Acta Mathematica Vietnamica (2019) 44: 141-157
https://doi.org/10.1007/540306-018-0293-9

@ CrossMark

Minimal Resolutions Over Codimension 2 Complete
Intersections

David Eisenbud’ - Irena Peeva?

Received: 19 December 2017 / Revised: 14 August 2018 / Accepted: 24 August 2018 /

Published online: 19 September 2018

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore
Pte Ltd. 2018

Abstract

We construct an explicit free resolution T for a maximal Cohen-Macaulay module M over
a local complete intersection of codimension 2 with infinite residue field. The resolution
is minimal when the module M is a sufficiently high syzygy. Our starting point is a lay-
ered free resolution L, described in [7], of length 2 over a regular local ring. We provide
explicit formulas for the differential in T in terms of the differential and homotopies on the
finite resolution L. One application of our construction is to describe Ulrich modules over
a codimension 2 quadratic complete intersection.

Keywords Free resolutions - Complete intersections - CI operators - Eisenbud operators
Maximal Cohen-Macaulay modules
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Introduction

Minimal free resolutions of finitely generated modules over a local complete intersection
have attracted attention ever since the work of Tate [10], who provided an elegant con-
struction of the resolution of the residue field of any such ring. A generalization of Tate’s
construction due to Shamash and Eisenbud [5, 9] provides a non-minimal resolution of any
module. However, much more information can be derived from minimal resolutions, so it is
natural to ask about these.

Taking a cue from the Auslander-Buchsbaum-Theorem maximal Cohen-Macaulay mod-
ules over regular local rings are free, one might hope that at least the minimal free
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142 D. Eisenbud, I. Peeva

resolutions of maximal Cohen-Macaulay modules over complete intersections would be
tractable. For hypersurface rings—the case of codimension 1—FEisenbud [5] showed that
minimal free resolutions of finitely generated Cohen-Macaulay modules without free sum-
mands are periodic of period at most 2, and that these periodic resolutions are described by
matrix factorizations, which he introduced for this purpose.

In this paper, we treat the next case. We give closed formulas for differentials in the
free resolution of a maximal Cohen-Macaulay module M over a complete intersection
R = S/(f1, f2) of codimension 2 in a regular local ring S. Our description is based on the
notion of a higher matrix factorization introduced in [6] and [7]. In case the higher matrix
factorization is minimal, the resulting resolution is also minimal, and this is the case when
M is a sufficiently high syzygy and fi, f> are chosen generally over an infinite field. The
description is in terms of the homotopies for f1, f> on a special S-free resolution of M, also
defined in terms of higher matrix factorizations.

An interesting feature of our description is the presence in the differentials of higher and
higher powers of certain maps X and Y that appear as components in the homotopies for
the special finite resolution.

Avramov and Buchweitz [1, Section 5.5] have given a different description of the mini-
mal free resolutions of modules over a local complete intersection R of codimension 2 that
are sufficiently high syzygies of a given module (such modules are automatically maximal
Cohen-Macaulay modules). Their description consists of giving a non-minimal resolution
C, of M and an explicit R-free summand D; of each term C; of C, in such a way that
applying the differential of C, to a basis of C; complementary to D;, and then projecting the
result back to a complement of D;_; gives the minimal resolution of M. However, it is not
clear how to give a closed formula for the differentials of the minimal free resolution from
this description or, for example, how to see the presence of power of maps like X and Y.

In Section 1, we review the notions around higher matrix factorizations. The follow-
ing section contains the application of this notion to the explicit construction. The last
section gives our description of Ulrich modules over a codimension 2 quadratic complete
intersection.

Using our methods, Mastroeni [8] has constructed a functor from codimension two
higher matrix factorizations to the singularity category of the corresponding complete
intersection.

Throughout the paper, fi, f> will denote a regular sequence in a regular local ring S, and
we consider the codimension 2 complete intersection R = S/(f1, f2). We will denote by
M the module of a higher matrix factorization (d, /) in the sense of [6] and [7].

