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Abstract

Because of the lack of expertise, to gain benefits from their data, average users
have to upload their private data to cloud servers they may not trust. Due to legal or
privacy constraints, most users are willing to contribute only their encrypted data,
and lack interests or resources to join deep neural network (DNN) training in cloud.
To train a DNN on encrypted data in a completely non-interactive way, a recent work
proposes a fully homomorphic encryption (FHE)-based technique implementing
all activations by Brakerski-Gentry-Vaikuntanathan (BGV)-based lookup tables.
However, such inefficient lookup-table-based activations significantly prolong
private training latency of DNNs.
In this paper, we propose, Glyph, a FHE-based technique to fast and accurately
train DNNs on encrypted data by switching between TFHE (Fast Fully Homo-
morphic Encryption over the Torus) and BGV cryptosystems. Glyph uses logic-
operation-friendly TFHE to implement nonlinear activations, while adopts vectorial-
arithmetic-friendly BGV to perform multiply-accumulations (MACs). Glyph fur-
ther applies transfer learning on DNN training to improve test accuracy and reduce
the number of MACs between ciphertext and ciphertext in convolutional layers.
Our experimental results show Glyph obtains state-of-the-art accuracy, and re-
duces training latency by 69% ∼ 99% over prior FHE-based privacy-preserving
techniques on encrypted datasets.

1 Introduction
Deep learning is one of the most dominant approaches to solving a wide variety of problems such as
computer vision and natural language processing [1], because of its state-of-the-art accuracy. By only
sufficient data, DNN weights can be trained to achieve high enough accuracy. Average users typically
lack knowledge and expertise to build their own DNN models to harvest benefits from their own data,
so they have to depend on big data companies such as Google, Amazon and Microsoft. However, due
to legal or privacy constraints, there are many scenarios where the data required by DNN training is
extremely sensitive. It is risky to provide personal information, e.g., financial or healthcare records,
to untrusted companies to train DNNs. Federal privacy regulations also restrict the availability and
sharing of sensitive data.

Recent works [2, 3, 4] propose cryptographic schemes to enable privacy-preserving training of DNNs.
Private federated learning [4] (FL) is created to decentralize DNN training and enable users to train
with their own data locally. QUOTIENT [3] takes advantage of multi-party computation (MPC) to
interactively train DNNs on both servers and clients. Both FL and MPC require users to stay online
and heavily involve in DNN training. However, in some cases, average users may not have strong
interest, powerful hardware, or fast network connections for interactive DNN training [5]. To enable
DNN training on encrypted data in a completely non-interactive way, a recent study presents the first
fully homomorphic encryption (FHE)-based stochastic gradient descent technique [2], FHESGD.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



During FHESGD, a user encrypts and uploads private data to an untrusted server that performs
both forward and backward propagations on the encrypted data without decryption. After uploading
encrypted data, users can simply go offline. Privacy is preserved during DNN training, since input
and output data, activations, losses and gradients are all encrypted.

However, FHESGD [2] is seriously limited by its long training latency, because of its BGV-lookup-
table-based sigmoid activations. Specifically, FHESGD builds a Multi-Layer Perceptron (MLP) with
3 layers to achieve < 98% test accuracy on an encrypted MNIST after 50 epochs. A mini-batch
including 60 samples takes∼ 2 hours on a 16-core CPU. FHESGD uses the BGV cryptosystem [6] to
implement stochastic gradient descent, because BGV is good at performing large vectorial arithmetic
operations frequently used in a MLP. However, FHESGD replaces all activations of a MLP by sigmoid
functions, and uses BGV table lookups [7] to implement a sigmoid function. A BGV table lookup in
the setting of FHESGD is so slow that BGV-lookup-table-based sigmoid activations consume ∼ 98%
of the training time.

In this paper, we propose a FHE-based technique, Glyph, to enable fast and accurate training over
encrypted data. Glyph adopts the logic-operation-friendly TFHE cryptosystem [8] to implement
activations such as ReLU and softmax in DNN training. TFHE-based activations have shorter latency.
We present a cryptosystem switching technique to enable Glyph to perform activations by TFHE and
switch to the vectorial-arithmetic-friendly BGV when processing fully-connected and convolutional
layers. By switching between TFHE and BGV, Glyph substantially improves the speed of privacy-
preserving DNN training on encrypted data. At last, we apply transfer learning on Glyph to not only
accelerate private DNN training but also improve its test accuracy. Glyph achieves state-of-the-art
accuracy, and reduces training latency by 69% ∼ 99% over prior FHE-based privacy-preserving
techniques on encrypted datasets.

