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Abstract
This paper initiates the study of a class of schemes that we call correspondence scrolls,
which includes the rational normal scrolls and linearly embedded projective bundle of
decomposable bundles, as well as degenerate K3 surfaces, Calabi-Yau threefolds, and many
other examples.
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1 Introduction

We will define and study a class of schemes that we call correspondence scrolls. The origin
of our interest was in a paper by Frank Schreyer and the first author on the equations and
syzygies of degenerate K3 surfaces such as K3 carpets [13]. Correspondence scrolls are a
natural generalization of rational normal scrolls and K3 carpets that includes families of
(degenerate) Calabi-Yau threefolds and many other examples.

We will define a correspondence scroll C(Z;b) for any subscheme Z ⊆ P
a := P

a1 ×
· · · × P

an , and any n-tuple of non-negative integers b = (b1, . . . , bn). In the special case
where Z is reduced, we may define C(Z; b) as follows: embed P

ai by the bi-th Veronese
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embedding νbi
: P

ai → P

(
ai + bi

ai

)
−1

into a general linear subspace of P
N , where N =∑

i

(
ai + bi

ai

) − 1, and set

C(Z; b) =
⋃

(p1,...,pn)∈Z

νb1(p1), . . . , νbn(pn).

Thus, C(Z; b) is a union of (n − 1)-planes.
In this paper, we determine the dimension, degree, and multigraded Hilbert function

of a scheme of the form C(Z; b), and for which Z they are nonsingular for every b. We
explain the primary decompositions and Gröbner bases of their defining ideals, and we
determine which ones are Cohen-Macaulay, Gorenstein, or numerically Calabi-Yau. We
give numerous examples, including some new (as far as we know) examples of degenerate
Calabi-Yau threefolds.

Recall that rational normal scrolls are the varieties of minimal degree in P
N that contain

linear spaces of codimension 1 (the only other varieties of minimal degree are the cones
over the Veronese surface in P

5, see [12] for an expository account). Perhaps because of
their extremal properties, they appear in many contexts in algebraic geometry, for example,
as ambient spaces of Castlenuovo curves (see, for example, [17]) and canonical curves (see,
for example, [22]) and as images of canonical maps of certain varieties of general type (see,
for example, [15]).

Gallego and Purnaprajna prove in [14] that, on each 2-dimensional rational normal scroll,
there is a unique double structure of a scheme that is a degenerate K3 surface in a natural
sense. They called these schemes K3 carpets. Some of the interest in these schemes comes
because the hypersurface section of a K3 carpet is a canonical curve of controlled genus and
Clifford index, and this is the point of view taken in [13].

In the study of K3 carpets in [13], the authors mention that the equations of K3 carpets
can be described as equations of varieties of complexes, coming from certain correspon-
dences of type (2, 2) in P

1 ×P
1. In this paper, we generalize the construction and show that

the resulting “correspondence scrolls” have algebraic properties that are frequently easy to
analyze.

Here is the general definition:

Definition 1.1 (Correspondence scroll) Given a vector a = (a1, . . . , an) ∈ N
n+ and a field

k, consider the polynomial ring

A = k
[
xi,j : 1 ≤ i ≤ n, 0 ≤ j ≤ ai

]

equipped with the standard Z
n-grading deg(xi,j ) = ei ∈ N

n. The ring A is the Cox ring
of Pa := ∏n

i=1P
ai as well as the coordinate ring of

∏n
i=1A

ai+1. Let Z be a subscheme
of

∏n
i=1A

ai+1 defined by a multigraded ideal I ⊆ A. Let b ∈ N
n+ be another vector and

N = ∑(
ai + bi

ai

) − 1. We define the correspondence scroll C(Z; b) ⊆ P
N to be the scheme

defined by the kernel of the map

S = k[zi,α] → A/I : zi,α �→ xα
i , |α| = bi

where zi,α are variables of degree 1, xα
i denotes a monomial of degree bi that is the product

x
α0
i,0 · · · xαai

i,ai
and the indices α on zi,α have weight bi .
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In many cases of interest, Z comes from a closed subscheme of Pa; that is, I has no
primary component whose radical contains one of the ideals (xi,0, . . . , xi,ai

). Such a sub-
scheme Z is called a correspondence. The scheme C(Z;b) is then set-theoretically the
union of the projective (n − 1)-planes joining the points p1, . . . , pn that are “in corre-
spondence”, in the sense that (p1, . . . , pn) ∈ Z, whence the name we have given the
construction.

Example 1.2 If I = 0, then C(Z;b) ⊆ P
N is the join variety of the bi-th Veronese

embeddings of Pai , for i = 1, . . . , n.
For a less trivial example, we take a1 = · · · = an = 1 and take Z to be the “small

diagonal”

� := {(p1, . . . , pn) ∈
∏
n

P
1|p1 = · · · = pn}.

In this case, C(Z; b) is the rational normal scroll of type b1, . . . , bn, which we denote by
�(b1, . . . , bn).

We say that a projective scheme X is Calabi-Yau if OX has no intermediate cohomology
and ωX

∼= OX . If X is 2-dimensional, we say that it is K3. These definitions reduce to
the usual definitions when the scheme is smooth. We will be interested in embeddings of
these schemes where they are arithmetically Cohen-Macaulay as well, and then, they can
be described as those schemes whose homogeneous coordinate rings are Gorenstein of a-
invariant 0.

Example 1.3 (K3 surfaces) For each scroll surface C(�;b) = �(b1, b2) ⊆ P
b1+b2+1 there

exists a unique K3 double structure supported on it, called a K3 carpet K(b1, b2), as shown
in [14]. The scheme K(b1, b2) is arithmetically Cohen-Macaulay, has a degree twice the
degree of the scroll �(b1, b2), and the hyperplane section of K(b1, b2) is a canonically
embedded rational ribbon of genus b1 + b2 + 1 and Clifford index min(b1, b2).

As described by Eisenbud and Schreyer in [13], the K3 carpet K(b1, b2) is the
correspondence scroll C(2�; b), where � ⊆ P

1 × P
1 denotes the diagonal as above.

