


application. For instance, we have two candidate applications

RNN and Graph analytics, which be run as a background

application along web-search without affecting the SLOs of

web-search. As can be seen in Fig. 1, the aggregate server

resource utilization (CPU and memory) of due to such co-

location during this off-period is still at most the utilization

during the peak period, validating the merits of prior studies

proposing co-location choices.

However, while the utilization of all other resources is

within the capacity of the infrastructure that is meant to

handle the peak load, the power consumption of the co-

located system overshoots the power of the peak load in the

original web-search application as is shown in Fig. 1(b). This

is because total server power (secondary resource) consump-

tion is additive over the consumption of power by all pri-

mary resources. As is to be expected, co-location algorithms,

which are usually based on performance-SLO or resource

reservations, select applications that do not contend in their

primary resource - CPU, caches, memory, storage, etc. - needs.

With the co-located applications simultaneously using very

different resources, the power consumption adds up, possibly

overshooting what the original application was consuming

during its peak period. As numerous prior studies have pointed

out, the power infrastructure is itself very expensive, running

into $10 to $20 per watt [10, 11, 13], and aggressive power

provisioning to extract the maximum value from each watt

is critical. If the power infrastructure in our example is

tightly provisioned to only handle the peak load of the web-

search which the cluster was originally intended for, then the

co-location during the off-peak period will over-shoot this

power budget despite adhering to the performance criteria

that normal co-locations strive for. In such situations, power

becomes the dominant resource for contention, prohibiting the

system from fully utilizing other primary resources. This paper

specifically focuses on this problem - when there is spare

resource capacity, which applications should we co-locate, not

just to minimize interference due to primary resources, but

also to minimize the power interference and provide the best

performance in a power constrained environment?

To answer this question, we need to jointly understand

the resource and power needs of the potential co-runners

in order to reason about application placement and resource

management. There are several challenges that we have to

address. The resource needs of the applications spans multiple

resources – several primary (direct) resources and a secondary

resource power (indirect). Further, we want to understand the

resource needs not only for the present (in a myopic fashion),

but also for future load fluctuations as well. While there are

prior works that tackle these challenges, these (i) focus on a

single operating condition and not the entire load range [1, 3]

and rely on systems mechanisms (e.g. migration to a spare

server) to cope with the outcomes of their myopic decisions;

(ii) are not designed for platforms that are aggressively under-

sized in their power capacity where the explicit goal is to

maximize performance per watt as opposed to achieving it as

a by-product of improving server utilization [6]; (iii) help to

reason about fairness in allocating direct resources [7, 8] as

opposed to reasoning about overall performance of co-located

applications in the presence of a power constraint (an indirect

resource).
Recognizing the unique needs of the power constrained

platforms in improving their infrastructure efficiency, we un-

dertake the efforts to systematically reason about resource

preferences of an application in the presence of an indirect

resource. Towards that, we make the following contributions.

• We borrow principles from the field of economics where

cost is an indirect resource (similar to power in our case)

that people use to buy one or more resources to maximize

their satisfaction. There are well-known methods and metrics

in economics to understand resource preferences in a cost

budget constrained scenario to maximize user satisfaction.

Drawing on these principles, we present a framework to

reason about resource demands in power constrained servers

that maximizes performance.

• The key insight from our analysis is that applications can

be co-located with the primary latency sensitive application

if they derive higher performance per watt from a different

set of resources (other than the ones needed by the primary

application). We use the notion of indirect utility function to

formally capture the resource preferences of the applications

under power constraints.

• Based on these insights, we present a framework, Pocolo.

It uses indirect utility metrics to identify power-optimized

co-locations and manage server resources power efficiently.

• We have implemented Pocolo on a Ubuntu 16.04 server

using 2 direct resources (CPU and LLC ways) and the

indirect power resource, and studied the impact of co-locating

different best-effort applications (typically found in the dat-

acenter) with several latency-critical foreground applications

(websearch, image-dnn, sphinx and TPCC). Further, we have

a cluster manager that uses these insights to assign the right

application to run alongside the latency sensitive applications.

• Our results show that: (i) Even if we naively assign random

applications to the same server running the latency sensitive

application, our resource allocation strategy within that server

provides 8% performance improvement with a power and

energy reduction of 7% and 16% respectively, while adhering

to the latency SLO for the latency critical application; (ii)

Further, if we have a smarter cluster level scheduler, the

performance is boosted even further to 18% with a power and

energy reduction of 8% and 27% respectively. This translates

to 16% reduction in overall datacenter Total Cost of Owner-

ship (TCO) as we are able to extract better performance per

watt from both capital server/power infrastructure as well as

by reducing operating energy expenditure.