2 Background
Threat Model. Although an encryption scheme protects data sent to external servers, untrusted
servers [1] can make data leakage happen. Homomorphic Encryption is one of the most promising
techniques to enable a server to perform private DNN training [2] on encrypted data. A user sends
encrypted data to a server performing private DNN training on encrypted data. After uploading
encrypted data to the server, the user may go offline immediately.

Fully Homomorphic Encryption. A homomorphic encryption [9] (HE) cryptosystem encrypts
plaintext p to ciphertext c by a function ε. c = ε(p, kpub), where kpub is the public key. Another
function σ decrypts ciphertext c back to plaintext p. p = σ(c, kpri), where kpri is the private
key. An operation ? is homomorphic, if there is another operation ◦ such that σ(ε(x, kpub) ◦
ε(y, kpub), kpriv) = σ(ε(x ? y, kpub), kpriv), where x and y are two plaintext operands. Each HE
operation introduces a noise into the ciphertext. Leveled HE (LHE) allows to compute HE functions
of only a maximal degree by designing a set of parameters. Beyond its maximal degree, LHE
cannot correctly decrypt the ciphertext, since the accumulated noise is too large. On the contrary,
fully HE (FHE) can enable an unlimited number of HE operations on the ciphertext, since it uses
bootstrapping [6, 8] to “refresh” the ciphertext and reduce its noise. However, bootstrapping is
computationally expensive. Because privacy-preserving DNN training requires an impractically
large maximal degree, it is impossible to train a DNN by LHE. A recent work [2] demonstrates the
feasibility of using FHE BGV to train a DNN on encrypted data.

BGV, BFV, and TFHE. Based on Ring-LWE (Learning With Errors), multiple FHE cryptosystems [8,
6], e.g., TFHE [8], BFV [10], BGV [6], HEAAN [11], are developed. Each FHE cryptosystem can
more efficiently process a specific type of homomorphic operations. For instance, TFHE [8] runs
combinatorial operations on individual slots faster. BFV [10] is good at performing large vectorial
arithmetic operations. Similar to BFV, BGV [8] manipulates elements in large cyclotomic rings,
modulo integers with many hundreds of bits. However, BGV has less scaling operations, and thus
processes vectorial multiplications of ciphertexts faster [12, 13]. At last, HEAAN [11] supports
floating point computations better. A recent work [14] demonstrates the feasibility of combining and
switching between TFHE, BFV and HEAAN via homomorphic operations.

Forward and Backward Propagation. DNN training includes both forward and backward propa-
gations. During forward propagation, the input data go through layers consecutively in the forward
direction. Forward propagation can be described as ul =Wldl−1 + bl−1 and dl = f(ul), where ul is
the neuron tensor of layer l; dl−1 is the output of layer l− 1 and the input of layer l; Wl is the weight
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Operation BFV (s) BGV (s) TFHE (s)
MultCC 0.043 0.012 2.121
MultCP 0.006 0.001 0.092
AddCC 0.0001 0.002 0.312
TLU / 307.9 3.328

Table 1: The latency comparison of FHE opera-
tions. MultCC: ciphertext × ciphertext. MultCP:
ciphertext × plaintext. AddCC: ciphertext + ci-
phertext. TLU: table lookup.

FC Act FC (s) Act (s)
BFV / 9191 /
BGV BGV 2891 114980
TFHE TFHE 716800 65
BFV TFHE 9209 84
BGV TFHE 2909 82

Table 2: The comparison of mini-batch la-
tency of various FHE-based private training.
FC: fully-connected layer. Act: Activation.

tensor of layer l; bl−1 is the bias tensor of layer l − 1; and f() is the forward activation function.
We use y and t to indicate the output of a neural network and the standard label, respectively. An
L2 norm loss function is defined as E(W, b) = 1

2 ||y − t||
2
2. Backward propagation can be described

by δl−1 = (Wl)
T δl ◦ f ′(ul), ∇Wl = dl−1(δl)

T , and ∇bl = δl, where δl is the error of layer l and
defined as ∂E

∂bl
; f’() is the backward activation function;∇Wl and ∇bl are weight and bias gradients.
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Figure 1: FHESGD-based MLP.