Generalizing the properties given for these examples in [13] was the original motivation
for this paper. For instance, K(b1, b2) is numerically K3 by Theorem 5.2 and it has degree
2(b1 + b2) by Corollary 2.3.

Example 1.4 (Calabi-Yau threefolds) As a first extension of the theory above, we note that
Corollary 5.3 yields examples of Calabi-Yau threefolds. For instance, if Z is a divisor of

type (3, 2) in P
2 × P

1, then C(Z;b) ⊆ P

(
bi + 2

2

)
+b2 is a Calabi-Yau threefold for every

b = (b1, b2), and it has degree 3b1b2 + 2b2
1 by Corollary 2.3.

Example 1.5 (Schemes with irrelevant components) Another family of examples of Calabi-
Yau threefolds is given by taking Z to be a complete intersection of two trilinear
hypersurfaces in A

2 ×A
2 ×A

2. Then C(Z; b) ⊆ P
b1+b2+b3+2 is numerically a Calabi-Yau

threefold for every b. The scheme Z cannot be considered as a subscheme of P1 ×P
1 ×P

1,
since each of the 3 “irrelevant” ideals is necessarily a component. In this case C(Z; b) has
degree b2b3 + b1b3 + b1b2 + 2(b1 + b2 + b3). See Example 2.4 for an explanation.
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2 Defining Ideal, Dimension and Degree

The ideal of C(Z;b) ⊆ P
N is easy to describe explicitly. First, the ideal of the join vari-

ety C(Pa; b) is just the sum of the ideals I1, . . . , In of the different Veronese varieties
νbi

(Pai ) ⊆ P
N . These may be expressed in well-known ways as ideals of 2-minors of

matrices of linear forms—see for example [10]. The ideal of C(Z;b) is thus of the form
J + ∑n

i=1 Ii , where J is derived from the ideal of Z as follows:

Proposition 2.1 With notation above, suppose that the ideal I of Z ⊂ ∏n
i=1A

ai+1 is
generated by multigraded forms g1, . . . , gs , with deg(gj ) = (dj,1, . . . , dj,n).

Let J be the ideal of S generated by the pullback of the forms in gj · Acj , where cj =
(cj,1, . . . , cj,n) and the cj,i are chosen so that dj,i + cj,i is the smallest multiple of bi that
is ≥ dj,i .

The ideal of C(Z;b) is equal to J + ∑n
i=1 Ii .

Proof The homogeneous coordinate ring of the join variety, which is defined by the ideal∑n
i=1 Ii , may be identified with the subring of A generated by the elements of multidegrees

(r1, . . . , rn) such that each ri is a multiple of bi . With this identification, the ideal of C(Z; b)

in the join variety is the intersection of the ideal of Z with the subring generated by these
elements, from which the conclusion follows.

Recall that the Chow ring of Pa = P
a1 × · · · × P

an is

Z[ζ1, . . . , ζn]/(ζ 1+a1
1 , . . . , ζ 1+an

n ).

Theorem 2.2 Let I ⊂ A be a multigraded ideal and let Z be the corresponding subscheme
of

∏n
i=1 A

ai+1.

(1) The dimension of C(Z; b) ⊆ P
N is one less than the dimension of Z ⊂ ∏n

i=1A
ai+1.

(2) If the multigraded Hilbert function of A/I is HA/I (t1, . . . , tn) then the Hilbert function
of C(Z; b) is

HC(Z;b)(s) =
∑

∑
ti=s

HA/I (b1t1, . . . , bntn).

(3) If Z ⊂ P
a is a subscheme of dimension d and class

c(Z) =
∑
α∈Zn

rαζ a−α ∈ Chow(Pa)

then the degree of C(Z;b) is
∑

|α|=d

rα

n∏
i=1

b
αi

i .

Proof (1) The coordinate ring of Z ⊂ ∏n
i=1 A

ai+1 and the homogeneous coordinate ring of
C(Z; b) ⊆ P

N have the same Krull dimension, because the former is an integral extension
of the latter.
(2) The multigraded Hilbert function of C(Z; b) is

HC(Z;b)(t1, . . . , tn) = HA/I (b1t1, . . . , bntn),

and the formula follows.
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(3) The degree is a linear function of the top dimensional part of the Chern class of Z, so
it suffices to do the case where the class of Z is the monomial ζ a−α , and we may assume

Z = ∏
P

αi ⊆ ∏
P

ai . Since the restriction of the bi-th Veronese map νbi
: Pai → P

(
ai + bi

ai

)
−1

to a linear subspace is again of the form νbi
, we see that C(Z; b) is the join of the bi-th

Veronese embeddings of the P
αi .

The degree of the bi-th Veronese embedding νbi
(Pαi ) is b

αi

i . Thus a general plane in
P

N of codimension equal to dim C(Z; b) = ∑
iai meets the linear span of νbi

(Pαi ) in b
αi

i

points, and thus meets C(Z; b) in the disjoint union of the (n − 1)-planes spanned by one
point from each of the intersections with the νbi

(Pαi ), a total of
∏n

i=1b
αi

i planes, which has
degree

∏n
i=1b

αi

i as required.

For example, Theorem 2.2 gives the well-known degree of the the rational normal scroll
�(b1, . . . , bn) ⊆ P

N as
∑n

i=1bi .
We single out the interesting case of a divisor in P

a.

Corollary 2.3 Let Z ⊂ P
a be a divisor of type (d1, . . . , dn), then

deg C(Z; b) =
n∑

i=1

dib
ai−1
i

∏
j 
=i

b
aj

j .

Proof The class of Z is
∑

diζi = ∑
i diζ

a−(a−ei ) where ei denotes the unit vector with a 1
in the i-th position and zeros elsewhere.

In the more general case where the ideal of Z has irrelevant components we do not
have such a simple formula for the degree. Consider a multigraded ideal I ⊂ A, and Z ⊂∏n

i=1A
ai+1 the corresponding affine scheme. If Z = ∪iZi is a primary decomposition of

Z, then C(Z; b) has a primary decomposition ∪iC(Zi; b) and the degree is the sum of the
degrees of the primary components of maximal dimension, so it suffices to treat the primary
case.

