Pocolo: Power Optimized Colocation in Power
Constrained Environments

Iyswarya Narayanan, Adithya Kumar, Anand Sivasubramaniam
The Pennsylvania State University
{iun106,azk68,axs53 } @psu.edu

Abstract—There is a considerable amount of prior effort on co-
locating applications on datacenter servers for boosting resource
utilization. However, we note that it is equally important to take
power into consideration from the co-location viewpoint. Applica-
tions can still interfere on power in stringent power constrained
infrastructures, despite no direct resource contention between
the coexisting applications. This becomes particularly important
with dynamic load variations, where even if the power capacity
is tuned for the peak load of an application, co-locating another
application with it during its off-period can lead to overshooting
of the power capacity. Therefore, to extract maximum returns on
datacenter infrastructure investments one needs to jointly handle
power and server resources. We explore this problem in the con-
text of a private-cloud cluster which is provisioned for a primary
latency-critical application, but also admits secondary best-effort
applications to improve utilization during off-peak periods. Our
solution, Pocolo, draws on principles from economics to reason
about resource demands in power constrained environments and
provides answers to the when/where/what questions pertaining
to co-location. We implement Pocolo on a Linux cluster to
demonstrate its performance and cost benefits over a number
of latency-sensitive and best-effort datacenter workloads.

I. INTRODUCTION

Infrastructure costs are a significant expenditure in building
and operating large datacenters, necessitating the need to
extract the maximum value out of each provisioned resource.
The whole rationale behind cloud computing, whether public
or private, is to achieve this goal by sharing resources. This
helps to boost utilization, providing us the opportunity to use
resources on demand rather than dedicate them for individual
users/applications who may not need the entire provisioned
capacity all the time. Additionally, cloud operators co-locate
applications even on a single server, based on their resource
needs and Service-Level Objectives (SLOs), to push the uti-
lization even further. There has been a tremendous amount of
progress towards this goal in trying to build system to identify
and co-locate applications, minimize their resource interfer-
ence, and isolate their resource usage [1-6]. This becomes
more important as applications vary dynamically in their
resource needs, necessitating the marriage/co-location of only
those applications that do not interfere in their resource needs,
not just for the present but also in the future since dynamically
moving applications across servers incurs high overheads. To
date, much of the work in this space, has focused mainly on
identifying what we term, “primary resources” such as CPUs,
caches, memory, interconnects, and storage resources as points
of contention from the co-location viewpoint [1-5, 7, 8]. On

Latency Critical Latency Critical + Best Effort

Application Applications
3
T
g 3 g BE
5 2 3
H
- Time Time

Power use
exceeds capacity!

CPU capacity
q BE ; Dynamic resource

LC o capacity variations
>

Power

13

B

£15
2,8

o T

o

2

2

<

Power Infra.

>
g C-Servel Memory capacity C-Serve Memory capacity
E 5 I\, Tspare /=] i
: =T gb?pare: Coe2_ficserve gE B
g s [Csene] ==

§ lcserver Tme Ceez) Time

(a) Under-utilization of LC server (b) Harvesting under-utilized resources

Fig. 1: Harvesting spare resources in power constrained clus-
ters: (i) Naively admitting an application to utilize spare re-
sources can push the server power draw to exceed provisioned
power capacity. (ii) Spare resource capacity (including power)
varies dynamically.

the other hand, another important resource namely “power”
which is a “secondary resource” consumed as a consequence
of consuming the primary resources, has not received as much
attention from the contention viewpoint. As noted in several
studies [9-12], the provisioned power infrastructure is as
important as the compute/IT resources, and we need to equally
extract the most from each provisioned watt. This paper shows
that even if we avoid capacity contention for primary resources
when co-locating applications, we can still run into power
contention making power an important consideration for the
where, what and when co-location questions.

We illustrate this problem in Fig. 1. Consider a user-facing
latency critical application such as web-search running on
a cluster of servers that is right-sized to meet its SLO at
its peak load. Co-hosting other applications during this peak
load period would lead to violations in SLO, and hence there
is no co-location on any of the cluster servers during such
periods. However, many of these latency critical applications
go through dynamic variations, such as diurnal load behavior
as is shown in Fig. 1(a). In order to better utilize the IT in-
frastructure, we co-locate some other background applications
on the servers of this cluster during such off-peak periods.
One could apply results from prior research studies such as
[1, 3] to co-locate other applications with the web-search

application. For instance, we have two candidate applications
RNN and Graph analytics, which be run as a background
application along web-search without affecting the SLOs of
web-search. As can be seen in Fig. 1, the aggregate server
resource utilization (CPU and memory) of due to such co-
location during this off-period is still at most the utilization
during the peak period, validating the merits of prior studies
proposing co-location choices.

However, while the utilization of all other resources is
within the capacity of the infrastructure that is meant to
handle the peak load, the power consumption of the co-
located system overshoots the power of the peak load in the
original web-search application as is shown in Fig. 1(b). This
is because total server power (secondary resource) consump-
tion is additive over the consumption of power by all pri-
mary resources. As is to be expected, co-location algorithms,
which are usually based on performance-SLO or resource
reservations, select applications that do not contend in their
primary resource - CPU, caches, memory, storage, etc. - needs.
With the co-located applications simultaneously using very
different resources, the power consumption adds up, possibly
overshooting what the original application was consuming
during its peak period. As numerous prior studies have pointed
out, the power infrastructure is itself very expensive, running
into $10 to $20 per watt [10, 11, 13], and aggressive power
provisioning to extract the maximum value from each watt
is critical. If the power infrastructure in our example is
tightly provisioned to only handle the peak load of the web-
search which the cluster was originally intended for, then the
co-location during the off-peak period will over-shoot this
power budget despite adhering to the performance criteria
that normal co-locations strive for. In such situations, power
becomes the dominant resource for contention, prohibiting the
system from fully utilizing other primary resources. This paper
specifically focuses on this problem - when there is spare
resource capacity, which applications should we co-locate, not
just to minimize interference due to primary resources, but
also to minimize the power interference and provide the best
performance in a power constrained environment?

To answer this question, we need to jointly understand
the resource and power needs of the potential co-runners
in order to reason about application placement and resource
management. There are several challenges that we have to
address. The resource needs of the applications spans multiple
resources — several primary (direct) resources and a secondary
resource power (indirect). Further, we want to understand the
resource needs not only for the present (in a myopic fashion),
but also for future load fluctuations as well. While there are
prior works that tackle these challenges, these (i) focus on a
single operating condition and not the entire load range [1, 3]
and rely on systems mechanisms (e.g. migration to a spare
server) to cope with the outcomes of their myopic decisions;
(ii) are not designed for platforms that are aggressively under-
sized in their power capacity where the explicit goal is to
maximize performance per watt as opposed to achieving it as
a by-product of improving server utilization [6]; (iii) help to

reason about fairness in allocating direct resources [7, 8] as
opposed to reasoning about overall performance of co-located
applications in the presence of a power constraint (an indirect
resource).