BGV-based FHESGD. BGV-based FHESGD [2] trains a
3-layer MLP using sigmoid activations, and implements
sigmoid by a lookup table. However, lookup-table-based
sigmoid activations significantly increase mini-batch train-
ing latency of FHESGD. As Figure 1 shows, with an in-
creasing bitwidth of each entry of a BGV-based sigmoid
lookup table, test accuracy of FHESGD improves and
approaches 98%, but its activation processing time, i.e.,
sigmoid table lookup latency, also significantly increases
and occupies > 98% of mini-batch training latency.

THFE-based Training. It is possible to fast and accurately implement homomorphic activations
including ReLU and softmax of private training by TFHE, since the TFHE cryptosystem processes
combinatorial operations on individual slots more efficiently. Table 1 compares latencies of various
homomorphic operations implemented by BGV, BFV and TFHE. Compared to BGV, TFHE shortens
table lookup latency by ∼ 100×, and thus can implement faster activation functions. However, after
we implemented private DNN training by TFHE, as Table 2 exhibits, we found although (TFHE)
homomorphic activations take much less time, the mini-batch training latency substantially increases,
because of slow TFHE homomorphic MAC operations. As Table 1 shows, compared to TFHE,
BGV [8] demonstrates 17× ∼ 30× shorter latencies for a variety of vectorial arithmetic operations
such as a multiplication between a ciphertext and a ciphertext (MultCC), a multiplication between a
ciphertext and a plaintext (MultCP), and an addition between a ciphertext and a ciphertext (AddCC).
Therefore, if we implement activation operations by TFHE, and compute vectorial MAC operations
by BGV, private DNN training obtains both high test accuracy and short training latency.

BFV-TFHE Switching. Although a recent work [14] proposes a cryptosystem switching technique,
Chimera, to homomorphically switch between TFHE and BFV, we argue that compared to BFV,
BGV can implement faster private DNN training. As Table 1 shows, BGV computes MultCPs and
MultCCs faster than BFV, because it has less scaling operations [12, 13]. In this paper, we propose
a new cryptosystem technique to enable the homomorphic switching between BGV and TFHE.
Though BFV supports faster AddCCs, we show our Glyph achieves much shorter training latency
than Chimera in Section 5.1, since private MultCPs and MultCCs dominate training latency of DNNs.

3 Glyph
3.1 TFHE-based Activations

To accurately train a FHE-based DNN, we propose TFHE-based homomorphic ReLU and softmax
activation units. We construct a ReLU unit by TFHE homomorphic gates with bootstrapping, and
build a softmax unit by TFHE homomorphic multiplexers.

Forward ReLU. The forward ReLU of the ith neuron in layer l can be summarized as: if uil ≥ 0,
dil = ReLU(uil) = uil; otherwise, dil = ReLU(uil) = 0, where uil is the ith neuron in layer l. A 3-bit
TFHE-based forward ReLU unit is shown in Figure 2(a), where we first set the most significant bit
(MSB) of dil , i.e., dil[2], to 0, so that dil can be always non-negative. We then get the negation of the
MSB of uil , u

i
l[2], by a TFHE homomorphic NOT gate that even does not require bootstrapping [9].
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Figure 2: TFHE-based activations.

If uil is positive, uil[2] = 1; otherwise uil[2] = 0. At last, we compute dil[0 : 1] by ANDing each bit of
uil with uil[2]. So if uil is positive, dil = uil; otherwise dil = 0. An n-bit forward ReLU unit requires 1
TFHE NOT gate without bootstrapping and n− 1 TFHE AND gates with bootstrapping.

Backward iReLU. The backward iReLU for the ith neuron in layer l can be described as: if uil ≥ 0,
iReLU(uil, δ

i
l ) = δil−1 = δil ; otherwise, iReLU(uil, δ

i
l ) = δil−1 = 0, where δil is the ith error of

layer l. The backward iReLU takes the ith error of layer l, δil , and the MSB of uil , u
i
l[n− 1] as inputs.

