Acta Mathematica Vietnamica (2019) 44: 3-29
https://doi.org/10.1007/540306-018-00309-y

@ CrossMark

Equations and Syzygies of K3 Carpets and Unions of Scrolls

David Eisenbud'2 © . Frank-Olaf Schreyer?

Received: 22 April 2018 / Revised: 14 October 2018 / Accepted: 12 November 2018 /

Published online: 13 February 2019

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore
Pte Ltd. 2019

Abstract

We describe the equations and Grobner bases of some degenerate K3 surfaces associated
to rational normal scrolls. These K3 surfaces are members of a class of interesting singular
projective varieties we call correspondence scrolls. The ideals of these surfaces are nested
in a simple way that allows us to analyze them inductively. We describe explicit Grobner
bases and syzygies for these objects over the integers and this lets us treat them in all
characteristics simultaneously.
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1 Introduction

Let S(a, b) be the rational normal surface scroll of degree a + b in Pe+b+1 gver an arbi-
trary field F, that is, the embedding of the projectivized vector bundle P(Op1 (a) & Opi1 (b))
by the line bundle O(1) (see [15] for an exposition). A striking theorem of Gallego and
Purnaprajna [21, Theorem 1.3] asserts that there is a unique K3 Carpet that is a double
structure on S(a, b); that is, a unique scheme X (a, b) C Petb+l whose reduced scheme
X(a, b)req is S(a, b) such that X (a, b) has degree 2(a + b) with HI(OX(Q,;,)) = 0 and
wx@b = Ox,p (or, equivalently, with homogeneous coordinate ring Gorenstein of
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a-invariant 0.) Gallego and Purnaprajna prove that X (a, b) can be written as a limit of
smooth K3 surfaces [20, Corollary 2.8] whose general hyperplane sections are canonical
curves of genus a + b — 1 and gonality min(a, b) + 2.

A quick description of the homogeneous ideal of X (a, b) is that, for a,b > 2, it is
generated by the rank 3 quadrics in the ideal of S(a, b) (Theorem 4.5). The goal of this paper
is to elucidate the generators of this ideal, and those of certain related varieties, in a much
more explicit way, similar to the well-known description of the ideal of S(a, b) as an ideal
of 2 x 2 minors. This enables us to compute explicit Grobner bases and even resolutions
over the integers.

One of our motivations has to do with Green’s conjecture relating the Clifford index of
a smooth projective curve to the length of the linear strand of its free resolution. Deop-
urkar [12] has recently proven that all canonical ribbons satisfy Green’s conjecture. Since
every canonical ribbon of genus g and Clifford index c is the hyperplane section of the K3
carpet X (c, g — 1 — ¢) [5, Section 8], this implies that all K3 carpets satisfy the analogue
of Green’s conjecture. One can also hope that K3 carpets could shed some light on the
questions of the stability of syzygies raised in [13].

Deopurkar’s argument relies on Voisin’s theorem [27] that canonical curves lying on
sufficiently general K3 surfaces over C satisfy Green’s conjecture, and this is also the case
of the recent result of Farkas and Aprodu [2] showing that every curve lying on a smooth
K3 surface over C. In very recent work, Aprodu, Farkas, Papadima, Raicu and Weyman [3]
have given a far simpler proof of Voisin’s theorem based on the degeneration of K3 surfaces
to tangent developable surfaces of rational normal curves.

It seems natural to hope that there might also be a proof based on K3 carpets, and this
would have the advantage that it would automatically treat curves of every Clifford index:
indeed, the analogue of Green’s conjecture for X (a, a) (which corresponds to Green’s con-
jecture for general curves) directly implies Green’s conjecture for all X (a, b) with b < a,
and thus for some curves of each Clifford index. This is because a Grobner basis for the
ideal of each X (a, b) with b < a is a subset of that of X (a, a).

Green’s conjecture is known to fail in some finite characteristics [7, 10]. Because the
Grobner bases we construct are valid over the integers, we are able to tabulate the charac-
teristics of the fields over which the conjecture fails for K3 carpets of sectional genus up to
15 and thus for canonical ribbons of these genera. The data lead us to conjecture:

Conjecture 1.1 Green’s conjecture is true for general curves of genus g over fields of
characteristic p > 0 whenever p > (g — 1)/2.

The evidence for this conjecture is presented in more detail in the last section.

Three Examples of K3 Carpets 1) S(1, 1) C X(1, 1): Any quartic equation in four variables
defines a scheme that has the characteristics of a K3 surface. The scroll S(1, 1) is a smooth
quadric surface in P3. The unique double structure X (1, 1) is defined by the square of the
form defining the quadric.

2) §(2,1) C X (2, 1): In suitable coordinates S(2, 1) is defined by the 2 x 2 minors of the

matrix
X0 X1 Yo
xp x2 1)
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Equations and Syzygies of K3 Carpets and Unions of Scrolls 5

The carpet X (2, 1) supported on this scroll is the complete intersection defined by the 2 x 2
minor in the upper left corner, together with the determinant, of the symmetric matrix

X0 X1 Yo
X1 X2 ¥
yoy1 O

3) S(2,2) C X(2,2): For a more typical example, we take S(2, 2) to be the scroll defined
by the 2 x 2 minors of
(XO X1 Y0 ¥1 )
X1 X2 Y1 y2

then X (2, 2) is defined by the complete intersection of the three quadrics

det M0 det( 201, det X0+ Y0 X1y .
X1 x2 yiy2 X1+y1 x2+y2
We shall see other useful representations as well.

What's in this Paper In Section 2, below we describe a family of projective schemes, we
call correspondence scrolls that includes the rational normal scrolls, and the degenerate K3
surfaces treated in the rest of this paper. In Section 3, we give an informal description of
the family of degenerate K3 surfaces that depend on a pair of automorphisms of P!, and
describe their degeneration to a K3 carpet.

Our main results are in Sections 4 and 5. In Section 4, we give various descriptions of
the minimal generators of the ideals of the K3 carpets and certain reducible K3 surfaces,
and prove that these generators form a Grobner basis for a suitable term order.

In Section 5, we study nonminimal free resolutions of these surfaces that have simple
descriptions valid over the ring of integers. Explicit computation then yields information
about the characteristics in which Green’s conjecture might fail.

Finally, in Section 6, we formulate two conjectures about the minimal free resolutions
of these surfaces, and present the data which give the evidence. In particular, we proof
Conjecture 1.1 for curves of genus g < 15.

2 Correspondence Scrolls

Consider disjoint projective spaces P% = P(V;), fori =1, ..., m, embedded in
P = P(@: Vi),

and a correspondence, that is a subscheme I' C [[; P% (or more generally a multi-
homogeneous subscheme of [; Al*4) The correspondence scroll Sy defined by I' may
be described set-theoretically as the union of the planes in PV spanned by the sets of points
{p1,..., pm} with (p1, ..., pm) € I'. To Sr scheme-theoretically, we first consider the set
of planes of dimension m — 1 in PV that are spanned by all sets of points {py, ..., p,} with
pi € IF’? c PN, We consider this set as a subvariety of the Grassmannian. As such, it is the
image of the product [[; P%“. We pull back the tautological bundle of m — 1-planes on the
Grassmannianto I' C []; P%, and we define St to be the image in PV of this bundle over I.
For example, the ordinary surface scroll S(a, b) is the result of taking

m=2,a=a, a=>b

and taking T to be the diagonal in P! x P! embedded in P* x P as the product of the rational
normal curves of degrees a and b. The K3 carpet X (a, b) described below is obtained by

con
S 9 /Vi
R
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6 D. Eisenbud, F.-O. Schreyer

taking " to be the image of twice the diagonal of P! x P!, and the other degenerate K3
surfaces, we consider correspond to other divisors of type (2, 2) on P! x P!,

It is not hard to describe correspondence scrolls that have the properties of Calabi-Yau
varieties of other dimensions, and to give other interesting singular models. This is the
subject a paper in preparation by the first author and Allessio Sammartano [16].

In the next section, we concentrate on the family of degenerate K3 surfaces.

3 Degenerate K3 Surfaces from Rational Normal Scrolls: Geometry

In this section, we sketch the geometry of the reducible surfaces whose equations we will
study.