II. BACKGROUND AND MOTIVATION

A. Right-sizing infrastructure for a primary application

Datacenters incur significant capital expenditure to provi-

sion both servers as well as power infrastructure [10]. There-

fore, minimizing their capital costs is of utmost importance to



the datacenters operators. Towards this goal, datacenters right-

size their infrastructure based on the needs of the primary

application in the cluster. By doing so, the datacenter oper-

ators achieve cost benefits by incorporating their knowledge

of application characteristics, estimated resource needs, and

demand projections into long-term capacity planning specific

to the respective primary applications [9, 14–17]. In this work,

we consider a datacenter comprising of multiple such clusters,

where each cluster is carefully planned to host a primary

latency-critical application (e.g. Search, Storage).

B. Harvesting spare resources for secondary application

Many of the latency-critical applications that run on the

datacenter infrastructure are user-facing, and are prone to diur-

nal demand variations [6, 18–20]. Therefore, the infrastructure

is under-utilized when the load is low. One way to address

under-utilization due to diurnal variation is to consolidate

the number of active servers during low loads. While this

solution is beneficial for some clusters in reducing their energy

use (operating expenditure), it is inefficient as it strands the

provisioned server and power capacity (capital expenditure).

Hence, to fully utilize the provisioned capital investment,

datacenters increasingly admit multiple applications during

periods of low loads [6, 21]. These applications are executed

on a best-effort basis using spare resources available in the

cluster, without impacting the performance of the primary

latency-critical application.

The goal of such systems is to fully utilize the cluster

resources. Note that, the goal is is not just to improve the

capacity utilized, but also improve their utility (i.e. perfor-

mance per unit cost). Therefore, even when the infrastructure

is provisioned for only a single primary application, the cluster

utility is now the aggregate throughput of all its applications

which includes both latency critical primary application and

best-effort (BE) secondary applications. Thus, it is important

for us to revisit the resource allocation and management

problem in this context of running both primary and best-

effort applications in a cluster whose resources are provisioned

only by planning for the primary application. In this context,

there are two capacity constraints that one should take into

consideration. They are:

• the right-sized power infrastructure capacity which con-

straints the maximum power draw of the server; and

• the dynamic variations in spare resource and power

capacity in the server, driven by dynamic load variations

in the primary application.

These capacity constraints directly impact the overall perfor-

mance of the system, which we study next.

C. Challenges unique to this platform

Impact of right-sized power infrastructure: Private clusters

achieve significant cost benefit by right-sizing their power

capacity based on the needs of the primary application [9, 16].

This imposes a static limit on the server power capacity

because the provisioned power capacity can be different for

different applications. In this work, we consider four primary

applications with server power provisioning needs ranging

from 132 W to 180 W (more details in Section- V).

This right-sized power capacity has implications on the

utility of the cluster when we admit a new application to

utilize spare resources. Let us consider a server provisioned

for xapian [22] (a leaf node/server in a distributed web search

application) as its primary application. At its peak load, xapian

consumes all the server resources (12 cores at 2.2 GHz

frequency, all 20 LLC ways in a Xeon-2650 server) and a

power of 132 watts to meet its performance SLO. However, at

a low load of 10% of its peak, xapian requires only 1 core at a

frequency of 2.2 GHz, 2 cache ways and a power of 64 W to

meet its performance SLO. This results in the availability of

spare resources namely, 11 cores, 18 cache ways, and a power

budget of 70 watts to admit other best-effort applications.

Fig. 2 studies the power draw of running different best-effort

applications alongside this xapian application at 10% load. It

shows that none of the applications keep the server within its

provisioned power capacity as the power draw of the server

now ranges between 138 watts to 155 watts, a 5% to 17%

increase compared to the provisioned server power capacity

of 132 W required for xapian at its peak load.

To stay within the power capacity limit, the server reduces

power draw of the best-effort application. Fig. 3 shows the

performance (y-axis) of the the different best-effort applica-

tions (x-axis) in the presence and absence of power capacity

constraints. As we can see, all these applications have similar

throughput in the absence of any power capacity constraints.

However, when they are imposed with the 70 W power budget,

their performance drops from 3% (LSTM and RNN) to 20%

(Graph), even if they use same server resources (cores/LLC).

Clearly, it is beneficial for the overall throughput of the server

if we schedule either LSTM or RNN alongside a 10% load

xapian workload when compared to scheduling either of Pbzip

or Graph as the best-effort workload. This illustrates that

when power becomes the constrained resource, it limits full

utilization of all other resources in a server. Therefore, in the

presence of limited power capacity, the cluster also needs to

consider power as a resource in placing applications.

