. Thus, if K is a geometric
s-residual intersection, then Iu has grade � 1, and both Iu and Symu.I=J / are locally free
of rank 1 at the associated primes of R. Since Symu.I=J / is a maximal Cohen–Macaulay
R-module, it is torsion free, and thus the two epimorphisms are isomorphisms.

There are two kinds of hypotheses on the ideal I in Theorem 2.6: the condition GgCv
on I itself and the existence of a good deformation QI . We will show in Example 6.3 that the
first cannot be weakened and, in Examples 6.5 and 6.6, that the second cannot be dropped.
Here we write w WD g C v.

Example 6.3 (A codimension 2 perfect ideal satisfying Gw�1 but not Gw ). The fol-
lowing examples show that, even for licci ideals, the condition Gw in Theorem 2.6 cannot be
replaced by the conditionGw�1. They are based on the construction explained in Example 6.1.

By the Hilbert–Burch Theorem, any perfect codimension 2 ideal I with nC 1 generators
is the ideal of n � n minors of an .nC 1/ � n matrix. Such ideals satisfy the deformation
assumption: they are specializations of the generic ideal of minors, which satisfies the condition
Gs for every s, and all their Koszul homology modules are Cohen–Macaulay ([2]). (These are
the original examples of the licci ideals mentioned in the introduction.)

Let 2 � w � s, letR be a power series ring kŒŒx1; : : : ; xs��, and letMs be the s � .2s � 1/
“Macaulay matrix”, where the i -th principal diagonal entries are xi and the other entries are 0
(we illustrate with the case s D 5):

Ms D

0BBBBBB@
x1 x2 x3 x4 x5 0 0 0 0

0 x1 x2 x3 x4 x5 0 0 0

0 0 x1 x2 x3 x4 x5 0 0

0 0 0 x1 x2 x3 x4 x5 0

0 0 0 0 x1 x2 x3 x4 x5

1CCCCCCA :

We define the ideal Is;w to be the ideal of .s � 1/ � .s � 1/ minors of the matrix Ns;w made
from columns 2 through s of Ms by replacing the entry xw of the .s � w C 1/ row with 0; for
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example I5;3 is the ideal of 4 � 4 minors of

N5;3 D

0BBBBBB@
x2 x3 x4 x5

x1 x2 x3 x4

0 x1 x2 0

0 0 x1 x2

0 0 0 x1

1CCCCCCA :

It is easy to see that Is;w is a perfect ideal of codimension 2, and by computing the codimen-
sions of the ideals of lower order minors ofNs;w one sees that Is;w satisfiesGw�1 but notGw .

We consider the cases 4 � s � 7, and we construct an s-residual intersection

Ks;w D Js;w W Is;w

of Is;w as follows:
Let M 0s;w be the matrix constructed from Ms by replacing columns 2 up to s with the

matrixNs;w , and adding the variable xw to the entries in the .s � w C 1/ row and both the first
and .2s � w C 1/ columns. Thus

M 05;3 D

0BBBBBB@
x1 x2 x3 x4 x5 0 0 0 0

0 x1 x2 x3 x4 x5 0 0 0

x3 0 x1 x2 0 x4 x5 x3 0

0 0 0 x1 x2 x3 x4 x5 0

0 0 0 0 x1 x2 x3 x4 x5

1CCCCCCA :

Macaulay2 computations show that for s � 7 and any 2 � w � s, the ideal Ks;w generated by
the maximal minors ofM 0s;w has the generic codimension, s, and we conjecture that this is true
in general.

Assuming thatKs;w has codimension s, we can use Theorem 6.2 to show thatKs;w is an
s-residual intersection of Is;w . Explicitly, let Ps;w be the submatrix of M 0s;w consisting of the
columns not in Ns;w ; for example if s D 5;w D 3, then

Ps;w D

0BBBBBB@
x1 0 0 0 0

0 x5 0 0 0

x3 x4 x5 x3 0

0 x3 x4 x5 0

0 x2 x3 x4 x5

1CCCCCCA :

After rearranging the columns of M 0s;w we may write M 0s;w D .Ns;w jPs;w/. Thus we may
apply Theorem 6.2 to conclude that, if we take Js;w to be the ideal generated by the entries
of the matrix obtained by multiplying Ps;w by the row of signed maximal minors of Ns;w , we
will haveKs;w D Js;w W Is;w , an s-residual intersection of Is;w . For example J5;3 is generated
by the entries of the row vector�

�1 ��2 �3 ��4 �5
�
� P5;3;

where �i is the determinant of the matrix obtained from N5;3 by omitting the i -th row.
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We now consider Theorem 2.6 in the cases of the ideals Is;w and Js;w with 4 � s � 7.
We have g D 2, and we consider values of v in the range specified in the theorem, so that
w D g C v D 2C v lies in the range sC1

2
� w � s. As explained above, the ideal Is;w satisfies

the deformation hypothesis of the theorem, and satisfies GgCv�1 D Gw�1 but not GgCv. This
has the effect of adding 1 to the lower bound, and subtracting 1 from the upper bound, for u in
Theorem 2.6. Thus for the triples .s; w; u/ in the list

.4; 3; 1/; .5; 3; 2/; .5; 4; 1/; .6; 4; 2/; .6; 5; 1/; .7; 4; 3/; .7; 5; 2/; .7; 6; 1/;

the theorem does not guarantee duality. Of course the same goes for the “dual” triples
.s; w; s � 1 � u/.

Computations in Macaulay2 show that, indeed, duality does not hold in these cases. To
check this, we compute resolutions of Iu=JIu�1 and I s�1�u=JI s�2�u. When the total Betti
numbers in the minimal resolutions over R of these two modules are not dual to one another,
the duality clearly does not hold. It turns out that this occurs in each case. (We note that in
other cases, where these have the same graded Betti numbers as in the generic case, they must
be reductions from the generic case, and thus dual to one another.)

Consider, as an example, the case .s; w; u/ D .5; 4; 1/: According to Macaulay2, the
Betti table of the minimal graded free resolution of Iu=JIu�1 D I=J is

total: 5 9 84 180 135 35
4: 5 9 . . . .
5: . . . . . .
6: . . . . . .
7: . . . . . .
8: . . 84 180 135 35

while the Betti table of the minimal graded free resolution of I s�1�u=JI s�2�u D I 3=JI 2 is

total: 35 136 188 106 28 9
12: 35 136 183 87 1 .
13: . . . . . .
14: . . . . . .
15: . . 5 19 27 8
16: . . . . . 1

By local duality, the dual, Hom.I=J; !R=.J WI// of I=J is isomorphic, up to a shift in grading,
to Ext5R.I=J;R/. From the first resolution we see that the presentation of this module (as
a graded module or over the power series ring) has 35 generators and 135 relations, whereas
from the second Betti table we see that the minimal presentation of I 3=JI 2 has 35 generators
and 136 relations; thus I=J is not dual to I 3=JI 2.