Recognizing the unique needs of the power constrained
platforms in improving their infrastructure efficiency, we un-
dertake the efforts to systematically reason about resource
preferences of an application in the presence of an indirect
resource. Towards that, we make the following contributions.

e We borrow principles from the field of economics where
cost is an indirect resource (similar to power in our case)
that people use to buy one or more resources to maximize
their satisfaction. There are well-known methods and metrics
in economics to understand resource preferences in a cost
budget constrained scenario to maximize user satisfaction.
Drawing on these principles, we present a framework to
reason about resource demands in power constrained servers
that maximizes performance.

e The key insight from our analysis is that applications can
be co-located with the primary latency sensitive application
if they derive higher performance per watt from a different
set of resources (other than the ones needed by the primary
application). We use the notion of indirect utility function to
formally capture the resource preferences of the applications
under power constraints.

e Based on these insights, we present a framework, Pocolo.
It uses indirect utility metrics to identify power-optimized
co-locations and manage server resources power efficiently.

e We have implemented Pocolo on a Ubuntu 16.04 server
using 2 direct resources (CPU and LLC ways) and the
indirect power resource, and studied the impact of co-locating
different best-effort applications (typically found in the dat-
acenter) with several latency-critical foreground applications
(websearch, image-dnn, sphinx and TPCC). Further, we have
a cluster manager that uses these insights to assign the right
application to run alongside the latency sensitive applications.

e Our results show that: (i) Even if we naively assign random
applications to the same server running the latency sensitive
application, our resource allocation strategy within that server
provides 8% performance improvement with a power and
energy reduction of 7% and 16% respectively, while adhering
to the latency SLO for the latency critical application; (ii)
Further, if we have a smarter cluster level scheduler, the
performance is boosted even further to 18% with a power and
energy reduction of 8% and 27% respectively. This translates
to 16% reduction in overall datacenter Total Cost of Owner-
ship (TCO) as we are able to extract better performance per
watt from both capital server/power infrastructure as well as
by reducing operating energy expenditure.

II. BACKGROUND AND MOTIVATION
A. Right-sizing infrastructure for a primary application
Datacenters incur significant capital expenditure to provi-

sion both servers as well as power infrastructure [10]. There-
fore, minimizing their capital costs is of utmost importance to

the datacenters operators. Towards this goal, datacenters right-
size their infrastructure based on the needs of the primary
application in the cluster. By doing so, the datacenter oper-
ators achieve cost benefits by incorporating their knowledge
of application characteristics, estimated resource needs, and
demand projections into long-term capacity planning specific
to the respective primary applications [9, 14—17]. In this work,
we consider a datacenter comprising of multiple such clusters,
where each cluster is carefully planned to host a primary
latency-critical application (e.g. Search, Storage).

B. Harvesting spare resources for secondary application

Many of the latency-critical applications that run on the
datacenter infrastructure are user-facing, and are prone to diur-
nal demand variations [6, 18-20]. Therefore, the infrastructure
is under-utilized when the load is low. One way to address
under-utilization due to diurnal variation is to consolidate
the number of active servers during low loads. While this
solution is beneficial for some clusters in reducing their energy
use (operating expenditure), it is inefficient as it strands the
provisioned server and power capacity (capital expenditure).
Hence, to fully utilize the provisioned capital investment,
datacenters increasingly admit multiple applications during
periods of low loads [6, 21]. These applications are executed
on a best-effort basis using spare resources available in the
cluster, without impacting the performance of the primary
latency-critical application.

The goal of such systems is to fully utilize the cluster
resources. Note that, the goal is is not just to improve the
capacity utilized, but also improve their utility (i.e. perfor-
mance per unit cost). Therefore, even when the infrastructure
is provisioned for only a single primary application, the cluster
utility is now the aggregate throughput of all its applications
which includes both latency critical primary application and
best-effort (BE) secondary applications. Thus, it is important
for us to revisit the resource allocation and management
problem in this context of running both primary and best-
effort applications in a cluster whose resources are provisioned
only by planning for the primary application. In this context,
there are two capacity constraints that one should take into
consideration. They are:

o the right-sized power infrastructure capacity which con-
straints the maximum power draw of the server; and
o the dynamic variations in spare resource and power
capacity in the server, driven by dynamic load variations
in the primary application.
These capacity constraints directly impact the overall perfor-
mance of the system, which we study next.

C. Challenges unique to this platform

Impact of right-sized power infrastructure: Private clusters
achieve significant cost benefit by right-sizing their power
capacity based on the needs of the primary application [9, 16].
This imposes a static limit on the server power capacity
because the provisioned power capacity can be different for
different applications. In this work, we consider four primary

applications with server power provisioning needs ranging
from 132 W to 180 W (more details in Section- V).

This right-sized power capacity has implications on the
utility of the cluster when we admit a new application to
utilize spare resources. Let us consider a server provisioned
for xapian [22] (a leaf node/server in a distributed web search
application) as its primary application. At its peak load, xapian
consumes all the server resources (12 cores at 2.2 GHz
frequency, all 20 LLC ways in a Xeon-2650 server) and a
power of 132 watts to meet its performance SLO. However, at
a low load of 10% of its peak, xapian requires only 1 core at a
frequency of 2.2 GHz, 2 cache ways and a power of 64 W to
meet its performance SLO. This results in the availability of
spare resources namely, 11 cores, 18 cache ways, and a power
budget of 70 watts to admit other best-effort applications.
Fig. 2 studies the power draw of running different best-effort
applications alongside this xapian application at 10% load. It
shows that none of the applications keep the server within its
provisioned power capacity as the power draw of the server
now ranges between 138 watts to 155 watts, a 5% to 17%
increase compared to the provisioned server power capacity
of 132 W required for xapian at its peak load.

To stay within the power capacity limit, the server reduces
power draw of the best-effort application. Fig. 3 shows the
performance (y-axis) of the the different best-effort applica-
tions (x-axis) in the presence and absence of power capacity
constraints. As we can see, all these applications have similar
throughput in the absence of any power capacity constraints.
However, when they are imposed with the 70 W power budget,
their performance drops from 3% (LSTM and RNN) to 20%
(Graph), even if they use same server resources (cores/LLC).
Clearly, it is beneficial for the overall throughput of the server
if we schedule either LSTM or RNN alongside a 10% load
xapian workload when compared to scheduling either of Pbzip
or Graph as the best-effort workload. This illustrates that
when power becomes the constrained resource, it limits full
utilization of all other resources in a server. Therefore, in the
presence of limited power capacity, the cluster also needs to
consider power as a resource in placing applications.
Impact of dynamic capacity limits: While the primary
latency-critical application has absolute priority for any re-
source it needs, the best-effort application can only work with
the spare/unused resources of the server. Since the load of the
primary application also varies dynamically, the spare capacity
also varies along with the load. Hence, from the perspective
of the best-effort application, the available capacity of all
the resources (including power) also vary dynamically. For
example, if the load of the primary application increases, the
server reclaims resources from the best-effort application as
much as necessary to maintain its latency within the SLO. In
our experimental platform, an increase in load from 50% to
80% for xapian can reduce the spare resources by 4 cores,
5 cache ways, and 10 W of power headroom. Therefore, the
best-effort application should be able to benefit from the entire
range of operating points of the primary application as opposed
to a single operating point. For example, Fig. 4 presents the

