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Abstract

This paper initiates the study of a class of schemes that we call correspondence scrolls,
which includes the rational normal scrolls and linearly embedded projective bundle of
decomposable bundles, as well as degenerate K3 surfaces, Calabi-Yau threefolds, and many
other examples.
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1 Introduction

We will define and study a class of schemes that we call correspondence scrolls. The origin
of our interest was in a paper by Frank Schreyer and the first author on the equations and
syzygies of degenerate K3 surfaces such as K3 carpets [13]. Correspondence scrolls are a
natural generalization of rational normal scrolls and K3 carpets that includes families of
(degenerate) Calabi-Yau threefolds and many other examples.

We will define a correspondence scroll C(Z; b) for any subscheme Z C P? .= P4 x
-+ x P and any n-tuple of non-negative integers b = (by, ..., b,). In the special case
where Z is reduced, we may define C(Z; b) as follows: embed P by the b;-th Veronese
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ai+bi \_
embedding v, : P% — IP’< “ ) "into a general linear subspace of PV, where N =

> (“77) =1, and set

aj

cz= U v, 0.

Thus, C(Z; b) is a union of (n — 1)-planes.

In this paper, we determine the dimension, degree, and multigraded Hilbert function
of a scheme of the form C(Z;b), and for which Z they are nonsingular for every b. We
explain the primary decompositions and Grobner bases of their defining ideals, and we
determine which ones are Cohen-Macaulay, Gorenstein, or numerically Calabi-Yau. We
give numerous examples, including some new (as far as we know) examples of degenerate
Calabi-Yau threefolds.

Recall that rational normal scrolls are the varieties of minimal degree in PV that contain
linear spaces of codimension 1 (the only other varieties of minimal degree are the cones
over the Veronese surface in P, see [12] for an expository account). Perhaps because of
their extremal properties, they appear in many contexts in algebraic geometry, for example,
as ambient spaces of Castlenuovo curves (see, for example, [17]) and canonical curves (see,
for example, [22]) and as images of canonical maps of certain varieties of general type (see,
for example, [15]).

Gallego and Purnaprajna prove in [14] that, on each 2-dimensional rational normal scroll,
there is a unique double structure of a scheme that is a degenerate K3 surface in a natural
sense. They called these schemes K3 carpets. Some of the interest in these schemes comes
because the hypersurface section of a K3 carpet is a canonical curve of controlled genus and
Clifford index, and this is the point of view taken in [13].

In the study of K3 carpets in [13], the authors mention that the equations of K3 carpets
can be described as equations of varieties of complexes, coming from certain correspon-
dences of type (2, 2) in P! x P!. In this paper, we generalize the construction and show that
the resulting “correspondence scrolls” have algebraic properties that are frequently easy to
analyze.

Here is the general definition:

Definition 1.1 (Correspondence scroll) Given a vector a = (a, ..., a,) € N and a field
k, consider the polynomial ring

A=k[x;:1<i<n 0<j<a]

equipped with the standard Z"-grading deg(x; ;) = €¢; € N". The ring A is the Cox ring
of P& := []/_,P% as well as the coordinate ring of [['_;A%*!. Let Z be a subscheme
of [T, A%™T! defined by a multigraded ideal I € A. Let b € N'. be another vector and
N =Y (“}") — 1. We define the correspondence scroll C(Z;b) < PV to be the scheme
defined by the kernel of the map

S=klzigl > A/T 1 zig+— X7, o] =1b;

where z; o are variables of degree 1, x* denotes a monomial of degree b; that is the product

g Ua;

X0 X; ., and the indices a on z; o have weight b;.
) Ehad } ’
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Correspondence Scrolls 103

In many cases of interest, Z comes from a closed subscheme of P?; that is, / has no
primary component whose radical contains one of the ideals (x; o, ..., Xi ). Such a sub-
scheme Z is called a correspondence. The scheme C(Z;b) is then set-theoretically the
union of the projective (n — 1)-planes joining the points py, ..., p, that are “in corre-
spondence”, in the sense that (pg,..., p,) € Z, whence the name we have given the
construction.

Example 1.2 If [ = 0, then C(Z;b) C PV is the join variety of the b;-th Veronese
embeddings of P%, fori =1, ..., n.

For a less trivial example, we take a; = --- = a, = 1 and take Z to be the “small
diagonal”
A={(pr.....p0) €[ [P'Ip1 =" = pa).
n
In this case, C(Z; b) is the rational normal scroll of type by, ..., b,, which we denote by
(b1, ..., by).

We say that a projective scheme X is Calabi-Yau if Oy has no intermediate cohomology
and wy = Oy. If X is 2-dimensional, we say that it is K3. These definitions reduce to
the usual definitions when the scheme is smooth. We will be interested in embeddings of
these schemes where they are arithmetically Cohen-Macaulay as well, and then, they can
be described as those schemes whose homogeneous coordinate rings are Gorenstein of a-
invariant 0.

Example 1.3 (K3 surfaces) For each scroll surface C(A; b) = (b1, by) € PP1+b2+] there
exists a unique K3 double structure supported on it, called a K3 carpet K (b1, b2), as shown
in [14]. The scheme K (b1, by) is arithmetically Cohen-Macaulay, has a degree twice the
degree of the scroll X (b1, by), and the hyperplane section of K (b1, by) is a canonically
embedded rational ribbon of genus b1 + b + 1 and Clifford index min(b1, by).