It generates the ith error of layer l − 1, δil−1. A 3-bit TFHE-based backward iReLU unit is shown in
Figure 2(b), where we first compute the negation of the MSB of uil , u

i
l[2]. We then compute each bit

of δil−1 by ANDing each bit of δil with uil[2]. If uil[2] = 0, δil−1 = δil ; otherwise δil−1 = 0. An n-bit
backward iReLU unit requires 1 TFHE NOT gate without bootstrapping and n− 1 TFHE AND gates
with bootstrapping. Our TFHE-based forward or backward ReLU function takes only 0.1 second,
while a BGV-lookup-table-based activation consumes 307.9 seconds on our CPU baseline.

Forward Softmax. A softmax operation takes n uils as its input and normalizes them into a prob-
ability distribution consisting of n probabilities proportional to the exponentials of inputs. The

softmax activation can be described as: softmax(uil) = dil =
eu

i
l

Σie
ui
l
. We use TFHE homomorphic

multiplexers to implement a 3-bit softmax unit shown in Figure 2(c), where we have 8 entries denoted
as S0 ∼ S7 for a 3-bit TFHE-lookup-table-based exponentiation unit in softmax; and each entry
has 3-bit. The ith neuron uil is used to look up one of the eight entries, and the output is eu

i
l , and

softmax unit dil can be further obtained by BGV additions and division. There are two TFHE gates
with bootstrapping on the critical path of each TFHE homomorphic multiplexer. An n-bit softmax
unit requires 2n TFHE gates with bootstrapping. Compared to BGV-lookup-table-based softmax, our
TFHE-based softmax unit reduces the activation latency from 307.9 seconds to only 3.3 seconds.

Backward Softmax. To efficiently back-propagate the loss of softmax, we adopt the derivative of
quadratic loss function described as: isoftmax(dil, t

i) = δil = dil − ti, where ti is the ith ground
truth. The quadratic loss function requires only homomorphic multiplications and additions. Although
it is feasible to implement the quadratic loss function by TFHE, when considering the switching
overhead from BGV to TFHE, we use BGV to implement the quadratic loss function.

Pooling. It is faster to adopt TFHE to implement max pooling operations. But considering the
switching overhead from BGV to TFHE, we adopt BGV to implement average pooling operations
requiring only homomorphic additions and multiplications.

3.2 Switching between BGV and TFHE

BGV can efficiently process vectorized arithmetic operations, while TFHE runs logic operations
faster. During private training, we plan to use BGV for convolutional, fully-connected, average
pooling, and batch normalization layers, and adopt TFHE for activation operations. To use both
BGV and TFHE, we propose a cryptosystem switching technique switching Glyph between BGV
and TFHE cryptosystems.

Both BGV and TFHE are built on Ring-LWE [8, 6], but they cannot naïvely switch between each other.
Because BGV and TFHE work on different plaintext spaces. The plaintext space of BGV is the ring
Rp = Z[X]/(XN+1) mod pr, where p is a prime and r is an integer. We denote the BGV plaintext
space as ZN [X] mod pr. TFHE has three plaintext spaces [9] including TLWE, TRLWE and TRGSW.
TLWE encodes individual continuous plaintexts over the torus T = R/Z mod 1. TRLWE encodes
continuous plaintexts over R[X] mod (XN + 1) mod 1. We denote the TRLWE plaintext space
as TN [X] mod 1, which can be viewed as the packing of N individual coefficients. TRGSW
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encodes integer polynomials in ZN [X] with bounded norm. Through key-switching, TFHE can
switch between these three plaintext spaces. Our cryptosystem switching scheme maps the plaintext
spaces of BGV and TFHE to a common algebraic structure using natural algebraic homomorphisms.
The cryptosystem switching can happen on the common algebraic structure.

Our cryptosystem can enable Glyph to use both TFHE and BGV cryptosystems by homomorphically
switching between different plaintext spaces, as shown in Figure 3.

• From BGV to TFHE. The switch from BGV to TFHE homomorphically transforms the ciphertext
of N BGV slots encrypting N plaintexts over ZN [X] mod pr to K TLWE-mode TFHE cipher-
texts, each of which encrypts plaintexts over T = R/Z mod 1. The switch from BGV to TFHE
includes three steps. ¶ Based on Lemma 1 in [14], ZN [X] mod pr homomorphically multiplying
p−r is a ZN [X]-module isomorphism from Rp = ZN [X] mod pr to the submodule of TN [X]
generated by p−r. Via multiplying p−r, we can convert integer coefficients in the plaintext space of
BGV into a subset of torus T consisting of multiples of p−r. In this way, we extract N coefficients
from the BGV plaintexts over ZN [X] mod pr to form TN . · Based on Theorem 2 in [14],
we use the functional key-switching to homomorphically convert TN into TN [X], which is the
plaintext space of the TRLWE-mode of TFHE. ¸ We adopt the SampleExtract function [14] of
TFHE to homomorphically achieve K individual TLWE ciphertexts from TN [X]. Given a TRLWE
ciphertext c of a plaintext µ, SampleExtract(c) extracts from c the TLWE sample that encrypts the
ith coefficient µi with at most the same noise variance or amplitude as c. To further support binary
gate operations, K ×M functional bootstrappings [14] are required for the conversion between
integer-based plaintext TK and binary-based plaintext TK×M , where M is the bitwidth of a slot
number in BGV operations.

