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Abstract
We describe the equations and Gröbner bases of some degenerate K3 surfaces associated
to rational normal scrolls. These K3 surfaces are members of a class of interesting singular
projective varieties we call correspondence scrolls. The ideals of these surfaces are nested
in a simple way that allows us to analyze them inductively. We describe explicit Gröbner
bases and syzygies for these objects over the integers and this lets us treat them in all
characteristics simultaneously.
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1 Introduction

Let S(a, b) be the rational normal surface scroll of degree a + b in P
a+b+1 over an arbi-

trary field F, that is, the embedding of the projectivized vector bundle P(OP1(a) ⊕OP1(b))

by the line bundle O(1) (see [15] for an exposition). A striking theorem of Gallego and
Purnaprajna [21, Theorem 1.3] asserts that there is a unique K3 Carpet that is a double
structure on S(a, b); that is, a unique scheme X(a, b) ⊂ P

a+b+1 whose reduced scheme
X(a, b)red is S(a, b) such that X(a, b) has degree 2(a + b) with H1(OX(a,b)) = 0 and
ωX(a,b)

∼= OX(a,b) (or, equivalently, with homogeneous coordinate ring Gorenstein of
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a-invariant 0.) Gallego and Purnaprajna prove that X(a, b) can be written as a limit of
smooth K3 surfaces [20, Corollary 2.8] whose general hyperplane sections are canonical
curves of genus a + b − 1 and gonality min(a, b) + 2.

A quick description of the homogeneous ideal of X(a, b) is that, for a, b ≥ 2, it is
generated by the rank 3 quadrics in the ideal of S(a, b) (Theorem 4.5). The goal of this paper
is to elucidate the generators of this ideal, and those of certain related varieties, in a much
more explicit way, similar to the well-known description of the ideal of S(a, b) as an ideal
of 2 × 2 minors. This enables us to compute explicit Gröbner bases and even resolutions
over the integers.

One of our motivations has to do with Green’s conjecture relating the Clifford index of
a smooth projective curve to the length of the linear strand of its free resolution. Deop-
urkar [12] has recently proven that all canonical ribbons satisfy Green’s conjecture. Since
every canonical ribbon of genus g and Clifford index c is the hyperplane section of the K3
carpet X(c, g − 1 − c) [5, Section 8], this implies that all K3 carpets satisfy the analogue
of Green’s conjecture. One can also hope that K3 carpets could shed some light on the
questions of the stability of syzygies raised in [13].

Deopurkar’s argument relies on Voisin’s theorem [27] that canonical curves lying on
sufficiently general K3 surfaces over C satisfy Green’s conjecture, and this is also the case
of the recent result of Farkas and Aprodu [2] showing that every curve lying on a smooth
K3 surface over C. In very recent work, Aprodu, Farkas, Papadima, Raicu and Weyman [3]
have given a far simpler proof of Voisin’s theorem based on the degeneration of K3 surfaces
to tangent developable surfaces of rational normal curves.

It seems natural to hope that there might also be a proof based on K3 carpets, and this
would have the advantage that it would automatically treat curves of every Clifford index:
indeed, the analogue of Green’s conjecture for X(a, a) (which corresponds to Green’s con-
jecture for general curves) directly implies Green’s conjecture for all X(a, b) with b ≤ a,
and thus for some curves of each Clifford index. This is because a Gröbner basis for the
ideal of each X(a, b) with b < a is a subset of that of X(a, a).

Green’s conjecture is known to fail in some finite characteristics [7, 10]. Because the
Gröbner bases we construct are valid over the integers, we are able to tabulate the charac-
teristics of the fields over which the conjecture fails for K3 carpets of sectional genus up to
15 and thus for canonical ribbons of these genera. The data lead us to conjecture:

Conjecture 1.1 Green’s conjecture is true for general curves of genus g over fields of
characteristic p > 0 whenever p ≥ (g − 1)/2.

The evidence for this conjecture is presented in more detail in the last section.