1 The Finite Free Resolution of a Higher Matrix Factorization Module

Assumptions 1.1 Throughout the paper, f1, f> is a regular sequence in a regular local ring
S, and we consider the complete intersection R = S/(f1, f2). By [7, Theorem 10.3], the
following conditions are equivalent for a finitely generated R-module M:

(1) M is maximal Cohen-Macaulay over R.
(2) M is the module of a higher matrix factorization (d, &) in the sense of [6].
(3) M has a (possibly non-minimal) S-free resolution L of the form
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Minimal Resolutions Over Codimension 2 Complete Intersections 143

Bi(1) 5 Bo(1)
® / ®
—uy
b
B1(2) By(2)
" ’ /
eB1(2) - eBy(2)

where:

(1) Bo(1), Bi(1), Bo(2), Bi(2) are finitely generated free S-modules;

(2) The module denoted e B; is identified with B, (the symbol e (denoted ¢; in [6]) serves
only to distinguish the two copies of B notationally);

(3) There is amap u : Bo(1) — B (1) satisfying §iu = ud = f11d; that is, p is a homotopy
for fi on By (1) 2> Bo(1).

By [6, Theorem 3.1.4], the resolution L is minimal if M is the module of a minimal
higher matrix factorization.

The notation above is consistent with that in the diagram in [7, Definition 10.2], but for
simplicity we use ¥ instead of i», we use b instead of b,, we use e instead of e, and we
use p instead of /.

If ¢ is a map of modules @1<;<; P; <— DP1<j<s @, then we write P, for the
component of ¢ with target P; and source Q ;.

Lemma 1.2 Under the assumptions 1.1, let h be a homotopy for multiplication by f> on L.
We consider two of its components and denote them by

= —hep ) <Bi (1)
0= hp@)<By©2-

(1) We have hB](Q)(—B()(l) = VM.
(2) The component hep, (2)—eBy(2) can be chosen to be o.

Remark When considering maps in this paper, we often identify eB{(2) = B;(2) and
eBy(2) = By(2). For example, in the above lemma, the map vu is from By(1) to eB1(2),
but we also identify it with a map from Bo(1) to B1(2) when we write h g, (2)By(1) = VM.

Proof (1) Consider the homotopy equation 2§ — fiv = 0: B1(1) — B1(2). Applying
on the right-hand side, we get hdu = fivu, so hp,0)«<By1)f1 = fivi. As fi is a non-
zero divisor, it follows that & g, (2) B, (1) = Vit.
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144 D. Eisenbud, I. Peeva

(2) Set ¢ := hep,(2)<eBy(2)- The equations that ¢ needs to satisfy are
(bs — hf1)eBy(2)«eBy2) = f2Id

(fis —of1)B,(2)«<eBy2) = 0

(uYs — hf1) B (1)<eBo2) = 0

(cb+hfi +vuy — fold)ep 2)«eBi2) = 0.

Clearly, the second equation is satisfied by o. The first equation is satisfied by o since
(bo — f1h) By(2)«B,2) = f21d. For the third equation, note that

(o — fih)B (1)« By2) = (MY 0 — udh) B, (1)« By2) = H(Yo — 8h)gy1)«By2) = 0.
The last equation is satisfied by o since

(ob+hfi +vuy — fold)p,2)<B,2) = 0. O

Notation 1.3 The above lemma shows that we can relabel the diagram of L in 1.1 as fol-
lows. The homotopy for f; is shown with dotted arrows, and the homotopy for f> is shown
with dashed arrows. In the diagram, we introduce names for the different components of the
homotopies.
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Minimal Resolutions Over Codimension 2 Complete Intersections 145

The Macaulay2 package CompleteIntersectionResolutions contains a rou-
tine called makeFiniteResolution?2 that produces the displayed maps in the diagram,

with notation matching that is given here, in a hash table.