For example, suppose that Q = Q′ + Q′′, where Q′ ⊆ (x1,0, . . . , xm,am) is a relevant
primary ideal and Q′′ is (xm+1,0, . . . , xn,an)−primary. Let

A′ = k[x1,0, . . . , xm,am ], A
′ = Spec A′,

and let Z′ ⊆ A
′ be the scheme defined by Q′ ∩ A′. Suppose first that bm+1, . . . , bn are

sufficiently large so that Q′′ ⊃ m
bj

j for j = m + 1, . . . , n. In this case, the scheme C(Z; b)

is contained in A
′ ⊆ ∏n

i=1 A
ai+1, and coincides with C(Z′; (b1, . . . , bm)). In particular, the

degree of C(Z; b) is equal to that of C(Z′; (b1, . . . , bm)).

Example 2.4 (Example 1.5 continued) The ideal I ⊆ k[x1,0, . . . , x3,1] generated by a
regular sequence of two trilinear forms on A

2 × A
2 × A

2 has the three irrelevant ideals

(x1,0, x1,1), (x2,0, x2,1), (x3,0, x3,1)

among its primary components. If Z1 = V (x1,0, x1,1) then by the discussion above
C(Z1; (b1, b2, b3)) is the cone over the join of νb2(P

1) and νb3(P
1), and thus of degree

b2b3; likewise for the other irrelevant components. Furthermore, each trilinear form rep-
resents the class ζ1 + ζ2 + ζ3 ∈ Chow(P1 × P

1 × P
1), so the “relevant” part of the

intersection is (ζ1 + ζ2 + ζ3)
2 = 2(ζ1ζ2 + ζ1ζ3 + ζ2ζ3), which is twice the class of the
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diagonal embedding of P
1, and for a subscheme of this class, Theorem 2.2 implies that

deg C(Z′; (b1, b2, b3)) = 2(b1 + b1 + b3). Putting these together we get

deg C(Z; (b1, b2, b3)) = (b2b3 + b1b2 + b2b3) + 2(b1 + b2 + b3).

By Theorem 5.2 this is an arithmetically Cohen-Macaulay Calabi-Yau threefold in
P

b1+b2+b3+2.

It would be interesting to investigate whether the Calabi-Yau threefolds of Example 1.5
are smoothable or smooth points in the Hilbert scheme, in analogy to the case of canonical
ribbons and the K3 surfaces of Examples 1.3 and 6.11 (see [2] and [14]).

For smaller values of b, the scheme C(Z; b) is contained in an infinitesimal neighbor-
hood of A′ and has degree equal to product of the degree of C(Z′;b) and the length of the
subring of k[xm+1,0, . . . , xn,an ]/Q′′ generated by the generators of the ideal

∑
i>mm

bi

i .

Example 2.5 Suppose n = 2, a1 = a2 = 1, and

I = (
xm

1,0, x1,1, x2,0
) ⊆ k[x1,0, x1,1, x2,0, x2,1]

for some m ∈ N. If Z ⊆ A
2 × A

2 is the scheme corresponding to I then C(Z; (b1, b2)) is
the subscheme of PN consisting of a non-reduced point of degree �m/b1�. Indeed, the ideal
of C(Z; (b1, b2)) ⊆ P

N is

({
z1,α | α 
= (b1, 0)

}) +
(
z
�m/b1�
1,(b1,0)

)
+ ({

z2,α | α 
= (0, b2)
})

.

Thus, the degree formula of Theorem 2.2 holds whenever b1 ≥ m.

3 Alternate Representations: Images of Vector Bundles and Varieties
of Complexes

One of the standard descriptions of a rational normal scroll �(b) is as the image of the
projectivized vector bundle P(⊕iOP1(bi)) under the linear series OP(1). A similar descrip-
tion is valid whenever I has no irrelevant components, so that Z may be considered as a
projective scheme.

For each i = 1, . . . , n we consider the bi-uple embedding

νbi
: Pai ↪→ P

(
ai + bi

ai

)
−1 ⊆ P

N .

Consider the incidence correspondence in P
a × P

N given by

	 :=
{
(p, x) ∈ Z × C(Z; b) | x ∈ νb1π1(p), . . . , νbnπn(p)

}

where πi : Pa → P
ai are the projection maps. Algebraically, 	 is defined by the vanishing

of the maximal minors of the matrix whose columns are the νbi
(zi) and p. Since the points

νb1(z1), . . . , νbn(zn) are linearly independent, the projection 	 → P
a makes 	 into a (n −

1)-plane bundle over P
n. Restricting this bundle to a scheme Z ⊂ P

a, we get a bundle
	Z → Z, and the variety C(Z; b) is the image of 	Z under the other projection.

When n = 2 and Z is a divisor in P
1 × P

1 of bidegree (b′
1, b

′
2) ≤ (b1, b2), the cor-

respondence scroll can also be realized as a variety of complexes (cf. [6]). We give two
examples.
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Example 3.1 (Rational Normal Scrolls) The rational normal scroll �(b1, b2) of dimension
2 is the determinantal variety in P

b1+b2+1 defined by the vanishing of the 2-minors of the
2 × (b1 + b2) matrix (

z1,0 . . . z1,b1−1 z2,0 . . . z2,b2−1
z1,1 . . . z1,b1 z2,1 . . . z2,b2

)

where the zi,j are the homogeneous coordinates. But we can rewrite the “mixed” minors as
products:

det

(
z1,i z2,j

z1,i+1 z2,j+1

)
= (

z1,i z1,i+1
) ∗

(
0 1
−1 0

)
∗

(
z2,j

z2,j+1

)
.

Thus, the ideal of �(b1, b2) may be written as the sum of three ideals: the ideal of 2-minors
of the matrix

M1 :=
(

z1,0 . . . z1,b1−1
z1,1 . . . z1,b1

)
,

the ideal of 2-minors of the matrix

M2 :=
(

z2,0 . . . z2,b2−1
z2,1 . . . z2,b2

)
,

and the entries of the composition
⎛
⎜⎝

z1,0 z1,1
...

...
z1,b1−1 z1,b1

⎞
⎟⎠ ∗

(
0 1
−1 0

)
∗

(
z2,0 . . . z2,b2−1
z2,1 . . . z2,b2

)
.