Three Examples of K3Carpets 1) S(1, 1) ⊂ X(1, 1): Any quartic equation in four variables
defines a scheme that has the characteristics of a K3 surface. The scroll S(1, 1) is a smooth
quadric surface in P

3. The unique double structure X(1, 1) is defined by the square of the
form defining the quadric.

2) S(2, 1) ⊂ X(2, 1): In suitable coordinates S(2, 1) is defined by the 2 × 2 minors of the
matrix

(
x0 x1 y0
x1 x2 y1

)
.
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The carpet X(2, 1) supported on this scroll is the complete intersection defined by the 2×2
minor in the upper left corner, together with the determinant, of the symmetric matrix⎛

⎝ x0 x1 y0
x1 x2 y1
y0 y1 0

⎞
⎠ .

3) S(2, 2) ⊂ X(2, 2): For a more typical example, we take S(2, 2) to be the scroll defined
by the 2 × 2 minors of (

x0 x1 y0 y1
x1 x2 y1 y2

)

then X(2, 2) is defined by the complete intersection of the three quadrics

det

(
x0 x1
x1 x2

)
, det

(
y0 y1
y1 y2

)
, det

(
x0 + y0 x1 + y1
x1 + y1 x2 + y2

)
.

We shall see other useful representations as well.

What’s in this Paper In Section 2, below we describe a family of projective schemes, we
call correspondence scrolls that includes the rational normal scrolls, and the degenerate K3
surfaces treated in the rest of this paper. In Section 3, we give an informal description of
the family of degenerate K3 surfaces that depend on a pair of automorphisms of P1, and
describe their degeneration to a K3 carpet.

Our main results are in Sections 4 and 5. In Section 4, we give various descriptions of
the minimal generators of the ideals of the K3 carpets and certain reducible K3 surfaces,
and prove that these generators form a Gröbner basis for a suitable term order.

In Section 5, we study nonminimal free resolutions of these surfaces that have simple
descriptions valid over the ring of integers. Explicit computation then yields information
about the characteristics in which Green’s conjecture might fail.

Finally, in Section 6, we formulate two conjectures about the minimal free resolutions
of these surfaces, and present the data which give the evidence. In particular, we proof
Conjecture 1.1 for curves of genus g ≤ 15.

2 Correspondence Scrolls

Consider disjoint projective spaces Pai = P(Vi), for i = 1, . . . , m, embedded in

P
N = P(⊕iVi),

and a correspondence, that is a subscheme � ⊂ ∏
i P

ai (or more generally a multi-
homogeneous subscheme of

∏
i A

1+ai ). The correspondence scroll S� defined by � may
be described set-theoretically as the union of the planes in PN spanned by the sets of points
{p1, . . . , pm} with (p1, . . . , pm) ∈ �. To S� scheme-theoretically, we first consider the set
of planes of dimension m−1 in PN that are spanned by all sets of points {p1, . . . , pm} with
pi ∈ P

a
i ⊂ P

N . We consider this set as a subvariety of the Grassmannian. As such, it is the
image of the product

∏
i P

ai . We pull back the tautological bundle of m − 1-planes on the
Grassmannian to � ⊂ ∏

i P
ai , and we define S� to be the image in PN of this bundle over �.

For example, the ordinary surface scroll S(a, b) is the result of taking

m = 2, a1 = a, a2 = b

and taking � to be the diagonal in P1×P
1 embedded in Pa×P

b as the product of the rational
normal curves of degrees a and b. The K3 carpet X(a, b) described below is obtained by
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taking � to be the image of twice the diagonal of P1 × P
1, and the other degenerate K3

surfaces, we consider correspond to other divisors of type (2, 2) on P1 × P
1.

It is not hard to describe correspondence scrolls that have the properties of Calabi-Yau
varieties of other dimensions, and to give other interesting singular models. This is the
subject a paper in preparation by the first author and Allessio Sammartano [16].

In the next section, we concentrate on the family of degenerate K3 surfaces.

3 Degenerate K3 Surfaces from Rational Normal Scrolls: Geometry

In this section, we sketch the geometry of the reducible surfaces whose equations we will
study.