As described by Eisenbud and Schreyer in [13], the K3 carpet K (b1, by) is the
correspondence scroll C(2A; b), where A € P! x P! denotes the diagonal as above.

Generalizing the properties given for these examples in [13] was the original motivation
for this paper. For instance, K (b1, b>) is numerically K3 by Theorem 5.2 and it has degree
2(b1 + by) by Corollary 2.3.

Example 1.4 (Calabi-Yau threefolds) As a first extension of the theory above, we note that

Corollary 5.3 yields examples of Calabi-Yau threefolds. For instance, if Z is a divisor of
bi +2

type (3,2) in P2 x P!, then C(Z;b) C IF’< 2 >+b2 is a Calabi-Yau threefold for every
b = (b1, b2), and it has degree 3b1b> + Zb% by Corollary 2.3.

Example 1.5 (Schemes with irrelevant components) Another family of examples of Calabi-
Yau threefolds is given by taking Z to be a complete intersection of two trilinear
hypersurfaces in A2 x A x A%, Then C(Z; b) C PP1+02+b3+2 js numerically a Calabi-Yau
threefold for every b. The scheme Z cannot be considered as a subscheme of P! x P! x P!,
since each of the 3 “irrelevant” ideals is necessarily a component. In this case C(Z; b) has
degree byb3 + b1b3 + b1by 4+ 2(b1 + by + b3). See Example 2.4 for an explanation.
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104 D. Eisenbud, A. Sammartano

2 Defining Ideal, Dimension and Degree

The ideal of C(Z;b) € PV is easy to describe explicitly. First, the ideal of the join vari-
ety C(P?; b) is just the sum of the ideals I, ..., I, of the different Veronese varieties
vp, (P%) C PN. These may be expressed in well-known ways as ideals of 2-minors of
matrices of linear forms—see for example [10]. The ideal of C(Z; b) is thus of the form
J+ Y"1, I;, where J is derived from the ideal of Z as follows:

Proposition 2.1 With notation above, suppose that the ideal 1 of Z C H?ZIA‘”H is
generated by multigraded forms g, ..., g, with deg(g;) = (dj 1,...,djn).

Let J be the ideal of S generated by the pullback of the forms in g; - Ac;, where ¢; =
(¢j1,...,cjn) andthe cj; are chosen so that d;; + c;; is the smallest multiple of b; that
is > dj’,'.

The ideal of C(Z;b) is equal to J + Y '_, I.

Proof The homogeneous coordinate ring of the join variety, which is defined by the ideal
> I;, may be identified with the subring of A generated by the elements of multidegrees
(r1, ..., rp) such that each r; is a multiple of b;. With this identification, the ideal of C(Z; b)
in the join variety is the intersection of the ideal of Z with the subring generated by these
elements, from which the conclusion follows. O

Recall that the Chow ring of P? = P4 x ... x P ig
LIt Gl T T,

Theorem 2.2 Let I C A be a multigraded ideal and let Z be the corresponding subscheme
of TTiz; A%+,

(1) The dimension of C(Z; b) € PV is one less than the dimension of Z C [[/_, A% L.
(2) If the multigraded Hilbert function of A/I is Hay(t1, ..., ty) then the Hilbert function
of C(Z;b) is
Hcz:p)(s) = Z Hy (b1t ..., buty).
Z ti=s
(3) If Z C P2 is a subscheme of dimension d and class
c(2) =Y ral®* € Chow(P*)
o€l
then the degree of C(Z; b) is

n
Z ral—[b;xi.

lajl=d  i=1

Proof (1) The coordinate ring of Z C []7_, A% and the homogeneous coordinate ring of
C(Z;b) C PN have the same Krull dimension, because the former is an integral extension
of the latter.

(2) The multigraded Hilbert function of C(Z; b) is

Heizpy(t, - ty) = Hayp(bity, ..., buty),

and the formula follows.
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Correspondence Scrolls 105

(3) The degree is a linear function of the top dimensional part of the Chern class of Z, so
it suffices to do the case where the class of Z is the monomial {?~%, and we may assume

aj +b;
Z = [[P% < []P%. Since the restriction of the b;-th Veronese map vy, : P4 — IP< @ )_1
to a linear subspace is again of the form vy,, we see that C(Z; b) is the join of the b;-th
Veronese embeddings of the P%.

The degree of the b;-th Veronese embedding vy, (P%) is bf"'. Thus a general plane in
PV of codimension equal to dim C(Z; b) = >";a; meets the linear span of vy, (P*) in b?”
points, and thus meets C(Z; b) in the disjoint union of the (n — 1)-planes spanned by one
point from each of the intersections with the vy, (P*), a total of []?_ ;5" planes, which has
degree []7_ b as required. O

For example, Theorem 2.2 gives the well-known degree of the the rational normal scroll
X(b1,...,by) CPNas 30 by
We single out the interesting case of a divisor in P2.

Corollary 2.3 Let Z C P? be a divisor of type (dy, . .., d,), then

n
degC(z:b) = > dib{ '] b
i=1 j#i

Proof Theclassof Zis ) di¢i =) ; d; ¢2~@=€) where e; denotes the unit vector with a 1
in the i-th position and zeros elsewhere. O

In the more general case where the ideal of Z has irrelevant components we do not
have such a simple formula for the degree. Consider a multigraded ideal I C A, and Z C
[T A *1 the corresponding affine scheme. If Z = U; Z; is a primary decomposition of
Z, then C(Z; b) has a primary decomposition U; C(Z;; b) and the degree is the sum of the
degrees of the primary components of maximal dimension, so it suffices to treat the primary
case.

