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Abstract
We construct an explicit free resolution T for a maximal Cohen-Macaulay module
a local complete intersection of codimension 2 with infinite residue field. The resolution
is minimal when the module M is a sufficiently high syzygy. Our starting point is a lay-
ered free resolution L, described in [7], of length 2 over a regular local ring. We provide
explicit formulas for the differential in T in terms of the differential and homotopies on the
finite resolution L. One application of our construction is to describe Ulrich modules over
a codimension 2 quadratic complete intersection.
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Introduction

Minimal free resolutions of finitely generated modules over a local complete intersection
have attracted attention ever since the work of Tate [10], who provided an elegant con-
struction of the resolution of the residue field of any such ring. A generalization of Tate’s
construction due to Shamash and Eisenbud [5, 9] provides a non-minimal resolution of any
module. However, much more information can be derived from minimal resolutions, so it is
natural to ask about these.

Taking a cue from the Auslander-Buchsbaum-Theorem maximal Cohen-Macaulay mod-
ules over regular local rings are free, one might hope that at least the minimal free
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resolutions of maximal Cohen-Macaulay modules over complete intersections would be
tractable. For hypersurface rings—the case of codimension 1—Eisenbud [5] showed that
minimal free resolutions of finitely generated Cohen-Macaulay modules without free sum-
mands are periodic of period at most 2, and that these periodic resolutions are described by
matrix factorizations, which he introduced for this purpose.

In this paper, we treat the next case. We give closed formulas for differentials in the
free resolution of a maximal Cohen-Macaulay module M over a complete intersection
R = S/(f1, f2) of codimension 2 in a regular local ring S. Our description is based on the
notion of a higher matrix factorization introduced in [6] and [7]. In case the higher matrix
factorization is minimal, the resulting resolution is also minimal, and this is the case when
M is a sufficiently high syzygy and f1, f2 are chosen generally over an infinite field. The
description is in terms of the homotopies for f1, f2 on a special S-free resolution of M , also
defined in terms of higher matrix factorizations.

An interesting feature of our description is the presence in the differentials of higher and
higher powers of certain maps X and Y that appear as components in the homotopies for
the special finite resolution.

Avramov and Buchweitz [1, Section 5.5] have given a different description of the mini-
mal free resolutions of modules over a local complete intersection R of codimension 2 that
are sufficiently high syzygies of a given module (such modules are automatically maximal
Cohen-Macaulay modules). Their description consists of giving a non-minimal resolution
C• of M and an explicit R-free summand Di of each term Ci of C• in such a way that
applying the differential ofC• to a basis of Ci complementary to Di , and then projecting the
result back to a complement of Di−1 gives the minimal resolution of M . However, it is not
clear how to give a closed formula for the differentials of the minimal free resolution from
this description or, for example, how to see the presence of power of maps like X and Y .

In Section 1, we review the notions around higher matrix factorizations. The follow-
ing section contains the application of this notion to the explicit construction. The last
section gives our description of Ulrich modules over a codimension 2 quadratic complete
intersection.

Using our methods, Mastroeni [8] has constructed a functor from codimension two
higher matrix factorizations to the singularity category of the corresponding complete
intersection.

Throughout the paper, f1, f2 will denote a regular sequence in a regular local ring S, and
we consider the codimension 2 complete intersection R = S/(f1, f2). We will denote by
M the module of a higher matrix factorization (d, h) in the sense of [6] and [7].

1 The Finite Free Resolution of a Higher Matrix FactorizationModule

Assumptions 1.1 Throughout the paper, f1, f2 is a regular sequence in a regular local ring
S, and we consider the complete intersection R = S/(f1, f2). By [7, Theorem 10.3], the
following conditions are equivalent for a finitely generated R-module M:

(1) M is maximal Cohen-Macaulay over R.
(2) M is the module of a higher matrix factorization (d, h) in the sense of [6].
(3) M has a (possibly non-minimal) S-free resolution L of the form
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where:

(1) B0(1), B1(1), B0(2), B1(2) are finitely generated free S-modules;

(2) The module denoted eBi is identified with Bs (the symbol e (denoted e1 in [6]) serves
only to distinguish the two copies of Bs notationally);

(3) There is a map μ : B0(1) → B1(1) satisfying δμ = μδ = f1Id; that is, μ is a homotopy

for f1 on B1(1)
δ−→ B0(1).