Fix positive integers a, b, and consider two-dimensional rational normal scrolls of type
(a, b) in Pa+b+1. Recall that such a scroll may be described geometrically by fixing disjoint
subspaces Pa,Pb ⊂ P

a+b+1, rational normal curves Ca ⊂ P
a and Cb ⊂ P

b of degrees a

and b respectively, and a one-to-one correspondence φ ⊂ Ca ×Cb. We write S = Sφ for the
correspondence scroll, which is the union of the lines (x, y) for (x, y) ∈ φ. When a, b ≥ 1
the surface S is a smooth rational surface of degree a + b, isomorphic to

ProjP1(OP1(a − b) ⊕ OP1).

In addition to the double structure on S that is the K3 carpet X(a, b), we will also
study the equations of a family of reducible K3 surfaces, the union of two scrolls S1 ∪ S2
that degenerates to X(a, b). We take S1 = S = Sφ and define S2 = Sφτ as the scroll
corresponding to the correspondence φ ◦ (τ × 1) ⊂ Ca × Cb, where τ is an automorphism
of Ca

∼= P
1. Finally, we set

Xφ,τ = S1 ∪ S2.

Now suppose that τ has two distinct fixed points, which we take to be 0 and ∞. In this
case, we may identify τ as multiplication by a scalar t �= 1. Had we reversed the roles of
0 and ∞ (or of Ca and Cb), we would replace t by t−1, but up to these changes t is well-
defined by the (abstract) surface Xφ,τ as the ratio of the points of Ca \{0, ∞} corresponding
to a given point of Cb \ {φ(0), φ(∞)}.

The intersection Sφ ∪Sφτ is a curve of degree a+b+2 and arithmetic genus 1 consisting
of Ca ∪ Cb ∪ L0 ∪ L∞, where L0, L∞ are the rulings of either scroll through the points 0
and ∞ on Ca .

We may let t go to 1, and when this happens, the union of the two scrolls approaches
X(a, b) (Theorem 4.2).

4 Equations and Gröbner Bases

4.1 Notation

Let a≥b≥1 be integers, consider a projective space Pa+b+1
F

over an arbitary field F, and let

P = F[x0, x1, . . . , xa, y0, y1, . . . , yb]
be its homogeneous coordinate ring. Define matrices

MX :=
(

x0 x1 . . . xa−1
x1 x2 . . . xa

)
, MYt :=

(
y0 y1 . . . yb−1
ty1 ty2 . . . tyb

)
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and let

Mt =
(

x0 x1 . . . xa−1 y0 y1 . . . yb−1
x1 x1 . . . xa ty1 ty2 . . . tyb

)

be their concatenation.
We omit the subscript and write MY or M for MY1 or M1. We will use the symbol | to

denote concatenation, for example, M = MX|MY .
Let I2(MX), I2(MY), and I2(M) be the ideals in P generated by the 2 × 2 minors of

these matrices. In the case b = 1, we will also use the 2 × 2 matrix

MY2 :=
(

y20 y0y1
y0y1 y2

1

)
.

Write R := R(a, b) = P/I2(M) for the homogeneous coordinate ring of the scroll
St

∼= S(a, b) defined by I2(Mt ). The line bundle corresponding to the ruling of the scroll St

is the cokernel of the matrix Mt , and the elements x0, x1 may be identified with the sections
of this bundle.

4.2 The K3 Carpets

Now let M = M1 = MX|MY . The minimal free resolution of I2(M) is an Eagon-Northcott
complex. From the form of this complex [5], we see that the canonical module ωR of R is
isomorphic to the ideal

(x0, x1)
a+b−2R,

shifted so that the generators are in degree 2, that is,

ωR
∼= (x0, x1)

qR(q − 2),

where q = a + b − 2.
By [21, Theorem 1.3] there exists a unique surjection I → ωR . We begin by making this

explicit:

Theorem 4.1 Set q = a +b−2. The unique surjection α : I (S) → ωR from the ideal I (S)

of S to the module ωR annihilates I2(MX) + I2(MY) and sends

det

(
xi yj

xi+1 yj+1

)

to the monomial xq−i−j

0 x
i+j

1 .