Impact of dynamic capacity limits: While the primary

latency-critical application has absolute priority for any re-

source it needs, the best-effort application can only work with

the spare/unused resources of the server. Since the load of the

primary application also varies dynamically, the spare capacity

also varies along with the load. Hence, from the perspective

of the best-effort application, the available capacity of all

the resources (including power) also vary dynamically. For

example, if the load of the primary application increases, the

server reclaims resources from the best-effort application as

much as necessary to maintain its latency within the SLO. In

our experimental platform, an increase in load from 50% to

80% for xapian can reduce the spare resources by 4 cores,

5 cache ways, and 10 W of power headroom. Therefore, the

best-effort application should be able to benefit from the entire

range of operating points of the primary application as opposed

to a single operating point. For example, Fig. 4 presents the









the relative throughput of the best-effort application when

placed alongside a latency-critical application. To populate

this matrix, the cluster manager uses the Cobb-Douglas utility

function using the derived co-efficient of αj and pj . It first esti-

mates the spare resource capacity in a server hosting a latency-

critical application using the Cobb-Douglas utility model so-

lution that minimizes for power usage (e.g. allocation-A in

Fig. 5) for the dynamic range of the LC application. Then,

it translate the spare resource capacity to performance of the

BE application using the Cobb-Douglas utility function using

the co-efficient of the BE applications. The cluster manager’s

goal is to identify an assignment that maximizes the overall

performance. There are standard methods to solve this [28–30]

(e.g. Linear Programming, Hungarian method, randomization).

We use a LP solver to identify an assignment that maximizes

the overall cluster performance (similar to LP solvers used

in [31, 32]).

C. Manage server resources in a power-efficient manner

The server manager is responsible for allocation and isola-

tion of resources between the primary and secondary applica-

tion. In our prototype, we consider allocation and isolation of

two important direct resources (cores along with their private

L1/L2 caches and LLC cache ways) and an indirect resource

of power. This can easily be extended to other resources.

Primary application: The server manager monitors the load

and the slack in 99th percentile tail latency of the primary

application over a time window of every second and makes

allocation decision. Upon a significant increase or decrease in

latency slack, it quickly changes the allocation configuration

to the power-efficient configuration for the current load. This

is done trivially using the analytical solution for the Cobb-

Douglas utility function [23]. This is a constant time operation

(less than a millisecond). It provides the number of cores and

caches that meets the given load at least power consumption.

Note that real systems are prone to load uncertainties and

model inaccuracies. We borrow control techniques from prior

works by using the tail latency of the application as feedback

to fine tune the allocations (including core frequency) to

maintain a latency slack of at least 10% with respect to the

latency SLO.

Secondary application: The spare resources that are not allo-

cated/reserved for the latency-critical applications are allocated

to the best-effort application. The server manager periodically

measures the power draw of the server using every 100 ms,

and throttles the power draw of the secondary application to

stay within the provisioned power capacity. Towards that, it

first uses the fine-grained knob of per-core frequency to reduce

power draw, and then limits the CPU execution time to further

reduce power draw if needed.

V. EVALUATION

A. Experimental Setup

Server: We evaluate all our experiments on an Intel Xeon E5-

2650 platform. The configuration of this server is presented in

Table I. This server is equipped with Intel’s socket and DRAM

Property Configuration

Processor Intel Xeon E5-2650
Cores 12 cores

Frequency 1.2 GHz to 2.2 GHz
LLC capacity 30M, 20 ways

Memory 256GB DDR4
Storage 480GB SSD
Power Idle:50 W, Active:135 W

TABLE I: Server configuration

power meter. It allows core assignment using Linux’s taskset

command, and LLC cache ways allocation using Intel’s Cache

Allocation Technology, and per-core frequency scaling config-

urable using Linux’s cpupowerutils. We disable the deep-sleep

state for all the cores-allocated to the primary application.

We run all the experiments with turbo-boost disabled. All the

applications are run on Ubuntu 16.04.

Primary Applications: Our cluster comprises of 4 servers,

each running a latency-critical application. They are,

• img-dnn [22] is image inference service that uses deep

neural network. It is a representative of image recognition

applications that are commonly used in online image search,

optical character recognition, etc. It operates on MNIST data.

• sphinx [22] represents speech recognition applications com-

monly used in voice assistant services such as Siri, Cor-

tanta, etc. It performs speaker independent continuous-speech

recognition using hidden markov models. It operates on

CMU’s AN4 speech data.

• xapian [22] is a web search engine. It represents a leaf node

in a distributed web search service like Google search or

Bing. It operates on index built from English Wikipedia.

• TPC-C [33] is an on-line transaction processing application.

It is a representative of applications with persistent storage

needs. We use MySQL database as the backend.

Table II presents the peak load, tail latency, and peak power

needs of these applications on a Xeon-2650 server platform

(see Table I). e.g. sphinx server requires 182 W of provisioned

power whereas img-dnn server requires only 133 W.

Best-effort applications: We consider four best-effort appli-

cations from three important domains.

• Deep learning training [34]: Many services use deep

learning models. The training phase of these models are

throughput oriented, and can be done on a best-effort ba-

sis. We consider the following representative applications

from Keras: a Long Short-Term Memory (LSTM) model

for IMDB sentiment classification and a Recurrent Neural

Network(RNN) model that learns to perform addition.

• Graph analytics [35]: Graphs are an important class of

data analytics applications in large private clusters (e.g.

Web Search, Social Networking). We consider PageRank on

Twitter data set as a representative application.

• Compression [36]: Datacenters spend a significant time in

compressing data for a wide variety of applications [37]. We

use pbzip2 as a representative application.
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