As we have noted, the scroll �(b1, b2) is the variety C(�; (b1, b2)), and we may think of

the matrix

(
0 1
−1 0

)
as representing the coefficients of the defining equation f = x1,0x2,1−

x1,1x2,0 of the diagonal �. The reason this works is that modulo the ideals of minors of the
matrices M1 and M2, we may make the identifications zi,j ≡ x

bi−j

i,0 x
j

i,1, so the elements of
the composition are exactly the forms defining the ideal J in Proposition 2.1.

Example 3.2 (K3 Carpets [13]) The K3 carpet X(b1, b2) is the correspondence scroll
C(2�; b) where 2� denotes the double of the diagonal in P

1 × P
1. The equation of 2� is

f 2 = (x1,0x2,1 − x1,1x2,0)
2 = (x1,0x2,1)

2 − 2(x1,0x2,1)(x1,1x2,0) + (x1,1x2,0)
2.

Thus, applying the reasoning and the notation of Example 3.1, and noting the coefficient of
f 2 are (1, −2, 1), we see that the ideal of the K3 carpet is the sum of the ideal of minors of
M1, the minors of M2, and the ideal of entries of the composition

⎛
⎜⎜⎜⎝

z1,0 z1,1 z1,2
z1,1 z1,2 z1,3
...

...
...

z1,b1−2 z1,b1−1 z1,b1

⎞
⎟⎟⎟⎠ ∗

⎛
⎝

0 0 1
0 −2 0
1 0 0

⎞
⎠ ∗

⎛
⎝

z2,0 z2,1 . . . z2,b2−2
z2,1 z2,2 . . . z2,b2−1
z2,2 z2,3 . . . z2,b2

⎞
⎠ .

4 Nonsingularity

It is interesting to ask when C(Z; b) is nonsingular. We may suppose that C(Z; b) is irre-
ducible so, leaving aside trivial cases, we may take Z to be an irreducible subscheme of
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P
a1 × · · · × P

an . Moreover, if one of the bi is 0 then C(Z;b) is a cone, so we assume that
all bi ≥ 1.

The rational normal scrolls �(b) = C(�; b), where � is the small diagonal in P
1 ×

· · · × P
1, are nonsingular if all the bi are positive, but in general, the answer will depend on

b. For example, C(P1 × P
1; b) is the join of the rational normal curves of degrees b1, b2.

If b1 = b2 = 1, then this variety is P
3 and is thus nonsingular. But if either b1 or b2 is

greater than 1, then the join becomes singular. In fact, the dimension is 3, as long as all the
bi are positive; but if b2 > 1, then the linear span of νb2(P

1) has a dimension greater than
1, and one can see from this that the tangent space at a point of the form νb1(p) will have
dimension b2 + 2 > 3.

Using a similar argument, we will characterize those Z such that C(Z; b) is nonsingular
for some b whose components bi are all greater than 1.

In the case n = 1, the scheme C(Z; b1) ⊆ P
N is the b1-th Veronese embedding of Z,

and is thus isomorphic to Z ⊂ P
a1 . The following useful result is an analogue for n > 1.

It will be convenient to use a basis-independent notation. To this purpose, we write Pai =
P(Vi), where Vi is a k-vector space of dimension ai + 1, so that A = Sym(⊕n

i=1Vi), S =
Sym(⊕n

i=1 Symbi Vi) and

P
N = P

(
⊕n

i=1 Symbi Vi

)
⊃

n∐
i=1

P

(
Symbi Vi

)
.

Lemma 4.1 Let Z ⊂ ∏n
i=1 P(Vi) be a subscheme and � ⊆ {1, . . . , n}. The following three

subschemes of P(⊕i∈� Symbi Vi) ⊆ P
N are equal:

(i) the scheme C (π�(Z);b�), where π� : ∏n
i=1P(Vi) → ∏

i∈�P(Vi) denotes the natural
projection and b� the subvector (bi : i ∈ �);
(ii) the projection of C(Z; b) from the linear subspace P

(⊕i /∈� Symbi Vi

) ⊆ P
N ;

(iii) the intersection C(Z; b) ∩ P
(⊕i∈� Symbi Vi

)
.

Proof Denote for simplicity Ui = Symbi Vi . Let I ⊆ Sym(⊕n
i=1Vi) be the saturated

multigraded ideal of Z. The ideal of C (π�(Z);b�) ⊆ P(⊕i∈�Ui) is obtained by first inter-
secting I with the subring Sym(⊕i∈�Vi) and then taking the preimage in Sym(⊕i∈�Ui).
If we take the preimage of I in Sym(⊕n

i=1Ui) first, and then intersect with the subring
Sym(⊕i∈�Ui), we obtain the same ideal, thus the subschemes (i) and (ii) coincide.

Let J ⊆ Sym(⊕n
i=1Ui) be the saturated multigraded ideal of C(Z; b). The subscheme

C(Z; b) ∩ P(⊕i∈�Ui) of P(⊕i∈�Ui) is defined by the ideal

J + (∑
i /∈� Ui

)
(∑

i /∈� Ui

) .

Since J is multihomogeneous, the ideal
(∑

i /∈� Ui

)
contains all the generators of J whose

multidegrees have nonzero components outside �, so the defining ideal of C(Z; b) ∩
P(⊕i∈�Ui) in P(⊕i∈�Ui) is generated by the classes of elements of J whose multide-
grees have nonzero components only in �. On the other hand, the ideal of the projection
of C(Z;b) from P(⊕i /∈�Ui) is J ∩ Sym(⊕i∈�Ui), and this has the same set of generators,
whence the subschemes (ii) and (iii) coincide.

Theorem 4.2 Suppose that Z ⊂ P
a1 × · · · × P

an is a subscheme. The following conditions
are equivalent:
(1) The correspondence scroll C(Z; b) is nonsingular for all b.
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(2) The correspondence scroll C(Z; b) is nonsingular for some b = (b1, . . . , bn) with
bi ≥ 2 for all i.
(3) The scheme Z is nonsingular and the projections πi : Z → P

ai are isomorphisms onto
their images.