For example, suppose that Q = Q' + Q”, where Q' C (x1,0, ..., Xm.q,) is a relevant
primary ideal and Q" is (X 41,0, - - - , Xn,q, )—primary. Let

A" =K[x1,0, .-, Xm.a,], A = SpecA’,
and let Z' C A’ be the scheme defined by Q' N A’. Suppose first that b4, ..., b, are

sufficiently large so that Q" D mi;j for j =m+1, ..., n. In this case, the scheme C(Z; b)
is contained in A’ C [T/_; A%*! and coincides with C(Z'; (b1, . .., by)). In particular, the
degree of C(Z; b) is equal to that of C(Z’; (b1, ..., bn)).

Example 2.4 (Example 1.5 continued) The ideal I C Kk[xj, ..., x3,1] generated by a
regular sequence of two trilinear forms on A2 x A2 x A? has the three irrelevant ideals

(x1,0, X1,1), (x2,0, X2,1), (x3,0, X3,1)

among its primary components. If Z; = V(x1,0,x1,1) then by the discussion above
C(Zy; (b1, by, b3)) is the cone over the join of vy, (P') and Vps (P, and thus of degree
byb3; likewise for the other irrelevant components. Furthermore, each trilinear form rep-
resents the class ¢; + ¢, + ¢3 € Chow(P' x P! x P'), so the “relevant” part of the
intersection is ({1 + ¢ + ¢3)2 = 2(£182 + 4143 + £2¢3), which is twice the class of the
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106 D. Eisenbud, A. Sammartano

diagonal embedding of P!, and for a subscheme of this class, Theorem 2.2 implies that
deg C(Z'; (b1, by, b3)) = 2(b1 + b1 + b3). Putting these together we get

deg C(Z; (b1, by, b3)) = (bab3 + b1by + brb3) + 2(b1 + by + b3).

By Theorem 5.2 this is an arithmetically Cohen-Macaulay Calabi-Yau threefold in
Pb1+ba+b3+2

It would be interesting to investigate whether the Calabi-Yau threefolds of Example 1.5
are smoothable or smooth points in the Hilbert scheme, in analogy to the case of canonical
ribbons and the K3 surfaces of Examples 1.3 and 6.11 (see [2] and [14]).

For smaller values of b, the scheme C(Z; b) is contained in an infinitesimal neighbor-
hood of A’ and has degree equal to product of the degree of C(Z’; b) and the length of the

subring of K[X+1.0, - - -, Xn.q,1/ Q" generated by the generators of the ideal Zi>mm§” .

Example 2.5 Supposen =2,a; = ap; = 1, and
I = (x{"g. x1.1. x2,0) < k[x1,0. X1,1, %2,0. X2,1]

for some m € N.If Z € A2 x AZ is the scheme corresponding to / then C(Z; (b1, by)) is
the subscheme of PV consisting of a non-reduced point of degree [m/b;]. Indeed, the ideal
of C(Z; (b1, b)) € PV is

({z1a Lo # G 0)) + (20)) + (z2a Lo # ©0.52)))

Thus, the degree formula of Theorem 2.2 holds whenever b; > m.

3 Alternate Representations: Images of Vector Bundles and Varieties
of Complexes

One of the standard descriptions of a rational normal scroll X (b) is as the image of the
projectivized vector bundle P(; Op1 (b;)) under the linear series Op(1). A similar descrip-
tion is valid whenever I has no irrelevant components, so that Z may be considered as a
projective scheme.

Foreachi =1, ..., n we consider the b;-uple embedding

a; +b;

vy, P s p(“2 )t cpy.

Consider the incidence correspondence in P2 x PV given by

.= {(p,x) €ZxC(Z;b) | x vy, vbnnn(p)}

where 7; : P2 — P% are the projection maps. Algebraically, I is defined by the vanishing
of the maximal minors of the matrix whose columns are the vy, (z;) and p. Since the points
vp, (z1), ..., vp, (zn) are linearly independent, the projection I' — P? makes I'" into a (n —
1)-plane bundle over P". Restricting this bundle to a scheme Z C P2, we get a bundle
'z — Z, and the variety C(Z; b) is the image of I'z under the other projection.

When n = 2 and Z is a divisor in P! x P! of bidegree (¥, by) < (b1, by), the cor-
respondence scroll can also be realized as a variety of complexes (cf. [6]). We give two
examples.
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Correspondence Scrolls 107

Example 3.1 (Rational Normal Scrolls) The rational normal scroll X (b1, b,) of dimension
2 is the determinantal variety in P?1+2+1 defined by the vanishing of the 2-minors of the
2 x (b1 + by) matrix

Z1,0 -+ Z1,b—1 22,0 +-- 22,by—1
ZL1 e Zby 22,1 --- 22,by

where the z; ; are the homogeneous coordinates. But we can rewrite the “mixed” minors as

products:

i 22 0 1 2.

det ’ ] = (Zl,i 21,i+1 ) * * ‘J .