• From TFHE to BGV. The switch from TFHE to BGV is to homomorphically transform K TFHE
ciphertexts in the TLWE-mode (m0,m1, . . . ,mK−1) in TK to a BGV N -slot ciphertext whose
plaintexts are over ZN [X] mod pr. ¹ Based on Theorem 3 in [14], we can use the functional gate
bootstrapping of TFHE to restrict the plaintext space of TFHE in the TLWE-mode to an integer
domain ZK

pr consisting of multiples of p−r. º The plaintext space transformation from ZK
pr to ZN

pr

is a ZN [X]-module isomorphism, so we can also use the key-switching to implement it. At last, the
BGV N -slot ciphertext whose plaintexts are over ZN [X] mod pr is obtained. And homomorphic
additions and multiplications of BGV can be implemented by TFHE operations.

3.3 Transfer Learning for Private DNN Training

Although FHESGD [2] shows that it is feasible to homomorphically train a 3-layer MLP, it is still
very challenging to homomorphically train a convolutional neural network (CNN), because of huge
computing overhead of homomorphic convolutions. We propose to apply transfer learning to reduce
computing overhead of homomorphic convolutions in private CNN training. Although several prior
works [15, 16] adopt transfer learning in privacy-preserving inferences, to our best knowledge, this is
the first work to use transfer learning in private training.

Transfer learning [17, 18, 19] can reuse knowledge among different datasets in the same CNN
architecture, since the first several convolutional layers of a CNN extracts general features independent
of datasets. Applying transfer learning in private training brings two benefits. First, transfer learning
reduces the number of trainable layers, i.e., weights in convolutional layers are fixed, so that training
latency can be greatly reduced. Second, we can convert computationally expensive convolutions
between ciphertext and ciphertext to cheaper convolutions between ciphertext and plaintext, because
the fixed weights in convolutional layers are not updated by encrypted weight gradients. Moreover,
transfer learning does not hurt the security of FHE-based training, since the input, activations, losses
and gradients are still encrypted.
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We show an example of applying transfer learning in private CNN training in Figure 4. We reuse
the first two convolutional layers trained by unencrypted CIFAR-10, and replace the last two fully-
connected layers by two randomly initialized fully-connected layers, when homomorphically training
of the same CNN architecture on an encrypted skin cancer dataset [20]. During private training
on the skin cancer dataset, we update weights only in the last two fully-connected layers. In this
way, the privacy-preserving model can reuse general features learned from public unencrypted
datasets. Meanwhile, in private training, computations on the first several convolutional and batch
normalization layers are computationally cheap, since their weights are fixed and unencrypted.

4 Experimental Methodology
Cryptosystem Setting. For BGV, we used the same parameter setting rule as [21], and the HElib [7]
library to implement all related algorithms. We adopted the mth cyclotomic ring with m = 210 − 1,
corresponding to lattices of dimension ψ(m) = 600. This native plaintext space has 60 plaintext
slots which can pack 60 input ciphertexts. The BGV setting parameters yield a security level of > 80
bits. Both BGV and TFHE implement bootstrapping operations and support fully homomorphic
encryption. We set the parameters of TFHE to the same security level as BGV, and used the TFHE [9]
library to implement all related algorithms. TFHE is a three-level scheme. For first-level TLWE, we
set the minimal noise standard variation to α = 6.10 ·10−5 and the count of coefficients to n = 280 to
achieve the security level of λ = 80. The second level TRLWE configures the minimal noise standard
variation to α = 3.29·10−10, the count of coefficients to n = 800, and the security degree to λ = 128.
The third-level TRGSW sets the minimal noise standard variation to α = 1.42 · 10−10, the count of
coefficients to n = 1024, the security degree to λ = 156. We adopted the same key-switching and
extract-sample parameters of TFHE as [14].