Proof Let L ⊂ P
N be the subspace P

(
a1 + b1

a1

)
−1 = P(Symb1(V1)) ⊂ P

N , and let PN ′ =
P(⊕n

i=2 Symbi
Vi ⊂ P

N) be the complementary subspace.
(3) ⇒ (1) Suppose that Z is nonsingular and that the projections πi : Z → P

ai are
isomorphisms onto their images Zi . Since the components of Z satisfy the same conditions
as Z, we may assume that Z is reduced and irreducible, and it follows that C(Z; b) is, too.

As in Section 3, set

	 :=
{
(p, x) ∈ Z × C(Z; b)|x ∈ νb1π1(p), . . . , νbnπn(p)

}
.

Each fiber of the projection to the first factor is isomorphic to P
n−1. Since Z is nonsingu-

lar, 	 is nonsingular as well. We claim that the projection of 	 to the second factor is an
isomorphism; that is, the fiber F := Fx ⊂ Z of 	 over any point x ∈ C(Z; b) is a reduced
point.

We induct on the number of factors n. If the point x lies in L, then it lies in νb1π1(Z).
It follows that F is contained in the fiber of the map πi : Z → πi(Z), and this map is an
isomorphism by hypothesis. Hence, the fiber of 	 over x is a reduced point. In particular,
this finishes the case n = 1.

Now, suppose x does not lie in L, so that in particular n > 1. Note that the fiber F may
be identified with the fiber over x of the projection

	 \ (Z × L) → C(Z; b) \ L.

By our hypothesis, the natural projection of Z to P
N ′

is an isomorphism onto its image
Z′. Let b′ = (b2, . . . , bn). By Lemma 4.1, we have C(Z′; b′) = π ′ (C(Z; b)) where π ′
denotes the projection from L; note that π ′ is well-defined away from νb1π1(Z) ⊆ L. Set

	′ :=
{
(p, x) ∈ Z′ × C(Z′; b′) |x ∈ νb2π2(p), . . . , νbnπn(p)

}
.

There is a commutative diagram of maps

By induction, the right hand vertical map is an isomorphism, so the fiber over y = π ′(x) is
a reduced point (q, y). Thus, F ⊂ Z is contained in the fiber of the projection Z → Z′ over
q. By hypothesis, the projection Z → Z′ is an isomorphism, proving that F is a reduced
point.

(1) ⇒ (2) Trivial.
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(2) ⇒ (3) Suppose that C(Z; b) is nonsingular for some b with bi ≥ 2 for all i. Let
Zi = πiZ be the projections. In the case n = 1 we have Z = Z1 ∼= C(Z; b), so we may
assume n > 1.

We have C(Z; b) ∩ L = νb1C(Z1; b1) ∼= Z1 by Lemma 4.1. Fix a point p ∈ Z and
let F ⊆ P

a2 × · · · × P
an be the subscheme such that π1(p) × F = π−1

1 (π1(p)) ⊆ Z. It
suffices to prove that Z1 is nonsingular and that F is a reduced point. Observe that dim Z ≤
dim Z1 + dim F .

Let b′ = (b2, . . . , bn) and consider the subscheme C(F ; b′) ⊆ P
N ′

. Note that C(F ; b′)
is contained in C(Z; b). Moreover, C(Z; b) contains the cone T1 over C(F ; b′) with vertex
νb1π1(p). Note that dimT1 = dim C(F ; b′) + 1 = dim F + n − 1.

The tangent cone T to C(Z; b) at the point νb1π1(p) contains the tangent cone T2 to
νb1(Z1) at νb1π1(p), which satisfies dimT2 ≥ dim Z1 and T2 ⊆ L. On the other hand, T
obviously contains the cone T1.

From the fact that C(Z; b) is nonsingular, we deduce that

dimT = dim C(Z; b) = dim Z + n − 1 ≤ dim Z1 + dim F + n − 1.

Further, T is a linear space so T contains the linear spans L1 and L2 of T1 and T2. Since
L1 and L2 intersect only at the point νb1π1(p), we conclude that

dimT ≥ dimL1 + dimL2

≥ dimT1 + dimT2

= dim F + n − 1 + dimT2

≥ dim F + n − 1 + dim Z1.

Thus, all the inequalities are equalities, so T1,T2 are linear spaces, and dimT2 = dim Z1.
Thus, Z1 is nonsingular and dim F = dim Z − dim Z1.

Since the cone T1 over C(F ; b′) is a linear space, it follows that C(F ; b′) is a linear

space, and thus, F is reduced. Further the projections of C(F ; b′) into each P

(
ai + bi

ai

)
−1

are
linear spaces. By Lemma 4.1 these projections lie in νbi

(Pai ). Since bi ≥ 2, the Veronese
νbi

(Pai ) contains no linear spaces except reduced points. Thus C(F ; b′) = n− 2. However,
we also have dim C(F ; b′) = dim F +n− 2, and it follows that dim F = 0, completing the
argument.

5 Algebraic Properties

In order to study further algebraic properties of correspondence scrolls, we introduce a
general multigraded operation. To each vector b = (b1, . . . , bn) ∈ N

n+ we associate the
finite index subgroup H(b) := 〈b1e1, . . . , bnen〉 ⊆ Z

n. For a Zn-graded vector space V , we
define

Tb(V ) :=
⊕

d∈H(b)

Vd.

Notice that Tb(·) is an exact functor on the category of Zn-graded vector spaces.
Recall the notation of the paper: A is the Cox ring of Pa = P

a1 × · · · × P
an , Z a scheme

defined by a multigraded ideal I ⊆ A, and S is the homogeneous coordinate ring of PN .
Then, the correspondence scroll is C(Z; b) = Proj(Tb(A/I)) ⊆ P

N , where Tb(A/I) is
regarded as a standard Z-graded algebra.
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Remark 5.1 For multigraded ideals J of a Z
n-graded algebra R, the association

J �→ Tb(J ) = J ∩ Tb(R) ⊆ Tb(R)

preserves several properties and operations of ideals, e.g., prime, primary, radical, primary
decomposition, intersection, sum, colon by forms in Tb(R).