Provisioned power capacity —#&—
Acutal power draw

without power constraint
with power constraint I

LSTM —— RNN - - - -

160 ‘ - . : 1
—a—a—a

Power (W)
=]
o
TT T T T TT
| I |
Throughput

LSTM RNN Pbzip Graph LSTM

Application hosted alongside Xapian

Fig. 2: Power draw of server exceeds its
provisioned capacity on running other
applications alongside xapian.

throughput of the two best-effort applications (LSTM and
RNN) under 10% to 90% of the peak load for xapian. It shows
that RNN is able to derive better performance at all loads when
compared to LSTM, whereas both these applications were
suitable candidates when we looked at a fixed operating point
of 10% load as illustrated previously in Fig. 3. Therefore, the
system should also account for dynamic capacity variations
when placing best-effort applications alongside any primary
application in addition to their power needs.

In summary, to improve the utility of cluster infrastructure
in resource harvesting platforms: (i) we need to account for
both direct resources and power needs of the applications; (ii)
we should consider not only the instantaneous performance
benefits but also a range of operating conditions. We next show
how to systematically navigate these challenges.

III. HOW TO MAXIMIZE THE UTILITY OF A CLUSTER
UNDER A POWER CONSTRAINT?

Our high level goal is to match a set of best-effort applica-

tions to servers provisioned for latency-critical applications in
such a way that effectively utilizes the spare server resources.
To arrive at such placement decision we need to understand the
performance of a best-effort application when matched with a
latency-critical application.
Understanding intrinsic resource needs: Our intention is
to characterize the intrinsic resource needs of the primary
application as it directly determines the spare resource capacity
available for the best-effort application. This is a complex
problem because of the following reasons:

e The applications have resource needs in several dimensions:
compute, memory, storage, and power. Therefore we need to
explore a rich design space for resource allocations.

e Among all the resources, power is an indirect resource — as
consumption of any other resource also results in power con-
sumption. Therefore, we cannot independently study resource
and power allocations.

e We want to capture the resource usage characteristics of
the application not just for an instantaneous load, but for
a dynamic operating range (e.g. diurnal load range).

e We want to reason about the resource needs not only for the
primary application, but also for its co-runner.

RNN
Application hosted alongside Xapian
Fig. 3: Performance of the applications

are the same without power constraint
and different in its presence.

Throughput
OO0 000000
L
Ll

oLRvahnmNRE

Pbzip Graph 0 10 20 30 40 50 60 70 80 90 100

Xapian Load in %

Fig. 4: RNN is a better candidate to
run alongside Xapian if we consider its
entire load spectrum.

While there are prior works on characterizing resource needs,
they (i) ignore power needs of the direct resources [6]; (ii)
focus for a single operating condition and not the entire load
range [3]; (iii) use random search to explore the design space.
While random search provides a feasible solution for server
resource management, we also want to reason about placement
decisions at cluster level.

To address this unique scenario, we borrow well-known

techniques from the field of economics [23, 24] that can help
us to jointly address all these aspects. We discuss them in
detail below.
Understanding resource needs of the primary application
using indifference curves: Indifference curves are used to
understand the resource needs of a single agent (an application
in our setting) to sustain a given load.

Fig. 5 presents the indifference curves for sphinx (a speech
recognition) application. Here, the x-axis and the y-axis cap-
ture the allocation of two types of direct resources. i.e. cores
and LLC cache ways respectively. The solid curves represent
iso-load points ranging from 20% to 80% of the peak load
of sphinx. The given allocation of cores (in x-axis) and cache
ways (y-axis) can sustain the given load without violating its
SLO. It shows that different combinations of cores and LLC
cache ways can meet the target latency at a given load. i.e. the
application can substitute cache ways with more cores or vice-
versa. The application is indifferent to any of the allocations in
the iso-load line as they all meet the given load while adhering
to the latency SLO.

However, power is an indirect resource. It is consumed in all
the direct resources. Therefore, the application expends power
in adding cores and caches capacity. Among all the direct
resource allocations, we are interested in the allocations that
consume least power while meeting the performance SLO at
a given load as it would correspond to higher spare capacity
in terms of power for any other co-runner. We use the the
dotted line to capture this. For example, if load of the latency-
critical application increases from 20% to 40%, the least power
hungry transition is to change the allocation from allocation-A
to allocation-B. Therefore, in a power constrained scenario as
ours, the server can reclaim more power headroom (in addition
to spare cores and cache ways) by transitioning through these
allocations as and when the load changes.

Implications on the spare capacity for the secondary

Power efficient path
20 \
15 \

10 /

Load=80%
Load=60%

Load=40%

LC Cache ways

Load=20%
/

0 2 4 6 8 10 12
LC Number of cores
Fig. 5: An application is indifferent to any allocation of
cores and caches that provides same performance (solid curves
representing iso-load). In the presence of power constraints, it
prefers the allocations that results in least power use (dotted
curve that intersects with the solid curves).

BE Number of cores <

2 10 8 6 4 2 0
20 NN SN 0
-
g W\ wn
@ 15 - ! Sy ©
3 g “1d=80% 2
o Spares at 40% LCload * -~ °
-S 10 V4 LOa0=60% 10 -S
8 \¢ g
OAsl 7 Load=40% 15 :_,)
| |7 Load=20% o0
0 20

0 2 4 6 8 10 12
LC Number of cores

Fig. 6: The bottom-left and the top-right serve as the origin
for the primary and the secondary application respectively. It
shows the power-efficient allocation of two direct resources for
the primary application and the corresponding spare resources
which is used to run the secondary application. The dotted
curve represents the power-efficient configurations for the
latency-critical application. The striped region represents the
feasible allocations for the best-effort application under a
power-efficient operation of the latency-critical application.

application: The consequence of power-efficient allocation
on the spare resources available for the secondary application
is shown in Fig. 6. We use the Edgeworth-box [24] to
understand the allocations of two types of resources between
two applications. Here, the axes with the origin at the lower
left corner represents the resource allocated to the primary
application and the axes with its origin at the upper right
corner of the box represent the spare resources allocated to
the best-effort application. The primary and secondary axes are
complements of each other. For example, at 20% load, primary
application uses 1 cores and 5 cache ways. It corresponds to
secondary application receiving of 11 cores (12 cores in the
server - 1 cores used by the primary) and 15 cache ways (20
cache ways in the server - 5 cache ways used by the primary).