Proof The given formula for α defines a surjection from the vector space generated by the
quadrics in I (S) to the vector space generated by the forms p� = x

q−�

0 x�
1 ∈ R. To see

that this defines a homomorphism of P -modules, we must show that the relations on the
quadrics go to 0.

In the case a = b = 1, the ideal I (S) is principal, the canonical module is isomorphic to
R, and the result is trivial. Thus, we may assume that a ≥ 2.

The exactness of the Eagon-Northcott complex shows that the relations on the quadrics
are generated by the relations on the minors of the 2 × 3 submatrices M ′ of M . Such a
submatrix must involve either two columns from MX or two columns from MY . Since the
two cases are similar, we may as well suppose that the submatrix is

0 1 2

M ′ =
(

xi xj ys

xi+1 xj+1 ys+1

)
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with 0 ≤ i < j ≤ a −1 and 0 ≤ s ≤ b−1. The relations on the minors of M ′ are generated
by

xi�1,2 − xj�0,2 + ys�0,1 = 0

xi+1�1,2 − xj+1�0,2 + ys+1�0,1 = 0,

where �u,v denotes the determinant of the 2× 2 submatrix of M ′ involving the uth and vth
columns.

The map α sends �0,1 to 0, so these relations go to

−xjpi+s + xipj+s

−xj+1pi+s + xi+1pj+s .

In the fraction field of R, we have

x1/x0 ≡ x2/x1 ≡ · · · ≡ y1/y0 = · · · mod I (S).

In particular, for j = 0, . . . a, we have

xj ≡
(

x1

x0

)j

x0 mod I (S).

Thus, the two binomials above are both congruent mod I (S) to

−
(

x1

x0

)j

x0x
q−i−s

0 xi+s
1 +

(
x1

x0

)i

x0x
q−j−s

0 x
j+s

1 = 0,

as required.

Some Reducible K3 Surfaces We now turn to the ideal of the K3 surfaces Xφ,τ in the
case where τ is multiplication by a scalar t . It turns out that it is convenient to write down
generators in some cases where t is not defined over the ground field F, but is the ratio
t = t1/t2 of two the roots t1, t2 �= 0 of a quadratic equation p(z) = z2 − e1z + e2 ∈ F[z].
We include the possibility F = Z as well—this will be important in Section 5. We write e

for the pair (e1, e2). As we shall see, if (e1, e2) ∈ F, then the scheme Xφ,τ has a model Xe

defined over F.
We think of the ti as being in a fixed algebraic closure F of F, and set P := F[x0, . . . , xa,

y0, . . . , yb]. If t1 = t2, so that t = 1 then, for simplicity, we will suppose that t1 = t2 = 1.
Other than the minors of MX and MY , the forms that will enter into our description are

defined as follows:
(1) In the case a, b ≥ 2, we let Je ⊂ S be the ideal generated by the bilinear forms

Qi,j := xi+2yj − e1xi+1yj+1 + e2xiyj+2,

for 0 ≤ i ≤ a − 2 and 0 ≤ j ≤ b − 2. The ideal Je can be perhaps more conveniently
specified as the ideal generated by the entries of the (a − 1) × (b − 1) matrix⎛

⎜⎜⎜⎝
x0 x1 x2
x1 x2 x3
...

...
...

xa−2 xa−1 xa

⎞
⎟⎟⎟⎠

⎛
⎝ 0 0 e2

0 −e1 0
1 0 0

⎞
⎠

⎛
⎝ y0 y1 . . . yb−2

y1 y2 . . . yb−1
y2 y3 . . . yb

⎞
⎠ . (4.1)

(2) In the case a ≥ 2, b = 1, we let Je be the ideal generated by the cubic forms

Qi,0 := xi+2y
2
0 − e1xi+1y0y1 + e2xiy

2
1
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for 0 ≤ i ≤ a − 2, i.e., the entries of the (a − 1) × 1 matrix⎛
⎜⎜⎜⎝

x0 x1 x2
x1 x2 x3
...