21,41 22,j+1 —-10 22,j+1
Thus, the ideal of X (b1, b») may be written as the sum of three ideals: the ideal of 2-minors
of the matrix

M, = 21,0 - 21,b;—1 ’
Z1,1 -+ 21,b

the ideal of 2-minors of the matrix

Z 4 —
My = 220 21 )
22,1 -+ 2,by
and the entries of the composition
0 1 22,0 -+ 22,by—
« « [ 720 2b-1)
—-10 22,1 - Wby

As we have noted, the scroll X (b1, by) is the variety C(A; (b1, b2)), and we may think of

(0 1
the matrix ( ~10

x1,1x2,0 of the diagonal A. The reason this works is that modulo the ideals of minors of the

21,0 21,1
21,b;—1 21,by

as representing the coefficients of the defining equation f = xj gx2,1 —

. . . bi—j j
matrices My and M;, we may make the identifications z; ; = x; / xij |» so the elements of

the composition are exactly the forms defining the ideal J in Proposition 2.1.
Example 3.2 (K3 Carpets [13]) The K3 carpet X (b1, bp) is the correspondence scroll
C(2A; b) where 2A denotes the double of the diagonal in P! x P!, The equation of 2A is

2 2 2 2
[ = (x1,0x2,1 — x1,1%2,0)7 = (x1,0%2,1)" — 2(x1,0%2,1) (X1,1X2,0) + (x1,1%2,0)".

Thus, applying the reasoning and the notation of Example 3.1, and noting the coefficient of
f 2 are (1, =2, 1), we see that the ideal of the K3 carpet is the sum of the ideal of minors of
M, the minors of M, and the ideal of entries of the composition

21,0 21,1 21,2

21 212 213 00 1 220 221 -+ 22.by-2
* 0-20 * 22,1 22,2 -+ 22,bp—1
10 0 222 22,3 - 22.by

Z1,b1—2 Z1,bi—1 Z1,b

4 Nonsingularity

It is interesting to ask when C(Z; b) is nonsingular. We may suppose that C(Z; b) is irre-
ducible so, leaving aside trivial cases, we may take Z to be an irreducible subscheme of
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108 D. Eisenbud, A. Sammartano

P4 x ... x P9 Moreover, if one of the b; is 0 then C(Z; b) is a cone, so we assume that
all b; > 1.

The rational normal scrolls £(b) = C(A;b), where A is the small diagonal in P! x
-~ x P!, are nonsingular if all the b; are positive, but in general, the answer will depend on
b. For example, C(P! x P!; b) is the join of the rational normal curves of degrees by, by.
If by = b, = 1, then this variety is P3 and is thus nonsingular. But if either by or b is
greater than 1, then the join becomes singular. In fact, the dimension is 3, as long as all the
b; are positive; but if b, > 1, then the linear span of vy, (P!) has a dimension greater than
1, and one can see from this that the tangent space at a point of the form v, (p) will have
dimension by + 2 > 3.

Using a similar argument, we will characterize those Z such that C(Z; b) is nonsingular
for some b whose components b; are all greater than 1.

In the case n = 1, the scheme C(Z; b;) C PV is the b;-th Veronese embedding of Z,
and is thus isomorphic to Z C P“!. The following useful result is an analogue for n > 1.

It will be convenient to use a basis-independent notation. To this purpose, we write P4 =
P(V;), where V; is a k-vector space of dimension a; + 1, so that A = Sym(®}_, Vi), S
Sym(®]_, Symbl’ V;) and

pY =P (@f’:l Sym?i v,-) 5 ]’_l[ P (Sym”f v,-) .

i=1

Lemma 4.1 Let Z C [[;_ P(V;) be a subscheme and A C {1, ..., n}. The following three
subschemes of P(®jea Symb" Vi) € PN are equal:

(i) the scheme C (mpx(Z); bp), where wp : ]_[;'ZI]P’(Vi) — ]_[ieA]P’(Vi) denotes the natural
projection and by the subvector (b; : i € A);

(ii) the projection of C(Z; b) from the linear subspace P (®i¢A Symb" Vi) c PV;

(iii) the intersection C(Z; b) NP (@,-EA Symh" \/i) .

Proof Denote for simplicity U; = Sym® V;. Let I C Sym(®7_, V;) be the saturated
multigraded ideal of Z. The ideal of C (w5 (Z); bpa) C P(djca U,) is obtained by first inter-
secting I with the subring Sym(®;ca V;) and then taking the preimage in Sym(®;ca U;).
If we take the preimage of I in Sym(®?_,U;) first, and then intersect with the subring
Sym(@®;eaU;), we obtain the same ideal, thus the subschemes (i) and (ii) coincide.

Let J C Sym(ea?= 1Ui) be the saturated multigraded ideal of C(Z; b). The subscheme
C(Z;b) NP(DicaU;) of P(®;ecaU;) is defined by the ideal

I+ (Xign Ui).
(ZigEA U;)

Since J is multihomogeneous, the ideal (}°; ¢A U;) contains all the generators of J whose
multidegrees have nonzero components outside A, so the defining ideal of C(Z;b) N
P(®icaU;) in P(@;eaU;) is generated by the classes of elements of J whose multide-
grees have nonzero components only in A. On the other hand, the ideal of the projection
of C(Z;b) from P(D;gaU;) is J N Sym(D;eca U;), and this has the same set of generators,
whence the subschemes (ii) and (iii) coincide. O

Theorem 4.2 Suppose that Z C P4 x --- x P js a subscheme. The following conditions

are equivalent:
(1) The correspondence scroll C(Z; b) is nonsingular for all b.
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Correspondence Scrolls 109

(2) The correspondence scroll C(Z;b) is nonsingular for some b = (by, ..., by) with
b; > 2 foralli.