Example 6.4 (Duality not given by multiplication). LetR D kŒŒx; y; z�� � I D .x; y/2,
where k is an infinite field. The pair .R; I / admits a deformation . QR; QI /, where

QR D kŒŒz1;1; : : : ; z2;3; z��;

the ideal QI is generated by the 2 � 2 minors of the generic matrix

Z WD

 
z1;1 z1;2 z1;3

z2;1 z2;2 z2;3

!
;
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and the specialization QR! R sends Z to the matrix 
x y 0

0 x y

!
:

If J is generated by three sufficiently general homogeneous polynomials of degree 3 in I , then
the ideal K D J W I is a 3-residual intersection, so by Theorem 2.1 or Theorem 2.6, I=J is
self-dual.

Computation shows thatK D .x; y; z/3. Thus!R=K D Homk.R=K; k/ has Hilbert func-
tion 6; 3; 1. The surjection �0 W !R=K ! I 2=JI described in Theorem 2.6 is, in this case, the
dual of the inclusion .x; y/.R=K/ ,! R=K. Thus the Hilbert function of I 2=JI is 5; 2. We
see that, unlike in Theorem 2.2, there is no injection I 2=JI ! !R=K because the socle of the
first module is 2-dimensional.

We also claim that, unlike in the situation of Theorem 2.2, the self-duality map of I=J
is not given by multiplication. Indeed, there can be no perfect pairing I=J ˝ I=J ! I 2=JI

because the target is annihilated by .x; y; z/2 while I=J is not.
By Theorem 2.6, there is a duality map I=J ˝ I=J ! !R=K , and the multiplication map

I=J ˝ I=J ! I 2=JI is the composite of this map with the surjection �0 W !R=K ! I 2=JI

described in the same Theorem. Moreover, the duality map is a symmetric surjection, induced
by the corresponding duality map in the generic case. Thus R=K ˚ I=J ˚ !R=K is a commu-
tative standard graded Gorenstein algebra over R=K and R=K ˚ I=J ˚ I 2=JI is a proper
homomorphic image.

It is shown in [7] that, for residual intersections of strongly Cohen–Macaulay ideals,
such as the one in this example, the duality between symmetric powers is always induced by
multiplication.

Residual intersections of codimension 3 ideals. Even when I itself satisfies the con-
dition Gs , the conclusion of Theorem 2.6 may fail if I does not have a deformation whose
Koszul homology modules are Cohen–Macaulay.

Example 6.5 (No surjection !R=K� I 2=JI ). Let R D kŒŒx1; : : : ; x5��, where k is an
infinite field, and let I be the ideal of 2 � 2 minors of the matrix 

x1 x2 x3 x4

x2 x3 x4 x5

!
:

If we take J to be the ideal generated by four sufficiently general cubic forms in I , then by
Theorem 2.2, the multiplication map I=J ˝ I=J ! I 2=JI is a perfect pairing. We claim
that, unlike in the situation of Theorem 2.6, there is no surjection !R=K� I 2=JI : compu-
tation shows that I 2=JI requires twenty generators, whereas !R=K requires only sixteen. Of
course by Theorem 2.2, there is a natural injection I 2=JI ,! !R=K such that the compos-
ite pairing is also a perfect pairing. However, unlike the situation in [7], the multiplication
I=J ˝ I=J ! Sym2.I=J / is not a perfect pairing.

Could there be some “mystery module” X and maps

!R=K  � X �! I 2=JI

that explains both Examples 6.4 and 6.5?
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Example 6.6 (No perfect pairing). Let s D 5 and take I to be the ideal of the nonde-
generate rational quartic curve in P4 or of the Veronese surface in P5 that is, the ideal of 2 � 2
minors of either  

x0 x1 x2 x3

x1 x2 x3 x4

!
or

0B@x0 x1 x2

x1 x3 x4

x2 x4 x5

1CA :
These ideals satisfyG5 and admit a 5-residual intersectionK D J W I , where J is generated by
five general cubic forms in I . For each of the two ideals I above, all Koszul homology modules
are Cohen–Macaulay except the first, and they satisfy the sliding depth condition for Koszul
homology. Nevertheless, Macaulay2 computation shows that the modules I=J and I 2=JI are
not dual to one another.

Computation shows that there is no useful duality among the first three symmetric powers
either: Sym3.I=J / 6Š !R=K ,

Hom.Sym2.I=J /; !R=K/ 6Š I=J; Hom.I=J; !R=K/ 6Š Sym2.I=J /;

and likewise for dualizing into Sym3.I=J /.

Residual intersections of a codimension 5 ideal.

Example 6.7. Let R D kŒŒx1; : : : ; x10; y1; : : : ; y5��, where k is an infinite field, and
let I be the ideal generated by the 4 � 4 Pfaffians of the generic skew symmetric matrix

M D

0BBBBBB@
0 x1 x2 x3 x4

�x1 0 x5 x6 x7

�x2 �x5 0 x8 x9

�x3 �x6 �x8 0 x10

�x4 �x7 �x9 �x10 0

1CCCCCCA
together with the entries of the vector�

y1 y2 y3 y4 y5
�
M:

This is a prime ideal of codimension 5, and is a complete intersection locally on the punctured
spectrum, so I satisfied G15. Mark Johnson found this ideal as an example where each of
R=I;R=I 2 and R=I 3 is Cohen–Macaulay (and thus of depth 10), while R=I 4 has depth 6.
The ideal I thus satisfies the Strong Hypothesis with s D 7, but not s D 8.

Let J � I be generated by seven general quadrics in I , and let K D J W I . As in the
previous example, computation shows that there is no useful duality among the first three sym-
metric powers: Sym3.I=J / 6Š !R=K ;

Hom.Sym2.I=J /; !R=K/ 6Š I=J; Hom.I=J; !R=K/ 6Š Sym2.I=J /;

and likewise for dualizing into Sym3.I=J /.
However, by Theorems 2.2 and 3.1, the multiplication map does give a perfect pairing

I=J ˝ I 2=JI ! I 3=JI 2 Š !R=K :
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7. Complementary module and socle

We begin by reminding the reader of the classic description of the socle of a com-
plete intersection of equicharacteristic 0. Recall that if k is a field and R is a complete local
k-algebra, then the Kähler different DK.R=k/ � R is the 0-th Fitting ideal of the universally
finite module of differentials �R=k; for example, if R D kŒŒx1; : : : ; xd ��=.a1; : : : ; ad /, then
DK.R=k/ is the ideal generated by the Jacobian determinant

� D det

0BB@
àa1

àx1
: : : àa1

àxd

:::
: : :

:::
àad

àx1
: : : àad

àxd

1CCA :
Theorem 7.1. If k is a field of characteristic 0 and R is a complete local k-algebra,

then DK.R=k/ is nonzero if and only if R is a 0-dimensional complete intersection, and in
this case DK.R=k/ is the socle of R.