...
...

xa−2 xa−1 xa

⎞
⎟⎟⎟⎠

⎛
⎝ 0 0 e2

0 −e1 0
1 0 0

⎞
⎠

⎛
⎝ y2

0
y0y1
y2
1

⎞
⎠ .

(3) Finally, in case a = b = 1, we let Je be the ideal generated by the quartic form

Q0,0 := x2
1y

2
0 − e1x0x1y0y1 + e2x

2
0y

2
1 = (x1y0 − t1x0y1)(x1y0 − t2x0y1) .

Set Ie := I2(MX) + I2(MY) + Je. We will show that Ie is the ideal of forms vanishing
on Xφ,τ and that P/Ie is a Gorenstein ring with ωP/Ie

∼= P/Ie as graded modules. Let Xe

be the scheme defined by Ie, so that Xe is a degenerate K3 surface.

Theorem 4.2 Let F be any field. Ie := I2(MX) + I2(MY) + Je is a saturated ideal.
(1) If t1 = t2 = 1, hence e = (2, 1), then Ie is the kernel of the map α of Theorem 4.1,

and thus Ie is the saturated ideal of Xe = X(a, b).
(2) Suppose that t1 �= t2. Define 2 × (a + b) matrices over P by

m� := Mt� =
(

x0 x1 . . . xa−1 y0 y1 . . . yb−1
x1 x2 . . . xa t�y1 t�y2 . . . t�yb

)

for � = 1, 2. We have
Ie = I2(m1) ∩ I2(m2) ⊂ P

and thus Ie is the saturated ideal of an F-scheme Xe that becomes isomorphic over F to
Xφ,τ , which is the union of the two scrolls defined by I2(m1) and I2(m2). These two scrolls
meet along a reduced curve

where the L0, L∞ are the lines in P
a+b+1
k

defined by the vanishing of the first and second
rows of the matrix m�, while the curves Ca and Cb are rational normal curves of degrees
a, b defined by the minors of MX and MY in the subspaces defined by the vanishing of the
yj and the xi respectively.

(3) The Qi,j , together with the 2 × 2 minors of MX and the 2 × 2 minors of MY , form
a Gröbner basis for Ie with respect to the reverse lexicographic order with

x0 > · · · > xa > y0 > · · · > yb.

(4) The ring P/Ie is Gorenstein, with ωP/Ie
∼= P/Ie as graded modules.

We will make use of some identities whose proofs are immediate:

Lemma 4.3 Suppose that t1, t2 are nonzero scalars, and let

e1 = t1 + t2 e2 = t1t2

be the elementary symmetric functions.



10 D. Eisenbud, F.-O. Schreyer

(1) If a, b ≥ 2 then:

Qi,j := xi+2yj − e1xi+1yj+1 + e2xiyj+2

= t2 det

(
xi yj+1

xi+1 t1yj+2

)
− det

(
xi+1 yj

xi+2 t1yj+1

)

= t1 det

(
xi yj+1

xi+1 t2yj+2

)
− det

(
xi+1 yj

xi+2 t2yj+1

)

≡ det

(
xi + t2yj xi+1 + yj+1

t2xi+1 + t1yj+1 t2xi+2 + yj+2

)
mod (I2(MX) + I2(MY)).

(2) If, on the other hand, a ≥ 2 but b = 1 then:

Qi,0 := xi+2y
2
0 − e1xi+1y0y1 + e2xiy

2
1

= t2 det

(
xi y0y1

xi+1 t1y
2
1

)
− det

(
xi+1 y2

0
xi+2 t1y0y1

)

= t1 det

(
xi y0y1

xi+1 t2y
2
1

)
− det

(
xi+1 y0y1
xi+2 t2y

2
0

)
.

We will use also use the following result, which is a transposition of a well-known result
on multiplicity into the context of Gröbner bases:

Lemma 4.4 Let P = F[x0 . . . , xn] be a standard graded polynomial ring, with a monomial
order >, and let I ⊂ P be a homogeneous ideal of dimension d. If g1, . . . , gm are forms in
I and �1, . . . , �d are linear forms such that

length(P/(in<g1, . . . , in<gm, �1, . . . , �d)) ≤ degP/I

then g1, . . . , gm is a Gröbner basis for I , the rings P/I and P/in<I are Cohen-Macaulay,
and �1, . . . , �d is a regular sequence modulo in<I . Moreover, if σt , for t ∈ A

1 \ {0}, is the
one-parameter family of transformations of Pn corresponding to the Gröbner degeneration
associated to the monomial order < then, for general values of t , the elements �1, . . . , �d

form a regular sequence modulo It .