(3) The scheme Z is nonsingular and the projections w; : Z — P% are isomorphisms onto
their images.

a) + b

Proof Let L C PV be the subspace IP’< @ )_] = P(Sym? (V1)) c PV, and let PV =
P(®;_, Sym,, V; C P") be the complementary subspace.

(3) = (1) Suppose that Z is nonsingular and that the projections 7; : Z — P% are
isomorphisms onto their images Z;. Since the components of Z satisfy the same conditions
as Z, we may assume that Z is reduced and irreducible, and it follows that C(Z; b) is, too.

As in Section 3, set

I:= {(p,x) eZxC(Z;b)|x e vblm(p),...,vbnﬂn(p)].

Each fiber of the projection to the first factor is isomorphic to P*~!. Since Z is nonsingu-
lar, I" is nonsingular as well. We claim that the projection of I' to the second factor is an
isomorphism; that is, the fiber F := F, C Z of I" over any point x € C(Z; b) is a reduced
point.

We induct on the number of factors n. If the point x lies in L, then it lies in vp, 71 (Z).
It follows that F' is contained in the fiber of the map w; : Z — m;(Z), and this map is an
isomorphism by hypothesis. Hence, the fiber of I" over x is a reduced point. In particular,
this finishes the case n = 1.

Now, suppose x does not lie in L, so that in particular n > 1. Note that the fiber F' may
be identified with the fiber over x of the projection

'\(ZxL)— C(Z;b)\ L.
By our hypothesis, the natural projection of Z to PV "is an isomorphism onto its image

Z'. Letb' = (by,...,b,;). By Lemma 4.1, we have C(Z’; V') = 7’ (C(Z; b)) where 7’
denotes the projection from L; note that 7’ is well-defined away from vy, 71(Z) C L. Set

M i={(p.x) € 2/ x CZ: W) |x € vy (), - v, (D) |
There is a commutative diagram of maps

r\(zxL) ——> I

l l

C(Z;b)\L —— C(Z';p).

By induction, the right hand vertical map is an isomorphism, so the fiber over y = 7/(x) is
areduced point (g, y). Thus, F C Z is contained in the fiber of the projection Z — Z’ over
q. By hypothesis, the projection Z — Z’ is an isomorphism, proving that F is a reduced
point.

(1) = (2) Trivial.
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110 D. Eisenbud, A. Sammartano

(2) = (3) Suppose that C(Z; b) is nonsingular for some b with b; > 2 for all i. Let
Z; = m; Z be the projections. In the case n = 1 we have Z = Z| = C(Z; b), so we may
assume n > 1.

We have C(Z;b) N L = v, C(Z1;b1) = Z; by Lemma 4.1. Fix a point p € Z and
let F C P2 x ... x P% be the subscheme such that 7| (p) x F = rrfl(rrl(p)) CZ It
suffices to prove that Z is nonsingular and that F is a reduced point. Observe that dim Z <
dimZ; +dim F.

Letb’ = (by, ..., by,) and consider the subscheme C(F;b’) € PV'. Note that C(F; b)
is contained in C(Z; b). Moreover, C(Z; b) contains the cone 7} over C(F; b’) with vertex
vp, 1 (p). Note that dim 7y = dimC(F; b’ ) + 1 =dim F +n — L.

The tangent cone 7 to C(Z; b) at the point vp, 771 (p) contains the tangent cone 7> to
vp, (Z1) at vy, 1 (p), which satisfies dim7; > dim Z; and 7, € L. On the other hand, 7
obviously contains the cone 7.

From the fact that C(Z; b) is nonsingular, we deduce that

dm7 =dimC(Z;b)=dimZ+n—1<dimZ; +dimF +n — 1.

Further, T is a linear space so 7 contains the linear spans £; and £, of 77 and 7. Since
L and £, intersect only at the point vy, 771 (p), we conclude that

dim7T > dim£L; 4+ dim £,
> dim 7] +dim 7,
=dimF+n—1+dim7,

>dimF +n—1+dimZ;.

Thus, all the inequalities are equalities, so 71, 7> are linear spaces, and dim 7, = dim Z;.
Thus, Z; is nonsingular and dim F = dim Z — dim Z;.

Since the cone T over C(F;b’) is a linear space, it follows that C(F;b’) is a linear
a; +b;

space, and thus, F is reduced. Further the projections of C(F; b’) into each IF’( a >71 are
linear spaces. By Lemma 4.1 these projections lie in vy, (P%). Since b; > 2, the Veronese
vy, (P%) contains no linear spaces except reduced points. Thus C(F; b’) = n — 2. However,
we also have dim C(F; b’) = dim F 4+ n — 2, and it follows that dim F = 0, completing the
argument. O

5 Algebraic Properties

In order to study further algebraic properties of correspondence scrolls, we introduce a

general multigraded operation. To each vector b = (b1, ..., b,) € N we associate the
finite index subgroup H® .= (brey, ..., bye,) € Z". For a Z"-graded vector space V, we
define
Th(V):= P Va.
deH®

Notice that Ty (+) is an exact functor on the category of Z"-graded vector spaces.