If R is a Gorenstein ring, then its canonical module is ωR
∼= R(v) for some vector

v ∈ Z
n, known as the a-invariant of R and denoted by a(R).

Theorem 5.2 Let A be the Cox ring of Pa = P
a1 × · · · × P

an , I ⊆ A a multigraded ideal,
and R = A/I .

(1) If R is Cohen-Macaulay, then Tb(R) is Cohen-Macaulay;
(2) if R is a normal domain, then Tb(R) is a normal domain;
(3) if R is Gorenstein, then Tb(R) is Gorenstein if and only if a(R) ∈ H(b);
(4) if R is Gorenstein with a(R) = 0, then Tb(R) is Gorenstein with a(R) = 0.

Proof For simplicity, denote R′ = Tb(R). The ring extension R′ ⊆ R is homogeneous with
respect to the Zn grading, and furthermore, it is integral, since for each multigraded element
f ∈ R, there exists a power lying in R′. Denote their Krull dimension by d = dim R =
dim R′.

(1) and (2) follow from the fact that R′ is a direct summand of R as R′-module, see for
instance [18].

(3) We begin by showing that Tb(·) behaves well with respect to local cohomology. In
general, if M is a graded R-module, then Tb(M) is a graded R′-module. However, the
functor Tb(·) does not preserve injectives, so we use the Čech complex.

If f ∈ R is multigraded with deg(f ) ∈ H(b), then we have Tb(Mf ) = (Tb(M))f . For
the Čech complex of a graded sequence f = f1, . . . , fs with degrees in H(b) we obtain

Tb(C
•(f; M)) = C•(f; Tb(M)). (5.1)

Let J ⊆ R be a multigraded ideal, then J ′ = Tb(J ) is a multigraded ideal of R′. Since
every multigraded element f ∈ R has a power in R′, we may choose, up to radical, gener-
ators f of J with degrees in H(b). From (5.1) and the fact that Tb(·) is an exact functor, we
conclude that local cohomology and Tb(·) commute: for any J,M, i we have

Tb(H
i
J (M)) = Hi

J ′(Tb(M)). (5.2)

Since R is Cohen-Macaulay, R′ is also Cohen-Macaulay by (1). Their graded canonical
modules are

ωR = ∗Homk(H
d
R+(R), k), ωR′ = ∗Homk(H

d
R′+(R′), k).

where R+, R′+ denote the respective homogeneous maximal ideals and ∗Homk(·, k) is the
Hom functor in the category of Z

n-graded modules (see [16]). This functor is exact and
commutes with Tb(·). From (5.2), we conclude that ωR′ = Tb(ωR).

Since R is a Gorenstein ring, then ωR
∼= R(a) where a = a(R) ∈ Z

n is the a-invariant.
For a cyclic free module R(v), we have that Tb(R(v)) is a free R′-module if and only if
v ∈ H(b), in which case it is also cyclic. We conclude that R′ is Gorenstein if and only if
a(R) ∈ H(b).

(4) If R is Gorenstein with a(R) = 0, then we have the graded isomorphism ωR
∼= R.

Since ωR′ = Tb(ωR), we deduce that ωR′ ∼= R′, so R′ is also Gorenstein with a(R) = 0.
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Notable examples include Gorenstein correspondence scrolls obtained from complete
intersections in P

a1 × · · · × P
an , in particular from divisors.

Corollary 5.3 Let Z ⊆ P
a1 × · · · × P

an be a complete intersection defined by multigraded
forms f1, . . . , fc. If there are λi ∈ Z such that

deg(f1) + · · · + deg(fc) = (a1 + 1 + λ1b1, . . . , an + 1 + λnbn)

then C(Z; b) is a Gorenstein projective scheme, and if λi = 0 for all i then it is Calabi-Yau.

Proof The a-invariant of Pa is (a1+1, . . . , an+1). After going modulo the regular sequence
f1, . . . , fc we obtain a complete intersection with a-invariant equal to (a1+1, . . . , an+1)−
deg(f1) − · · · − deg(fc). Both statements follow directly from the previous theorem.

Next, using the work of Shibuta [23], we obtain information on Gröbner bases of corre-
spondence scrolls. We say that a Gröbner basis is squarefree if its elements have squarefree
leading monomials.

Proposition 5.4 Let I ⊆ A be a multigraded ideal, Z ⊆ ∏n
i=1 A

ai+1 the scheme defined by
I , and δ ≥ 2 an integer. If I has a Gröbner basis of forms of degree at most δ, then C(Z; b)

has a Gröbner basis of forms of degree at most δ for every b. Moreover, if the Gröbner basis
of I is squarefree, then the Gröbner basis of C(Z; b) will also be squarefree.

Proof Let in(I ) ⊆ A be a monomial initial ideal of I , with respect to a term order
or integral weight. Let H ⊆ S be the ideal generated by all monomials whose image
via the map S → A of Definition 1.1 lies in in(I ). If in(I ) has generators of degree
at most δ, respectively, is a squarefree monomial ideal, then the same is true for H , cf.
[23, Lemma 2.6].

Since Tb(A) is the tensor product of the coordinate rings of νbi
(Pai ) ⊆ P

(
ai + bi

ai

)
−1

over
k, a Gröbner basis for the kernel of S → A may be obtained as the union of Gröbner
bases of each factor. It follows by [24, Theorem 14.2] that this kernel admits a squarefree
quadratic initial ideal J ⊆ S.

Finally, there exists a term order on S such that J + H is an initial ideal of C(Z; b), cf.
[23, Theorem 2.9], and the desired statements follow.

A special case of Proposition 5.4 states that if Z is defined by a Gröbner basis of quadrics,
then C(Z; b) is also defined by a Gröbner basis of quadrics for all b. Blum [3, Theorem
2.1] proves a closely related statement: he shows—using the terminology of “generalized
Veronese subrings”—that if R is a Koszul algebra, then Tb(R) is also a Koszul algebra for
all b.