This result was proven by Scheja and Storch [29] (see also Kunz [21]). The basic ideas
are due to Tate [25, Appendix]. For the reader’s convenience we give the classic arguments in
Appendix A.

Throughout this section we suppose that R is a local Gorenstein ring of dimension d
with maximal ideal m, that I � R is an ideal of codimension g, andK D J W I is an s-residual
intersection, and we set t D s � g. If T is any ring we writeQ.T / for the total ring of quotients
obtained by inverting every nonzerodivisor in T .

We want to identify the socle of !R=K in the case dimR=K D d � s D 0. We will show
that, under suitable hypotheses, the socle of !R=K Š I tC1=JI t is generated by the image of
the Jacobian determinant of generators of J (Theorems 7.8 and 7.10).

We begin with the following general result about the socle of the local cohomology
module Hd�sm .R=JI t /.

Theorem 7.2. If I satisfies the Strong Hypothesis with respect to s, then Hd�sm .R=JI t /

has a simple socle and the natural map

Hd�sm .!R=K/ Š Hd�sm .I tC1=JI t /! Hd�sm .R=JI t /

is injective. In particular, the two modules have the same socle.

Proof. Recall that I tC1=JI t Š !R=K has dimension d � s by Theorem 3.1. Hence
Hd�sm .I tC1=JI t / ¤ 0. This module embeds into Hd�sm .R=JI t / since depthR=I tC1 � d � s.
Thus it remains to show that the socle of Hd�sm .R=JI t / is simple.

If t D 0, the result is the usual duality for complete intersections, so we assume that
t > 0. We may harmlessly suppose that k is infinite and that the generators a1; : : : ; as of J are
general. Set Ji D .a1; : : : ; ai / andKi D Ji W I . By Lemma 1.1, the ideal Ji W I is a geometric
i -residual intersection for g � i � s � 1.

From Proposition 3.3 (2) we have an exact sequence

0 �!
I t

Js�1I t�1
as
�!

R

Js�1I t
�!

R

JsI t
�! 0:

The module in the middle has depth at least d � s C 1 according to Proposition 3.3 (4). Hence
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the long exact sequence of local cohomology gives an embedding

Hd�sm .R=JI t / � Hd�sC1m .I t=Js�1I
t�1/:

Now the theorem follows because by Theorem 3.1,

I t=Js�1I
t�1
Š !R=Ks�1

and R=Ks�1 is Cohen–Macaulay, thus Hd�sC1m .I t=Js�1I
t�1/ has simple socle.

If k is a field of characteristic 0 and T is a local finite-dimensional k-algebra, then the
trace homomorphism TrT=k is nonzero and annihilates the maximal ideal, since the maximal
ideal consists of nilpotent elements. Thus TrT=k generates the socle of !T D Homk.T; k/.

From this point on we will assume that R D kŒŒx1; : : : ; xd �� is a power series ring in d
variables over a field k of characteristic 0. To identify the socle of I tC1=JI t with the Jacobian
determinant � of a given set of generators of J in the case s D d (Theorem 7.8), we begin by
making explicit the composite isomorphism

I tC1=JI t Š !R=K Š Homk.R=K; k/:

We show that if � is in I tC1, then, under this isomorphism, � corresponds to the trace homo-
morphism Tr.R=K/=k . This is accomplished in Theorem 7.4. In order to do this, we establish a
result about the Dedekind complementary module of R=K that requires R=K to be reduced,
and holds for s < d .

Lemma 7.3. Let k be a field of characteristic 0 andR D kŒŒx1; : : : ; xd ��. Let T D R=L
be a reduced Cohen–Macaulay factor ring of R with codimL D s � 1. Let a1; : : : ; as�1 be
elements of L that generate L generically, and let as 2 m be a nonzerodivisor modulo L. Let
x1; : : : ; xd be general variables of R. Set

Ai D kŒŒxi ; : : : ; xd ��;

A0 D kŒŒas; xsC1; : : : ; xd ��;

�i D det

0BB@
àa1

àx1
: : : àa1

àxi

:::
: : :

:::
àai

àx1
: : : àai

àxi

1CCA :
We have:

(1) �Q.T /=AsC1
WD Q.T /˝T �T=AsC1

is a free Q.T /-module of rank 1 generated by dxs .

For any differential form df we write df
dxs

for the ratio as elements of �Q.T /=AsC1
.

(2) �s D das

dxs
�s�1.

(3) C.T=As/ D
das

dxs
C.T=A0/.

Proof. The Q.T /-module �Q.T /=AsC1
is presented by the transpose of the .s � 1/ � s

matrix

‚ D

0BB@
àa1

àx1
: : : àa1

àxs

:::
: : :

:::
àas�1

àx1
: : : àas�1

àxs

1CCA :
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We write ‚i for .�1/i times the determinant of the .s � 1/ � .s � 1/ submatrix of ‚ omitting
the i -th column. Note that �s�1 D .�1/s‚s .

(1) Because x1; : : : ; xd are general, the ring As D kŒŒxs; : : : ; xd �� is a Noether normal-
ization of the reduced, equidimensional ring T , so�Q.T /=k WD Q.T /˝T �T=k is free of rank
d�sC1with basis dxs; : : : ; dxd . Thus�Q.T /=AsC1

is free of rank 1 with basis dxs as claimed.
(2) It follows that ‚ has rank s � 1. Moreover, the vector0BB@

dx1

dxs

:::
dxs

dxs

1CCA
is in ker‚. Of course, ‚ also annihilates the vector0BB@

‚1
:::

‚s

1CCA ;
and so, because the entries of either vector generate the unit ideal in Q.T /,0BB@

‚1
:::

‚s

1CCA and

0BB@
dx1

dxs

:::
dxs

dxs

1CCA
are proportional. Since dxs

dxs
D 1, we get

‚i D ‚s
dxi

dxs

for i D 1; : : : ; s. By the chain rule,

das

dxs
D

sX
iD1

àas
àxi

dxi

dxs
;

so

‚s
das

dxs
D

sX
iD1

àas
àxi

‚i

in Q.T /. Expanding �s along the last row we get

�s D .�1/
s
sX
iD1

‚i
àas
àxi
D .�1/s‚s

das

dxs
D �s�1

das

dxs

as required.
(3) Since as 2 m is regular on T and x1; : : : ; xd are general, the ring A0 is another

Noether normalization of T . By [22, 9.2],

C.T=As/ dxs ^ � � � ^ dxd D C.T=A0/ das ^ � � � ^ dxd

in
Vd�sC1

�Q.T /=k . Since �Q.T /=k is a free Q.T /-module with basis dxs; : : : ; dxd , we
have

das ^ dxsC1 ^ � � � ^ dxd D
das

dxs
dxs ^ dxsC1 ^ � � � ^ dxd

as desired.
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The next theorem is one of our main results. It gives an explicit description of the com-
plementary module of residual intersections.