Fix positive integers a, b, and consider two-dimensional rational normal scrolls of type
(a, b) in P*tP+1 Recall that such a scroll may be described geometrically by fixing disjoint
subspaces P4, PP ¢ Petb+1 rational normal curves C, C P4 and C, C PP of degrees a
and b respectively, and a one-to-one correspondence ¢ C C, x Cp. We write S = Sy, for the
correspondence scroll, which is the union of the lines (x, y) for (x, y) € ¢. Whena, b > 1
the surface S is a smooth rational surface of degree a + b, isomorphic to

Proj]pl (O]Pal (a - b) D O]pl )

In addition to the double structure on S that is the K3 carpet X (a, b), we will also
study the equations of a family of reducible K3 surfaces, the union of two scrolls S1 U S,
that degenerates to X (a, b). We take S; = § = Sp and define S» = Sy, as the scroll
corresponding to the correspondence ¢ o (t x 1) C C, x Cp, where 7 is an automorphism
of C, = Pl Finally, we set

Xpr=5851US$.

Now suppose that t has two distinct fixed points, which we take to be 0 and oo. In this
case, we may identify T as multiplication by a scalar ¢+ # 1. Had we reversed the roles of
0 and oo (or of C, and Cp), we would replace ¢ by 1~ !, but up to these changes ¢ is well-
defined by the (abstract) surface X . as the ratio of the points of C, \ {0, 0o} corresponding
to a given point of Cj \ {¢(0), ¢ (c0)}.

The intersection Sy U Sy is a curve of degree a 4 b+ 2 and arithmetic genus 1 consisting
of C, UCp U LoU Ly, where Lo, Ly are the rulings of either scroll through the points 0
and oo on C,.

We may let ¢ go to 1, and when this happens, the union of the two scrolls approaches
X (a, b) (Theorem 4.2).

4 Equations and Grobner Bases

4.1 Notation

Leta > b> 1 be integers, consider a projective space IF’%H’ +1 over an arbitary field F, and let
P =F[xo, x1, ..., Xas Y0, Y1s---s Vbl

be its homogeneous coordinate ring. Define matrices

MX = X0 X1 ... Xg—1 . MY, = Yo Y1 ... Yb—1
X1 X2 ... Xg ty1 tyy ... typ

@ Springer i ms



Equations and Syzygies of K3 Carpets and Unions of Scrolls 7

and let
M, = (xo Xl oeo Xa=1 YO VI --- th)
X1 X1 ... Xq Iyp tyz2 ... typ

be their concatenation.

We omit the subscript and write MY or M for MY or M{. We will use the symbol | to
denote concatenation, for example, M = M X|MY.

Let L(MX), L(MY), and I,(M) be the ideals in P generated by the 2 x 2 minors of
these matrices. In the case b = 1, we will also use the 2 x 2 matrix

2
MY2::< Yo y"fl).
Yoyt i

Write R := R(a,b) = P/I(M) for the homogeneous coordinate ring of the scroll
S; = S(a, b) defined by I5(M;). The line bundle corresponding to the ruling of the scroll S;
is the cokernel of the matrix M;, and the elements xo, x; may be identified with the sections
of this bundle.

4.2 The K3 Carpets

Now let M = M; = M X|MY . The minimal free resolution of /> (M) is an Eagon-Northcott
complex. From the form of this complex [5], we see that the canonical module wg of R is
isomorphic to the ideal

(x0, x1)* TP 72R,
shifted so that the generators are in degree 2, that is,

wr = (x0, x1)7R(g — 2),

whereg =a + b — 2.
By [21, Theorem 1.3] there exists a unique surjection / — wg. We begin by making this
explicit:

Theorem 4.1 Set ¢ = a + b — 2. The unique surjection  : 1(S) — wg from the ideal I (S)
of S to the module wg annihilates (M X) + I,(MY) and sends

et i i
Xi+1 Yj+1

Proof The given formula for « defines a surjection from the vector space generated by the
quadrics in 1(S) to the vector space generated by the forms p, = xg _exf € R. To see
that this defines a homomorphism of P-modules, we must show that the relations on the
quadrics go to 0.

In the case a = b = 1, the ideal I (S) is principal, the canonical module is isomorphic to
R, and the result is trivial. Thus, we may assume that a > 2.

The exactness of the Eagon-Northcott complex shows that the relations on the quadrics
are generated by the relations on the minors of the 2 x 3 submatrices M" of M. Such a
submatrix must involve either two columns from M X or two columns from MY . Since the
two cases are similar, we may as well suppose that the submatrix is

0 1 2
M/ — Xi )Cj Vs
Xi+l Xj+1 Ys+1

%hm'n @ Springer
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8 D. Eisenbud, F.-O. Schreyer

with0 <i < j <a—1and0 < s < b— 1. The relations on the minors of M’ are generated
by
XiA12 —xjAo2+ ysAp1 =0
Xi+1A12 — Xj+100,2 + ys+140,1 =0,
where A, ,, denotes the determinant of the 2 x 2 submatrix of M’ involving the uth and vth
columns.
The map « sends Ag | to 0, so these relations go to
—XjPits T XiPj+s
—Xj+1Pi+s + Xit1Dj+s-
In the fraction field of R, we have
X1/xo=x2/x1=---=y1/yo="--- mod I(S).

In particular, for j =0, ...a, we have

j
xj = CT])) xo mod I(S).

Thus, the two binomials above are both congruent mod 7 (S) to

j i
X1 L X1 L
_(7) xOxg i Sxi+x+ (7) xoxg J lejﬂ =0,
X0 X0

as required. (]

Some Reducible K3 Surfaces We now turn to the ideal of the K3 surfaces Xy ; in the
case where 7 is multiplication by a scalar ¢. It turns out that it is convenient to write down
generators in some cases where ¢ is not defined over the ground field IF, but is the ratio
t = t1/1> of two the roots 1, f» # 0 of a quadratic equation p(z) = z> — ejz + e> € F[z].
We include the possibility F = Z as well—this will be important in Section 5. We write e
for the pair (eq, e2). As we shall see, if (eq, e2) € I, then the scheme X4 ; has a model X,
defined over F.

We think of the #; as being in a fixed algebraic closure F of F, and set P := F[xy, ..., Xa,
Y0, ..., ¥p]. If t1 = t2, so that r = 1 then, for simplicity, we will suppose that ; =1, = 1.

Other than the minors of M X and MY, the forms that will enter into our description are
defined as follows:

(1) In the case a, b > 2, we let J, C S be the ideal generated by the bilinear forms

Qi '=Xi42Yj — €1Xi41Yj+1 + €2X;yj12,

for0 <i <a—2and0 < j < b — 2. The ideal J, can be perhaps more conveniently
specified as the ideal generated by the entries of the (¢ — 1) x (b — 1) matrix

X0 X1 X2

X1 X2 X3 €2 Yo Y1 ... Yb-2
0—e O Yiy2 oo Yb—1 |- 4.1)
1 0 0 Y293 ... Wb

Xa—2 Xa—1 Xqa
(2) Inthe case a > 2, b = 1, we let J, be the ideal generated by the cubic forms

) 2 2
0i,0 = Xj42Y) — €1Xi+1Y0oY1 + e2x; yj

@ Springer i ms



Equations and Syzygies of K3 Carpets and Unions of Scrolls 9

for0 <i <a — 2,i.e., the entries of the (¢ — 1) x 1 matrix

X0 X1 X2

X1 X3 X3 0 0 e }’g
0—e 0 Yoyi
10 0 yi

Xa—2 Xa—1 Xa
(3) Finally, in case a = b = 1, we let J, be the ideal generated by the quartic form
Q0,0 := x%yg — e1xox1yoy1 + €2x§y12 = (x1y0 — tixoy1) (x1y0 — t2X0y1) -
Set I, ;= L(MX)+ L(MY) + J,. We will show that [, is the ideal of forms vanishing

on Xy ; and that P /I, is a Gorenstein ring with wp,;, = P/I, as graded modules. Let X,
be the scheme defined by I, so that X, is a degenerate K3 surface.

Theorem 4.2 Let F be any field. I, == L(MX) + [L,(MY) + J, is a saturated ideal.

() Ifty =t =1, hence e = (2, 1), then 1, is the kernel of the map o of Theorem 4.1,
and thus 1, is the saturated ideal of X, = X (a, b).

(2) Suppose that t| # t». Define 2 x (a + b) matrices over P by

e = M, = (XO X| oos Xa=1 Yo VI .- )’b—1>
X1 X2 ... Xg Leyr Bey2 .. LeYb
for € =1,2. We have
Io = I(my) N I(my) C P
and thus I, is the saturated ideal of an F-scheme X, that becomes isomorphic over F to
X7, which is the union of the two scrolls defined by I,(m1) and I,(m3). These two scrolls

meet along a reduced curve
Ca

g .