Recall the notation of the paper: A is the Cox ring of P2 = P4 x --. x P Z a scheme
defined by a multigraded ideal / € A, and S is the homogeneous coordinate ring of PN,
Then, the correspondence scroll is C(Z; b) = Proj(Ty(A/I)) < PV, where Ty, (A/I) is
regarded as a standard Z-graded algebra.
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Remark 5.1 For multigraded ideals J of a Z"-graded algebra R, the association
J—=Tp(J)=JNTH(R) C Tp(R)

preserves several properties and operations of ideals, e.g., prime, primary, radical, primary
decomposition, intersection, sum, colon by forms in 7p(R).

If R is a Gorenstein ring, then its canonical module is wgp = R(v) for some vector
v € Z", known as the a-invariant of R and denoted by a(R).

Theorem 5.2 Let A be the Cox ring of P2 = P4 x ... x P%, [ C A a multigraded ideal,
and R = A/I.

(1) If R is Cohen-Macaulay, then Ty, (R) is Cohen-Macaulay;

(2) if R is a normal domain, then Ty (R) is a normal domain;

(3) if R is Gorenstein, then Ty (R) is Gorenstein if and only if a(R) € H®;
(4) if R is Gorenstein with a(R) = 0, then Ty (R) is Gorenstein with a(R) = 0.

Proof For simplicity, denote R’ = T, (R). The ring extension R" C R is homogeneous with
respect to the Z" grading, and furthermore, it is integral, since for each multigraded element
f € R, there exists a power lying in R’. Denote their Krull dimension by d = dimR =
dim R'.

(1) and (2) follow from the fact that R’ is a direct summand of R as R’-module, see for
instance [18].

(3) We begin by showing that 7, (-) behaves well with respect to local cohomology. In
general, if M is a graded R-module, then Ty, (M) is a graded R’-module. However, the
functor Ty () does not preserve injectives, so we use the Cech complex.

If f € R is multigraded with deg(f) € H®, then we have T,(M ) = (Ty,(M)) s. For
the Cech complex of a graded sequence f = fi, ..., fs; with degrees in H () we obtain

Ty (C*(f: M) = C*(f; To(M). (5.1)

Let J C R be a multigraded ideal, then J' = Ty (J) is a multigraded ideal of R’. Since
every multigraded element f € R has a power in R’, we may choose, up to radical, gener-
ators f of J with degrees in H ®) From (5.1) and the fact that Ty (-) is an exact functor, we
conclude that local cohomology and 7j(-) commute: for any J, M, i we have

To(H (M) = H'\ (T (M)). (5.2)

Since R is Cohen-Macaulay, R’ is also Cohen-Macaulay by (1). Their graded canonical
modules are

wg = *Homy(Hg (R), k),  wgp = *Homy(Hf (R),k).

where R, R denote the respective homogeneous maximal ideals and *Homy (-, k) is the
Hom functor in the category of Z"-graded modules (see [16]). This functor is exact and
commutes with 7y (-). From (5.2), we conclude that wg' = Ty (wg).

Since R is a Gorenstein ring, then wg = R(a) where a = a(R) € Z" is the a-invariant.
For a cyclic free module R(v), we have that Ty (R(v)) is a free R’-module if and only if
v € H® in which case it is also cyclic. We conclude that R’ is Gorenstein if and only if
a(R) e H®.

(4) If R is Gorenstein with a(R) = 0, then we have the graded isomorphism wg = R.
Since wrr = Ty (wg), we deduce that wgr = R’, so R’ is also Gorenstein witha(R) = 0. O

g
e @ Springer

Hanoi



112 D. Eisenbud, A. Sammartano

Notable examples include Gorenstein correspondence scrolls obtained from complete
intersections in P4 x --- x P4 in particular from divisors.

Corollary 5.3 Let Z C P x --- x P be a complete intersection defined by multigraded
forms f1, ..., fe. If there are A; € 7 such that

deg(f1) +---+deg(fo) = (a1 + 14+ Aib1,...,an + 1+ Ayby)

then C(Z;b) is a Gorenstein projective scheme, and if »; = 0 for all i then it is Calabi-Yau.

Proof The a-invariant of P2 is (a;+1, ..., a,+1). After going modulo the regular sequence
f1, ..., fo we obtain a complete intersection with a-invariant equal to (a1 +1, ..., a,+1)—
deg(f1) — - -+ — deg(f.). Both statements follow directly from the previous theorem. [

Next, using the work of Shibuta [23], we obtain information on Grobner bases of corre-
spondence scrolls. We say that a Grobner basis is squarefree if its elements have squarefree
leading monomials.

Proposition 5.4 Let I C A be a multigraded ideal, Z C [[/_; A% *1 the scheme defined by
I, and § > 2 an integer. If I has a Grobner basis of forms of degree at most 8, then C(Z; b)
has a Grébner basis of forms of degree at most § for every b. Moreover, if the Grobner basis
of I is squarefree, then the Grobner basis of C(Z; b) will also be squarefree.