By [6, Theorem 3.1.4], the resolution L is minimal if M is the module of a minimal
higher matrix factorization.

The notation above is consistent with that in the diagram in [7, Definition 10.2], but for
simplicity we use ψ instead of ψ2, we use b instead of b2, we use e instead of e1, and we
use μ instead of h′

1.
If ϕ is a map of modules ⊕1≤i≤s Pi ←− ⊕1≤j≤s Qj , then we write ϕPi←Qj

for the
component of ϕ with target Pi and source Qj .

Lemma 1.2 Under the assumptions 1.1, let h be a homotopy for multiplication by f2 on L.
We consider two of its components and denote them by

v : = −heB1(2)←B1(1)

σ : = hB1(2)←B0(2).

(1) We have hB1(2)←B0(1) = vμ.
(2) The component heB1(2)←eB0(2) can be chosen to be σ .

Remark When considering maps in this paper, we often identify eB1(2) ∼= B1(2) and
eB0(2) ∼= B0(2). For example, in the above lemma, the map vμ is from B0(1) to eB1(2),
but we also identify it with a map from B0(1) to B1(2) when we write hB1(2)←B0(1) = vμ.

Proof (1) Consider the homotopy equation hδ − f1v = 0 : B1(1) −→ B1(2). Applying μ

on the right-hand side, we get hδμ = f1vμ, so hB1(2)←B0(1)f1 = f1vμ. As f1 is a non-
zero divisor, it follows that hB1(2)←B0(1) = vμ.
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(2) Set ς := heB1(2)←eB0(2). The equations that ς needs to satisfy are

(bς − hf1)eB0(2)←eB0(2) = f2Id

(f1ς − σf1)B1(2)←eB0(2) = 0

(μψς − hf1)B1(1)←eB0(2) = 0

(ςb + hf1 + vμψ − f2Id)eB1(2)←eB1(2) = 0.

Clearly, the second equation is satisfied by σ . The first equation is satisfied by σ since
(bσ − f1h)B0(2)←B0(2) = f2Id. For the third equation, note that

(μψσ − f1h)B1(1)←B0(2) = (μψσ − μδh)B1(1)←B0(2) = μ(ψσ − δh)B0(1)←B0(2) = 0.

The last equation is satisfied by σ since

(σb + hf1 + vμψ − f2Id)B1(2)←B1(2) = 0.

Notation 1.3 The above lemma shows that we can relabel the diagram of L in 1.1 as fol-
lows. The homotopy for f1 is shown with dotted arrows, and the homotopy for f2 is shown
with dashed arrows. In the diagram, we introduce names for the different components of the
homotopies.
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The Macaulay2 package CompleteIntersectionResolutions contains a rou-
tine called makeFiniteResolution2 that produces the displayed maps in the diagram,
with notation matching that is given here, in a hash table.

Example 1.4 This example is computed with Macaulay2. Let S = k[x, y] and consider the
regular sequence f1 = x3, f2 = x3 − y3. Consider the S-module M with presentation:

S5

⎛
⎜⎜⎝

x −y 0 0 0
0 x2 −y2 0 0
0 0 x −y −x3

⎞
⎟⎟⎠

−−−−−−−−−−−−−−−−−−→ S3 → M → 0.

In the notation above, we have the following minimal free resolution ofM with homotopies:

We will use the identities in Lemma 1.5 in the computations in Section 2.

Lemma 1.5 We have the following identities on the diagram in 1.3

(1) δα + ψvμ = f2Id at B0(1).
(2) bσ − f1X = f2Id at B0(2).
(3) bvμ − f1u = 0 mapping B0(1) → B0(2).
(4) δτ + ψσ = 0 mapping B0(2) → B0(1).



146 D. Eisenbud, I. Peeva

(5) αδ + μψv = f2Id at B1(1).
(6) σb + vμψ − f1Y = f2Id at B1(2) and at eB1(2).
(7) −f1X + bσ = f2Id at eB0(2).
(8) vμδ − f1v = 0 mapping B1(1) → B1(2).
(9) τb + αψ + μψY = 0 mapping B1(2) → B1(1).