Example 1.4 This example is computed with Macaulay2. Let S = k[x, y] and consider the
regular sequence f1 = x3, f» = x> — y3. Consider the S-module M with presentation:

x—y 0 0 O
0x2 =20 0
00 x —y—x3
s? Y S > M- 0.

In the notation above, we have the following minimal free resolution of M with homotopies:

b= (x 7y) = .
eB1(2) = §? ————————¢By(2) =S B
<« - < PR

’7 (}(’)2)

We will use the identities in Lemma 1.5 in the computations in Section 2.

Lemma 1.5 We have the following identities on the diagram in 1.3

1) Sa+ yvu = frldat Bp(1).

(2) bo — f1iX = foId ar By(2).

3) bvu — fiu = 0 mapping By(1) — Bo(2).
@) &t 4+ Yo = 0 mapping Bo(2) — Bo(1).
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146 D. Eisenbud, I. Peeva

b)) ad+ puyvv = frId at B1(1).

©) ob+vuy — f1Y = fold at B1(2) and at e B1(2).

(7 —fiX+bo = frldat eBy(2).

®) vudé — fiv =0mapping B1(1) — B1(2).

©) tb+ay + uyY = 0mapping B1(2) - Bi(1).
(10) ué — bv = 0 mapping B1(1) — eBy(2).
(11) —fit — pyo = 0 mapping eBy(2) — Bi(1).
(12) Xb+ uy — bY = 0 mapping B1(2) — eBo(2).

Proof The identities above express the fact that we have a homotopy for f> on the
resolution. O

2 The Infinite Free Resolution of a Higher Matrix Factorization Module

In this section, we obtain formulas for the differentials in an infinite R-free resolution T of
the module M of a higher matrix factorization. We work under the assumptions 1.1 and use
the notation 1.3. We will use the identities in Lemma 1.5.

Given a homomorphism ¢ : N — L of S-modules, we abuse notation and denote the
induced homomorphism R®s N — R ®g L by ¢ as well. Throughout this section, / stands
for an identity map of appropriate size, and O stands for a zero map of appropriate size.

When considering maps in this paper, we often identify e B;(2) = B;(2) and eBp(2) =
By (2); see the remark after Lemma 1.2.

Theorem 2.1 There is a free resolution T of M whose differentials are given as follows:
Fori > 0, the odd differentials di 1 of T have the form

§ Y% yYlv - yYi~2p yYi~ly yY!

0 6§ YYO% .. yYi3y yYi-2y yyi-!
0o 0 § - yYiThy yyiTy yyi?
drivr = 1 S : :
o 0 o - 8 YY% vyl
o 0 o --- 0 B e
o o o0 --- 0 0 b

For i > 1, the even differentials dy; of T have the form

oo X% - X3y e X2y X!

Oun o - X%y eX By rxi2
00 pu - TXu X"y X3
di=1 7 0 : :
oo O --- o X% X!
oo O --- w o X0
oo o --- o v o

If the higher matrix factorization (d, h) is minimal, then the resolution T is minimal as well.
The minimality of T is achieved for high syzygies by the following result:

Theorem 2.2 [6, Theorem 1.3.1] Let S be a regular local ring with infinite residue field,
and let I C S be an ideal generated by a regular sequence of length c. Set R = S/I,
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Minimal Resolutions Over Codimension 2 Complete Intersections 147

and suppose that N is a finitely generated R-module. Let f1, ..., f. be a generic choice of
elements minimally generating 1. If M is a sufficiently high syzygy of N over R, then M is
the module of a minimal higher matrix factorization (d, h) with respect to f1, ..., fe.

Example 2.3 We continue Example 1.4. By Theorem 2.1, the even differentials in the
infinite minimal free resolution of M over R = k[x, y]/ (x3, y3) have the form

n o
w o

n o
uw o

since T = (0 0) and v = Id. The odd differentials have the form

SY =¥ ¥~y ... (=D =Dy (=Diy
S ¥ v ¥ . DT DTy (=D

-y
4
b

since Y = —Id and v = Id.