Proof For t �= 0 we have degP/σt I = degP/I because the transformation σt is an
automorphism of Pn. Moreover, by the semi-continuity of fiber dimension, �1, . . . , �d is a
system of parameters modulo σt I for general t . The degree is also semi-continuous, and
in<σtgi = in<gi , so for general t , we have the following:

degP/I = degP/σt I

≤ lengthP/σt I + (�1, . . . , �d)

≤ lengthP/(σtg1, . . . , σtgm, �1, . . . , �d)

≤ lengthP/(in<g1, . . . , in<gm, �1, . . . , �d).

Our hypothesis implies that all the inequalities are equalities, so by [4, Theorem 5.10] the
rings P/I and P/in<I are Cohen-Macaulay, and �1, . . . , �d is a regular sequence modulo
in<I . Since any proper factor ring of a Cohen-Macaulay ring must have smaller degree, and
since in any case deg in<I = deg I , we see that in<I = (in<g1, . . . , in<gm), so g1, . . . , gm

is a Gröbner basis for I .
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Proof of Theorem 4.2 It follows at once from the identities in Lemma 4.3 that Ie is
contained in the ideal of Xφ,τ .

We next show that the generators of Ie form a Gröbner basis. In the case a = b = 1, the
ideal Ie is generated by one equation, and the assertions are easy, so we assume not only
that a ≥ b ≥ 1 but also that a > 1.

Let I ′ be the ideal generated by the initial forms of the generators, that is, by:

(1) The initial forms of the 2 × 2 minors of MX, namely xixj for 1 ≤ i ≤ j ≤ a − 1.
(2) The initial forms of the 2 × 2 minors of MY , namely yiyj for 1 ≤ i ≤ j ≤ b − 1.
(3) The initial forms of the Qi,j , namely xi+2yj with 0 ≤ i ≤ a − 2 and 0 ≤ j ≤ b − 2

if b ≥ 2, or xi+2y
2
0 with 0 ≤ i ≤ a − 2 if b = 1.

Since I ′ ⊂ in<I , we see that dim S/I ′ ≥ 3. Set

P ′ = F[x1, . . . , xa, y1, . . . , yb−1] ∼= P/(x0, xa − y0, yb).

The image of I ′ in P ′ contains every monomial of degree 2 except

{x1yj | 1 ≤ j ≤ b − 1} ∪ {xiyb−1 | 1 ≤ i ≤ a},
every monomial of degree 3 except x1xayb−1, (or x1x

2
a in case b = 1), and every monomial

of degree ≥ 4. Thus, x0, xa − y0, yb is a system of parameters modulo I ′ and P ′/I ′P ′ has
Hilbert function {1, a + b − 1, a + b − 1, 1}. In particular,

dimk(P
′/I ′) = 2a + 2b.

By Lemma 4.4, this implies that x0, xa − y0, yb is a regular sequence modulo I ′ and
modulo I , that I ′ = in<I ; and that P/I and P/I ′ are Cohen-Macaulay rings of degree
2(a + b). In particular, Ie is the saturated homogeneous ideal of Xe. This completes the
proof of parts (1)–(3).

To complete the proof of part (4), we must show that ωP/I
∼= P/I , and for this, we

may harmlessly assume that F = F. In the case t1 = t2, this is implied by the result of
Gallego and Purnaprajna [21, Theorem 1.3], so we need only treat the case t1 �= t2, where
Xe = S1 ∪ S2 is the union of two scrolls.