(10) uδ − bv = 0 mapping B1(1) → eB0(2).
(11) −f1τ − μψσ = 0 mapping eB0(2) → B1(1).
(12) Xb + uψ − bY = 0 mapping B1(2) → eB0(2).

Proof The identities above express the fact that we have a homotopy for f2 on the
resolution.

2 The Infinite Free Resolution of a Higher Matrix FactorizationModule

In this section, we obtain formulas for the differentials in an infinite R-free resolution T of
the module M of a higher matrix factorization. We work under the assumptions 1.1 and use
the notation 1.3. We will use the identities in Lemma 1.5.

Given a homomorphism ϕ : N → L of S-modules, we abuse notation and denote the
induced homomorphism R⊗S N → R⊗S L by ϕ as well. Throughout this section, I stands
for an identity map of appropriate size, and O stands for a zero map of appropriate size.

When considering maps in this paper, we often identify eB1(2) ∼= B1(2) and eB0(2) ∼=
B0(2); see the remark after Lemma 1.2.

Theorem 2.1 There is a free resolution T of M whose differentials are given as follows:
For i ≥ 0, the odd differentials d2i+1 of T have the form

d2i+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ ψY 0v ψY 1v · · · ψY i−2v ψY i−1v ψY i

O δ ψY 0v · · · ψY i−3v ψY i−2v ψY i−1

O O δ · · · ψY i−4v ψY i−3v ψY i−2

...
...

...
. . .

...
...

...
O O O · · · δ ψY 0v ψY 1

O O O · · · O δ ψY 0

O O O · · · O O b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For i ≥ 1, the even differentials d2i of T have the form

d2i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ α τX0u · · · τXi−3u τXi−2u τXi−1

O μ α · · · τXi−4u τXi−3u τXi−2

O O μ · · · τXi−5u τXi−4u τXi−3

...
...

...
. . .

...
...

...
O O O · · · α τX0u τX1

O O O · · · μ α τX0

O O O · · · O vμ σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If the higher matrix factorization (d, h) is minimal, then the resolution T is minimal as well.

The minimality of T is achieved for high syzygies by the following result:

Theorem 2.2 [6, Theorem 1.3.1] Let S be a regular local ring with infinite residue field,
and let I ⊂ S be an ideal generated by a regular sequence of length c. Set R = S/I ,
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and suppose that N is a finitely generated R-module. Let f1, . . . , fc be a generic choice of
elements minimally generating I . If M is a sufficiently high syzygy of N over R, then M is
the module of a minimal higher matrix factorization (d, h) with respect to f1, . . . , fc.

Example 2.3 We continue Example 1.4. By Theorem 2.1, the even differentials in the
infinite minimal free resolution of M over R = k[x, y]/(x3, y3) have the form

⎛
⎜⎜⎜⎜⎜⎝

μ α

μ α

. . .
. . .
μ α

μ σ

⎞
⎟⎟⎟⎟⎟⎠

since τ = (0 0) and v = Id. The odd differentials have the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ ψ −ψ ψ −ψ . . . (−1)i−2ψ (−1)i−1ψ (−1)iψ
δ ψ −ψ ψ . . . (−1)i−3ψ (−1)i−2ψ (−1)i−1ψ

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
δ ψ −ψ

δ ψ

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

since Y = −Id and v = Id.

Construction 2.4 We consider the free resolution (T, d) given in [6, Theorem 5.1.2]. We
choose CI operators t1, t2 as in [6, Theorem 5.1.4] so that they commute on T; we remark
that it was proved in [1] that there exists a choice of commuting CI operators, but our
computations use the particular choice of CI operators that we have constructed. We dualize
and consider HomR(T, R).

In the rest of this section, we write −̂ for HomR(R ⊗ −, R).
We consider T̂ = HomR(T, R) with differential d̂. Set

r1 = t̂1 and r2 = t̂2

acting on T̂. By [6, Theorem 5.1.2], the free module T̂2i is the direct sum of the modules

ri
1B̂0(1), ri−1

1 r2B̂0(1), ri−2
1 r22 B̂0(1), . . . , ri

2B̂0(1), ri
2B̂0(2),

and similarly T̂2i+1 is the direct sum of the modules

ri
1B̂1(1), ri−1

1 r2B̂1(1), ri−2
1 r22 B̂1(1), . . . , ri

2B̂1(1), ri
2B̂1(2).