6 Examples of Correspondence Scrolls

In this section, we list more examples of correspondence scrolls, in order to show their
ubiquity. In some cases, our analysis offers an alternative point of view or a quicker proof
of some results in the literature.
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Example 6.1 (Join variety) Let X1, . . . , Xn be closed subschemes of general linear sub-
spaces Pa1 , . . . ,Pan in P

N . If Z = X1 × · · · × Xn, then C(Z; 1) is the join variety of the
Xi’s in P

N . Its degree is the product deg(X1) deg(X2) · · · deg(Xn).

The next two examples are different generalizations of 2-dimensional rational normal
scrolls.

Example 6.2 (Determinantal ideals of square matrices) Fix integers 2 ≤ r ≤ n. Let
Z ⊆ (Pn−1)n be the subscheme defined by the r-minors of the n × n generic matrix. The
correspondence scroll C(Z; b) is an irreducible scheme in P

N of dimension n2 − (n − r +
1)2 − 1.

By Theorem 5.2, C(Z; b) is a Gorenstein scheme when bi divides r − 1 for each i, since
Z is a Gorenstein scheme with a-invariant (1 − r, . . . , 1 − r) ∈ N

n (see [4]). The r-minors
form a squarefree Gröbner basis, so by Proposition 5.4 C(Z; b) is defined by a squarefree
Gröbner basis of multilinear forms for every b.

When n = r = 2 we obtain precisely the scrolls �(b1, b2). As it is well-known, this
scroll is always Koszul, and the only such Gorenstein scroll is �(1, 1); however, for r > 2,
we have several examples of Gorenstein correspondence scrolls.

Example 6.3 (Adjacent minors) Fix integers 1 ≤ m ≤ n ∈ N. Let Z ⊆ (Pm−1)n be the
subscheme defined by the adjacent m-minors of the m × n generic matrix (see [19]). These
minors form a squarefree Gröbner basis and a regular sequence.

The scheme C(Z; b) ⊆ P
N is reduced of dimension mn − n + m − 2 . By Proposition

5.4, C(Z; b) is defined by a sqaurefree Gröbner basis of multilinear forms for every b.
By Theorem 5.3, the scheme C(Z; b) is Gorenstein if b divides componentwise the vector
(1, 2, . . . , m − 1, m, m . . . , m, m − 1, . . . , 2, 1) ∈ N

n.
In the case when m = 2, the components of the subscheme Z ⊆ (P1)n are described in

[9]. It follows that the number of components of the correspondence scroll C(Z; b) is the
Fibonacci number Fn−1 (where F0 = F1 = 1). Each component is a join of rational normal
scrolls. In this case, C(Z; b) is Koszul, and choosing m = n = 2 gives rise to the scrolls
�(b1, b2).

In the next examples, we discuss generalizations of rational normal scrolls of all dimen-
sions. In preparation, we compute the top Chern class of the small diagonal in the n-fold
product of a projective space.

Proposition 6.4 The Chern class of the small diagonal � ⊆ (Pa)n is

c(�) =
∑
α

n∏
i=1

ζ
αi

i

where the sum ranges over all α ∈ Z
n with 0 ≤ αi ≤ a and

∑
i αi = a(n − 1).

Proof In order to compute the coefficient of a monomial
∏n

i=1 ζ
αi

i with
∑

i αi =
codim(�) = a(n − 1), we intersect � with a product L = ∏n

i=1 Li where Li = P
αi ⊆ P

a

is a general linear space. However, this intersection is just one point, since

L ∩ � = {(p1, . . . , pn) : pi ∈ Li and p1 = · · · = pn} =
{

(p, . . . , p) : p ∈
n⋂

i=1

Li

}
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and thus the coefficient is 1.

Example 6.5 (Diagonal) Let � ⊆ (Pa)n be the small diagonal. The correspondence scroll
C(�; b) is an irreducible subscheme in P

N of dimension a +n− 1, and it is nonsingular by
Theorem 4.2. By Theorem 2.2 and Proposition 6.4, the degree of C(�; b) is

∑
α

∏n
i=1b

αi

i

with sum ranging over all α such that
∑

i αi = dim(�) = a.
Like the rational normal scrolls, C(�; b) is arithmetically Cohen-Macaulay and projec-

tively normal by Theorem 5.2. Since the 2-minors of the (a + 1) × n generic matrix form a
squarefree Gröbner basis, C(�; b) is defined by a squarefree Gröbner basis of quadrics by
Proposition 5.4. The scrolls �(b1, . . . , bn) are obtained when a = 1.

Example 6.6 (Closures of linear spaces) A generalization of the previous example, and
hence of rational normal scrolls, is obtained by considering an arbitrary linear subspace
L ⊆ A

m and its closure L̃ ⊆ P
a1 × · · · × P

an where
∑

ai = m. These are special examples
of Cartwright-Sturmfels ideals, a large class of multigraded ideal with strong properties (see
[5]). For any L and b, the scheme C

(
L̃;b) ⊆ P

N is irreducible, arithmetically Cohen-
Macaulay, and projectively normal by Theorem 5.2 and [5, Theorem 3.1].

Non-trivial varieties of minimal degree, i.e., rational normal scrolls and cones over the
Veronese surface, are examples of correspondence scrolls. One can also use the construction
to produce some reducible schemes of minimal degree (see [11]).

Example 6.7 (Small schemes) Let n1, n2 ∈ N and consider the product Pa = (P1)n1 ×
(P1)n2 . Let �i ⊆ (P1)ni be the diagonal for i = 1, 2, and choose a point pi ∈ �i . Let
Z1 = �1 × {p2}, Z2 = {p1} × �2 and consider Z = Z1 ∪ Z2 ⊆ P

a. For every b ∈ N
n1+n2 ,

the correspondence scroll C(Z; b) is “small scheme” in the sense of [11]. In fact, it is the
union of the two linearly joined scrolls C(Z1; b) and C(Z2; b), that is,

C(Z1; b) ∩ C(Z2; b) = Span (C(Z1; b)) ∩ Span(C(Z2; b)) = C((p1, p2); b).

As a consequence, it has minimal degree and linear syzygies.

The construction of correspondence scrolls may be used to produce multiple structures
on a given scheme with desirable properties.