From the fact that P/I is Cohen-Macaulay, together with Hilbert function of P/I ′,
we know that the Hilbert function of ωP/Ie is equal to the Hilbert function of P/Ie,
and it suffices to show that the annihilator of the element of degree 0 is precisely Ie =
I2(m1) ∩ I2(m2). Since ωP/Ie is a Cohen-Macaulay module, no element can have annihi-
lator of dimension < dim Ie; thus, the annihilator of the element of degree 0 is either Ie or
I2(m�) for � = 1 or � = 2.

Now, the annihilator of I2(m�) in ωP/Ie is equal to ωP/I2(m�). Since S(a, b) is rational
its canonical divisor is ineffective, so the nonzero global section of ωXe cannot come from
either of the scrolls, and we are done.

Theorem 4.5 The ideal I (a, b) of the K3 carpet X(a, b) contains all the rank 3 quadrics
vanishing on the scroll S(a, b), and if a, b ≥ 2 then I (a, b) is generated by them.

The projective variety of rank 3 quadrics in I (a, b) is the Veronese embedding of

ν2 : P(
Sym(a−2)(F

2) ⊕ Sym(b−2)(F
2)

)
in the subspace of

P
(∧2Syma−1(F

2) ⊕ ∧2Syma−1(F
2)

)
spanned by the

(
a+b−1

2

)
rank 3 quadrics described in part (3) of Theorem 4.2.
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Proof If we identify x0, . . . , xa with the dual basis to the monomial basis of Syma(F
2),

then we may regard MX as a map from Syma−1(F
2) to (F2)∗. With this identification,

writing s, t for the basis of F2, some of the rank 3 quadrics in I2(MX) correspond to the
2 × 2 submatrices of MX involving the pair of generalized columns sf, tf for arbitrary
f ∈ Syma−2(F

2). We first prove by induction on a that these rank 3 quadrics in I2(MX)

generate all of I2(MX). This is obvious when a = 1. By induction, we may assume that the
rank 3 quadrics generate all the minors in the first a−1 columns ofMX. But for i+1 ≤ a−2
we have the following:

det

(
xi xa−1

xi+1 xa

)
= det

(
xi + xa−2 xi+1 + xa−1

xi+1 + xa−1 xi+2 + xa

)
− det

(
xi xi+1

xi+1 xi+2

)

− det

(
xa−2 xa−1
xa−1 xa

)
+ det

(
xi+1 xa−2
xi+2 xa−1

)
.

All the terms on the right except the last have rank 3 and are of the given form, and the last
is a minor from the first a − 1 columns, proving the claim.

The map from this a + 1-dimensional space of matrices to the
(
a
2

)
-dimensional space of

quadrics in I2(MX) is quadratic, and since the image spans I2(MX), the map must be the
quadratic Veronese embedding.

The same consideration holds for the rank 3 quadrics of MY . As in part (3) of Theo-
rem 4.2, we may obtain a further rank three quadric by adding the submatrix corresponding
to f ∈ Syma−2(F

2) to one corresponding to g ∈ Symb−2(F
2), thus giving us a vector space

Syma−2(F
2) ⊕ Symb−2(F

2) of 2× 2 matrices whose determinants are rank 3 quadrics. The
determinant map from this vector space to the space of quadrics is also quadratic. Since the
dimension of the space of quadrics in I (X(a, b)) is

(
a+b−1

2

)
, and this space is spanned by

the image of the determinant map, we see that the determinant map must be the quadratic
Veronese map.

To see that I (X(a, b)) contains all rank 3 quadrics in I (S(a, b)), we do induction on
a + b. If a = b = 1, then I (X(a, b)) contains no quadrics, and if a = 2, b = 1 or a =
1, b = 2, there is a unique quadric, and it does have rank 3 (Example 2 in the introduction),
so the result is trivial in these cases. We now suppose that a, b ≥ 2.

Let Q be a rank 3 quadric hypersurface containing S(a, b). The vertex of Q, which is a
codimension 3 linear space, is set-theoretically the intersection of Q with a general linear
space of codimension 2 containing it, as one can see by diagonalizing the equation of Q.
Such a codimension 2 space must intersect the two-dimensional surface S(a, b), necessarily
in a point p lying in the vertex. Let π : Pa+b+1 → P

a+b be the projection from this point.
We may choose variables within the spaces (x0, . . . , xa) and (y0, . . . , yb) so that (possi-

bly after reversing the roles of x, y) the point p has homogeneous coordinates (1, 0, . . . , 0),
and thus lies on the rational normal curve Ca ⊂ S(a, b). It follows that π(S(a, b)) =
S(a − 1, b).