Simulation, Dataset and Network Architecture. We evaluated all schemes on an Intel Xeon E7-
8890 v4 2.2GHz CPU with 256GB DRAM. It has two sockets, each of which owns 12 cores and
supports 24 threads. Our encrypted datasets include MNIST [22] and Skin-Cancer-MNIST [20].
Skin-Cancer-MNIST consists of 10015 dermatoscopic images and includes a representative collection
of 7 important diagnostic categories in the realm of pigmented lesions. We grouped it into a 8K
training dataset and a 2K test dataset. We also used SVHN [23] and CIFAR-10 [24] to pre-train our
models which are for transfer learning on encrypted datasets. We adopted two network architectures,
a 3-layer MLP [2] and a 4-layer CNN shown in Figure 4. The 3-layer MLP has a 28× 28 input layer,
a 128-neuron hidden layer and a 32-neuron hidden layer. The CNN includes two convolutional layers,
two batch normalization layers, two pooling layers, three ReLU layers and two fully-connected layers.
The CNN architectures are different for MNIST and Skin-Cancer-MNIST. For MNIST, the input size
is 28×28. There are 6×3×3 and 16×3×3 weight kernels, respectively, in two convolutional layers.
Two fully connected layers have 84 neurons and 10 neurons respectively. For Skin-Cancer-MNIST,
the input size is 28 × 28 × 3. There are 64 × 3 × 3 × 3 and 96 × 64 × 3 × 3 weight kernels in
two convolutional layers, respectively. Two fully-connected layers are 128 neurons and 7 neurons,
respectively. We quantized the inputs, weights and activations of two network architectures with 8-bit
by the training quantization technique in SWALP [25].

5 Results and Analysis
5.1 MNIST

FHESGD. During a mini-batch, the 3-layer FHESGD-based MLP [2] is trained with 60 MNIST
images. Each BGV lookup-table operation consumes 307.9 seconds, while a single BGV MAC
operation costs only 0.012 seconds. Although activation layers of FHESGD require only a small
number of BGV lookup-table operations, they consumes 98% of total training latency. The FHESGD-
based MLP makes all homomorphic multiplications happen between ciphertext and ciphertext
(MultCC), though homomorphic multiplications between ciphertext and plaintext (MultCP) are
computationally cheaper. The total training latency of a 3-layer FHESGD-based MLP for a mini-
batch is 118K seconds, which is about 1.35 days [2].

TFHE Activation and Cryptosystem Switching. We replace all activations of the 3-layer FHESGD-
based MLP by our TFHE-based ReLU and softmax activations, and build it as a Glyph-based MLP. We
also integrate our cryptosystem switching into the Glyph-based MLP to perform homomorphic MAC
operations by BGV, and conduct activations by TFHE. The mini-batch training latency breakdown
of the 3-layer Glyph-based MLP on a single CPU core is shown in Table 3(a). Because of the
logic-operation-friendly TFHE, the processing latency of activation layers of Glyph significantly
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Layer
BGV- BFV- Mul- Ad-
TFHE TFHE HOP tCC dCC Act Sw-

(s) (s) # # # # itch
FC1-f 1.37K 4.3K 201K 100K 100K 0 B-T
Act1-f 19.2 19.2 128 0 0 128 T-B
FC2-f 57.1 178.2 8.2K 4.1K 4.1K 0 B-T
Act2-f 4.82 5.3 32 0 0 32 T-B
FC3-f 6.02 14.2 640 320 320 0 B-T
Act3-f 34.76 3079 10 0 0 10 T-B
Act3-e 0.1 0.1 10 0 0 0 -
FC3-e 4.32 13.79 640 320 320 0 -
FC3-g 6.02 15.4 640 320 320 0 B-T
Act2-e 4.82 4.82 32 0 0 32 T-B
FC2-e 55.4 176.5 8.2K 4.1K 4.1K 0 -
FC2-g 62.1 183.2 8.2K 4.1K 4.1K 0 B-T
Act1-e 19.2 19.2 128 0 0 128 T-B
FC1-g 1.3K 4.3K 201K 100K 100K 0 -
Total 2.9K 12.3K 429K 213K 21K 330 -

(a) Glyph-based MLP.