Furthermore, the first two differentials of T̂ in that decomposition are

B̂0(1) B̂0(2)

d̂1 = B̂1(1)
B̂1(2)

(
δ̂ O

ψ̂ b̂

)
(2.1)
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B̂1(1) B̂1(2)

d̂2 =
r1B̂0(1)
r2B̂0(1)
r2B̂0(2)

⎛
⎝

μ̂ O

α̂ μ̂v̂

τ̂ σ̂

⎞
⎠ .

In this notation, we will prove the following formulas for Theorem 2.1:
For i ≥ 0, the odd differentials d̂2i+1 of T̂ have the form

ri
1B̂0(1) ri−1

1 r2B̂0(1) . . . r1r
i−1
2 B̂0(1) ri

2B̂0(1) ri
2B̂0(2)

ri
1B̂1(1)

ri−1
1 r2B̂1(1)

ri−2
1 r22 B̂1(1)
...
r1r

i−1
2 B̂1(1)

ri
2B̂1(1)

ri
2B̂1(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ̂ O . . . O O O

v̂Ŷ 0ψ̂ δ̂ . . . O O O

v̂Ŷ 1ψ̂ v̂Ŷ 0ψ̂ . . . O O O
...

...
. . .

...
...

...
v̂Ŷ i−2ψ̂ v̂Ŷ i−3ψ̂ . . . δ̂ O O

v̂Ŷ i−1ψ̂ v̂Ŷ i−2ψ̂ . . . v̂Ŷ 0ψ̂ δ̂ O

Ŷ iψ̂ Ŷ i−1ψ̂ . . . Ŷ 1ψ̂ Ŷ 0ψ̂ b̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For i ≥ 1, the even differentials d̂2i of T̂ have the form

ri−1
1 B̂1(1) ri−2

1 r2B̂1(1) . . . r1r
i−2
2 B̂1(1) ri−1

2 B̂1(1) ri−1
2 B̂1(2)

ri
1B̂0(1)

ri−1
1 r2B̂0(1)

ri−2
1 r22 B̂0(1)
...
r1r

i−1
2 B̂0(1)

ri
2B̂0(1)

ri
2B̂0(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ̂ O . . . O O O

α̂ μ̂ . . . O O O

ûX̂0τ α̂ . . . O O O

...
...

. . .
...

...
...

ûX̂i−3τ̂ ûX̂i−4τ̂ . . . α̂ μ̂ O

ûX̂i−2τ̂ ûX̂i−3τ̂ . . . ûX̂0τ̂ α̂ μ̂v̂

X̂i−1τ̂ X̂i−2τ̂ . . . X̂1τ̂ X̂0τ̂ σ̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark The Shamash construction is a generalization of Tate’s construction [10]. It is due
to Shamash [9] for one element and to Eisenbud [5] for several elements. It provides a
resolution of any module over a complete intersection, but the resolution is usually non-
minimal. We will make use of the Shamash construction. We will use it in the form and with
the notation in [6, Construction 4.1.3 and Proposition 4.1.4].

The next lemma will be used in the proof of Theorem 2.1.

Lemma 2.5 The third differential of T̂ is

r1B̂0(1) r2B̂0(1) r2B̂0(2)

d∗
3 =

r1B̂1(1)
r2B̂1(1)
r2B̂1(2)

⎛
⎝

δ̂ O O

v̂ψ̂ δ̂ O

Ŷ ψ̂ ψ̂ b̂

⎞
⎠ .

Proof We will follow [6, Construction 5.1.1]. We start with the matrix factorization
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of f1. Applying the Shamash construction, we get the periodic (of period 2) free resolution

· · · → y1B1(1)
′ δ−→ y1B0(1)

′ μ−→ B1(1)
′ δ−→ B0(1)

′,

where −′ stands for − ⊗ R′ and R′ := S/(f1), and y1 is a variable. Then, we write the Box
complex

(2.2)

The free resolution T over R is obtained by applying the Shamash construction to that
Box complex. For this purpose, we need a homotopy for f2 on the Box complex. Since our
goal here is to compute only the third differential, it suffices to construct only the first 2
steps of the homotopy. Straightforward computation using the homotopy relations on the
diagram in 1.3 shows that the homotopy can be chosen to be

(2.3)
Applying the Shamash construction, we conclude that

d3 =
⎛
⎝

δ ψv ψY

O δ ψ

O O b

⎞
⎠ .