Construction 2.4 We consider the free resolution (T, d) given in [6, Theorem 5.1.2]. We
choose CI operators 71, # as in [6, Theorem 5.1.4] so that they commute on T; we remark
that it was proved in [1] that there exists a choice of commuting CI operators, but our
computations use the particular choice of CI operators that we have constructed. We dualize
and consider Hompg (T, R).

In the rest of,t\hiS section, we write — for HomR(E ® —, R).

We consider T = Hompg (T, R) with differential d. Set

ri=1 and r=n
acting on T. By [6, Theorem 5.1.2], the free module T”z,- is the direct sum of the modules
riBo(1), ri~'r2Bo(1), {723 Bo(1). ....rsBo(1), riBo(2).
and similarly 7A"2,~+1 is the direct sum of the modules
rBi(D), riT B, 173 Bi(D), L. rhBi(1), riBi(2).
Furthermore, the first two differentials of T in that decomposition are

Bo(l) Bo(2)
- OON %
d = B2) ( 7 5 > 2.1)

Ful @ Springer



148 D. Eisenbud, I. Peeva

_ nB() (@0
d» = rBy(1) a o
nBy2) \ T o

In this notation, we will prove the following formulas for Theorem 2.1:
For i > 0, the odd differentials d»; 41 of T have the form

FiBo(1)  ri7'mBo(1) ... rriT'Bo(1) rhBo(1)  riBo(2)
riBi(1). 5 % ... 0 0 0
ri" B | 3Y°y B ... 0 0 0
2B | oYy Y% ... O 0 0
n T By | 97 ov iy 5 0 0
riBi(1) iy vYiZy Y%y 5 0
riBi(2) Yiy Yi-ly .Yy YOy b
For i > 1, the even differentials c’l\y of T have the form
ATIBI) ATRBi) . mrA TR AT AR
riBo(1) m 0 0 0 0
r'raBo(l) | @ I 0 10) 19)
r=22Bo(1) | aX’t @ 0 0 0
ni By | BXT Attt oA m 0
réBo(l) ’u;Xi_z? it:)\(."_3? ... ZXO? 61 o)
ri Bo(2) Xi-1T X2 ... X'T X7 Gi

Remark The Shamash construction is a generalization of Tate’s construction [10]. It is due
to Shamash [9] for one element and to Eisenbud [5] for several elements. It provides a
resolution of any module over a complete intersection, but the resolution is usually non-
minimal. We will make use of the Shamash construction. We will use it in the form and with
the notation in [6, Construction 4.1.3 and Proposition 4.1.4].

The next lemma will be used in the proof of Theorem 2.1.

Lemma 2.5 The third differential of Tis
riBo(1) Bo(l) r2By(2)

nBi(1) (3 0 0
di = nB() | ¥ s 0
r2B1(2) Yy 14 b

Proof We will follow [6, Construction 5.1.1]. We start with the matrix factorization
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Minimal Resolutions Over Codimension 2 Complete Intersections 149

of f1. Applying the Shamash construction, we get the periodic (of period 2) free resolution

s B S Bl B By S Byl

where —’ stands for — ® R’ and R’ := S/(f1), and y; is a variable. Then, we write the Box
complex

) P n P
<= y1B1 (1)) ———— y1Bo(1) B (1) Bo(1)

2 v @

B1(2) T By(2)'. 2.2)

The free resolution T over R is obtained by applying the Shamash construction to that

Box complex. For this purpose, we need a homotopy for f> on the Box complex. Since our

goal here is to compute only the third differential, it suffices to construct only the first 2

steps of the homotopy. Straightforward computation using the homotopy relations on the
diagram in 1.3 shows that the homotopy can be chosen to be

<= Bl — yiBo(1)
N

Applying the Shamash construction, we conclude that

8 Yv yY
=10 & ¢
O 0 b

Proposition 2.6 The first CI operators are:

By By R Bi(1) Bi(2)
nBo() (10 nBi(h) (10
Il = 2B | O w | r+ = nBi) | 0 v,
r2By(2) o X rB1(2) o Y
and
_ Bo(l) Bo@) B B
r1Bo(1) 0 0 rBi(1) (O o
m2lge = r2Bo(1) 1 O |.rn = r2Bi(1) I o
r2By(2) 0 1 rnBi(2) \ O I
Y
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Proof Throughout this proof, we write — for Homg (S ® —, .Sg _
We lift the differentials of T to S and denote the lifting of d; by d;. Then,

~ Eg 5§ O
d2d1 = o v — B
T o v
e 0 i o
= | @ +mvy wob | = | Sa + Yop bvp
T8+oy ob St +vyo bo
fil o I O 0 0
= fal ufil - = fi 0] E + f2l I O
0 fl+ fiX 0 X o1

This proves the desired formulas for the CI operators acting on To.

Furthermore, we compute

(3 o0\(7o
didy = | v 8§ O o v
Yy ¥ b T 0
S 0
=| wr+dsa  Spv_
YYTi+ Y@ + bt Yiv + bo
né 10)
= wv 4 ad vud
uyY +ay + th vuy +ob
Al (0]
=\ fal VAl
O fil + fiY
I 0 00
=nlos|+pl1o0
oY o1

This proves the desired formulas for the CI operators acting on T’l

O

Proposition 2.7 The CI operator rp acts on T as an identity embedding that is dual o the
projection ty (by construction). The CI operator ry acts on T as follows:
Fori > 0, the Cl operator r1 pi+2 : Tai — Thi42 is given by

~_ rBo() "By
i Bo(1) I
riraBo(1) 1

riri Bo(1)
ry* By(1)
5 Bo(2)

@ Springer
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Minimal Resolutions Over Codimension 2 Complete Intersections 151

and the CI operator r1 ;13 : Triy1 — Taiy3 is given by

e B ATRB) e BB BB
B I

L=

riraBi(1) I

1,243 = tA ’
r1r2§1(1) 1
rgfizgl(l)

s Bi(2)

=) <)

Fori > 1, we have:

and

I

QQ Q™
E:<>>°}~'<)>':>°
(38

=

QQ...
<)
0
|

Proof Fori > 1, the formulas for 3 22, F1,2i42. 12,2i+3, I'1,2i+3 follow from the fact that
r1 and rp commute on T.
Straightforward computation shows that

I OO0
ol O
2 -~
= OOZA
0O O uX
00 X?
and
1 O
ov
2/\_ o~
"Tn= Oﬁz
0 Y?

%hm'n @ Springer
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By induction, we get

OO

)

X
nX?

)

QAT ™
Q=0

}...

S Q
Qo
=)

o)

and

) 2) ) Q

SESESEY
~)=)

...
|

S o
<)
O

Lemma 2.8 Fori > 1, we have
E<r{§0(1)) =SB+ | Y Y B |+ (?HZ) riB1(2)
l=g=i

and

E(r;'—lﬁl(l))

= AriBo(l) +@ri 'raBo(1) + ( > (@%'7) r;’qlrg“ﬁo(n) +(X'2) r5Boc2).
1=g=<i-1

Proof The second equality below uses the formula for 31 in (2.1). The last equality uses

a formula in Proposition 2.7. The following computation proves the first formula in our
lemma:

~)rs)
<)

<) <) ) )

~—
I

.o b<l\?
<)

-~ . (S0 I 4
a0iB) =rdlg=ri( 5 §)(5) =il

<)

=)

<) L
<)
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Similarly, we prove the second formula in this lemma. The second equality below uses
the formula for d; in (2.1). The last equality uses a formula in Proposition 2.7.

w o I
=( i-1 _ i-17 _ il &
d(r1 Bl(1)> =r d B H="1 Z /iv (0)
T 0
w
a
ut
- u uxt
11— o~ P
=7 TQ (/)(\ = MX2I
T
s
xi-lz O

Proof of Theorem 2.1 We will prove the formulas for the differential given at the end of
Construction 2.4.