Lo
Lo

AN )
~—_

Cp
where the Lo, Lo are the lines in petbtl defined by the vanishing of the first and second
rows of the matrix mg, while the curves C, and Cy, are rational normal curves of degrees
a, b defined by the minors of M X and MY in the subspaces defined by the vanishing of the
v; and the x; respectively.

(3) The Q;, j, together with the 2 x 2 minors of M X and the 2 x 2 minors of MY, form
a Grobner basis for I, with respect to the reverse lexicographic order with

X) > ">Xqg>Y0> " "> Yb.

(4) The ring P /I, is Gorenstein, with wp;, = P /I, as graded modules.
We will make use of some identities whose proofs are immediate:

Lemma 4.3 Suppose that t1, t» are nonzero scalars, and let
el=t1+n e=Hh
be the elementary symmetric functions.

ox
$OMy,

-
“ B0

Fu 4 Springer



10 D. Eisenbud, F.-O. Schreyer

(D) Ifa,b > 2 then:

Qi,j = Xit2Yj — €1Xi+1Yj+1 T €2X;yj+2

= 1 det Xi o Yj+1 — det Xi+1 Yy
Xi+1 HYyj+2 Xi+2 NYj+1

= 1 det Xi Yj+1 — det Xi+1  Yj
Xi+1 RYj+2 Xi42 D2Yj+1

Xi +12y; Xi+l + Vj+l
= det ! J J mod (ILp(MX) + L(MY)).
(t2Xi+1 +1yj+1 2Xiy2 + y/'+2> (2(MX) + L(MT))

(2) If, on the other hand, a > 2 but b = 1 then:

Qi = xi+2y§ —e1xi+1yoy1 + ezxiy12
. ) 2
= ndet( M YT —ge( Vit 0
Xi+1 hyy Xi+2 11Yoy1
— 1 det Xi YOYZI — get [ ¥t )’Oyzl .
Xi+1 02y} Xi+2 DY)

We will use also use the following result, which is a transposition of a well-known result
on multiplicity into the context of Grobner bases:

Lemma 4.4 Let P = F[xo..., x,] be a standard graded polynomial ring, with a monomial
order >, and let I C P be a homogeneous ideal of dimension d. If g1, . .., gn are forms in
Iand?y, ..., 1L, are linear forms such that

length(P/(in< g1, ...,incgmu, €1, ...,€q)) <degP/I

then g1, ..., gm is a Grobner basis for I, the rings P/I and P /in_I are Cohen-Macaulay,
and £y, ..., g is a regular sequence modulo in.I. Moreover, if o, for t € Al \ {0}, is the
one-parameter family of transformations of P" corresponding to the Grobner degeneration
associated to the monomial order < then, for general values of t, the elements £1, ..., L4
form a regular sequence modulo I;.

Proof For t # 0 we have deg P/o;1 = deg P/I because the transformation o; is an
automorphism of P". Moreover, by the semi-continuity of fiber dimension, €, ..., £; is a
system of parameters modulo o,/ for general t. The degree is also semi-continuous, and
in.o;g; = in.g;, so for general 7, we have the following:
deg P/I = deg P/o;1

< length P/oy I + (41, ...,4q)

< length P/(0v 81, -+, 018ms L1y -\ La)
length P/(in. gy, ...,in<gm, 1, ..., £Lq).

IA

Our hypothesis implies that all the inequalities are equalities, so by [4, Theorem 5.10] the

rings P/I and P/in.I are Cohen-Macaulay, and ¢1, ..., {4 is a regular sequence modulo
in. /. Since any proper factor ring of a Cohen-Macaulay ring must have smaller degree, and
since in any case degin./ = deg I, we see thatin./ = (in<g1, ...,iN<gm), SO &1, ..., &m
is a Grobner basis for 7. O

@ Springer i ms



Equations and Syzygies of K3 Carpets and Unions of Scrolls 1

Proof of Theorem 4.2 1t follows at once from the identities in Lemma 4.3 that I, is
contained in the ideal of Xy ;.

We next show that the generators of I, form a Grobner basis. In the case a = b = 1, the
ideal I, is generated by one equation, and the assertions are easy, so we assume not only
that a > b > 1 but also that a > 1.

Let I’ be the ideal generated by the initial forms of the generators, that is, by:

(1) The initial forms of the 2 x 2 minors of M X, namely x;x; for1 <i < j <a—1.

(2) The initial forms of the 2 x 2 minors of MY, namely y;y; forl <i < j <b—1.

(3) The initial forms of the Q; ;, namely x;42y; with0 <i <a—-2and0 < j <b-2
ifb>2,0rxjq2yd with0 <i <a—2ifb=1.

Since I’ C in.I, we see that dim S/1” > 3. Set
P'=TF[x1,..., % Y1, -+, Yo-11 = P/(x0, Xa = Y0, Yb)-
The image of I’ in P’ contains every monomial of degree 2 except
{xiyj 11 =j<b-1}U{xiyp—1 |1 =i <a},

every monomial of degree 3 except x1x,yp—1, (Or xlxg in case b = 1), and every monomial
of degree > 4. Thus, xg, X, — Yo, Y is a system of parameters modulo I’ and P’/I’ P’ has
Hilbert function {1, a +b — 1, a + b — 1, 1}. In particular,

dimg(P'/1") = 2a + 2b.

By Lemma 4.4, this implies that xo, x, — Yo, yp is a regular sequence modulo /" and
modulo 7, that I’ = in_I; and that P/l and P/I' are Cohen-Macaulay rings of degree
2(a + b). In particular, I, is the saturated homogeneous ideal of X,. This completes the
proof of parts (1)—(3).

To complete the proof of part (4), we must show that wp,; = P/I, and for this, we
may harmlessly assume that F = F. In the case t; = £, this is implied by the result of
Gallego and Purnaprajna [21, Theorem 1.3], so we need only treat the case #; # t,, where
X, = S1 U S, is the union of two scrolls.

From the fact that P/I is Cohen-Macaulay, together with Hilbert function of P/I’,
we know that the Hilbert function of wp,;, is equal to the Hilbert function of P/I,,
and it suffices to show that the annihilator of the element of degree O is precisely I, =
I(my) N I;(m3). Since wp/q, is a Cohen-Macaulay module, no element can have annihi-
lator of dimension < dim /,; thus, the annihilator of the element of degree O is either I, or
Iy(mg) ford =1orf =2.

Now, the annihilator of I>(m;) in wp/y, is equal to wp/p,m,). Since S(a, b) is rational
its canonical divisor is ineffective, so the nonzero global section of wy, cannot come from
either of the scrolls, and we are done. O

Theorem 4.5 The ideal I (a, b) of the K3 carpet X (a, b) contains all the rank 3 quadrics
vanishing on the scroll S(a, b), and ifa, b > 2 then I (a, b) is generated by them.
The projective variety of rank 3 quadrics in I (a, b) is the Veronese embedding of

in the subspace of
P(A*Sym,_(F?) & A*Sym,_;(F?))

spanned by the (‘H'lz’_l) rank 3 quadrics described in part (3) of Theorem 4.2.

%hm'n @ Springer



12 D. Eisenbud, F.-O. Schreyer

Proof If we identify xo, ..., x, with the dual basis to the monomial basis of Sym, (F?),
then we may regard MX as a map from Sym,_(F2) to (F2)*. With this identification,
writing s, ¢ for the basis of F2, some of the rank 3 quadrics in I»(MX) correspond to the
2 x 2 submatrices of MX involving the pair of generalized columns sf, ¢f for arbitrary
f e Syma_z(IF‘z). We first prove by induction on a that these rank 3 quadrics in (M X)
generate all of I,(M X). This is obvious when a = 1. By induction, we may assume that the
rank 3 quadrics generate all the minors in the first a—1 columns of M X. Butfori+1 < a—2
we have the following:

det < Xi Xa—1 ) — det ( Xi +Xq—2  Xit1 + Xa—1 ) _ det < Xi Xitl )
Xi+1 Xa Xit1 +Xa—1  Xi42 + Xq Xi+1 Xi+2
— det <xa72 Xa—1 > + det (xiJrl Xa—2 ) )
Xa—1 Xa Xi+2 Xa—1
All the terms on the right except the last have rank 3 and are of the given form, and the last
is a minor from the first @ — 1 columns, proving the claim.

The map from this a 4+ 1-dimensional space of matrices to the (‘;) -dimensional space of
quadrics in I3 (M X) is quadratic, and since the image spans (M X), the map must be the
quadratic Veronese embedding.