Example 6.8 (A rope on a line) Let d, n ∈ N. Consider the subscheme Z = �∩X ⊆ (P1)n,
where � is the diagonal and X is the d-th thickening of a point p ∈ �. The scheme C(Z; b)

is a multiple structure of degree d on a line in P
N sitting inside the rational normal scroll

C(�; b). For d = 2, such structure is called a “rope” (see [21, Remark 2.10]) and is defined
by a Gröbner basis of quadrics.

Example 6.9 (Double structure on Veronese varieties) Let d, n ∈ N. Let V be the image

of the embedding P
n

νd
↪→ P

(
n + d

n

)
−1 ⊆ P

(
n + d

n

)
+

(
n + d − 1

n

)
−1

. Let Z ⊆ A
n+1 × A

n+1 be the
subscheme defined by the 2-minors of the generic (n+ 1)× 2 matrix and by all the d-forms
in the variables x1,0, . . . , x1,n. The correspondence scroll C(Z; b) where b = (d, d − 1) is
a double structure on the Veronese variety V .

When n = 1, V is a rational normal curve of degree d in P
2d . The curve C(Z; b)

we obtain is a double structure on V with linear syzygies and degree 2d (i.e., the same
resolution as the rational normal curve in P

2d ), cf. the main result of [20]. When n =
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2, d = 2 we obtain a Gorenstein double structure X = C(Z; b) on a Veronese surface
V ⊆ P

5 ⊆ P
8. In fact, X is defined by the 2-minors of a 4 × 4 symmetric matrix obtained

from a generic symmetric matrix by setting the last entry equal to 0. Observe that in both
special cases there exists no such double structure inside the linear span of V .

Example 6.10 (Canonically embedded balanced ribbons) In [8] the authors study canon-
ically embedded balanced ribbons of odd genus g, motivated by their role in [1]. For
each g = 2b + 1, with b ≥ 1, we can realize this embedded curve as the section of
C(2�; b) ⊆ P

2b+1 by the hyperplane x0,b = x1,0, where b = (b, b) and � ⊆ P
1 × P

1 is
the diagonal. Since the carpet is Calabi-Yau and arithmetically Cohen-Macaulay by Corol-
lary 5.3, the hyperplane section is a canonical curve. This ribbon satisfies the analogue of
Green’s Conjecture, as proven in [7].

Example 6.11 (Reducible K3 surfaces) As explained in [13], one can make a degenerate K3
surface as the union of two scroll surfaces that have the same type, �(b1, b2) ⊆ P

b1+b2+1,
and meet along the rational normal curves �(b1) and �(b2) as well as two rulings—a
reducible curve of arithmetic genus 1.

We have constructed the rational normal scroll �(b1, b2) as the correspondence scroll
associated to the diagonal � ⊂ P

1 ×P
1, which we may think of as the graph of the identity

map. Let �′ be the graph of the non-identity automorphism σt of P
1 that is defined, in

a suitable coordinate system, by multiplication by a scalar t ∈ k \ {0, 1}. The examples
from [13] can then be constructed as Xσt (b) := C(� ∪ �′; b). Since � ∪ �′ is a divisor
of type (2, 2) in P

1 × P
1, Corollary 5.3 gives a second proof that Xσt is Calabi-Yau and

Cohen-Macaulay, thus Xσt (b) is a reducible K3 surface.
Note that there is another type of automorphism σ ′

t of P1: those that correspond to addi-
tion by a scalar t ∈ k \ {0}. The automorphism σt has two fixed points (in the given
coordinate system they are 0 and ∞); the automorphism σ ′

t by contrast has only one
(namely, ∞). The paper [13] treats only the case where σ has two distinct fixed points, but
Corollary 5.3 applies equally to both parts.

The ideal J of the intersection E := � ∩ �′ ⊆ A
4 is the complete intersection of two

bilinear forms �, �′. Since J has codimension 2 and is contained in both irrelevant ideals
(x0,0, x0,1) and (x1,0, x1,1), these must be associated primes. Both � and �′ have class
ζ1 + ζ2 in the Chow ring, so the “relevant” part of � ∩ �′ has class 2ζ1ζ2. This is the class
of two points of P1 × P

1, that is, of two 2-planes through the origin in A
4 other than the

“irrelevant ideals”. Since the degree of the intersection is 4, and a complete intersection is
unmixed, we must have

J = (x0,0, x0,1) ∩ (x1,0, x1,1) ∩ J ′

where J is either primary or the the intersection of 2 distinct primes.
Returning to the construction, we see that the two possibilities correspond to the two

types of automorphism σ : if σ has two distinct fixed points, then C(E;b) consists of 4
reduced curves: the two rational normal curves C(V (x0,0, x0,1);b), C(V (x0,0, x0,1); b), and
the two distinct or one double line from the ruling, corresponding to C(V (J ′); b).
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Birkhäuser Boston, Boston, MA

10. Eisenbud, D.: On the Resiliency of Determinantal Ideals. Commutative Algebra and Combinatorics
(Kyoto, 1985), North-Holland, Amsterdam. Adv. Stud Pure Math 11, 29–38 (1987)

11. Eisenbud, D., Green, M., Hulek, K., Popescu, S.: Small schemes and varieties of minimal degree. Am.
J. Math. 128(6), 1363–1389 (2006)

12. Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account). Algebraic geometry,
Bowdoin, 1985 (Brunswick, Maine, 1985). Proc. Sympos. Pure Math 46(1), 3–13 (1987). Am. Math.
Soc., Providence RI

13. Eisenbud, D., Schreyer, F.O.: Equations and syzygies of K3 carpets and unions of scrolls.
arXiv:1804.08011 (2018)

14. Gallego, F., Purnaprajna, B.: Degenerations of k3 surfaces in projective space. Trans. Am. Math. Soc.
349(6), 2477–2492 (1997)

15. Gallego, F., Purnaprajna, B.: On the canonical rings of covers of surfaces of minimal degree. Trans. Am.
Math. Soc. 355(7), 2715–2732 (2003)

16. Goto, S., Watanabe, K.: On graded rings. II (zn-graded rings). Tokyo J. Math 1(2), 237–261 (1978)
17. Harris, J.: Curves in Projective Space. With the Collaboration of David Eisenbud Séminaire De
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