Proposition 2.6 The first CI operators are:

B̂0(1) B̂0(2) B̂1(1) B̂1(2)

r1
∣∣
T ∗
0

=
r1B̂0(1)
r2B̂0(1)
r2B̂0(2)

⎛
⎝

I O

O û

O X̂

⎞
⎠ , r1

∣∣
T ∗
1

=
r1B̂1(1)
r2B̂1(1)
r2B̂1(2)

⎛
⎝

I O

O v̂

O Ŷ

⎞
⎠ ,

and

B̂0(1) B̂0(2) B̂1(1) B̂1(2)

r2
∣∣
T ∗
0

=
r1B̂0(1)
r2B̂0(1)
r2B̂0(2)

⎛
⎝

O O

I O

O I

⎞
⎠ , r2

∣∣
T ∗
1

=
r1B̂1(1)
r2B̂1(1)
r2B̂1(2)

⎛
⎝

O O

I O

O I

⎞
⎠ .
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Proof Throughout this proof, we write − for HomS(S ⊗ −, S).
We lift the differentials of T̂ to S and denote the lifting of d̂i by d̃i . Then,

d̃2d̃1 =
⎛
⎝

μ O

α μv

τ σ

⎞
⎠

(
δ O

ψ b

)

=
⎛
⎝

μδ O

αδ + μvψ μvb

τδ + σψ σb

⎞
⎠ =

⎛
⎝

δμ O

δα + ψvμ bvμ

δτ + ψσ bσ

⎞
⎠

=
⎛
⎝

f1I O

f2I uf1I

O f2I + f1X

⎞
⎠ = f1

⎛
⎝

I O

O u

O X

⎞
⎠ + f2

⎛
⎝

O O

I O

O I

⎞
⎠.

This proves the desired formulas for the CI operators acting on T̂0.
Furthermore, we compute

d̃3d̃2 =
⎛
⎝

δ O O

vψ δ O

Yψ ψ b

⎞
⎠

⎛
⎝

μ O

α μv

τ σ

⎞
⎠

=
⎛
⎝

δμ O

vψμ + δα δμv

Yψμ + ψα + bτ ψμv + bσ

⎞
⎠

=
⎛
⎝

μδ O

μψv + αδ vμδ

μψY + αψ + τb vμψ + σb

⎞
⎠

=
⎛
⎝

f1I O

f2I vf1I

O f2I + f1Y

⎞
⎠

= f1

⎛
⎝

I O

O v

O Y

⎞
⎠ + f2

⎛
⎝

O O

I O

O I

⎞
⎠.

This proves the desired formulas for the CI operators acting on T̂1.

Proposition 2.7 The CI operator r2 acts on T̂ as an identity embedding that is dual to the
projection t2 (by construction). The CI operator r1 acts on T̂ as follows:

For i ≥ 0, the CI operator r1,2i+2 : T̂2i → T̂2i+2 is given by

ri
1B̂0(1) ri−1

1 r2B̂0(1) · · · ri
2B̂0(1) ri

2B̂0(2)
ri+1
1 B̂0(1)
ri
1r2B̂0(1)

...
r1r

i
2B̂0(1)

ri+1
2 B̂0(1)

ri+1
2 B̂0(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I

I

. . .
I

û

X̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎠



Minimal Resolutions Over Codimension 2 Complete Intersections 151

and the CI operator r1,2i+3 : T̂2i+1 → T̂2i+3 is given by

ri
1B̂1(1) ri−1

1 r2B̂1(1) · · · ri
2B̂1(1) ri

2B̂1(2)

r1,2i+3 =

ri+1
1 B̂1(1)
ri
1r2B̂1(1)

...
r1r

i
2B̂1(1)

ri+1
2 B̂1(1)

ri+1
2 B̂1(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I

I

. . .
I

v̂

Ŷ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

For i ≥ 1, we have:

ri
1

∣∣
T̂2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I O O

O I O

O O û

O O ûX̂

O O ûX̂2

...
...

...
O O ûX̂i−1

O O X̂i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

ri
1

∣∣
T̂1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I O

O v̂

O v̂Ŷ

O v̂Ŷ 2

...
...