As the load increases for the primary application, it needs
more cache ways than cores. Therefore, the secondary ap-

plication can get up to 10 cores and 10 cache ways as the
load of the primary drops to 20%. It implies that a best-
effort application that is able to derive more performance per
watt using compute cores would be able to make better use
of all the available spare resources — plentiful cores, limited
power, and limited cache ways in this example. Therefore, fo
effectively utilize this server we have to place a best-effort
application that derives higher performance per watt from a
different set of resources (other than the ones needed by the
primary application to derive higher performance per watt)
(striped region in Fig. 6). We use this key insight to improve
cluster utility.

While the Edgeworth-box helps us to characterize this for

two-types of resources, we can represent this more generally
for more than two types of resources, and analytically reason
about the demand for these resources.
Formalizing resource usage characteristics using indirect
utility functions: Towards that, we use the concept of indirect
utility functions to generalize this idea when using k-types of
direct resources (cores, LLC cache ways, memory bandwidth,
etc.) and a single indirect resource (power). Indirect utility
functions are used in economics to study the demand of
individual consumers [23] for different items (e.g. food) that
maximizes their satisfaction within their cost budget. In this
setting, we want to understand the relative demand of different
direct resources in a server that maximizes the application
performance (throughput under target latency) under power
constraints. In a general form, performance of an application
1 is given by,

Per formance; = Utility;(ri1, .., ik, Power;)

where, (741, ...,7x) and Power; are the respective allocations
of the direct resources and the power to an application ¢. The
utility function can take many forms. In this work, we consider
Cobb-Douglas indirect utility function. It takes the following
form in the presence of an indirect resource:

Kk
Utility(ri1, .., ik, Power;) = ayo H T (1)
j=1
k
$.L.Dstatic T Z rijpi; < Power; 2)
j=1

Here, the parameters cy;; capture the relative impact of al-
location of the direct resources on the performance of the
application, and the parameters p;; capture the relative impact
of allocation of the direct resource on the power draw of the
application. a9 and psgq44c are constants. Prior works [8] have
shown that Cobb-Douglas direct utility function is well-suited
to capture application performance that require more than
one type of direct resource for its execution (e.g. cores and
caches). It also captures the resource indifference effect shown
previously in figure 5 where several combinations of cores
and cache allocations resulted in the same performance. As
we will show later in evaluations, the Cobb-Douglas indirect
utility function is well-suited to jointly capture the relative

I. Model utilities Il. Estimate performance

—

Best-effort apps.
Cl1 09 0.6 0.1 -
C2 1 04 05
C3 0.7 0.5 0.8

BE-1 to BE-n

LC-1to LC-n
Performance=x%y
Power=xP, + yP,

b

b
Preference=(i —)
EREN

LC Cluster

Ill. Place applications

IV. Manage server resources

BE Number of cores

12 0
20 Best-effort o
« | allocations -
g g
3 3
@ ﬂJ
= =
3 3
o Q
Q —
N
1 120

LC Number of cores 12

Fig. 7: I. Fit indirect utility model on profiled data. II. Use model parameters to estimate relative performance when placed
alongside the latency-sensitive applications. III. Solve the matrix to identify a suitable a placement. IV. Use indirect utility
model to manage server resources for the primary application in a power efficient manner.

impact of direct resources on an application’s power draw and
performance.

Given this indirect utility function, one can analytically
derive the demand for the direct resources under any power
budget that maximizes the application performance [23]. The
demand for r;; that maximizes the utility under a budget of

Power; is given as Foweri—Psaric % Here, the factor
Pij Zj (2%]
Otij

v S provides the relative preference of an application
for the direct resource irrespective of its load or power budget.
Higher value of this metric represents higher performance-
per-watt from the resource, and therefore more need for the
resource. This metric provides the relative demand for direct
resources that operates the application in the most power-
efficient way irrespective of the load, and help us quickly rea-
son about the placement decisions for the entire load region of
the application. For example, the O‘:% and % for the pri-
mary application of sphinx is 0.28 and 0.72 respectively (these
metrics are scaled to add to 1). Similarly, they are 0.13 and
0.87 respectively for the secondary application of LSTM; 0.8
and 0.2 respectively for the secondary application of Graph.
It indicates that Graph would derive better performance-per-
watt using cores than caches and it is different from what
sphinx requires for power efficient operation. Therefore, is
better suited to run alongside sphinx across all loads compared
to LSTM. We also observe this in our system evaluations in
Section V. In summary, once we have the resource preferences
for each best-effort and latency-critical application, we can co-
locate applications that do not require the same set of resources
for power-efficient operation.

IV. SYSTEM IMPLEMENTATION

We next discuss the salient details of our prototype imple-
mentation shown in Fig. 7 which comprises of (i) modelling
utilities, (ii) estimating performance using utility functions,
(iii) cluster-level placement decisions and (iv) server-level
management decisions.

A. Modelling utilities and capture resource preferences

We describe the process of deriving the utility model
parameters for each application. This entails profiling the per-
formance and power draw of the applications under different

allocations of the direct resources and fitting the utility model
to determine the resource preferences.

Profiling: We use samples of application performance and
power under different settings of the allocation of the direct re-
sources using fine grained resource allocation knobs in today’s
servers. We use the metric of maximum achievable application
load (requests per second) within the target latency for the
latency-critical application, and throughput as the performance
metric for the best-effort applications. These performance
metrics are commonly available on-line through application
instrumentation (in private cloud setting as ours) and the power
metrics are available on-line through server/socket power
meters. Telemetry systems in today’s datacenters periodically
collected these metrics for each application at fine temporal
granularity in private datacenters [25, 26].

Model fitting: We estimate the preference vector by fitting the
power and performance profiles to the Cobb-Douglas indirect
utility model. As an initial guard against model inaccuracies,
we use samples where the tail latency of the primary appli-
cation has at least 10% slack with respect to its SLO latency.
The utility function is per formance = oy H?:l rjo-‘j such that
Pgtatic + >2;7jpj = Power. We estimate c; and p; using
linear regression. We transform the performance model in to
linear form using log transformation. log(per formance) =
log(ag) + Z?:l ajlog(r;) After which, we estimate the
performance parameters (cv;) using least square method. Sim-
ilarly, we estimate the power parameters also using least
square method. When using the power measurements, we use
application-level power meter [27] to apportion static/leakage
power of the CPU and LLC ways.

We capture the resource preferences of application ¢ for
each resource (j) using «y; and p;;. The applications either
provide their fitted parameters using historical knowledge or
they are sampled online during execution.