The first column follows from Lemma 2.8.

The computations below use the fact that the CI-operator 7, is a projection and so r; is
an identity embedding; see Proposition 2.7.

First, we compute the last two columns in the formula for the differential. The formula
for the last column follows from

o~

d B2 =

RPN
=ry dy

I”édl

By =P

5 Bo(2)

-~

d B = HV

e BT R

for i > 1. The formula for the column preceding the last column follows from

-~

d i Bo(1)

= rydi ‘Eo(l) =9

ABoy TV B

o~

PO
d =rn dpag=h

BB BB T B TR

fori > 1.

Now, we compute the formulas for the rest of the columns. Fori > land1 < j <i —1
we have:

a(rriBo)

] (Zr{*f 7§0(1))

=A 57 Bms 3 (@) AT B+ (T) B

I<g<i—j
=5 B+ Y (T) AR + (TY) B
l=g=<i—j

Ful @ Springer
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and

g(r{_j_lrggl(l))
Y B A el Sl D
=nn dz‘Bl(l)

= | BT B +@r 7 B+ Y (@X97%%) A Bo()
2=q=<i—j

+X 0 By2)

= ar 7l Bo +ar T T Bo() + > (m’(‘q—z?) T Y By (1)
2=q=<i—j

+ (}?"—f—l?) riBo(2). 0

3 Ulrich Modules

In this section, f1 and f> are a quadratic regular sequence in a standard graded polynomial
ring S. We consider the graded complete intersection R = S/(f1, f2). An Ulrich module
over R may be defined as a maximal Cohen-Macaulay module M over R, generated in a
single degree such that the entries of the matrices in the minimal S-free resolution of M are
all linear forms. The equivalence of this definition to the original definition (which states
that a maximal Cohen-Macaulay module M is an Ulrich module if the multiplicity of M
is equal to the minimal number of generators) is proved in [3, Proposition 1.4], where they
are called MGMCM modules. The existence of such modules is proved in [2]. We give a
description of the Ulrich modules over R.

A matrix factorization of an element f € S is a pair of square matrices (8, ;) such that
dpu = udé = fId. It is graded if the entries in the matrices are homogeneous.

Theorem 3.1 A finitely generated graded R-module M is an Ulrich module if and only if
there exists a graded minimal matrix factorization (8, ) of fi1 with size w and a number
p < w so that:

(1) The matrix 8' that consists of the first p rows of 8 is linear.

(2) The matrix i’ that consists of the last w — p columns of w is linear
(3) There exists a (w x p)-matrix g with §'g = f» Id.

(4) M = Coker(8").

Proof By [7, Theorem 10.2], a module M is maximal Cohen-Macaulay over R if and only
if it has a (possibly non-minimal) graded S-free resolution L of the form described in 1.3.
From the definition above, it follows that M is an Ulrich module if and only if the maps

¢Bo2) =I5 By2) and eB;2) 1> Bi(2)

in L disappear after the resolution is minimized. We will analyze when this happens. We
use the notation in the diagram in 1.3.

The map b is minimal by [7, Proposition 3.5]. If By(2) # 0, then the map eBy(2) ;h>
Bo(2) would make the minimization non-linear. Hence, By(2) = 0.
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Minimal Resolutions Over Codimension 2 Complete Intersections 155

The matrix factorization (8, i) of f1 is a direct sum of a minimal matrix factorization and
copies of the trivial matrix factorizations (Id, f1) and ( fi, Id). We can assume that no copies

of (Id, f) are present because the minimal free resolution By (1) i) By(1) can be chosen to
be minimal by [7, Theorem 4.1 and construction before it]. If we have any copies of ( f1, Id),
then the R’ := S/(f1)-module M’ := Coker(s) would have a direct R'-free summand
which contradicts the construction of M’ as the essential Cohen-Macaulay approximation
of the module M over R’ as in [7, Theorem 4.1] (the notation here is consistent with that in
[7, Theorem 4.1]). Hence, no copies of (f1, Id) appear. Thus, we can assume that the matrix
factorization (8, ) is minimal.