The same consideration holds for the rank 3 quadrics of MY. As in part (3) of Theo-
rem 4.2, we may obtain a further rank three quadric by adding the submatrix corresponding
to f € Sym,_, (F?) to one corresponding to g € Sym,,_, (F?), thus giving us a vector space
Sym,_,(F?) @ Sym,,_,(IF?) of 2 x 2 matrices whose determinants are rank 3 quadrics. The
determinant map from this vector space to the space of quadrics is also quadratic. Since the
dimension of the space of quadrics in /(X (a, b)) is (“%71), and this space is spanned by
the image of the determinant map, we see that the determinant map must be the quadratic
Veronese map.

To see that /(X (a, b)) contains all rank 3 quadrics in 7 (S(a, b)), we do induction on
a+b.Ifa =>b =1, then I(X(a, b)) contains no quadrics, and ifa = 2,b = 1 ora =
1, b = 2, there is a unique quadric, and it does have rank 3 (Example 2 in the introduction),
so the result is trivial in these cases. We now suppose that a, b > 2.

Let Q be a rank 3 quadric hypersurface containing S(a, b). The vertex of O, which is a
codimension 3 linear space, is set-theoretically the intersection of Q with a general linear
space of codimension 2 containing it, as one can see by diagonalizing the equation of Q.
Such a codimension 2 space must intersect the two-dimensional surface S(a, b), necessarily
in a point p lying in the vertex. Let 77 : P*t0+1 — P+b be the projection from this point.

We may choose variables within the spaces (xg, ..., x4) and (yo, . .., ¥p) so that (possi-
bly after reversing the roles of x, y) the point p has homogeneous coordinates (1,0, ..., 0),
and thus lies on the rational normal curve C, C S(a, b). It follows that 7 (S(a, b)) =
S(a —1,b).

The variety w (X (a, b)) is defined by the ideal

I':=1(X(a,b)) NFx1, ..., X4 Y0, - Ybl:

and (after renumbering the variables) this ideal contains all the quadrics in the ideal
I(X(a — 1, b)) described in Theorem 4.2. Thus, 7w (X (a, b)) C X(a — 1, b). Since the
general codimension 2 plane through p meets X (a, b) in a double point at p, we have
degm(X(a,b)) = deg(X(a,b)) —2 = degX(a — 1, b). Since w(X(a, b)) also has the
same dimension as X (a — 1, b), and the latter is Cohen-Macaulay, we have 7 (X (a, b) =
X(a—1,b).
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Equations and Syzygies of K3 Carpets and Unions of Scrolls 13

By induction, X (a — 1, b) lies on all the rank 3 quadric hypersurfaces containing S(a —
1, b); in particular, it lies on 7 (Q). Thus, X (a, b) lies on Q. O

Proposition 4.6 Suppose that t| # tp. The scheme X, = Sy U Sy has a transverse A
singularity along the intersection of the two scrolls away from the four double points of the
curve E = Lo U Ly U C, U Cy.

Proof We may harmlessly assume F = F and @ > b > 1. Consider the affine chart U =
AHbHL of Patbtl defined by {xo = 1}. This open set misses the curves Lo, and C, that
are defined by the vanishing of the first row of the matrix M X|MY and the vanishing of all
the variables of M X, respectively.

The variables xi, yo restrict to global coordinates both on S, N U = A? and Spz N

U = A2, Because 0 # ey € K, we can eliminate xj, ..., x, from the coordinate ring of
XN Aatbtl using the minors of M X and, if b > 2, we can eliminate y», ..., y, using the
equations

Qo,j lu=x2y; —e1x1yj+1 +exyiqafor j=0,...,0—2.
It follows that x;, yp and y; generate the coordinate ring of the affine scheme X, N U.

One remaining equation of X, N A%t2+1 in these generators is obtained from yl2 — Y0Y2,
which, after substitution, corresponds to the equation

ery? — (e1x1y1 — x7y0)yo = (t1y1 — X150)(f2y1 — X10)-

All other generators reduce to zero modulo this one, since otherwise X, would have a
component of dimension < 2.
Thus, the intersection of the two components of X, N U in A? defined by the following:

1 t
y1— —x1yo and = — 1) x1y0.
n 151

This set has components x; = y; = 0 corresponding to L, and yp = y; = 0 corresponding
to C,, and the intersection is transverse away from the point xo = x; = y; = 0.
The arguments for the three charts {x, = 1}, {yo = 1} and {y, = 1} are similar. O

5 Syzygyies over Z and Z/p

In this section, we investigate the question: for which prime numbers p does the carpet
X (a, b) satisfy Green’s conjecture over a field of characteristic p? We begin by unpacking
this question.

Let R denote a field or Z. If F is a graded free complex over a graded R-algebra with
R = Py = P/ P, adomain, then we set the following:

Bi,j(F) := (rankg F; ®p R);.

Following the convention used in Macaulay2, we display the 8; ; in a Betti table with whose
ith column and jth row contains the value 8; ; 1 ; (F). If R is a field or Z we write X R(a, b)
to denote the subscheme of ]P"Il;rbH that is defined by the ideal I, 1 of Theorem 4.2, and we
write X 5 (a, b) for the subscheme defined by I,(a, b) more generally. We write PR(a, b)
and PR for the corresponding homogeneous coordinate rings.

If F is the minimal free resolution of PF(a, b) as a module over

Flxo, ..., Xa, Y0, - -» Ybl,

%hm'n @ Springer



14 D. Eisenbud, F.-O. Schreyer

where F is a field of characteristic p, we say that Green’s conjecture holds for X Fla, b) if
Bi.i+1(F) = 0for i > max(a, b), and similarly for XE (a, b). Note that the presence of the
ideal of the rational normal curves of degree a and b inside the ideal of X (a, b) implies that
Bi.i+1(F) # 0 for 0 <i < max(a, b), so that when Green’s conjecture holds, it is sharp.

We have already shown that PF (a, b) is Cohen-Macaulay. The hyperplane section, which
is a ribbon canonical curve, thus has minimal free resolution with the same Betti numbers
[11, Proposition 1.1.5]. Since the hyperplane is a ribbon of genus g = a+ b+ 1 and Clifford
index b by [5, p. 730], this is what Green’s conjecture predicts for ribbons [5, Corollary
7.3]. Since ribbons do satisfy Green’s conjecture in characteristic 0 [12], it follows that this
is true for K3 carpets as well.

Returning to the general setting of a graded free complex F over a graded R-algebra P
with R = Py = P/P4, we define the kth constant strand of F, denoted F ® | to be the
submodule of elements of internal degree k of the complex F ® p R. Thus, F ) has the form:

FO .. RP—2k(F)  pBr-1x(F)  pBx(F) .

We write H; (F%) for the homology of this subcomplex at the term Rfix(F) If R is a field,
F is any graded P-free resolution of a module M, and F’ is the minimal free resolution
of M, then since the minimal free resolution is a summand of any free resolution, we have
Bik(F") = H;(F©).

To survey what happens for all primes p at once, we work over Z. We have shown that
the homogenous ideal of X (a, b) C IP’%H’ + s minimally generated by a Grobner basis
consisting of forms with integer coefficients, and the coefficients of the lead terms are £1.
Thus, the homogeneous coordinate ring PZ(a, b) of XxZ (a, b) is a free Z-algebra, and any
free resolution over PZ(a, b) reduces, modulo a prime p, to a free resolution of PZ/p (a, b)
over in characteristic p.

This means that we can deduce properties in all characteristics from properties of a free
resolution over Z. We will use the (not necessarily minimal) free resolution introduced (in
a slightly different form) in [26], called the Schreyer resolution in Singular. See [6] for
a mathematical exposition, and [18] for an efficient algorithm. We have implemented a
Macaulay2 package K3Carpets.m2 [17] for exploration of these questions.

The definition of the Schreyer resolution of an ideal /, described in [6], starts with a
normalized Grobner basis

fla"'afn

of 1, sorted first by degree and then by the reverse lexicographic order of the initial terms.
Each minimal monomial generator of the monomial ideal

M; = (in(f1), ...,in(fi—1)) :in(fi) fori =2,...,n

determines a syzygy. One shows that these syzygies form a Grobner basis for the first syzygy
module of fi,..., f,;, with respect to the induced monomial order. Their lead terms are
m ju; for generators u; of F'| mapping to f; and m; € M; a minimal monomial generator.
Continuing with the algorithm, we get the finite free resolution F' whose terms F; are free
modules with chosen bases.