B. Place applications using their resource preferences

The goal of the cluster manager is to identify a suitable
latency-critical server for each of the best-effort applications
that would benefit the application performance at all load con-
ditions of the latency-critical application. The cluster manager
populates a performance matrix to make placement decisions
as shown in figure 7 (II). The performance matrix captures

the relative throughput of the best-effort application when
placed alongside a latency-critical application. To populate
this matrix, the cluster manager uses the Cobb-Douglas utility
function using the derived co-efficient of a; and p;. It first esti-
mates the spare resource capacity in a server hosting a latency-
critical application using the Cobb-Douglas utility model so-
lution that minimizes for power usage (e.g. allocation-A in
Fig. 5) for the dynamic range of the LC application. Then,
it translate the spare resource capacity to performance of the
BE application using the Cobb-Douglas utility function using
the co-efficient of the BE applications. The cluster manager’s
goal is to identify an assignment that maximizes the overall
performance. There are standard methods to solve this [28-30]
(e.g. Linear Programming, Hungarian method, randomization).
We use a LP solver to identify an assignment that maximizes
the overall cluster performance (similar to LP solvers used
in [31, 32]).

C. Manage server resources in a power-efficient manner

The server manager is responsible for allocation and isola-

tion of resources between the primary and secondary applica-
tion. In our prototype, we consider allocation and isolation of
two important direct resources (cores along with their private
L1/L2 caches and LLC cache ways) and an indirect resource
of power. This can easily be extended to other resources.
Primary application: The server manager monitors the load
and the slack in 99th percentile tail latency of the primary
application over a time window of every second and makes
allocation decision. Upon a significant increase or decrease in
latency slack, it quickly changes the allocation configuration
to the power-efficient configuration for the current load. This
is done trivially using the analytical solution for the Cobb-
Douglas utility function [23]. This is a constant time operation
(less than a millisecond). It provides the number of cores and
caches that meets the given load at least power consumption.
Note that real systems are prone to load uncertainties and
model inaccuracies. We borrow control techniques from prior
works by using the tail latency of the application as feedback
to fine tune the allocations (including core frequency) to
maintain a latency slack of at least 10% with respect to the
latency SLO.
Secondary application: The spare resources that are not allo-
cated/reserved for the latency-critical applications are allocated
to the best-effort application. The server manager periodically
measures the power draw of the server using every 100 ms,
and throttles the power draw of the secondary application to
stay within the provisioned power capacity. Towards that, it
first uses the fine-grained knob of per-core frequency to reduce
power draw, and then limits the CPU execution time to further
reduce power draw if needed.

V. EVALUATION

A. Experimental Setup

Server: We evaluate all our experiments on an Intel Xeon E5-
2650 platform. The configuration of this server is presented in
Table I. This server is equipped with Intel’s socket and DRAM

Property Configuration
Processor Intel Xeon E5-2650
Cores 12 cores
Frequency 1.2 GHz to 2.2 GHz
LLC capacity 30M, 20 ways
Memory 256GB DDR4
Storage 480GB SSD
Power Idle:50 W, Active:135 W

TABLE I: Server configuration

power meter. It allows core assignment using Linux’s taskset
command, and LLC cache ways allocation using Intel’s Cache
Allocation Technology, and per-core frequency scaling config-
urable using Linux’s cpupowerutils. We disable the deep-sleep
state for all the cores-allocated to the primary application.
We run all the experiments with turbo-boost disabled. All the
applications are run on Ubuntu 16.04.

Primary Applications: Our cluster comprises of 4 servers,
each running a latency-critical application. They are,

e img-dnn [22] is image inference service that uses deep
neural network. It is a representative of image recognition
applications that are commonly used in online image search,
optical character recognition, etc. It operates on MNIST data.

e sphinx [22] represents speech recognition applications com-
monly used in voice assistant services such as Siri, Cor-
tanta, etc. It performs speaker independent continuous-speech
recognition using hidden markov models. It operates on
CMU’s AN4 speech data.

e xapian [22] is a web search engine. It represents a leaf node
in a distributed web search service like Google search or
Bing. It operates on index built from English Wikipedia.

e TPC-C [33] is an on-line transaction processing application.
It is a representative of applications with persistent storage
needs. We use MySQL database as the backend.

Table II presents the peak load, tail latency, and peak power
needs of these applications on a Xeon-2650 server platform
(see Table I). e.g. sphinx server requires 182 W of provisioned
power whereas img-dnn server requires only 133 W.

Best-effort applications: We consider four best-effort appli-
cations from three important domains.

e Deep learning training [34]: Many services use deep
learning models. The training phase of these models are
throughput oriented, and can be done on a best-effort ba-
sis. We consider the following representative applications
from Keras: a Long Short-Term Memory (LSTM) model
for IMDB sentiment classification and a Recurrent Neural
Network(RNN) model that learns to perform addition.

e Graph analytics [35]: Graphs are an important class of
data analytics applications in large private clusters (e.g.
Web Search, Social Networking). We consider PageRank on
Twitter data set as a representative application.

o Compression [36]: Datacenters spend a significant time in
compressing data for a wide variety of applications [37]. We
use pbzip2 as a representative application.

Application img-dnn Sphinx Xapian TPC-C
Domain Image search Speech recognition Web search Persistent database
95th percentile latency 10 ms 1.8s 2.588 ms 51 ms
99th percentile latency 20 ms 3.03s 4.020 ms 707 ms
Peak server load 3500 requests/s 10 requests/s 4000 requests/s 8000 requests/s
Peak server power 133 W 182 W 154 W 133 W

TABLE II: Latency critical applications: Server-level characteristics.

Caches Il Cores

Perf Power

1 T T 1
55 08 0.8
58 os o 06
£ E 0.4 zo' 0.4
83
©T o2 0.2

o 0

sphinx xapian - tpcc img-dnn sphinx xapian tpcc img-dnn

(a) Latency critical applications (a) Latency critical applications

Caches Il Cores

Perf Power I 1
1 T T
0.8
5 5 0.8
28 o6 2 06
CE =
Eg 04 < 04
&3
0T g2 0.2
0 0

Istm pbzip rn graph Istm pbzip rnn graph

(b) Best effort applications (b) Best effort applications

Fig. 8: Goodness of fit. Fig. 9: Direct utility.

B. Evaluation organization

We first show the resource and power needs of the primary
LC application and the secondary BE applications using the
fitted model parameters. Then, we evaluate the overall power
and performance benefits of jointly tackling server and power
needs of the applications. We study the co-location decision
under POColo compared to an exhaustive placement search.
Finally, we present the total cost of ownership analysis.

C. Application characterization

We next present application power and performance char-
acteristics using the Cobb-Douglas indirect utility model.

First, we study the goodness-of-fit for the parameters re-
lated to direct resource (cvj) and power (p;) under different
allocations of direct resources (r;) (where j is cores and
LLC cache ways) computed using linear-regression. We use
the coefficient-of-determination (R-squared) to capture this,
where the value closer to 1 represents an ideal fit. Fig. 8a
and 8b shows the metric for both latency-critical (under
20% latency slack) and best-effort applications respectively.
All applications have R-squared between 0.8 to 0.95 for
performance and 0.8 to 0.98 for power, indicating a good fit.