Proof Let in(I) € A be a monomial initial ideal of I, with respect to a term order
or integral weight. Let H C S be the ideal generated by all monomials whose image
via the map § — A of Definition 1.1 lies in in(/). If in(/) has generators of degree
at most §, respectively, is a squarefree monomial ideal, then the same is true for H, cf.
[23, Lemma 2.6].

a; + b;
Since Tp(A) is the tensor product of the coordinate rings of vy, (P%) C ]P’( . ) ! over
k, a Grobner basis for the kernel of S — A may be obtained as the union of Grobner
bases of each factor. It follows by [24, Theorem 14.2] that this kernel admits a squarefree
quadratic initial ideal J < S.
Finally, there exists a term order on S such that J 4+ H is an initial ideal of C(Z; b), cf.
[23, Theorem 2.9], and the desired statements follow. O

A special case of Proposition 5.4 states that if Z is defined by a Grobner basis of quadrics,
then C(Z; b) is also defined by a Grobner basis of quadrics for all b. Blum [3, Theorem
2.1] proves a closely related statement: he shows—using the terminology of “generalized
Veronese subrings”—that if R is a Koszul algebra, then Ty (R) is also a Koszul algebra for
all b.

6 Examples of Correspondence Scrolls
In this section, we list more examples of correspondence scrolls, in order to show their

ubiquity. In some cases, our analysis offers an alternative point of view or a quicker proof
of some results in the literature.
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Example 6.1 (Join variety) Let X1, ..., X, be closed subschemes of general linear sub-
spaces P91, ..., P% in PN IfZ = X| x -+ x Xy, then C(Z; 1) is the join variety of the
X;’s in PV Tts degree is the product deg(X 1) deg(X») - - - deg(X;,).

The next two examples are different generalizations of 2-dimensional rational normal
scrolls.

Example 6.2 (Determinantal ideals of square matrices) Fix integers 2 < r < n. Let
Z C (P*~1)" be the subscheme defined by the r-minors of the n x n generic matrix. The
correspondence scroll C(Z; b) is an irreducible scheme in PV of dimension n—m—-r+
D2 —1.

By Theorem 5.2, C(Z; b) is a Gorenstein scheme when b; divides » — 1 for each i, since
Z is a Gorenstein scheme with a-invariant (1 —r, ..., 1 —r) € N” (see [4]). The r-minors
form a squarefree Grobner basis, so by Proposition 5.4 C(Z; b) is defined by a squarefree
Grobner basis of multilinear forms for every b.

When n = r = 2 we obtain precisely the scrolls X (by, by). As it is well-known, this
scroll is always Koszul, and the only such Gorenstein scroll is (1, 1); however, for r > 2,
we have several examples of Gorenstein correspondence scrolls.

Example 6.3 (Adjacent minors) Fix integers 1 < m < n € N. Let Z € (P"~!)" be the
subscheme defined by the adjacent m-minors of the m x n generic matrix (see [19]). These
minors form a squarefree Grobner basis and a regular sequence.

The scheme C(Z; b) € PV is reduced of dimension mn — n + m — 2 . By Proposition
5.4, C(Z;b) is defined by a sqaurefree Grobner basis of multilinear forms for every b.
By Theorem 5.3, the scheme C(Z; b) is Gorenstein if b divides componentwise the vector
1,2,....m—1,mm...mm-—1,...,2,1) e N\,

In the case when m = 2, the components of the subscheme Z C (P')" are described in
[9]. It follows that the number of components of the correspondence scroll C(Z; b) is the
Fibonacci number F;_1 (where Fy = F; = 1). Each component is a join of rational normal
scrolls. In this case, C(Z; b) is Koszul, and choosing m = n = 2 gives rise to the scrolls
X (b1, by).

In the next examples, we discuss generalizations of rational normal scrolls of all dimen-
sions. In preparation, we compute the top Chern class of the small diagonal in the n-fold
product of a projective space.

Proposition 6.4 The Chern class of the small diagonal A C (P*)" is

c(a) = []¢"

a =1

where the sum ranges over all « € " withO < o; <aand ) ; o; = a(n — 1).

Proof In order to compute the coefficient of a monomial [[;_, ;I.ai with ) 0 =
codim(A) = a(n — 1), we intersect A with a product L = ]_[?=l L; where L; = P% C P¢
is a general linear space. However, this intersection is just one point, since

n
LNA={(p1,..., pn) : pi €L;and p; =-~-=pn}={(p,...,p) :p€ﬂLi}
i=1
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and thus the coefficient is 1. O

Example 6.5 (Diagonal) Let A € (P*)" be the small diagonal. The correspondence scroll
C(A: b) is an irreducible subscheme in PV of dimension a +n — 1, and it is nonsingular by
Theorem 4.2. By Theorem 2.2 and Proposition 6.4, the degree of C(A; b) is Y, [T/, 5"
with sum ranging over all « such that ), o; = dim(A) = a.

Like the rational normal scrolls, C(A; b) is arithmetically Cohen-Macaulay and projec-
tively normal by Theorem 5.2. Since the 2-minors of the (@ + 1) x n generic matrix form a
squarefree Grobner basis, C(A; b) is defined by a squarefree Grobner basis of quadrics by
Proposition 5.4. The scrolls X (b1, ..., b,) are obtained when a = 1.

Example 6.6 (Closures of linear spaces) A generalization of the previous example, and
hence of rational normal scrolls, is obtained by considering an arbitrary linear subspace
L € A™ and its closure L € P4 x - - x P where ) _ a; = m. These are special examples
of Cartwright-Sturmfels ideals, a large class of multigraded ideal with strong properties (see
[5]). For any L and b, the scheme C (L; b) C PV is irreducible, arithmetically Cohen-
Macaulay, and projectively normal by Theorem 5.2 and [5, Theorem 3.1].