It will be useful in the proof of Theorem 5.4 to give each of the chosen basis elements of
Fj, aname, which is a sequence my, ..., m, of monomials:
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Equations and Syzygies of K3 Carpets and Unions of Scrolls 15

Definition 5.1 The basis element u; of F| gets as a name the monomial in( f;). If the min-
imal generator u; € F), is mapped to a syzygy with lead term muy € F),_1, then the name
of a generator u ; of F), is as follows:

name(u ;) = name(uy), m.

We define the name product of a generator F), to be the product of the monomials in its
name. The total (internal, as opposed to homological) degree of a generator is thus the
degree of its name product.

For simplicity, when we write X (a, b), we will henceforward assume that a > b. To
check whether Green’s conjecture holds, we only need to check a single homology group of
a constant strand in an arbitrary free resolution:

Proposition 5.2 The K3 carpet XF (a, b) over a field F satisfies Green’s conjecture if and
only if, for any graded free resolution F of the homogeneous coordinate ring of P%(a, b),
the constant strand F@+V satisfies H,(F@tD @7 F) = 0.

Proof We must show that in the minimal free resolution F’ of P¥(a, b), the term F, for
k > a, has no generators of degree < k 4 1. The construction of the Schreyer resolution
F of PZ(a, b) shows that F has no generators of degree < k, and since F’ is a summand
of F ®z F, the same is true for F. The hypothesis that H, (F@t) @, F) = 0 (for any
resolution F over the integers) implies that F, does not have any generators of degree a + 1,

either, proving the assertion for k = a. We complete the proof by induction on k > a.
Assuming that F; has no generators of internal degree < k + 1, the differential of F’
would map any generators of Fy having internal degree k+2 to scalar linear combinations
of generators of Fj having internal degree k +2. Because F’ is minimal, this cannot happen.
O

Example 5.3 Here is the Betti table of the Schreyer resolution F of P%(6, 6) computed with
Macaulay?2:

. 55 320 930 1688 2060 1728 987 368 81 8
39 280 906 1736 2170 1832 1042 384 83 8

jNi0O 1 2 3 4 5 6 7 8 9 1011
1
: 1 8 28 56 70 56 28 8 1

0
1
2
3

In this case, Proposition 5.2 shows that Green’s conjecture over F depends only on a
property of the 7th constant strand F@+D) = F@_1In our example, this has the form as
follows:

0« 78 « 71736 71728 0,

It has a surjective first map, so the vanishing of H,(F D @, F) is equivalent to the nondivis-
ibility by p of the determinant of a certain 1728 x 1728 matrix M over Z. Computationally
we find that

det M = 21312 372 5120.

Fu 4 Springer



16 D. Eisenbud, F.-O. Schreyer

Thus, in characteristic 0 or characteristic p # 2,3,5, this carpet satisfies Green’s
conjecture with Betti tables.

01 2 3 4 5 6 7 8 9 1011

1 . . . . .

© . 55320 891 1408 1155

M2

Lo . 1155 1408 891 320 55

3.0 . . . . . . . A |
For the exceptional primes p, we can determine the Betti tables by computing the Smith
normal form of M and the other matrices in the constant strands of the nonminimal resolu-
tion. They are as follows:
p=2:

. 55 320 900 1488 1470 720 315 80 9
9 80 315 720 1470 1488 900 320 55 .’
1

W N = O

. 55 320 891 1408 1162 48 7 .
7 48 1162 1408 891 320 55 .
1

w N = O

1. . . . . .

. 55320 891 1408 1155 120 L
Lo 120 1155 1408 891 320 55 .°
3.0 . . . . . . . |

Experimentally, we have strong evidence that p = 2 and p = 5 are also exceptional primes
for the general curve of genus 13, while a general curve of this genus in characteristic 3
satisfies Green’s Conjecture (see [7] and Remark 6.2 below). For characteristic p = 2,
the experiments support the conjecture that a general smooth curve of genus 13 has the
following the Betti table with much smaller numbers

N2

01 . . . . . .

1: . 55 320 891 1408 1155 64 . L.
20 ... . . 64 1155 1408 891 320 55 .°
3. . . . . . . . R |

than the carpet, while, for p = 5, the experimental findings suggest that the Betti table of
the carpet coincides with the conjectural Betti table of a general smooth curve of genus 13.

The Schreyer resolution is rarely minimal, even for monomial ideals. Thus, the following
surprised us:

Theorem 5.4 Let a, b > 2, and write I = I(3,1) for the saturated ideal defining X Z(a, b),
as exhibited in Theorem 4.2. The Schreyer resolution of in(1) is minimal.

Proof In our case, the minimal generators of / form a Grébner basis (Theorem 4.2), which
is thus automatically normalized. Let F denote the Schreyer resolution of J = in([).
Defining the M; as above, we see from the construction that the Schreyer resolution G

S
S
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Equations and Syzygies of K3 Carpets and Unions of Scrolls 17

of in(f1), ..., in(f,—1) is a subcomplex of F, and the quotient complex is the Schreyer
resolution of M,,, appropriately twisted and shifted.

There are n = (“+12’_1) generators of J, which we sort by degree refined by the reverse
lexicographic order as follows:
xlz, X1X2, x%, .. .,xg_l, X2Y05 X3Y05 -+« » XaY0> X2V1s X3V1, « - s Xa V1, y12, X2Y2, X3Y2, -« -
XaY2  VIY2 Y3eeeo... S X2Vb—2,  X3Yb—2s -2 XaVb-2s  VIVb—2s Y2Vb—2r---s Vi_os
VIVb—1s -+ Yo-2Vb—15 Yp_i-

Thus, for 1 < k < n — 1 we have the following:

in( fx) Range My

XiX; I<i<j<a-1 X1, ..., xj-1)

Xiyj 2<i<a-10=<j<b-2 (X5 e s Xa—1, Y05 -+ > Yj—1)
XaYj 0<j=<b-2 (X2 ooy Xam1s Y0u oo Vel X7)
Yiyj l<i<j=<b-=-2 (X2, Xam1s Y1s -2 Yjo1 X])
YiVb—1 l<i<b-1 (X2, Xam1s Y1s -2 Vo2, X)

The monomial ideal M,, is more complicated. The initial term of f;, is in(f;) = yg_l,
and we get the following:

2 2
My = (V1,00 Yb—2, X1, X1X2, o, X[, X2Y05 « - - XaY0)-

Lemma 5.5 The Schreyer resolution G of the ideal (in(f1), ...,in(f,—1)) is the minimal
free resolution of this ideal.

Proof For k < n, each M is generated by a regular sequence of monomials.The name
of each generator of G, is thus an initial monomial of an f, followed by a decreasing
sequence of distinct elements of M of length p — 1.

We must show that there are no constant terms in the differential G ,+1 — G for each
p > 0. The generators of G, have degrees p + 1 and p + 2. The Z*"*+2-grading of the
monomial ideal induces a Z%+?+2_grading on G. Again, in this grading, a generator of G »
has same total degree as its name product.

Each name product of a generator of G, of degree p + 2 is divisible by x12 and some y;.
However, the only name products of generators of G of degree p + 2 that are divisible
by x12 are monomials in F[x, ..., x,—1], and the conclusion follows. O

To treat the case of M,,, we first study a smaller resolution:

Lemma 5.6 The Schreyer resolution H of the monomial ideal

2 2
Jug = (X7, X1X2, ..o, X1, X2Y05 - - - » Xa0)

is the minimal free resolution of this ideal.

Proof We order the monomial generators my of Jy as indicated above, and obtain this time

my Range (my,...,mg_1) : my
XiX; I<i<j=<a-1 (X1, ..., xj-1)

Xi Y0 2<i<a-1 (X1, .05 Xa—1)
XaYo (X2, -+ Xa—1, X7)

W @ Springer



18 D. Eisenbud, F.-O. Schreyer

As in the proof of Lemma 5.5, the generators of H, for p > 1 are in degree p+1 and p+2,
and only the name products of those in degree p + 2 are divisible by )cl2 Y0, SO no constant

terms can occur in the differential by the Z*+b+2

-grading. O

We continue now with the proof of Theorem 5.4. The resolution of M,, is the tensor prod-
uct of the resolution H from Lemma 5.6 with the Koszul complex K = K(yy, ..., yp—2).
Thus, the terms of the complex F resolving in(/) are built from the terms of G and terms
of the tensor product complex K ® H shifted and twisted:

min(b—2,p—1)
Fo=G,® @ K,;®Hp 1 4(-2).
q=0

Since G is a subcomplex of F, the only possibly nonminimal parts of the differentials in F
have source in the subquotient complex K(yy, ..., yp—2) ® S[—1](—2) and target in G.