Using the relative preferences derived based on the Cobb-
Douglas utility functions, we illustrate the differences in
placement decisions depending on whether power needs are
taken into account. Let us consider Sphinx, which is a LC
application. If we do not account for power, it prefers more
cores over cache ways in the ratio of quores @ Qeaches aS
0.6:0.4 in Fig.-9a. Correspondingly, we could place LSTM
from the BE candidates as it has complementary preferences
compared to Sphinx (Qcores @ Qcaches as 0.32:0.68 in Fig.-
10b). However, if we include power needs too, both Sphinx

Cores Caches N Caches Il Cores
10 T T T 1
== 8 0.8
8=z °
é g 6 S 06
[}
g3 4 g 0.4
sl [s]
< 2 0.2
0 0

sphinx xapian tpcc img-dnn sphinx xapian tpcc img-dnn

(a) Latency critical applications (a) Latency critical applications

Cores Caches N
10 T T T 1

0.8

Caches Il Cores

S=
== °
i s 06
=K

93 g 0.4
g« °

0.2
0

Istm rnn Istm pbzip rnn graph

(b) Best effort applications

graph

pbzip
(b) Best effort applications

Fig. 10: Power needs. Fig. 11: Indirect utilities.

and LSTM prefer more cache ways over cores (%C‘ZTL- : ;‘LZ%
as 0.2:0.8) as show in Figs-11a and 11b. Under power con-
straints, Graph is a better candidate to run alongside Sphinx
as it has complementary resource preferences (;“”"“ ; GQeaches

cores Pcaches
as 0.80:20).

D. Impact on server performance

We next study the benefits of two components of our
solution that incorporate power awareness (server management
and placement) compared to the baseline policy.

e Random co-location (Random): The cluster manager ran-
domly assigns the best-effort application to any avail-
able latency-critical server. The server uses state-of-the-art
feedback-based controller (Heracles [6]) to allocate and iso-
late server resources to stay within the target latency for the
primary application. It allocates cores and caches from any
one of the feasible allocations in the indifference curve. i.e.
resources are not differentiated by their power use. Best-effort
application use the rest of the un-allocated spare resources. Its
power use is throttled to stay within the server’s provisioned
power capacity. This serves as our baseline.

e Power Optimized Management (POM): This is the first
component of our proposal where the feedback-based server
manager operates the primary application within the target
latency using Cobb-Douglas indirect utility model guided
search for power efficient allocations. The secondary appli-
cation receives any resource not used by the primary. The
placement decisions are power unaware.

o Power Optimized Co-location and server management

(POColo): It incorporates both placement and management
components of our proposal. The cluster manager places

Random [IPOM mPOColo

14
1.2

1
0.8
0.6
0.4
0.2

Best-effort application
performance

Fig. 12: Throughput of the best-effort applications placed
alongside the latency-critical application shown in the x-axis.
Higher is better. Pocolo provides higher overall throughput.

application by estimating the performance of the applications
using their preference for the direct resources and power
(pj ;)J] a;). The server manager operates the primary appli-
cation within its target latency. It uses the utility model and
latency-feedback to guide resource allocation.

Fig. 12 present the throughput of the secondary best-effort
application (y-axis) while maintaining a latency slack of at
least 10% for the primary latency-critical application. Here,
the x-axis presents the primary application, and the y-axis
presents the throughput for its co-runner averaged across
the primary load (under a uniform load distribution from
10% to 90% in steps of 10%). The bars represent different
policies for application placement and management. It shows
that even when we naively admit an application, managing
resources using POM to efficiently utilize power for the
primary automatically increases average throughput by 8%.
Further, by jointly incorporating resource and power needs
of the application at the placement time, Pocolo achieves
an 18% improvement in average throughput for best-effort
applications. Note that POColo optimizes for overall clus-
ter throughput (i.e. the sum of aggregate throughput of all
servers), and is not designed to consider fairness. Therefore, in
order to maximize overall performance of the cluster, it allows
poorer performance for some co-locations (e.g. co-runner of
TPCC) while most effectively matching other co-locations.

We next present the resulting power utilization of the
servers. Fig. 13 presents the primary application in x-axis, and
the server’s average power utilization under co-location in y-
axis. As we can, the power utilization under the random policy
is almost always high with an average of 96% (of the peak
capacity) across the four latency-critical servers in our cluster.
This results in frequent power capping. In contrast, average
power utilization for both POM and PoColo is only around
88%, an 8% reduction. It shows that the POM and Pocolo
achieves 8% and 18% higher throughput respectively, while
simultaneously reducing the cluster’s power draw by 8%. It
reduces the need to throttle server power draw by design. This
clearly shows the benefits of incorporating indirect resource
utility to reduce power use.

Random £ POM mEPOColo
120%

100%
80%
60%
40%
20%

0%

Server power draw
(% of peak)

Fig. 13: Power draw of the latency-critical server normalized
to its provisioned peak power capacity. Lower is better.

E. Co-location decision and resource preferences

To understand the co-location choices of POColo, we com-
pare its decision against an exhaustive placement search that
considers across all 4x4 combinations in our experimental
platform. In Figs. 14, the x-axis presents the % of the peak
load of the latency-critical application. The y-axis presents the
average throughput of the server (total throughput of latency-
critical and best-effort application). Pocolo chooses to assign
Graph to sphinx server. As we can see, Graph is able to
utilize the server resources at all loads of the Sphinx. Also
note that, the resource preference of graph is 0.8 and 0.2
for cores and caches, whereas it is 0.2 and 0.8 for sphinx.
Therefore, these applications do not require the same resources
to operate in a power efficient manner and are able to derive
better performance. Similarly, LSTM is matched to img-dnn,
whereas RNN/Pbzib are matched to Xapian or TPCC with
equal probability. These placement decisions can be similarly
be explained for other applications.

E. Impact on datacenter TCO

We next present the cost benefits using a publicly available
total cost of ownership model [13]. The details of the cluster
are as follows: 100000 servers where each server costs $1450,
provisioning power infrastructure costs $9/W, energy usage
costs 7 cents per KWhr and power usage efficiency (PUE) of
1.1. We present the TCO of the different resource management
strategies studied previously in Section-V-D to provide a
constant amount of throughput. In addition to these policies,
we also consider the TCO needs of the baseline (Random
policy) in the absence of power under-provisioning, referred
to as Random(NoCap). Here, each server is provisioned with
185 W (max power needs of all primary application).