Non-trivial varieties of minimal degree, i.e., rational normal scrolls and cones over the
Veronese surface, are examples of correspondence scrolls. One can also use the construction
to produce some reducible schemes of minimal degree (see [11]).

Example 6.7 (Small schemes) Let ny,n, € N and consider the product P? = PHm x
(PH2, Let A; € (PHY" be the diagonal for i = 1, 2, and choose a point p; € A;. Let
Z1 = Ay x {p2}, Zo = {p1} x A, and consider Z = Z; U Z, C P?. For every b € N#1+72,
the correspondence scroll C(Z; b) is “small scheme” in the sense of [11]. In fact, it is the
union of the two linearly joined scrolls C(Z1; b) and C(Z3; b), that is,

C(Z1;b) N C(Z2; b) = Span (C(Z1; b)) N Span(C(Z2; b)) = C((p1, p2); b).
As a consequence, it has minimal degree and linear syzygies.

The construction of correspondence scrolls may be used to produce multiple structures
on a given scheme with desirable properties.

Example 6.8 (A ropeonaline) Letd, n € N. Consider the subscheme Z = ANX C (PH,
where A is the diagonal and X is the d-th thickening of a point p € A. The scheme C(Z; b)
is a multiple structure of degree d on a line in PV sitting inside the rational normal scroll
C(A;b). Ford = 2, such structure is called a “rope” (see [21, Remark 2.10]) and is defined
by a Grobner basis of quadrics.

Example 6.9 (Double structure on Veronese varieties) Let d,n € N. Let V be the image

n+d '\ _ n+d ntd—1Y_
of the embedding P <4 ]P’( " ) ! C IP’< " )+( " ) ' letz C AL x A"t e the
subscheme defined by the 2-minors of the generic (n + 1) x 2 matrix and by all the d-forms

in the variables x1 g, . .., x1,,. The correspondence scroll C(Z; b) where b = (d,d — 1) is
a double structure on the Veronese variety V.
When n = 1, V is a rational normal curve of degree d in P2 The curve C (Z;b)

we obtain is a double structure on V with linear syzygies and degree 2d (i.e., the same
resolution as the rational normal curve in P?9), cf. the main result of [20]. When n =
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2,d = 2 we obtain a Gorenstein double structure X = C(Z;b) on a Veronese surface
V C P5 C P8. In fact, X is defined by the 2-minors of a 4 x 4 symmetric matrix obtained
from a generic symmetric matrix by setting the last entry equal to 0. Observe that in both
special cases there exists no such double structure inside the linear span of V.

Example 6.10 (Canonically embedded balanced ribbons) In [8] the authors study canon-
ically embedded balanced ribbons of odd genus g, motivated by their role in [1]. For
each ¢ = 2b + 1, with b > 1, we can realize this embedded curve as the section of
C(2A;b) C p2b+l by the hyperplane xp , = x1,0, where b = (b, b) and A C P! x Plis
the diagonal. Since the carpet is Calabi-Yau and arithmetically Cohen-Macaulay by Corol-
lary 5.3, the hyperplane section is a canonical curve. This ribbon satisfies the analogue of
Green’s Conjecture, as proven in [7].

Example 6.11 (Reducible K3 surfaces) As explained in [13], one can make a degenerate K3
surface as the union of two scroll surfaces that have the same type, X (b1, by) € pbitboatl
and meet along the rational normal curves X(b;) and X(by) as well as two rulings—a
reducible curve of arithmetic genus 1.

We have constructed the rational normal scroll X (b1, by) as the correspondence scroll
associated to the diagonal A C P! x P!, which we may think of as the graph of the identity
map. Let A’ be the graph of the non-identity automorphism o; of P! that is defined, in
a suitable coordinate system, by multiplication by a scalar ¢+ € k \ {0, 1}. The examples
from [13] can then be constructed as X, (b) := C(A U A’; b). Since A U A’ is a divisor
of type (2,2) in P! x P!, Corollary 5.3 gives a second proof that X,, is Calabi-Yau and
Cohen-Macaulay, thus X, (b) is a reducible K3 surface.

Note that there is another type of automorphism o, of IP!: those that correspond to addi-
tion by a scalar ¢+ € k \ {0}. The automorphism o; has two fixed points (in the given
coordinate system they are 0 and co); the automorphism o, by contrast has only one
(namely, oo). The paper [13] treats only the case where o has two distinct fixed points, but
Corollary 5.3 applies equally to both parts.

The ideal J of the intersection E := A N A’ € A% is the complete intersection of two
bilinear forms £, ¢’. Since J has codimension 2 and is contained in both irrelevant ideals
(x0.0, x0,1) and (x1.0, x1,1), these must be associated primes. Both A and A’ have class
1 + ¢ in the Chow ring, so the “relevant” part of A N A’ has class 2¢1&,. This is the class
of two points of P! x P!, that is, of two 2-planes through the origin in A? other than the
“irrelevant ideals”. Since the degree of the intersection is 4, and a complete intersection is
unmixed, we must have

J = (x0,0, x0,1) N (x1,0,x1,1) N J’

where J is either primary or the the intersection of 2 distinct primes.

Returning to the construction, we see that the two possibilities correspond to the two
types of automorphism o: if o has two distinct fixed points, then C(E; b) consists of 4
reduced curves: the two rational normal curves C(V (xg,0, X0,1); b), C(V (x0,0, x0,1); b), and
the two distinct or one double line from the ruling, corresponding to C(V (J'); b).
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