The Schreyer resolution FY of (yi,..., yh,l)2 is a subcomplex of F of which
Ky, ..., yp—2) ® S[—1](—2) is a subquotient. Since FY has only generators of degree
p + 1 in homological degree p > 1, all maps of FY and hence F are minimal. This
completes the proof of Theorem 5.4. O

Corollary 5.7 The minimal free resolution of in(I) and the Schreyer resolution of I have
length a + b — 1 and their nonzero Betti numbers are as follows:

Boo(F) =1,

b—2 : i
B a B a+]—1 Ll+]_2
ﬂp’erl(F)_p(p_'_l)-l-ng((a 2)< e >+< p—1 ))
b-2
.a+j—2> (a—2+b—1) (b—2>
b—2
+§¥< pot JTE=A0 o )T,

for]§p§a+b_27

and
ﬁp,p+2(F)
la+j-2\ 22 fa+j-2 a—24+b—1
SR
jzo( p—2> o\ r-2 p=2
p—2
b—2
N ( )((p—q—l)( )
pr AN q
+@—p+ +1)< . >+< @=2 ))
b Pp—q—2 p—q—4
for2 <p<a+b-1
and

a+b—-4

3 ) for3<p<a+b-—1.

ﬂp,p+3(F) = (
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Proof The complex H has length a and its nonzero Betti numbers are as follows:

Bo.o(H) = 1,
@ =o(, ) +a=n(, 0, )+ (25 <o
ﬂp,p+1 =p P41 a—p p_1> p—3 orl=p=a
and

a—?2
Bp.p+2(H) = (p _ 2) for2<p<a.
The complex G has length a 4+ b — 1 and its non-zero Betti numbers are as follows:

Bo,0(G) = 1,

b2 » ‘
_ a o feti—l atj=2
Bp.p+1(G) = p(P+1>+j§)<(a 2)< p—1 )+< p—1 >)

fa—2+] a—2+b—-1
+Z]< p—1 >+(b_2)< p—1 )

and
b2 b2
j—2 -2 -1
b= £ () a0
j=0 j=1

for2<p<a+b-—1.
The formula now follows from the following:

min(b—2,p—1)
F,=G,® @ K, ®H, 1 4(-2).
q=0 O

Remark 5.8 The formula for 8, ,41(F) can be simplified:

a—2 b-2 atb-1 a+b-3
ﬂp,p+1<F>=(p_l>+<p_1>+”( p+1 >_2< p—1 )

Using this and 8,2 p+1(F) = (“;b 14) we can also obtain a simplified formula for the
Bp,p+2(F)’s by using the identities:

Bp.p+1(F) = Bp—1,p+1(F) + Bp—2, p+1(F)

a+b-—3 a+b-—3
=7p —(a+b—-2—-p)
p+1 a+b—-1—p

a+b—2—p(a+b—2>
=— - ° a+b—2p—2).
PR p—1 ( p—2)

Remark 5.9 Eliminating yq from the equations of X, (a, b) C P4t?*! gives the equations
of an X,(a, b — 1) C P’ and it follows that the Schreyer resolution of X.(a, b — 1) is a
subcomplex of the Schreyer resolution of X, (a, b). Indeed, the generators derived from

con
S 9 /Vi
<
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20 D. Eisenbud, F.-O. Schreyer

in( fx) Range M;

XiXj I1<i<j<a-1 (xl,...,xj_l)

Xiyj 2<i<a-1,1<j<b-2 (X1, ooy Xa— 1, Y15 o5 Yj—1)
Xayj I1<j<b-2 (X24 ey Xamls Yls o e vy Yjm1, X3)
Yiyj 2<i<j=<b-2 (x2,~-~7xaflay2’---’)’jflvx12)
YiYb—1 2<i<b-2 (X2, Xam 1, Y20 -2 Vo2, X})

belong to this subcomplex. For the last equation with lead term in(f,/) = yg_] , we get

/ 2 2
M, = (Y2, .y Yb—2, X1 X1X25 o s X _ 15 X2Y15 + -+ » Xa Y1)

which is not a subset of the corresponding M,,. Hence, some generators of the Schreyer
resolution for X.(a, b — 1) are not mapped to generators of the Schreyer resolution of
X.(a, b) but rather to linear combinations.

Remark 5.10 The equations of X.(a, b) allow a Z> -grading. The equations and the whole
resolution is homogenous for degx; = (1,0,7) and degy; = (0, 1, j). The nonminimal
maps in the nonminimal resolution decompose into blocks with respect to this fine grading.

We can also compute the Betti table for the minimal resolutions of the K3 carpets
X F(a, b) over a field IF of characteristic 2. Note that, because ey, e are elements of I, the
degenerate K3 surface X](% 1 (a, b) coincides with the carpet X Fla,by=x I(Fz 1)(a, b).

Theorem 5.11 Let a,b > 2 and let F be an arbitrary field. The minimal free resolution
of the homogeneous coordinate ring of X = Xe(a, b) C P**?*1 for e = (0, 1) has Betti
numbers as follows:

b—2 b—2
ﬁ,-,,-H:i("JTH )+(max(a—i,O)+max(b—i,0))(‘“,r 1 )
, _

fori > 1and Biiv2 = Batb—1—ia+b—i for 1 < i < a + b — 2. (These Betti numbers
coincide with the Betti numbers of a 4-gonal canonical curve of genus g = a + b + 1 with
relative canonical resolution invariants a — 2 and b — 2 (see [24, Example (6.2)]).

Proof The 2 x 2 minors of the matrix

oo ((FOXT e Xa—2 Yo VI s Vb2
X2 X3 ... Xg —Y2 =3 .- —Vb

are contained in Ix. Thus, X is contained in a four-dimensional rational normal scroll of
type

Y =8(la/2],Ta/21 -1, b/2],[b/2] = 1)
of degree f = a — 1 4+ b — 1. As a subscheme of the scroll, X is the complete intersection
of two divisors, whose classes are of class 2H — (@ — 2)R and 2H — (b — 2)R, where
H, R € PicY denote the hyperplane class and the ruling of Y. These are defined by the
vanishing of
2
i

2 2
X — X0X2, X5 — X1X3, ..., X;_| — Xa—2Xa

and

Y= Y02, Y = V1V3e - Vi1 — Yo—2Yb,
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respectively. In terms of the Cox ring F[s, ¢, ug, u1, v, v1] of Y they are given by relative
quadrics
ui —stu} ifa=0 mod2
{su%—tu% ifa=1 mod2
and
v} —stv} ifb=0 mod2
{svf—tvé ifb=1 mod 2.
Thus by [24, Examples (3.6) and (6.2)], the minimal free resolution of Ix is given by an
iterated mapping cone

CO — [C72(=2) d CP72(=2) « CT2(—4)]

where C/ denotes the jth Buchsbaum-Eisenbud complex associated to m. (The complexes
CO, C! are also known as Eagon-Northcott complex and Buchsbaum-Rim complex of n1.)

O

Part of Theorem 5.11 generalizes as follows.

Theorem 5.12 (Resonance) Suppose p(z) = 72 —e1z+e) has distinct nonzero roots t1, ty €
F such that t>/t1 is a primitive kth root of unity and a, b > k + 1, and set X := Xf(a, b).
(1) X is contained in a rational normal scroll of type

Y = S(ao, ...,ar-1,bo, ..., Dr-1)
with
ai={0<j<al|j=i modk} —1
and
bi={0<j<b|j=i modk}| —1.

(2) The map Y — P! induces a fibration of X into 2k-gons.

(3) Ifa, b > 2k?, then X has graded Betti numbers Be.o+1 =0forl >a+b—142-2k
and By ¢4+2 = 0 for £ < 2k — 2. In particular, the range of nonzero Betti numbers coincides
with range predicted by Green’s conjecture for a general 2k-gonal curve of genus g =
a+b+1.

We speak of the phenomenon in the Theorem as resonance because it comes from a
periodicity induced by (r2/¢)¥ = 1. In characteristic 0, Green’s conjecture is known to hold
for general d-gonal curves of every genus by [1], and it is known in every characteristic for
some d-gonal curve of genus g if g > (d —1)(d —2) by [25]. However, we do not know that
the family of curves of genus g and gonality d is irreducible. Indeed, the Hurwitz scheme
could be reducible in positive characteristics (see [19, Example 10.3]).