We present the amortized monthly costs of the datacenter
infrastructure in Fig. 15. It shows Pocolo results in 12%, 16%
and 8% lower TCO compared to Random(NoCap), Random
and POM respectively. Random(NoCap) does not aggressively
under-provision its power infrastructure. Therefore, it incurs
the highest power infrastructure costs. In contrast, Random
is aggressively under-provisioned in its power capacity and
poorly uses available power capacity. Therefore, it incurs the
higher server provisioning costs to compensate for that. Pocolo
incurs lowest server, power and energy costs. Thus, it adheres

120% 120%

100% 100%

E W g A —.
2 80% \'\‘/’// 5 o
@] —o—LSTM
2 60% —-LSTM = 6% e
b . P —o—Pbzip
T 40% U s
(=] (=]
= 20% RNN = 20% Graph
Graph
0% rap 0%
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Sphinx load Xapian load

120%
100%

120%
100%

T -] e
S = g IS e
2 80% L2 go%
] ——LSTM] ——LSTM
 60% 60%
3 —e—Pbzip g —eo—Pbzip
T 40% s 40%
5 RNN s RNN
= 20% = 20%
Graph Graph
0% 0%
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
TPCC load Img-dnn load

Fig. 14: Total server load under Pocolo for all placement combinations. Pocolo assigns Graph to Sphinx, LSTM to img-dnn,
and RNN or Pbzip alongside either Xapian or TPCC as these placements improve overall throughput.

Random(NoCap) N Random [EPOM Ml Pocolo
8

Monthly costs
Millions
o N &~ O
777770

Power Total

infra

Server
infra

Fig. 15: Amortized monthly TCO.

Energy
use

to the goal of improving the cluster utility (performance per
cost) by optimizing both capital expenses of server and power
infrastructure as well as the operating expense of energy use.

G. Scope and limitations

Relevance to resource types: Our solution can be applied
for resources that can be substituted within an application as
shown using indifference curves (e.g. memory bandwidth, net-
work bandwidth and storage read bandwidth). Moreover, this
solution expects the resources preferences of the applications
to be convex. Otherwise, the allocations will be inefficient.
Relevance to admitting multiple best-effort applications:
We analyze only one best-effort application that fully utilizes
spare server resources. If there are more than one best-effort
application, they can be scheduled to time-share the server
(e.g.first-come first-served, shortest job first). Spatial sharing
would entail further partitioning of direct resources and power,
which we intend to explore as future work.

VI. RELATED WORK

Datacenter infrastructure: Improving datacenter infrastruc-
ture efficiency is an important area of research. Prior efforts
in this area spans capacity planning for server [14, 18] and
power infrastructure [9, 16, 38] as well as operational support
to manage server [1-3, 6, 21] and power usage [12, 25, 39—
41]. These works do not consider an important and emerging
trend where a power constrained cluster hosting latency-
critical applications tries to improve its resource efficiency by
re-purposing its spare resources. This work undertakes this
challenge by building upon advances in cluster management
and server management.

Admittance control and job placement: Cluster-level man-
agement entails admittance and placement of applications

towards a system objective such as meeting the performance
SLO, resource reservations, or even to balance power utiliza-
tion. These efforts include placing applications to efficiently
meet their resource reservations [42—44] or avoid contention
for shared direct resources [1, 3]. Similarly, there are efforts
on cluster management to cope with variations in power
availability [12, 45], utilization [16, 46, 47] and to improve
power efficiency [48]. These are well-suited to cope with ap-
plications’ resource requirements in terms of server resources
(CPU, LLC) or power, and not both. The scenario tackled
in this work requires the cluster manager to jointly consider
the resource requirements of the applications in terms of both
server resources as well as power.

Server resource management: Resource managers in the
server are responsible for partitioning and isolating server
resources between co-hosted applications. Towards that,
prior works have proposed mechanism to isolate shared re-
sources [49, 50], and policies [6-8, 27, 51-53] to apportion
these resources. Of these, resource elasticity fairness [8] is
closely related to our work. It aims to achieve fair partitioning
of two direct resources (caches and memory bandwidth) in the
public cloud. In this work, we focus on partitioning two direct
resources (CPU cores and caches) and an indirect resource
(power) in a private cloud in order to maximize performance
per watt (as opposed to fairness).

VII. CONCLUSION AND FUTURE WORK

We show that when power becomes a scarce resource, it
prohibits effective utilization of the capacity in other resources
(e.g. CPU, caches). We conduct an exhaustive treatment of
this subject in the context of a private cluster, which is provi-
sioned for a latency-critical application, but also admits best-
effort applications during off-peak periods to improve resource
utilization. Our analysis shows that the power optimized co-
location can reduce both capital and operating expenses of the
datacenters by effectively utilizing both server resources and
power. These benefits stem from application level differences
in the performance and power draw of the direct resources
in the server. While we have addressed this problem specific
to a private cluster designed for primary latency-critical ap-
plication, this is an equally important problem for all kinds
of datacenters. We intend take the insights from this work to
guide other settings of datacenter operations.

VIII. ACKNOWLEDGEMENTS

This research was supported by National Science Founda-
tion grants 1714389, 1909004, 1629915, 1629129, 1526750,
1763681, 1912495 and a DARPA/SRC JUMP award.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware
scheduling for heterogeneous datacenters,” in ACM SIG-
PLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 77-88.
——, “Quasar: Resource-efficient and qos-aware clus-
ter management,” in Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
Precise online qos management for increased utilization
in warehouse scale computers,” in ACM SIGARCH Com-
puter Architecture News, vol. 41, no. 3. ACM, 2013,
pp. 607-618.

S. Govindan, J. Liu, A. Kansal, and A. Sivasubrama-
niam, “Cuanta: quantifying effects of shared on-chip
resource interference for consolidated virtual machines,”
in Proceedings of the International Symposium on Cloud
Computing, 2011.

Q. Llull, S. Fan, S. M. Zahedi, and B. C. Lee, “Cooper:
Task colocation with cooperative games,” in 2017 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA). 1EEE, 2017, pp. 421-432.
D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency
at scale,” in ACM SIGARCH Computer Architecture
News, vol. 43, no. 3. ACM, 2015, pp. 450-462.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness:
Fair allocation of multiple resource types,” in Proceed-
ings of the Conference on Networked Systems Design and
Implementation (NSDI), 2011.

S. M. Zahedi and B. C. Lee, “Ref: Resource elasticity
fairness with sharing incentives for multiprocessors,” in
ACM SIGPLAN Notices, vol. 49, no. 4. ACM, 2014,
pp. 145-160.

S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubrama-
niam, and A. Baldini, “Statistical profiling-based tech-
niques for effective power provisioning in data centers,”
in Proceedings of the European Conference on Computer
Systems (EuroSys), 2009.

L. A. Barroso, U. Holzle, and P. Ranganathan, “The
datacenter as a computer: Designing warehouse-scale
machines,” Synthesis Lectures on Computer Architecture,
vol. 13, no. 3, pp. i—189, 2018.

S. Govindan, D. Wang, A. Sivasubramaniam, and B. Ur-
gaonkar, “Leveraging stored energy for handling power
emergencies in aggressively provisioned datacenters,’
ACM SIGARCH Computer Architecture News, vol. 40,
no. 1, pp. 75-86, 2012.

I. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bian-
chini, “Parasol and greenswitch: Managing datacenters

[15]

[21]

[24]

[25]

[26]

powered by renewable energy,” in ACM SIGARCH Com-

puter Architecture News, vol. 41, no. 1. ACM, 2013,
pp. 51-64.
J. Hamilton, “Overall data center costs,”

https://perspectives.mvdirona.com/2010/09/overall-
data-center-costs/.

I. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini, “In-
telligent placement of datacenters for internet services,”
in 2011 31st International Conference on Distributed
Computing Systems. 1EEE, 2011, pp. 131-142.

I. Narayanan, A. Kansal, A. Sivasubramaniam, B. Ur-
gaonkar, and S. Govindan, “Towards a leaner geo-
distributed cloud infrastructure,” in Proceedings of the
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), 2014.

D. Wang, C. Ren, and A. Sivasubramaniam, “Virtualizing
power distribution in datacenters,” in Proceedings of the
Annual International Symposium on Computer Architec-
ture, 2013, pp. 595-606.

I. Narayanan, A. Kansal, and A. Sivasubramaniam,
“Right-sizing geo-distributed data centers for availability
and latency,” in Proceedings of the International Confer-
ence on Distributed Computing Systems (ICDCS), 2017.
G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao, “Energy-aware server provisioning and load
dispatching for connection-intensive internet services,” in
Proceedings of the Conference on Networked Systems
Design and Implementation (NSDI), 2008.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch, “Heterogeneity and dynamicity of clouds
at scale: Google trace analysis,” in Proceedings of the
International Symposium on Cloud Computing, 2012.
A. Kumar, I. Narayanan, T. Zhu, and A. Sivasubrama-
niam, “The fast and the frugal: Tail latency aware provi-
sioning for coping with load variations,” in Proceedings
of The Web Conference, 2020.

Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura,
I. Goiri, and R. Bianchini, “History-based harvesting of
spare cycles and storage in large-scale datacenters,” in
Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

H. Kasture and D. Sanchez, “Tailbench: a benchmark
suite and evaluation methodology for latency-critical
applications,” in Proceedings of the International Sym-
posium on Workload Characterization (IISWC), 2016.
A. Mas-Colell, M. D. Whinston, J. R. Green et al.,
Microeconomic theory. Oxford university press New
York, 1995, vol. 1.

J. M. Levy, Essential microeconomics for public policy
analysis. ABC-CLIO, 1995.

Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar,
B. Li, J. Meza, and Y. J. Song, “Dynamo: Facebook’s
data center-wide power management system,” in Pro-
ceedings of the International Symposium on Computer
Architecture (ISCA), 2016.

J. Lee, C. Kim, K. Lin, L. Cheng, R. Govindaraju, and

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Kim, “Wsmeter: A performance evaluation methodol-
ogy for google’s production warehouse-scale computers,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018,
pp. 549-563.

K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and
Z. Chen, “Power containers: An os facility for fine-
grained power and energy management on multicore
servers,” in Proceedings of the International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2013.

J. Matousek and B. Girtner, Understanding and using
linear programming. Springer Science & Business
Media, 2007.

K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, “Match-
ing is as easy as matrix inversion,” Combinatorica, vol. 7,
no. 1, pp. 105-113, 1987.

J. Munkres, “Algorithms for the assignment and trans-
portation problems,” Journal of the society for industrial
and applied mathematics, vol. 5, no. 1, pp. 32-38, 1957.
L. Suresh, J. Loff, N. Narodytska, L. Ryzhyk, M. Sagiv,
and B. Oki, “Synthesizing cluster management code for
distributed systems,” in Proceedings of the Workshop on
Hot Topics in Operating Systems, 2019.

B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Ri-
faat, and C. R. Das, “Modeling and synthesizing task
placement constraints in google compute clusters,” in
Proceedings of the International Symposium on Cloud
Computing, 2011.

T. Council, “TPC-C benchmark, revision 5.11,” 2010.
A. Gulli and S. Pal, Deep Learning with Keras. Packt
Publishing Ltd, 2017.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-
isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ail-
amaki, and B. Falsafi, “Clearing the clouds: A study
of emerging scale-out workloads on modern hardware,”
in Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012, pp. 37-48.

Jeff Gilchrist, “pbzip2: parallel bzip2 file compression,”
https://linux.die.net/man/1/pbzip2.

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, ‘“Profiling a
warehouse-scale computer,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 3, pp. 158-169, 2016.
X. Fan, W.-D. Weber, and L. A. Barroso, ‘“Power provi-
sioning for a warehouse-sized computer,” in Proceedings
of the International Symposium on Computer Architec-
ture (ISCA), 2007.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle, “Managing energy and server resources
in hosting centers,” ACM SIGOPS operating systems
review, vol. 35, no. 5, pp. 103-116, 2001.

R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu, “No power struggles: Coordinated multi-
level power management for the data center,” in Pro-
ceedings of the International Symposium on Computer

[44]

[50]

Architecture (ISCA), 2008, pp. 48-59.

H. Lim, A. Kansal, and J. Liu, “Power budgeting for
virtualized data centers,” in Proceedings of the Annual
Technical Conference (USENIX ATC), 2011.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella, “Multi-resource packing for cluster sched-
ulers,” in ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4. ACM, 2014, pp. 455-466.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,
S. Seth et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th annual Symposium
on Cloud Computing. ACM, 2013, p. 5.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at google with borg,” in Proceedings of the Tenth Euro-
pean Conference on Computer Systems. ACM, 2015,
p. 18.

R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform
heterogeneity for power efficient data centers,” in Auto-
nomic Computing, 2007. ICAC’07. Fourth International
Conference on. 1EEE, 2007, pp. 5-5.

C.-H. Hsu, Q. Deng, J. Mars, and L. Tang, “Smoothoper-
ator: reducing power fragmentation and improving power
utilization in large-scale datacenters,” in ACM SIGPLAN
Notices, vol. 53, no. 2. ACM, 2018, pp. 535-548.

S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and
J. Underwood, “Power routing: dynamic power provi-
sioning in the data center,” in ACM Sigplan Notices,
vol. 45, no. 3. ACM, 2010, pp. 231-242.

D. Wong, “Peak efficiency aware scheduling for highly
energy proportional servers,” in Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA),
2016.

Intel®, “Improving Real-Time Performance by Utilizing
Cache Allocation Technology,” http://www.intel.com/
content/www/us/en/communications/cache-allocation-
technology-white-paper.html, 2015.

X. Zhang, S. Dwarkadas, and K. Shen, “Towards prac-
tical page coloring-based multicore cache management,”
in Proceedings of the European Conference on Computer
Systems (EuroSys), 2009, pp. 89—-102.

M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches,” in Proceedings
of the International Symposium on Microarchitecture
(MICRO), 2006, pp. 423-432.

S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kan-
demir, and T. Moscibroda, “Reducing memory interfer-
ence in multicore systems via application-aware memory
channel partitioning,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2011.

I. Narayanan and A. Sivasubramaniam, “Mediating
power struggles on a shared server,” in Proceedings of
the International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2020.