Theorem 7.4. Let k be a field of characteristic 0, and let R D kŒŒx1; : : : ; xd ��. Let
I � R be an ideal satisfying the Strong Hypothesis for some s < d , and let J W I be a geom-
etric s-residual intersection such that R D R=.J W I / is reduced. Let a1; : : : ; as be general
elements in J . Let x1; : : : ; xd be general variables in R and write A D kŒŒxsC1; : : : ; xd ��. We
have

I tC1R D �C.R=A/;

where � is the Jacobian determinant

� D det

0BB@
àa1

àx1
: : : àa1

àxs

:::
: : :

:::
àas

àx1
: : : àas

àxs

1CCA :
Proof. Since R is a domain we must have g > 0. For i � g � 1 we set

Ji WD .a1; : : : ; ai / � I;

Ri WD R=.Ji W I /;

Ai WD kŒŒxiC1; : : : ; xd ��;

A0i WD kŒŒaiC1; xiC2; : : : ; xd ��;

and

�i WD det

0BB@
àa1

àx1
: : : àa1

àxi

:::
: : :

:::
àai

àx1
: : : àai

àxi

1CCA :
If i D g � 1, then Ji W I D Ji is generated by the regular sequence a1; : : : ; ai . If i � g, then by
Lemma 1.1, the ideal Ji W I is a geometric i -residual intersection. By Theorem 3.1, the ring Ri
is Cohen–Macaulay of dimension d � i . It follows that the geometric i -residual intersection
Ji W I is generically generated by a1; : : : ; ai . Moreover, by Proposition 3.3 (1), the element
aiC1 is regular on Ri for i � s � 1. Proposition 3.4 shows that the ring Ri is reduced. Finally,
Theorem 3.1 and Proposition 3.3 (5) give !Ri

Š I i�gC1Ri for any i .
Since the x1; : : : ; xd are general, the ring Ai is a Noether normalization of Ri . Since

aiC1 2 m is a nonzerodivisor on Ri , the ring A0i is also a Noether normalization of Ri .
By induction on i D g � 1; : : : ; s, we prove that

I i�gC1Ri D �iC.Ri=Ai /:

The case i D s is the statement of the theorem.
If i D g � 1, the assertion is that

Ri D �iC.Ri=Ai /;

or equivalently that C.Ri=Ai /D�
�1
i Ri . This is classically known sinceRi D R=.a1; : : : ; ai /

and a1; : : : ; ai is a regular sequence; we will give a self-contained proof of this fact in Sec-
tion A, see Corollary A.4.
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Now take i � g and assume the result is known for i � 1. Consider the following diagram
that will be explained below:

I i�gRi�1 �i�1C.Ri�1=Ai�1/ �iC.Ri�1=A
0
i�1/ �iC.Ri�1=A

0
i�1/TrRi�1=A

0
i�1

�i HomA0
i�1
.Ri�1; A

0
i�1/

HomA0
i�1
.Ri�1; A

0
i�1/

HomAi
.Ri�1=.ai /; Ai /

HomAi
.Ri ; Ai /

�i HomAi
.Ri ; Ai /.

I i�gRi�1=aiI
i�gRi�1

I i�gC1Ri �iC.Ri=Ai / �iC.Ri=Ai /TrRi=Ai

Š

Š

Š

Š

mod ai

mod ai

"

ind. hyp. 7.3

�

 

By the induction hypothesis and Lemma 7.3, we have

I i�gRi�1 D �i�1C.Ri�1=Ai�1/ D �iC.Ri�1=A
0
i�1/:

By Proposition 3.3 (1), the ideal I i�gRi�1 has positive grade, so �i is a nonzerodivisor
in Ri�1. The arrow marked mod ai on the right in the diagram is surjective because Ri�1
is a free A0i�1-module.

The isomorphism � is induced by the first row. In the inclusion of I i�gC1Ri Š !Ri

in I i�gRi�1=aiI i�gRi�1 Š !Ri�1=.ai / the first module is the annihilator of

L WD ker.Ri�1=.ai /� Ri /I

see Corollary 4.3. Similarly, we take

" W HomAi
.Ri ; Ai / ,! HomAi

.Ri�1=.ai /; Ai /

to be the map induced by the surjection Ri�1=.ai /� Ri , so the source of " is the annihilator
of L in the target of ". Since Ri is generically a finite separable extension of Ai defined by
the vanishing of a1; : : : ; ai , the element �i is a nonzerodivisor of Ri . Thus � induces an
isomorphism  in the diagram.

We next will show that, regarded as a map of subsets ofQ.Ri /, the map  is the identity.
The source of  contains a nonzerodivisor by Proposition 3.3 (1). We may write it as the image
of an element v 2 I i�gC1. Since�i is a nonzerodivisor onRi , both source and target of  are
fractional ideals containing nonzerodivisors, so  is multiplication by some element inQ.Ri /.
To show that  is the identity, it suffices to show that  .u/ D u for some nonzerodivisor
u 2 I i�gC1Ri . We take u to be the image of �iv in I i�gC1Ri .

Recall that L � Ri�1=.ai /. Since I i�gC1L � IL D 0, we have vL D 0. Since

L D ker.Ri�1=.ai /� Ri /

and both Ri�1=.ai / and Ri are Cohen–Macaulay rings with Noether normalization Ai , it fol-
lows that they are free Ai -modules, and thus Ri�1=.ai / Š Ri ˚ L as Ai -modules.
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From vL D 0 one sees that

".v TrRi=Ai
/ D v Tr.Ri�1=.ai //=Ai

:

Following the maps in the diagram, we now see that  .�iv/ D �iv as required.

Example 7.5. The following example illustrates a subtlety in the inductive proof above.
The conclusion of Theorem 7.4 shows that the image of �s WD � in Rs WD R is contained
in I tC1Rs . The following example shows that �s itself may not be contained in I tC1, and,
moreover, the image of �s in I tC1Rs is not necessarily mapped under the inclusion

I tC1Rs ,! I tRs�1=asI
tRs�1

to the image of �s in the target. Take s D 2 and let R D kŒŒx; y; z��, I D .z � x � y/, and
J D .a1; a2/, where a1 D xz � x2 � xy, a2 D yz � yx � y2. We have

.a1/ W I D .x/;

J W I D .x; y/ D K:

Computation shows that �2 … I 2, and the map of canonical modules I 2R2 ,! IR1=a2IR1
does not send the image of �2 to the image of �2.