Proof of Parts (1) and (2) By Theorem 4.2, X is the union of the two scrolls defined by the
minors of the matrices

mp = (0K Xamt LYo Y ey
X1 X2 ... Xg | teyr teyz o.. teyp

respectively.
Applying an automorphism of P4**~1 we may assume that #; = 1 and thus that r = 1,
is a kthe root of unity. The minors of the matrix

m— X0 X e Xa—k | YO Y1 ool Yb—k
Xk Xkl -+ Xa | Yk Yk+1 oo Vb
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22 D. Eisenbud, F.-O. Schreyer

lie in the intersection of the ideals of minors of m; and m», as one sees from the formulas

k—1
Ztk—ﬁ—l
£=0

which hold for 0 < i < a —k and k < j < b. Thus, the scheme X is contained in a
2k-dimensional scroll of the type claimed (for example

X0 Xk -+ X(ag—1k
Xk X2k ---  Xagk
is a submatrix of m).

Since X = §1 U $3 is the union of two scrolls whose basic sections C, and Cj, coincide,
we find a pencil of 2k-gons (away from the ramification points at O and infinity of the k-
power map from P! to P) as follows by alternating rulings from S; and S,. Starting from

Xite Yj—t—1
Xito+1 1Yj—s

Xi Yj—k
Xi+k lky]‘

)

a general point (1 : s : s2:...:5%:0...0) € Cg, we have a ruling of the first scroll Sy
connecting it to the point (0:...:0:1:s:...:s”) € Cp. The ruling of the second scroll
S, joins this point on Cp, with the point (1 :¢s:...:(s):0:...:0).

a

3-resonance

Cp
Continuing with a ruling of the first scroll, and so on, this process closes with a 2k-gon,
since ¢ is a primitive kth root of unity.
The map ¥ — P! sends a point of Y to the ratio of the two rows of m evaluated at that
point, so the 2k-gon is contained in the fiber defined by the following:

(s5 —1) X0 X1 ... Xa—k YO VI .- Y-k ) _g
’ Xk Xk+1 -+ Xa Yk Yk+1 --- Vb ’

Since s¥ = § has k distinct solutions for § # 0, the fiber of the composition X = S1US, —
Y — P! over the point (1 : §) contains precisely k rulings of each of the two scrolls S;.
Hence, the 2k-gon is the complete fiber of X — Pl

The last statement follows by resolving the relative resolution of X in the 2k-dimensional
scroll Y by an iterated mapping cone built from Buchsbaum-Eisenbud complexes following
the strategy of [25]. Before we discuss details, we look at an example.

Example 5.13 We consider cases of 3-resonance, k = 3, and take X = X_1,1)(a,b) C
IF’%MH, since the polynomial p(z) = z*> 4 z + 1 has as zeroes the primitive third roots
of unity. Note that in characteristic 3, the union of scrolls X(_1 1)(a, b) coincides with
the carpet X (a,b) = X3 1(a, b), so in characteristic 3, there is no 3-resonance, but the
considerations of the free resolution below are the same. By Theorem 4.2, the scheme

X=X—1,HC IP’%MH is defined by the ideal /(1 1) generated by the 2 x 2 minors of the
two matrices
(xoxl...xaq) (yo yl...ybﬂ)
X1 X2 ... Xg YL Y2 oo Wb
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and the entries of the (¢ — 1) x (b — 1) matrix

X0 X1 X2

X] X2 X3 001 Yo Y1 -+ Yb-2
0-10 Y1 Y2 ... Yb—1
1 00 Y293 ... W

Xa—2 Xa—1 Xa

We suppose for concreteness that @, b = 2 mod 3. Then, the scheme X is contained in a
scroll Y of type

a—2 a—-2 a-2 b—-2 b—-2 b-2
Y=S ) ) ) ’ ’
3 3 3 3 3 3

In terms of the Cox ring (= toric coordinate ring) F[s, ¢, uo, u1, ua, vo, vy, v2] of Y, the
remaining equations reduce to an ideal sheaf Zcox generated by nine relative quadrics that
are the 2 x 2 minors of the matrices

uog U1 su Vo V] SV
0 Ul suz and 0 V1 SV2
up uy tuo v1 v tvg

Urvg + uvy + ugva, tugvg + survy + sujva, tuivg + tugvy + survr.

together with

The relative resolution constructed in [24, Section 3] can be regarded as a complex of free
modules over the Cox ring which sheafifies to a resolution of Oy by locally free Oy-
modules. In our specific case, it has the Betti table:

012 34
total: 1 9 16 9 1
0: 1.

. .3 ..
2: . 6166 .
3. 3
4. 1

where we have given all the variables in the Cox ring degree 1.
We specialize further and take a = b = 8. Then,

Y =5(2,2,2,2,2,2) c PY

is a rational normal scroll of degree f = 12 isomorphic to IF"]}7 X ]P’ISF.

The relative resolution of Oy = Oy, 3 3) as an Oy-module has shape

Ox <« Oy < Oy(=2H +3R)® ® Oy(—2H + 4R)* < Oy(-3H + 5R)'® «
Oy(—4H + 6R)* ® Oy(—4H +7TR)* < Oy(—6H + 10R) < 0.

Here, H and R denote the hyperplane class and the ruling of Y. ‘

Each term in the relative resolution is resolved by a Buchsbaum-Eisenbud complex C/
associated to the defining matrix m of Y regarded as a map m: F — G between vector
bundles F = O(—1) and G = O? on Pet+1,

0« Oy(jR) < S;G < S;_1GQF « ...
e NF <« NPFRAG « ...
L NMNTFQAG ®(Sr_j2G)* <0,
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for0 < j < f — 2 (see [24] and [14, Theorem A2.10 and Exercise A2.22]). Two further
facts are important to us:
(1) The complexes C/ remain exact under the global section functor

E > Tu(F) = @uez HO®H Em)),

i.e., we obtain projective resolutions of T',(Oy(jR)) over the polynomial ring
Flx0, - Xas Y0, --+» Y] = T«(Opatss1). (This holds because the complexes C/ have
length f — 1 < dimP*+b+1)

(2) The complex C/ has j linear maps followed by a quadratic map and further linear
maps.

By (1), we can resolve the relative resolution by the iterated mapping cone of complex
C/(—d)’s. In our specific example, this is the iterated mapping cone

®%C3(-2) ®3C7(—4)
"~ @ <~ [®1C(=3) <[ @& <~ C%-6)111 .
@3C*(=2) @OCo(—4)

The iterated mapping cone F is not minimal. However, the complex C/(—d) for d > 2
does not contribute to the linear strand in a range outside the contribution of the Eagon-
Northcott complex CY, which proves assertion (3) of Theorem 5.12 in this specific case.
Indeed, the additional contribution of maximal homological degree comes from the complex
@3C7(—4)[—3]. It is a contribution to B10.11(F) = dim(Fjp ®s F)11 to which also C°
contributes since

10 < lengthC’ = f —1=11.

The presence of C? and its dual inside the minimal resolution gives a lower bound on the
Betti numbers, which is realized for example in the case of X(_1,1)(6, 6) in characteristic 3
computed in Example 5.3, and therefore in characteristic O and all but finitely many other
primes. Further computation shows that the only exceptional primes for X(_1 1)(6, 6) are 2
and 5.

Proof of Theorem 5.12 (3) We continue with the proof of Theorem 5.12 keeping the
notation of the first part of the proof.

The Cox ring F[s, t, ug, - .., Uk, Vo, - .., V] is Zz—graded with s, ¢ of degree (0, 1) and
degu; = (1, —a;) and degv; = (1, —b;). The ideal Icox of X = X.(a, b) in the Cox ring
is obtained by substituting

xj =%y if j =tk +iwith0 <i <k

and
yj = sti=Cstvif j =tk +iwith0 <i <k
into the generators of the ideal /, and saturating with the ideal (s, 7).

We can alter and refine this grading to a Z>-grading by setting degs = degt = (0, 0, 1),
degu; = (1,0,ap — a;) and degv; = (0, 1, bg — b;), since the substituted equations are
homogeneous with respect to this grading. The last component of the degree of each variable
of the Cox ring is now 0 or 1.