Since w is minimal, the map —uy is minimal as well. Recall that the map b is also

minimal. Therefore, the map e B1(2) £> B1(2) disappears after L is minimized if and only
if ¥ = Id maps B (2) to a free summand of By(1).

Thus we see that, after minimization of the non-minimal resolution L, we get a minimal
S-free resolution of M of the form

0— eB1(2) % Bi(1) 3> By(1),

where Bo(1) = Bo(1) @ Im(y). Set p = rank By(1)’ and w = rank By(1). Then,
rank(eB1(2)) = w — p. Since the module M is annihilated by f>, it follows that there exists
a (w x p)-matrix g with §’g = f» Id. Thus, conditions (1)—(4) are satisfied.

Conversely, suppose that M satisfies conditions (1)—(4). Denote by By(1)’ the free mod-
ule spanned by the first p basis vectors of By(1), and let B (2) be the free module spanned
by the last w — p basis vectors; here, we consider the basis vectors with respect to which
the matrices § and u are given. Then,

B1(2)

is a higher matrix factorization with respect to fi, f>. The module N of this higher matrix

factorization has a non-minimal free resolution given by [6, Theorem 3.1.4]. We minimize

it as above, and conclude that M = N has a linear minimal S-free resolution. O
We close with an example illustrating the theorem above.

Example 3.2 Let S = k[xo, x1, x2, x3] and set

2 2
f1 = xox1 — x2x3, f2 = X7 + xox2 — X3.

%hm'n @ Springer



156 D. Eisenbud, |. Peeva

Consider
xo xo x2 O 0 x1 x3 x2
0 xp 0 —x3—x3 0 x1 O
0 0 xo x3 x1 x3 0 O
5= x3 0 0 x x2 0 0 xp
xx 0 0 0 0 0 0 x
—x0 0 —xp O 0 —x;1 0 —xo
0 0 0 —x3—x; 0 0 O
0 0 0 xo x» 0 0 O
and
0 0 0 —xp x1 O 0 xp
x1 —x3 0 O 0 x1 x3 O
0 0 x1 0 x3 x3 x1 O
_ 0O 0 0 0O 0 0 x x
=1 0 0o 0o 0 0 0 —x—x3
0 0 —x 0 —xp —x0 —x2 O
—x2 x9o 0 O 0 —xp —xo O
0 0 O xo —x3 O 0 —xo

We have the matrix factorization
ué =8 = (xox1 — x2x3)1,

where [ is an 8 x 8 identity matrix. In the notation of Theorem 3.1, set w = 8, p = 4 and
let 8’ be the matrix consisting of the first 4 rows of 8, and let i’ be the matrix consisting of
the last 4 columns of p. The matrix

x2 —x9 0 —x3
0 x 0 x3
0 0 x O
_ 0 x3 0 x
§= —x3 0 x O
X1 —X3 —X3 —X2
—x3 x;1 x1 O
0 0 —xp xi

satisfies the condition §'g = (xl2 + xpxp2 — x%) Id. Therefore, by Theorem 3.1, the module
M = Coker(8’) is an Ulrich module over

R = S/(xox1 — x2x3, x12 + xox2 — x32).

Indeed, one can verify using Macaulay?2 that the minimal S-free resolution of M is linear
and that M is a MCM R-module.

The ring R is the homogeneous coordinate ring of a smooth curve C of degree 4 and
genus 1 in P3. In fact, M is the graded module associated to the coherent sheaf Oc (g — r),
where r and ¢ are the points xg = x3 = 0, x| = £x3.
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