From Theorem 7.4 we derive a formula for the Dedekind complementary module of
certain determinantal rings:

Corollary 7.6. Let k be a field of characteristic 0, and let R D kŒŒx1; : : : ; xd ��. Let C
be an .nC 1/ � .nC s/ matrix with entries in the maximal ideal of R, where n � 1 and s � 2,
and assume that the maximal minors of C generate an ideal K of height s, the generic value.
Suppose that the ring R D R=K is reduced. Let D be an .nC 1/ � n matrix consisting of n
columns of C , let I be the ideal generated by the n � n minors of D, and let a1; : : : ; as be
the .nC 1/ � .nC 1/ minors of C that involve the n columns of D. Let x1; : : : ; xd be general
variables in R, so that R is module finite over A D kŒŒxsC1; : : : ; xd ��. We have

I s�1R D �C.R=A/;

where � is the Jacobian determinant

� D det

0BB@
àa1

àx1
: : : àa1

àxs

:::
: : :

:::
àas

àx1
: : : àas

àxs

1CCA :
Moreover, after suitable column operations on C , the submatrixD may be chosen so that

the ideal IR has positive grade, and in this case � is a nonzerodivisor on R.

Proof. Suppose that QC D .yi;j / is an .nC 1/ � .nC s/ matrix of variables, and write
S D RŒŒ¹yi;j º�� and B D AŒŒ¹yi;j º��. Let QD, QK, QI , Qa1; : : : ; Qas , and Q� be the same objects as
defined in the statement of the corollary, using the matrix QC instead of C . Write S D S= QK.
Specializing QC to C , these objects specialize to the ones defined in the corollary. The ideal QI
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is perfect of codimension 2 and satisfies the Strong Hypothesis for s, Qa1; : : : ; Qas are generic
elements of QI , and QK D . Qa1; : : : ; Qas/ W QI is a geometric s-residual intersection of QI , by Theo-
rem 6.2 or [19]. Theorem 7.4 and its proof show that

QI s�1S TrS=B D Q�HomB.S; B/:

Since S is a free B-module of finite rank, we have HomB.S; B/˝B A D HomA.R;A/. After
taking images in this module, the equality above gives

I s�1R TrR=A D �HomA.R;A/;

and hence the main assertion of the corollary.
SinceR is reduced, the idealK is generically a complete intersection, so the n � nminors

of C generate an ideal of positive grade in R. It follows that after suitable column operations
on C we may choose the submatrixD so that IR has positive grade in R. (Reason: the column
space of the matrix C over the ring R has rank n, and thus the same is true for a general choice
of n columns.)

In the next results we apply our theory to certain 0-dimensional residual intersections.
Our goal is to give formulas for the socles of their canonical modules as Jacobian determinants.

Corollary 7.7. Let k be a field of characteristic 0, and let R D kŒŒx1; : : : ; xd ��. Let
I � R be an ideal satisfying the Standard Hypothesis with respect to s D d , let J W I be
a d -residual intersection, and set t D d � g. Let a1; : : : ; ad be general elements in J , and
let � be the Jacobian determinant of a1; : : : ; ad . If R D R=..a1; : : : ; ad�1/ W I /, then the
image of � in R is in I tR. Further, the image of � generates the socle of

I tR=.adI
tR/ Š !R=.ad /

:

Proof. Lemma 1.1 and Proposition 3.4 show that .a1; : : : ; ad�1/ W I is a geometric
.d � 1/-residual intersection and that R is reduced. Moreover, by Theorem 3.1 and Propo-
sition 3.3, parts (5) and (1), the module I tR=adI tR is isomorphic to !R=.ad /

.
The hypothesis of the corollary is sufficient to justify the upper half of the diagram in

the proof of Theorem 7.4 for the case i D d . The first row of the diagram shows that the
image of � D �d in R lies in I tR, and hence gives an element of I tR=adI tR. The iso-
morphism � maps this element to Tr.R=.ad //=Ad

, which generates the socle of the module
HomAd

.R=.ad /; Ad /.

Theorem 7.8. Let k be a field of characteristic 0, and let R D kŒŒx1; : : : ; xd ��. Let
I � R be an ideal satisfying the Standard Hypothesis with respect to s D d , and let J W I be
a d -residual intersection. Let a1; : : : ; ad be general elements in J , and let � be the Jacobian
determinant of a1; : : : ; ad . There is an element p 2 .a1; : : : ; ad�1/ such that

�0 WD �C p 2 I tC1;

and the image of �0 generates the socle of

I tC1=JI t Š !R=.J WI/:

Moreover, if � 2 I tC1, then the image of � generates this socle.
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By Theorem 7.2, the socles of I tC1=JI t and R=JI t are the same, so Theorem 7.8 can
also be interpreted as a result on the socle of R=JI t .

Proof. Recall that
I tC1=JI t Š !R=.J WI/

by Theorem 3.1. Let Kd�1 D .a1; : : : ; ad�1/ W I and write R D R=Kd�1. We will first prove
that we can take p 2 Kd�1. As a consequence of the first statement of Corollary 7.7, there is
an element p1 2 Kd�1 such that �C p1 2 I t . By Corollary 4.3, there is a natural inclusion

I tC1=JI t ,! I tR=.adI
tR/:

From the second statement of Corollary 7.7 it follows that the image of �C p1 generates the
socle of I tR=adI tR, and thus lies in the submodule I tC1=JI t and generates its socle. In
particular, there are an element p2 2 Kd�1 and an element q 2 adI t so that

�C p1 C p2 C q 2 I
tC1;

and the image of this element generates the socle of I tC1=JI t . Since q 2 JI t , we may take
p D p1 C p2 2 Kd�1.

By Theorem 7.1, we have� 2 J if t > 0, while� 2 J W m if t D 0, in which case R=J
is Gorenstein, and therefore in either case� 2 I . Thus p 2 I \Kd�1. By Proposition 3.3 (5),
p 2 .a1; : : : ; ad�1/ as claimed.

If � 2 I tC1 to begin with, we could take p1 D p2 D 0 proving the last statement.

In the graded case, Remark 4.4 identifies the socle up to homogeneous isomorphism,

soc
I tC1

JI t
Š .soc!R=.J WI//

 
�

dX
jD1

.ıj � 1/

!
Š k

 
�

dX
jD1

.ıj � 1/

!
;

so the socle has the same degree as the Jacobian determinant of d homogeneous generators
of J .

Motivated by Theorem 7.8, we try to find conditions when � 2 I tC1.

Proposition 7.9. Let k be a perfect field, let R D kŒx1; : : : ; xd � be a standard graded
polynomial ring in d variables, and let J � R be an ideal. Set e equal to the maximum of the
codimensions of the minimal primes of J . If J is generated by forms of the same degree > 1,
then the d � d minors of the Jacobian matrix of these forms are contained in the symbolic
power .

p
J /.d�eC1/.