Layer
BGV- BFV- Mul- Mul- Ad-
TFHE TFHE HOP tCP tCC dCC Act Swi-

(s) (s) # # # # # itch
Con1-f 69 226 73K 37K 0 37K 0 -
BN1-f 61 106 15K 8K 0 8K 0 B-T
Act1-f 321 321 4.1K 0 0 0 4.1K T-B
Pool1-f 17 56 18K 9.1K 0 9.1K 0 -
Conv2-f 33 104 35K 17K 0 17K 0 -
BN2-f 27 43 7K 3K 0 3K 0 B-T
Act2-f 151 151 1.9K 0 0 0 1.9K T-B
Pool2-f 7 22 7.2K 3.6K 0 3.6K 84 -
FC1-f 228 1.4K 67K 0 34K 34K 0 B-T
Act3-f 8.2 8.2 84 0 0 0 84 T-B
FC2-f 6.1 36.3 1.68K 0 840 840 0 B-T
Act4-f 68 68.6 10 0 0 0 10 T-B
Act4-e 0.1 0.1 10 0 0 10 0 -
FC2-e 6 36.2 1.68K 0 840 840 0 -
FC2-g 31 61.2 1.68K 0 840 840 0 B-T
Act3-e 32 32 84 0 0 0 84 T-B
FC1-g 227 1.4K 67K 0 34K 34K 0 -
Total 1.3K 4.2K 1716K 746K 106K 852K 14K -

(b) Glyph-based CNN.

Table 3: The mini-batch training latency comparison. BGV-TFHE is the latency of Glyph im-
plementing linear layers by BGV and non-linear layers by TFHE. BFV-TFHE is the latency of
Chimera [14] implementing linear layers by BFV and non-linear layers by TFHE. HOP includes
the number of homomorphic operations. MultCC indicates the number of multiplications between
ciphertext and ciphertext. MultCP means the number of multiplications between ciphertext and
plaintext. AddCC is the number of additions between ciphertext and ciphertext. Switch means the
cryptosystem switching. FC is a fully-connected layer. Act denotes an activation layer. BN is a
batch normalization layer. Pool denotes an average pooling layer. N-f means a N layer in forward
propagation. N-e is the error computation of a N layer in backward propagation. N-g is the gradient
computation of a N layer in backward propagation. B-T indicates BFV/BGV switches to TFHE. And
T-B indicates TFHE switches to BFV/BGV.

decreases. The cryptosystem switching introduces only small computing overhead. For instance,
compared to the counterpart in the FHESGD-based MLP, FC1-f increases processing latency by
only 4.9%, due to cryptosystem switching overhead. Because of fast activations, compared to the
FHESGD-based MLP, our Glyph-based MLP reduces mini-batch training latency by 97.4% but
maintains the same test accuracy. The MLP can also be implemented by a recent cryptosystem
switching technique Chimera [14], where linear layers are built upon BFV and nonlinear layers
depend on TFHE. Because of faster BGV MultCCs, as Table 3(a) shows, our Glyph-based MLP
(BGV-TFHE) decreases mini-batch training latency by 76.4% over Chimera (BFV-TFHE).
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Figure 5: Accuracy comparison on MNIST.

0 10 20 30 40
Epoch

50

75

100

Te
st

 A
cc

ur
ac

y 
(%

)

FHESGD-based MLP
Glyph w/o transfer learning
Glyph w/ transfer learning

Figure 6: Accuracy comparison on Skin-Cancer.

Transfer Learning on CNN. We use our TFHE-based activations and cryptosystem switching to
build a Glyph-based CNN, whose detailed architecture is explained in Section 4. We implement
transfer learning in the Glyph-based CNN by fixing convolutional layers trained by SVHN and
training only two fully-connected layers. The mini-batch training latency breakdown of the Glyph-
based CNN with transfer learning on a single CPU core is shown in Table 3(b). Because the weights
of convolutional layers are unencrypted and fixed, our Glyph-based CNN significantly reduces
the number of MultCCs, and adds only computationally cheap MultCPs. The Glyph-based CNN
decreases training latency by 56.7%, but improves test accuracy by ∼2% over the Glyph-based
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MLP. If we use Chimera to implement the same CNN, our Glyph-based CNN (BGV-TFHE) reduces
training latency by 69% over Chimera (BFV-TFHE), due to much faster BGV MultCCs and MultCPs.