O v̂Ŷ i−1

O Ŷ i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof For i ≥ 1, the formulas for r2,2i+2, r1,2i+2, r2,2i+3, r1,2i+3 follow from the fact that
r1 and r2 commute on T̂.

Straightforward computation shows that

r21

∣∣
T̂2

=

⎛
⎜⎜⎜⎜⎝

I O O

O I O

O O û

O O ûX̂

O O X̂2

⎞
⎟⎟⎟⎟⎠

and

r21

∣∣
T̂1

=

⎛
⎜⎜⎝

I O

O v̂

O v̂Ŷ

O Ŷ 2

⎞
⎟⎟⎠ .
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By induction, we get

ri
1

∣∣
T̂2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I O O

O I O

O O û

O O ûX̂

O O ûX̂2

...
...

...
O O ûX̂i−1

O O X̂i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

ri
1

∣∣
T̂1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I O

O v̂

O v̂Ŷ

O v̂Ŷ 2

...
...

O v̂Ŷ i−1

O Ŷ i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 2.8 For i ≥ 1, we have

d̂
(
ri
1B̂0(1)

)
= δ̂ri

1B̂1(1) +
⎛
⎝ ∑

1≤q≤i

(̂vŶ q−1ψ̂) r
i−q

1 r
q

2 B̂1(1)

⎞
⎠ +

(
Ŷ i ψ̂

)
ri
2B̂1(2)

and

d̂
(
ri−1
1 B̂1(1)

)

= μ̂ ri
1B̂0(1) + α̂ri−1

1 r2B̂0(1) +
⎛
⎝ ∑

1=q≤i−1

(
ûX̂q−1τ̂

)
r
i−q−1
1 r

q+1
2 B̂0(1)

⎞
⎠ +

(
X̂i−1τ̂

)
ri
2B̂0(2).

Proof The second equality below uses the formula for d̂1 in (2.1). The last equality uses
a formula in Proposition 2.7. The following computation proves the first formula in our
lemma:

d̂(ri
1B̂0(1)) = ri

1d̂1
∣∣
B̂0(1)

= ri
1

(
δ̂ O

ψ̂ b̂

)(
I

O

)
= ri

1

∣∣
T̂1

(
δ̂

ψ̂

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ̂

v̂ψ̂

v̂Ŷ ψ̂

v̂Ŷ 2ψ̂
...

v̂Ŷ i−1ψ̂

Ŷ i ψ̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Similarly, we prove the second formula in this lemma. The second equality below uses
the formula for d̂2 in (2.1). The last equality uses a formula in Proposition 2.7.

d̂
(
ri−1
1 B1(1)

)
= ri−1

1 d̂2
∣∣
B1(1)

= ri−1
1

⎛
⎝

μ̂ O

α̂ μ̂v̂

τ̂ σ̂

⎞
⎠

(
I

O

)

= ri−1
1

∣∣
T̂2

⎛
⎝

μ̂

α̂

τ̂

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ̂

α̂

ûτ̂

ûX̂τ̂

ûX̂2τ̂
...

ûX̂i−2τ̂

X̂i−1τ̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof of Theorem 2.1 We will prove the formulas for the differential given at the end of
Construction 2.4.

The first column follows from Lemma 2.8.
The computations below use the fact that the CI-operator t2 is a projection and so r2 is

an identity embedding; see Proposition 2.7.
First, we compute the last two columns in the formula for the differential. The formula

for the last column follows from

d̂

∣∣∣ri
2B̂0(2)

= ri
2d̂1

∣∣∣B̂0(2)
= b̂

∣∣∣ri
2B̂0(2)

d̂

∣∣∣ri−1
2 B̂1(2)

= ri−1
2 d̂2

∣∣∣B̂1(2)
= μ̂v̂

∣∣∣ri−1
2 B̂1(2)

+ σ̂

∣∣∣ri−1
2 B̂1(2)

,

for i ≥ 1. The formula for the column preceding the last column follows from

d̂

∣∣∣ri
2B̂0(1)

= ri
2d̂1

∣∣∣B̂0(1)
= δ̂

∣∣∣ri
2B̂0(1)

+ ψ̂

∣∣∣ri
2B̂0(1)

d̂

∣∣∣ri−1
2 B̂1(1)