Proof. Set t D d � e. If t D 0, the result is trivial, so we may assume t > 0. Since k is
perfect, we may assume that k is algebraically closed. In this case

p
J is the intersection of the

1-dimensional linear ideals that contain it. By inverting a linear form not in any minimal prime
of J and taking the degree 0 part, these become maximal ideals. By Zariski’s Main Lemma on
Holomorphic Functions (see for example [11, Corollary 1]), the .t C 1/-st symbolic power of
p
J in the dehomogenized ring is the intersection of the .t C 1/-st powers of these maximal

ideals, and thus in R the ideal .
p
J /.tC1/ contains, hence is equal to, the intersection of the

.t C 1/-st powers of the 1-dimensional linear ideals that contain it.
After changing notation, it is thus sufficient to prove that if J is contained in the ideal

L D .x1; : : : ; xd�1/ and f1; : : : ; fd are forms in J of degree ı > 1, then det Jac.f1; : : : ; fd /
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is in LtC1, where Jac denotes the Jacobian matrix. Write0BB@
f1
:::

fd

1CCA D A
0BB@
x1
:::

xd�1

1CCA
for some d � d � 1 matrix A with homogeneous entries of degree ı � 1.

We may write A in the form A D B C xı�1
d

C , where B D .bi;j / has entries in L and C
is a matrix of scalars. By the product rule,

Jac.f1; : : : ; fd / D
d�1X
jD1

xj Jac.b1;j ; : : : ; bd;j /C

0BB@
0

B
:::

0

1CCA

C .ı � 1/xı�2d

d�1X
jD1

xj

0BB@
c1;j

0
:::

cd;j

1CCAC xı�1d

0BB@
0

C
:::

0

1CCA :
Let D be the sum of the first two terms on the right-hand side of this expression, and let E be
the sum of the two remaining terms. These matrices have the following properties:

(1) Each column of D has entries in L.

(2) The last column of D has entries in L2. This is because the last column of the Jacobian
matrix is defined by differentiating with respect to xd .

On the other hand the rank of the scalar matrix C is at most the codimension of J localized
at L, which is at most e. The last column of E is a linear combination of columns of C with
coefficients in L. Thus:

(3) The rank of E is at most e.

(4) The last column of E has entries in L.

These properties of D and E imply that det.D CE/ 2 LtC1 as required.

Theorem 7.10. Let k be a field of characteristic 0, and letRD kŒx1; : : : ; xd �. Let I �R
be a homogeneous ideal satisfying the Standard Hypothesis with s D d , and let J � I be an
ideal generated by d forms of a single degree ı > 1 such that J W I is a d -residual intersection.
If I is reduced and �.IP / � codimP � 1 for all prime ideals P � I with g < codimP < d ,
then the Jacobian determinant of any d homogeneous generators of J of degree ı is in I tC1

and thus, by Theorem 7.8, generates the socle of I tC1=JI t Š !R=.J WI/.

Proof. We may assume that I ¤ R. In this case
p
J D I . Since I is Cohen–Macaulay,

all minimal primes of I and hence of J have the same codimension g. By Proposition 7.9,
the Jacobian determinant is contained in I .tC1/. By the assumption on the �.IP /, the pow-
ers and symbolic powers of I coincide on the punctured spectrum ([31, 4.9 (d)]). Therefore,
I .tC1/=JI t is contained in the finite length part of R=JI t . The latter has a simple socle gener-
ated in the same degree d.ı � 1/ as the Jacobian determinant by Theorem 7.2 and Remark 4.4.
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Thus the image of the Jacobian determinant lies in soc I .tC1/=JI t D soc I tC1=JI t . In partic-
ular, the Jacobian determinant is in I tC1.

Theorem 7.10 can also be understood in terms of primary decompositions, rather than
residual intersections; in this formulation, the result is a natural generalization of Theorem 7.1.

To explain this, let R be a local Gorenstein ring of dimension d and J any ideal of codi-
mension g generated by d elements. For our purpose we may assume that R=J has depth 0.
Consider a decomposition J D I \ L, where L is the 0-dimensional primary component in
any shortest primary decomposition of J and I is the intersection of the primary compo-
nents of positive dimension. Notice that L is contained in the ideal K D J W I , which gives an
embedding !R=K ,! !R=L. Also observe that K is a d -residual intersection of I .

Now assume that I satisfies the Standard Hypothesis with s D d , set t D d � g, and let
E � I tC1=JI t be an injective envelope of I tC1=JI t as a module overR=L. Since I tC1=JI t

is a canonical module of R=K, we may choose !R=L to be equal to E.

Corollary 7.11. In addition to the assumptions of the preceding two paragraphs sup-
pose thatR D kŒŒx1; : : : ; xd �� is a power series ring in d variables over a field of characteristic
zero and that J is generated by homogeneous polynomials f1; : : : ; fd of a single degree > 1.
If I is reduced and �.IP / � codimP � 1 for all prime ideals P � I with g < codimP < d ,
then the socle of !R=L is generated by the image in I tC1=JI t of the Jacobian determinant
of f1; : : : ; fd .

From examples it would seem that the formula for the socle as a Jacobian holds without
the reduced hypothesis and without the assumptions on the local numbers of generators beyond
the Gs condition of our Standard Hypothesis. We can at least prove this for g D 1.

Proposition 7.12. Let k be a field, and let R D kŒx1; : : : ; xd �. Let I D .G/ � R be
a principal ideal generated by a nonzero form of degree 
 and let F D f1; : : : ; fd be a regular
sequence of forms of the same degree ı. Assume that neither ı nor ı C 
 is 0 in k, and let J
be the ideal generated by the sequence of forms GF . The socle of R=JId�1, hence the socle
of Id=JId�1, is generated by the Jacobian determinant det Jac.GF /.

Proof. By Theorem A.5, the socle of R=.F / is generated by det Jac.F /, so the socle of
R=JId�1 D R=.GdF / is generated by Gd det Jac.F /. By Lemma 7.13, this is

ı

ı C 

det Jac.GF /:

Lemma 7.13. Let R D kŒx1; : : : ; xd �. If G is a form of degree 
 and F D f1; : : : ; fd
is a sequence of forms of the same degree ı, then

ı det Jac.GF / D .ı C 
/Gd det Jac.F /:

Proof. Write Gj for àGàxj
and fi;j for àfi

àxj
. By the product rule,

Jac.GF / D G Jac.F /C

0BB@
f1
:::

fd

1CCA�G1 � � � Gd
�
:
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The second summand has rank 1, so by the multilinearity of the determinant we have

det Jac.GF / D Gd det Jac.F /CGd�1
dX
iD1

detJi :

HereJi is the matrix obtained from Jac.F / by replacing the i -th row by the row fi .G1 � � � Gd /.
Expansion along the first column shows that this sum is equal to

det

0BBBBB@
Gd Gd�1G1 � � � Gd�1Gd

�f1 f1;1 � � � f1;d
:::

:::
:::

�fd fd;1 � � � fd;d

1CCCCCA :
We multiply the first column by ı, add xi times the .i C 1/-st column to the first column for
all i , and use Euler’s formula. From this we see that

ı det Jac.GF / D det

0BBBBB@
.ı C 
/Gd Gd�1G1 � � � Gd�1Gd

0 f1;1 � � � f1;d
:::

:::
:::

0 fd;1 � � � fd;d

1CCCCCA
D .ı C 
/Gd det Jac.F /:

Example 7.14. If we do not assume the forms generating J have the same degree,
then the Jacobian need not be well-defined modulo JI t , and in particular its image may not
generate the socle, as the following example shows. Let k be a field of characteristic¤ 2; 3, and
let R D kŒx; y�. Let F be the regular sequence x2 C y2; x C y and set I D .G/ with G D x,
and J D .GF /. We have

JI W det Jac.GF / D .G2F / W det Jac.GF / D .x/;

so det Jac.GF / is not in the socle modulo JI . Moreover, det Jac.GF / is not even contained
in I 2. However, we can replace F by a different sequence of generators F 0 D x2 � xy; x C y
for .F /, and then the Jacobian determinant of GF 0 does generate the socle modulo JI .