For the description of the generators of Icox, the residues 0 < o, B < k witha =a, 8 =
b mod k will play a role. Writing j = ¢k + i as above the jth column of the matrix M X
after substitution becomes

Xj _ s4—lity,; or sU—1—Lply,
Xjt1 - Sai+l_£téui+1 Sao—é—]t€+lu0
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incase j + 1 =0 mod k. Thus, the minors of the 2 x k matrix

A (uo Uy ... Sig ... uk,1>
Up up ... Ugy1 ... tug
lie in Icox, where the factor s occurs only once in the first row, more precisely in front of
uy, and the factor ¢ occurs once in the second row in front of ug. Likewise, we geta 2 x k
matrix B involving the v’s.
A similar pattern arises from the (¢ — 1) x 3 and 3 x (b — 1) Hankel matrices entering

the definition of the bilinear equations (4.1) of X,.(a, b). The Hankel matrix involving the
x’s becomes the (k — 1) x 3 matrix A" which is the transpose of

ug Uy ... SUg—1 SUg ... Uf—D
Uy up ... Sy Ugst] --- Uk—]
U U3 ... Ugyl Ugy2 ... TUQ

There are all together at most three factors s and one factor ¢. Similarly, we geta 3 x (k — 1)
matrix B’ involving the v’s. The generators of Zcox of degree (1, 1, %) are obtained from the
entries of the (k — 1) x (k — 1) matrix

C=ADPB

with D the 3 x 3 antidiagonal matrix with entries 1, —e1, e from (4.1). The ideal generated
by entries of C might be not saturated with respect to s¢. For example, the form

2
SUg+1VB—1 — €18 UgVp + e2SUy—1VB+]

is divisible by s.
By [24], there are exactly (Zkz_ 1) — 1 relative quadrics. From the calculation above, we
see (g) relative quadrics of each of types (2, 0, %) and (0, 2, ), and (k — 1)? relative quadrics

of type (1, 1, ). Since
5 k G 1y = 2k — 1
2 “\ 2 )

we see that there is one superfluous relative quadric, and since the ones of type (2, 0, x) and
(0, 2, %) are independent, it is of type (1, 1, ). In summary, the ideal sheaf Zcox depends
only on the residue classes «, § of @ and » mod k and is generated by

k s (%=1
o)1= (1)

relative quadratics of degrees (2, 0, %), (0, 2, *), (1, 1, %) where * represents values between
0 and 4.

The ¢th free module in our relative resolution E, has generators of degree (di, da, d3)
withd; +dy = €+ 1 for 1 < ¢ < 2k — 3. The last module is cyclic with a generator of
degree (k, k, 2k — o — B). Indeed, this is the sum of the degree of all variables of the Cox
ring, which equals the degree of the generator of its canonical module. By adjunction, the
relative resolution has to end with this term, since X, (a, b) has a trivial canonical bundle.
The resolution is self-dual.

con
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The sequences
d, = min{d; | 3 a generator of Ey of degree (di, d2, d3) withdy +dp, =€+ 1}
and
dy = max{ds | 3 a generator of E, of degree (d1, d», d3) withdy +d> = £ + 1}

are weakly increasing, because for each generator of the Cox ring the third component of
its degree is nonnegative.
We write Pic(Y) = ZH @& ZR, where H denotes a hyperplane section and R a fiber of
Y — P'. In terms of the Pic(Y)-grading a generator of degree (d1, d, d3) corresponds to a
summand
Oy (=(d1 + d2)H + (d1ag + daby — d3) R).

To establish assertion (3) of Theorem 5.12, we must show that the multidegree
(d1, d3, d3) of every generator of E, for 1 < ¢ < 2k — 3 satisfies

di+dy—1+djag+dobg —dz <degY —1=f — 1.
Indeed, the left-hand side is the length of the contribution of
Cd]ao+d2b0—d3(_d1 _ d2)

to the linear part of the iterated mapping cone, while the right-hand side is the length of the
co.

Note that —d3 < —d, = —(2k —a — B) + 3(2k_2_g) holds by the self-duality of the
relative resolution. Because wy = Oy, the last term in the relative resolution has to be
Oy(=2kH + (f —2)R) = wy so f — 2 =kag + kby — 2k — o — B).

Thus, utilizing ag > by, we see that the conditions

0—Qk—=1=0by+doy—ny <1

suffice. We use the rough estimate dog—2—¢ < 2k, which holds since the maximal d3 in
the relative resolution is 2k — o — < 2k. The desired inequality holds for all £ with
1<¢<2k-3if

2k+£—1

bo>2% —2=max{—— | £=1,...,2k—3}.
2k—1—¢

Since b+ 1 = kby — (k— 1 — B) < kby, this follows from our assumptiona > b > 2%%. O
Remark 5.14 A proof of Theorem 5.12 (3) for a, b > k can be deduced by substantially
easier arguments, which do not rely on the description of Zcox but only on the existence of

a relative resolution proved in [24] and an analysis of how the numerical data change when
we re-embed Y by H' = H + jR. Since

® (a,b) will be replaced by (a + jk, b+ jk) and thus f by f + 2jk and
o QOy(—dH +c¢R)=0Oy(—dH + (¢ +dj)R)

the conclusion of (3) is obvious for j sufficiently large. Based on experiments, we
conjecture that the optimal bound is @ > b > k> — k. This is true for k < 5.

For further information and conjectures about relative resolutions of canonical curves
(see [8, 9]).
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6 Conjectures and Computational Results

Remark 6.1 Tt follows from Proposition 5.2 that Green’s conjecture is true for the balanced
carpet X (a, a) if and only if a certain f(a) x f(a) integer matrix has a nonzero determinant,

where,
2a — 1 2a -3
= -2
f@ a(a—i—l) <a—1>
by Remark 5.8. By Theorem 5.11, we know that B, ,+1(X(a, a)) = a(za*z) over fields of

a+1
characteristic 2. Hence,
2a-2

2a(a+]

is a factor of this determinant. For small a, the relevant values are as follows:

a 2 3 4 5 6 7

| det | 1 24 23236 2266315 213123725120 26774310205315
f@ 0 9 64 350 1728 8085

aC) 0 3 24 140 720 3465

One step in achieving a proof of Green’s conjecture using K3 carpets might be to give an
explanation of the prime power factorizations of the determinants in the table above.

The data in this table was produced by our Macaulay2 [22] package K3Carpets.m2 ver-
sion 0.5 [17]. Here is how these determinants are actually computed. The first step is the

computation of the Schreyer resolution of an carpet X (a, a) over F[xo, ..., X4, Y0, - - -, Yal
for a large finite prime field F = Z/(p). In practice, we take p = 32003. The second step
is to lift the matrices in the resolution to P = Z[xo, ..., X4, Y0, - - - , Ya] by using the bijec-

tion of Z/32003 with the integers in the interval [—16001, 16001]. The resulting matrices
define the Schreyer resolution over P if and only if the lifted matrices form a complex. After
checking this, we use the fine grading to find the blocks in the crucial constant strand. For
the computation of the determinants of the blocks, we use their Smith normal forms. The
final step is the factorization of the product of all determinants of all blocks.

Remark 6.2 The enormous size ot the determinants in Remark 6.1 must correspond to
a combination of the resonance phenomenon with the exceptional behavior of Green’s
conjecture in positive characteristic.

Experimental data of [7], see also [10], suggests that a general canonical curve of odd
genus g = 2a + 1 violates Green’s conjecture in small characteristic in the following cases:

a g=2a+1 Primes Ba_1,a+1 = Baa+l
3 7 2 1

4 9 3 6

5 11 2,3 28,10

6 13 2,5 64, 120

7 15 2,3,5 299,390,315

For genus g = 7, 9, this is rigorously proven by [24] and [23]. For genus g = 11, 13, 15,
we know that the examples found in [7] violate the full Green conjecture; however, we do

con
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not know whether their Betti numbers coincide with the Betti numbers of the general curve
of the given genus in these characteristics.

Computing a nonminimal resolution of the K3 union of scrolls X, (a, a) over the coef-
ficient ring Z[e;, e2], we find the following values of the determinant of the crucial
nonminimal part.

a =+ det
3 Zefeg
4 366?2632
5 246310612206535 (6% _ 62)5
6 26451206124861464(62 _ 62)72
39023905315 ,6377 ,8302,,2 630,,2 7
7 22703705707 ey (e — €2)™7" (e — 2e2)

Based on these values, we propose two conjectures:

Conjecture 6.3 Fore = (e}, e3) € 2 with ep = 0 the union of scrolls X.(a, a) has a pure
resolution over an field F of characteristic 0 unless the polynomial p(z) = 72 —e1z + ey =
(z — t1)(z — 1) has roots such that t, /[ty # 1 is a kth root of unity for some k < %

. =2 .
Conjecture 6.4 For general e = (ey,ez2) € I, the union of scrolls X,.(a,a) over an
algebraically closed field F of characteristic p has a pure resolution if p > a. In particular,

Green’s conjecture holds for the general curve over a field of characteristic p of genus g if

g—1
p =&t

By the table above and Remark 5.9, both conjectures hold for g < 15.
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