= ri−1
2 d̂2

∣∣∣B̂1(1)
= μ̂

∣∣∣ri−1
2 B̂1(1)

+ α̂

∣∣∣ri−1
2 B̂1(1)

+ τ̂

∣∣∣ri−1
2 B̂1(1)

,

for i ≥ 1.
Now, we compute the formulas for the rest of the columns. For i ≥ 1 and 1 ≤ j ≤ i − 1

we have:

d̂
(
r
i−j

1 r
j

2 B̂0(1)
)

= r
j

2

(
d̂r

i−j

1 B̂0(1)
)

= r
j

2

⎛
⎝δ̂ r

i−j

1 B̂1(1) +
∑

1≤q≤i−j

(
v̂Ŷ q−1ψ̂

)
r
i−q−j

1 r
q

2 B̂1(1) +
(
Ŷ i−j ψ̂

)
r
i−j

2 B̂1(2)

⎞
⎠

= δ̂ r
i−j

1 r
j

2 B̂1(1) +
∑

1≤q≤i−j

(
v̂Ŷ q−1ψ̂

)
r
i−q−j

1 r
q+j

2 B̂1(1) +
(
Ŷ i−j ψ̂

)
ri
2B̂1(2)
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and

d̂
(
r
i−j−1
1 r

j

2 B̂1(1)
)

= r
j

2 r
i−j−1
1 d̂2

∣∣∣B̂1(1)

= r
j

2

⎛
⎝μ̂ r

i−j

1 B̂0(1) + α̂ r
i−j−1
1 r2B̂0(1) +

∑
2≤q≤i−j

(
ûX̂q−2τ̂

)
r
i−j−q

1 r
q

2 B̂0(1)

+(Xi−j−1τ)r
i−j

2 B̂0(2)

⎞
⎠

= μ̂ r
i−j

1 r
j

2 B̂0(1) + α̂ r
i−j−1
1 r

j+1
2 B̂0(1) +

∑
2≤q≤i−j

(
ûX̂q−2τ̂

)
r
i−j−q

1 r
j+q

2 B̂0(1)

+
(
X̂i−j−1τ̂

)
ri
2B̂0(2).

3 Ulrich Modules

In this section, f1 and f2 are a quadratic regular sequence in a standard graded polynomial
ring S. We consider the graded complete intersection R = S/(f1, f2). An Ulrich module
over R may be defined as a maximal Cohen-Macaulay module M over R, generated in a
single degree such that the entries of the matrices in the minimal S-free resolution of M are
all linear forms. The equivalence of this definition to the original definition (which states
that a maximal Cohen-Macaulay module M is an Ulrich module if the multiplicity of M

is equal to the minimal number of generators) is proved in [3, Proposition 1.4], where they
are called MGMCM modules. The existence of such modules is proved in [2]. We give a
description of the Ulrich modules over R.

A matrix factorization of an element f ∈ S is a pair of square matrices (δ, μ) such that
δμ = μδ = f Id. It is graded if the entries in the matrices are homogeneous.

Theorem 3.1 A finitely generated graded R-module M is an Ulrich module if and only if
there exists a graded minimal matrix factorization (δ, μ) of f1 with size w and a number
p ≤ w so that:

(1) The matrix δ′ that consists of the first p rows of δ is linear.
(2) The matrix μ′ that consists of the last w − p columns of μ is linear.
(3) There exists a (w × p)-matrix g with δ′g = f2 Id.
(4) M = Coker(δ′).

Proof By [7, Theorem 10.2], a module M is maximal Cohen-Macaulay over R if and only
if it has a (possibly non-minimal) graded S-free resolution L of the form described in 1.3.
From the definition above, it follows that M is an Ulrich module if and only if the maps

eB0(2)
−f1−−→ B0(2) and eB1(2)

f1−→ B1(2)

in L disappear after the resolution is minimized. We will analyze when this happens. We
use the notation in the diagram in 1.3.