Example 7.15. Over a field of characteristic 0, the polynomial

f D .x2 � z/.xz � y2/

is the product of two of the quasihomogeneous generators of the ideal of the space curveC with
parametrization t 7! .t2; t3; t4/. The Jacobian ideal J of f has codimension 2. The scheme
defined by J has an isolated singularity, so J is generically reduced, and thus also its unmixed
part I is reduced. In fact, I D .x2 � z; xz � y2/ is a prime complete intersection.

Nevertheless, one can compute that the Hessian determinant of f is not even contained
in I 2. Thus f violates Conjecture (3) of van Straten and Warmt [32, 7.1].

In the case s D g (so t D 0), when R is regular local and s D d , there is another famous
(and easier) formula for the socle of R=J – it is generated by the image of the determinant of
any “transition” matrix expressing the generators of J as linear combinations of the generators
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of the maximal ideal of R. The following examples show that in Proposition 7.12 with t > 0
we cannot replace the Jacobian by such a transition matrix: the determinant could be outside
the ideal JI t W m and could also be in JI t (it could even be 0).

Example 7.16. (a) Let R D kŒŒx1; : : : ; xd ��, let G 2 .x1; : : : ; xd / be nonzero, and let
F1; : : : ; Fd be a regular sequence in R. Writing G D

P
i aixi , we see that0BB@

GF1
:::

GFd

1CCA D
0BB@
F1
:::

Fd

1CCA�a1 � � � ad
�0BB@
x1
:::

xd

1CCA :
We may take the rank 1 matrix

A WD

0BB@
F1
:::

Fd

1CCA�a1 � � � ad
�

as transition matrix, and we have detA D 0 as soon as d � 2.

(b) Let R D kŒx; y�, where k is a field of characteristic ¤ 3, and take I D .G/ with
G D x2 C y2, and J D .GF / with F D x; y. If we replace the Jacobian matrix Jac.GF / by

A WD
1

3
Jac.GF /C

 
�y x

�y x

!
;

then

A

 
x

y

!
D

 
GF1

GF2

!
and detA is in I , but detA is not in the socle of I=JI .

(c) If in example (b) we change G to xy leaving everything else the same, then detA is
not even in I .

(d) If F1; F2 is a regular sequence of forms of degree 2 in kŒx; y� and G D a1x C a2y
is a nonzero form, then there are examples with detA ¤ 0 but detA 2 JI D G2.F1; F2/. For
instance, take

A D

 
a1F1 � yG a2F1 C xG

a1F2 � yG a2F2 C xG

!
I

the determinant in this case is G2.F1 � F2/.

A. Differents and socles for Gorenstein rings

In this section we provide self-contained expositions of the classical results on differents
and socles that we have used, mostly for complete intersections in characteristic 0. More gen-
erally than is usually stated, these yield a formula for the socle of a 0-dimensional Gorenstein
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ring. The results of this section are known, some in greater generality, but not easily available.
Classic references are by Noether [26], Berger [3], Tate [25, Appendix], Scheja and Storch
[28, 29], and Kunz [21, 22].

Let A be a Noetherian ring, let R be an A-algebra that is essentially of finite type, and
write Re D R˝A R. Let D be the kernel of the multiplication map � W Re ! R, so that we
have an exact sequence

0! D ! Re
�
�! R! 0:

We want to compare three measures of ramification:

� The Kähler different DK.R=A/, introduced in a different case in Section 7, is defined to
be FittR0 .�R=A/.

� The Noether different DN .R=A/ is defined to be �.annRe D/.

� The Dedekind different DD.R=A/ is defined, for instance, when A � R is a ring exten-
sion, A is a Noetherian normal domain, R is reduced and a finitely generated torsion free
A-module, and R=A is separable. The complementary module C.R=A/ is the fractional
R-ideal such that

HomA.R;A/ D C.R=A/TrL=K ;

where K D Q.A/ and L D Q.R/ are the total rings of quotients of A and R, respec-
tively. The Dedekind different is defined to be the inverse of the complementary module,
DD.R=A/ D C.R=A/�1.

Because �R=A Š D ˝Re R and FittR
e

0 .D/ � annRe D, it follows that

DK.R=A/ �DN .R=A/:

The Dedekind different is an ideal because A is normal. We also have

DN .R=A/ �DD.R=A/;

which implies that
DN .R=A/HomA.R;A/ � R TrR=A:

For a short proof see [24, formula (3.3) proved in Lemma 3.4]. The last containment can be an
equality even when the Dedekind different is not defined:

Theorem A.1. Let A be a Noetherian ring and let R be an A-algebra that is finitely
generated and free as an A-module. If HomA.R;A/ is cyclic as an R-module, then

DN .R=A/HomA.R;A/ D R TrR=A :

Proof. We will divide the proof into several parts:

Step (1). Because R is a free A-module, the natural map

ˆ W R˝A R! HomA.HomA.R;A/;R/

given by
s ˝ t 7!

�
' 7! '.s/t

�
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is an isomorphism of R-R-bimodules. The annihilator of D is the unique largest R-R-submod-
ule of R˝A R on which the left and the right R-module structures coincide, and the subset
HomR.HomA.R;A/;R/ has the same property in HomA.HomA.R;A/;R/. It follows that ˆ
carries the annihilator of D onto HomR.HomA.R;A/;R/.

SinceR is a finitely generated freeA-module and HomA.R;A/ is cyclic as anR-module,
we have HomA.R;A/ Š R. It follows that annRe D is cyclic as an R-module.

Step (2). Let � be a generator of annRe D. Asˆ.�/ generates HomR.HomA.R;A/;R/
and HomA.R;A/ Š R, we see that ˆ.�/ is an R-isomorphism. Let

� D ˆ.�/�1.1/ 2 HomA.R;A/:

It follows that �� W R˝A R! A is a symmetric, nonsingular A-bilinear form.