Test Accuracy. The test accuracy comparison of the FHESGD-based MLP and the Glyph-based
CNN is shown in Figure 5, where all networks are trained in the plaintext domain. It takes 5 epochs for
the FHESGD-based MLP to reach 96.4% test accuracy on MNIST. After 5 epochs, the Glyph-based
CNN can achieve 97.1% test accuracy even without transfer learning. By reusing low-level features
of the SVHN dataset, the Glyph-based CNN with transfer learning obtains 98.6% test accuracy. The
CNN architecture and transfer learning particularly can help the FHE-based privacy-preserving DNN
training to achieve higher test accuracy when we do not have long time for training.

5.2 Skin-Cancer-MNIST

We built a Glyph-based MLP and a Glyph-based CNN for Skin-Cancer-MNIST by our TFHE-based
activations, cryptosystem switching and transfer learning. The reductions of mini-batch training
latency of Skin-Cancer-MNIST are similar to those on MNIST. The test accuracy comparison of
the FHESGD-based MLP and the Glyph-based CNN is shown in Figure 6. For transfer learning,
we first train the Glyph-based CNN with CIFAR-10, fix its convolutional layers, and then train its
fully-connected layers with Skin-Cancer-MNIST. On such a more complex dataset, compared to the
FHESGD-based MLP, the Glyph-based CNN without transfer learning increases training accuracy
by 2% at the 15th epoch. The transfer learning further improves test accuracy of the Glyph-based
CNN to 73.2%, i.e., a 4% test accuracy boost. TFHE-based activations, cryptosystem switching and
transfer learning makes Glyph efficiently support deep CNNs.

Table 4: The comparison of overall training latency of Glyph.
Dataset Name Thread # Mini-batch Epoch # Time Acc(%)

MNIST
FHESGD 48 2.3 hours 50 13.4 years 97.8
Chimera 48 0.14 hours 5 28.6 days 98.6
Glyph 48 0.04 hours 5 8 days 98.6

Cancer
FHESGD 48 2.4 hours 30 1.1 years 70.2
Chimera 48 0.29 hours 15 25.1 days 73.2
Glyph 48 0.08 hours 15 7 days 73.2

5.3 Overall Training Latency

The overall training latency of multiple threads on our CPU baseline is shown in Table 4. We
measured the mini-batch training latency by running various FHE-based training for a mini-batch.
We estimated the total training latency via the product of the mini-batch training latency and the
total mini-batch number for a training. For MNIST, training the MLP requires 50 epochs, each of
which includes 1000 mini-batches (60 images), to obtain 97.8% test accuracy. Training the Glyph
(BGV-TFHE)-based CNN on MNIST requires only 5 epochs to achieve 98.6% test accuracy. The
overall training latency of the CNN is 8 days. Although a Chimera (BFV-TFHE)-based CNN can
also achieve 98.6% test accuracy, its training requires 28.6 days, 2.6× slower than Glyph. For
Skin-Cancer-MNIST, it takes 30 epochs, each of which includes 134 mini-batches. Training the
Chimera-based or Glyph-based CNN requires only 15 epochs to obtain 73.2% test accuracy. By
48 threads, the training of the Chimera-based CNN can be completed within 26 days. In contrast,
training the Glyph-based CNN requires only 7 days.

6 Conclusion
In this paper, we propose, Glyph, a FHE-based privacy-preserving technique to fast and accurately
train DNNs on encrypted data. Glyph performs ReLU and softmax by logic-operation-friendly TFHE,
while conducts MAC operations by vectorial-arithmetic-friendly BGV. We create a cryptosystem
switching technique to switch Glyph between TFHE and BGV. We further apply transfer learning on
Glyph to support CNN architectures and reduce the number of homomorphic multiplications between
ciphertext and ciphertext. Our experimental results show Glyph obtains state-of-the-art accuracy,
and reduces training latency by 69% ∼ 99% over prior FHE-based privacy-preserving techniques on
encrypted datasets.

Broader Impact
In this paper, we propose a FHE-based privacy-preserving technique to fast and accurately train DNNs
on encrypted data. Average users, who have to rely on big data companies but do not trust them, can
benefit from this research, since they can upload only their encrypted data to untrusted servers. No
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one may be put at disadvantage from this research. If our proposed technique fails, everything will
go back to the state-of-the-art, i.e., untrusted servers may leak sensitive data of average users.
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