The map b is minimal by [7, Proposition 3.5]. If B0(2) 
= 0, then the map eB0(2)
−f1−−→

B0(2) would make the minimization non-linear. Hence, B0(2) = 0.
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The matrix factorization (δ, μ) of f1 is a direct sum of a minimal matrix factorization and
copies of the trivial matrix factorizations (Id, f1) and (f1, Id). We can assume that no copies

of (Id, f1) are present because the minimal free resolution B1(1)
δ−→ B0(1) can be chosen to

be minimal by [7, Theorem 4.1 and construction before it]. If we have any copies of (f1, Id),
then the R′ := S/(f1)-module M ′ := Coker(δ) would have a direct R′-free summand
which contradicts the construction of M ′ as the essential Cohen-Macaulay approximation
of the module M over R′ as in [7, Theorem 4.1] (the notation here is consistent with that in
[7, Theorem 4.1]). Hence, no copies of (f1, Id) appear. Thus, we can assume that the matrix
factorization (δ, μ) is minimal.

Since μ is minimal, the map −μψ is minimal as well. Recall that the map b is also

minimal. Therefore, the map eB1(2)
f1−→ B1(2) disappears after L is minimized if and only

if ψ = Id maps B1(2) to a free summand of B0(1).
Thus we see that, after minimization of the non-minimal resolution L, we get a minimal

S-free resolution of M of the form

0 → eB1(2)
μ′
−→ B1(1)

δ′−→ B0(1)
′,

where B0(1) ∼= B0(1)′ ⊕ Im(ψ). Set p = rankB0(1)′ and w = rankB0(1). Then,
rank(eB1(2)) = w −p. Since the module M is annihilated by f2, it follows that there exists
a (w × p)-matrix g with δ′g = f2 Id. Thus, conditions (1)–(4) are satisfied.

Conversely, suppose that M satisfies conditions (1)–(4). Denote by B0(1)′ the free mod-
ule spanned by the first p basis vectors of B0(1), and let B1(2) be the free module spanned
by the last w − p basis vectors; here, we consider the basis vectors with respect to which
the matrices δ and μ are given. Then,

is a higher matrix factorization with respect to f1, f2. The module N of this higher matrix
factorization has a non-minimal free resolution given by [6, Theorem 3.1.4]. We minimize
it as above, and conclude that M = N has a linear minimal S-free resolution.

We close with an example illustrating the theorem above.

Example 3.2 Let S = k[x0, x1, x2, x3] and set
f1 = x0x1 − x2x3, f2 = x2

1 + x0x2 − x2
3 .
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Consider

δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 x0 x2 0 0 x1 x3 x2
0 x2 0 −x3 −x1 0 x1 0
0 0 x0 x3 x1 x3 0 0
x3 0 0 x0 x2 0 0 x1
x0 0 0 0 0 0 0 x2

−x0 0 −x2 0 0 −x1 0 −x2
0 0 0 −x3 −x1 0 0 0
0 0 0 x0 x2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −x2 x1 0 0 x2
x1 −x3 0 0 0 x1 x3 0
0 0 x1 0 x3 x3 x1 0
0 0 0 0 0 0 x2 x1
0 0 0 0 0 0 −x0 −x3
0 0 −x2 0 −x0 −x0 −x2 0

−x2 x0 0 0 0 −x2 −x0 0
0 0 0 x0 −x3 0 0 −x0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have the matrix factorization

μδ = δμ = (x0x1 − x2x3)I,

where I is an 8 × 8 identity matrix. In the notation of Theorem 3.1, set w = 8, p = 4 and
let δ′ be the matrix consisting of the first 4 rows of δ, and let μ′ be the matrix consisting of
the last 4 columns of μ. The matrix

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 −x0 0 −x3
0 x0 0 x3
0 0 x2 0
0 x3 0 x2

−x3 0 x1 0
x1 −x3 −x3 −x2

−x3 x1 x1 0
0 0 −x2 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

satisfies the condition δ′g = (x2
1 + x0x2 − x2

3 ) Id. Therefore, by Theorem 3.1, the module
M = Coker(δ′) is an Ulrich module over

R = S/(x0x1 − x2x3, x2
1 + x0x2 − x2

3 ).

Indeed, one can verify using Macaulay2 that the minimal S-free resolution of M is linear
and that M is a MCM R-module.

The ring R is the homogeneous coordinate ring of a smooth curve C of degree 4 and
genus 1 in P3. In fact, M is the graded module associated to the coherent sheafOC(q − r),
where r and q are the points x0 = x2 = 0, x1 = ±x3.
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