Step (3). Let ¹viº be an A-basis of R, and suppose that � D
P
i v
0
i ˝ vi . We claim that

�.v0ivj / D ıi;j – that is, ¹v0iº is the dual basis of ¹viº with respect to ��. Indeed, since ˆ.�/
is R-linear, we have ˆ.�/.r�/ D r for every r 2 R. Thus, for each j ,

vj D ˆ.�/.vj�/ D ˆ

�X
i

v0i ˝ vi

�
.vj�/ D

X
i

.vj�/.v
0
i /vi D

X
i

�.vj v
0
i /vi :

Since the vi form an A-basis, we see that �.v0ivj / D ıi;j as required.

Step (4). Finally, we claim that TrR=A D �.�/� . Let r be an element of R, regarded as
an A-endomorphism of R by multiplication. We have

�.�/�.r/ D �.�.�/r/ D �

�X
i

v0irvi

�
:

Since ¹v0iº and ¹viº are dual bases with respect to ��, this sum is equal to TrR=A.r/. Since
DN .R=A/ D �.annRe D/ D R�.�/, we see that

DN .R=A/HomA.R;A/ DDN .R=A/ � D R�.�/ � D R TrR=A

as required.

Theorem A.2. In addition to the assumptions in the definition of the Dedekind different
above, suppose thatA is a regular local ring. IfR is Gorenstein, then DD.R=A/DDN .R=A/.

Proof. We first verify that the assumptions of Theorem A.1 are satisfied. Recall that
A � R and R is a finitely generated A-module. For all maximal ideals m of R, the rings Rm

have the same dimension as A, as can be seen for instance by tensoring with the completion of
A, so that R splits as a product of local rings, and using the torsion freeness of R over A. Thus,
since the rings Rm are Cohen–Macaulay, it follows that R is a maximal Cohen–Macaulay
A-module, hence a free A-module. Moreover, as the rings Rm are Gorenstein and have the
same dimension as A, the R-module HomA.R;A/ is locally free of rank 1. Therefore we have
HomA.R;A/ Š R because R is semilocal.

Thus we may apply Theorem A.1. Since HomA.R;A/ D C.R=A/ TrR=A by the defini-
tion of the complementary module, the theorem shows that DN .R=A/C.R=A/ D R, which
gives DN .R=A/ D C.R=A/�1 DDD.R=A/.
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Theorem A.3. LetA � R be a ring extension, where A is regular local andR is finitely
generated and torsion free as an A-module. If R is locally a complete intersection, then

R Š AŒx1; : : : ; xn�W =.F1; : : : ; Fn/

for some regular sequence F1; : : : ; Fn of length n in the polynomial ring AŒx1; : : : ; xn� and
some multiplicatively closed subsetW . Write� for the image inR of the Jacobian determinant
of F1; : : : ; Fn with respect to x1; : : : ; xn. One has

DN .R=A/ DDK.R=A/ D R�:

Proof. WriteR Š AŒx1; : : : ; xn�=J. AsR is a finitely generated torsion freeA-module,
it follows as in the previous proof that every maximal ideal m of R has the same codimension
d WD dimA. Since m must contain the maximal ideal of A, its preimage M in AŒx1; : : : ; xn�
has codimension d C n. Hence the ideal JM has codimension n. Thus it is generated by
n elements because R is locally a complete intersection. Write W for the complement in
AŒx1; : : : ; xn� of the union of the finitely many maximal ideals M. By basic element theory,
JW is again generated by n elements F1; : : : ; Fn that can be chosen to form a regular sequence
in AŒx1; : : : ; xn�.

To prove the claim about differents, first notice that R is a Cohen–Macaulay ring and
hence a free A-module, as shown in the previous proof. As before, let D be the kernel of the
multiplication map � W Re D R˝A R! R. The preimage QD of D in AŒx1; : : : ; xn�W ˝A R
is the kernel of the natural map to R, so it is generated by a regular sequence G D G1; : : : ; Gn
of length n. The ideal QD also contains the sequence F ˝ 1 WD F1 ˝ 1; : : : ; Fn ˝ 1, which is
still a regular sequence because R is flat over A.

Notice that D D QD=.F ˝ 1/ D .G/=.F ˝ 1/. The preimage in AŒx1; : : : ; xn�W ˝A R
of the annihilator of D may thus be written as .F ˝ 1/ W .G/. This ideal quotient is generated
by F ˝ 1 and the determinant of any matrix ‚ expressing the elements of F ˝ 1 as linear
combinations of the elements of G, see [35] or [6]. It follows that DN .R=A/ is generated by
the image in R of det‚.

On the other hand, since G is a regular sequence and since

D ˝Re R D D=D2 Š �R=A;

the image in R of ‚ is a presentation matrix of �R=A. Thus the image of det‚ also generates
the ideal DK.R=A/ D R�.

Corollary A.4. If the assumptions in the definition of the Dedekind different and the
hypotheses of Theorem A.3 are satisfied, then

C.R=A/ DDK.R=A/
�1
D R��1:

Proof. One uses Theorem A.2, Theorem A.3, and the fact that the fractional ideal
C.R=A/ is invertible, hence reflexive.

Theorem A.5. If R is a local Gorenstein algebra over a field k with dimkR finite and
not divisible by the characteristic of k, then DN .R=k/ is equal to the socle of R. If, moreover,
R is a complete intersection, then the socle of R is generated by the Jacobian determinant.
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Proof. Since the trace of any nilpotent element is 0, it follows that the trace lies in the
socle of Homk.R; k/ and generates it if the characteristic of k does not divide dimkR. Thus
Proposition A.1 implies that DN .R=k/Homk.R; k/ is the socle of Homk.R; k/. Therefore
DN .R=k/ is the socle of R since Homk.R; k/ Š R as R-modules.

Finally, if R is a complete intersection, then DN .R=k/ DDK.R=k/ is generated by
the Jacobian determinant, by Theorem A.3.

Proof of Theorem 7.1. One implication is a special case of Theorem A.5. To prove the
opposite implication, we must show that the Kähler different DK.R=k/ is 0 when the ring
R D kŒŒx1; : : : ; xd ��=.a1; : : : ; as/ is not a 0-dimensional complete intersection.

First suppose that R is 0-dimensional and not a complete intersection. Replacing the ai
by general linear combinations, we may assume that any d of the ai form a regular sequence.
By the previous theorem, the Jacobian determinant of ai1 ; : : : ; aid generates the socle modulo
.ai1 ; : : : ; aid / and is thus contained in .a1; : : : ; as/ as required.

Now suppose thatR is not 0-dimensional. To simplify the notation, set m D .x1; : : : ; xd /

and J D .a1; : : : ; as/ and suppose that s is the minimal number of generators of J. We may
assume that R is not a complete intersection since otherwise DK.R=k/ D 0. For any suffi-
ciently large integer n, the Artin–Rees Lemma and the Principal Ideal Theorem together imply
that JCmn requires at least sCdim J generators. Thus,R=mnR is not a complete intersection.

We conclude from the 0-dimensional argument that, for any n� 0,

DK..R=m
nR/=k/ D 0:

In particular, DK.R=k/ is in mnR. By the Krull Intersection Theorem, DK.R=k/ D 0.
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