The variety π(X(a, b)) is defined by the ideal

I ′ := I (X(a, b)) ∩ F[x1, . . . , xa, y0, . . . , yb],
and (after renumbering the variables) this ideal contains all the quadrics in the ideal
I (X(a − 1, b)) described in Theorem 4.2. Thus, π(X(a, b)) ⊂ X(a − 1, b). Since the
general codimension 2 plane through p meets X(a, b) in a double point at p, we have
degπ(X(a, b)) = deg(X(a, b)) − 2 = degX(a − 1, b). Since π(X(a, b)) also has the
same dimension as X(a − 1, b), and the latter is Cohen-Macaulay, we have π(X(a, b) =
X(a − 1, b).



Equations and Syzygies of K3 Carpets and Unions of Scrolls 13

By induction, X(a − 1, b) lies on all the rank 3 quadric hypersurfaces containing S(a −
1, b); in particular, it lies on π(Q). Thus, X(a, b) lies on Q.

Proposition 4.6 Suppose that t1 �= t2. The scheme Xe = Sφ ∪ Sφτ has a transverse A1
singularity along the intersection of the two scrolls away from the four double points of the
curve E = L0 ∪ L∞ ∪ Ca ∪ Cb.

Proof We may harmlessly assume F = F and a ≥ b ≥ 1. Consider the affine chart U ∼=
A

a+b+1 of Pa+b+1 defined by {x0 = 1}. This open set misses the curves L∞ and Cb that
are defined by the vanishing of the first row of the matrix MX|MY and the vanishing of all
the variables of MX, respectively.

The variables x1, y0 restrict to global coordinates both on Sφ ∩ U ∼= A
2 and Sφτ ∩

U ∼= A
2. Because 0 �= e2 ∈ K , we can eliminate x2, . . . , xa from the coordinate ring of

Xe ∩ A
a+b+1 using the minors of MX and, if b ≥ 2, we can eliminate y2, . . . , yb using the

equations
Q0,j |U= x2yj − e1x1yj+1 + e2yi+2 for j = 0, . . . , b − 2.

It follows that x1, y0 and y1 generate the coordinate ring of the affine scheme Xe ∩ U .
One remaining equation of Xe ∩A

a+b+1 in these generators is obtained from y2
1 − y0y2,

which, after substitution, corresponds to the equation

e2y
2
1 − (e1x1y1 − x2

1y0)y0 = (t1y1 − x1y0)(t2y1 − x1y0).

All other generators reduce to zero modulo this one, since otherwise Xe would have a
component of dimension < 2.

Thus, the intersection of the two components of Xe ∩ U in A3 defined by the following:

y1 − 1

t1
x1y0 and

(
t2

t1
− 1

)
x1y0.

This set has components x1 = y1 = 0 corresponding to L∞ and y0 = y1 = 0 corresponding
to Ca , and the intersection is transverse away from the point x0 = x1 = y1 = 0.

The arguments for the three charts {xa = 1}, {y0 = 1} and {yb = 1} are similar.

5 Syzygyies over Z and Z/p

In this section, we investigate the question: for which prime numbers p does the carpet
X(a, b) satisfy Green’s conjecture over a field of characteristic p? We begin by unpacking
this question.

Let R denote a field or Z. If F is a graded free complex over a graded R-algebra with
R = P0 ∼= P/P+ a domain, then we set the following:

βi,j (F ) := (rankR Fi ⊗P R)j .

Following the convention used in Macaulay2, we display the βi,j in a Betti tablewith whose
ith column and j th row contains the value βi,i+j (F ). If R is a field or Z we write XR(a, b)

to denote the subscheme of Pa+b+1
R that is defined by the ideal I2,1 of Theorem 4.2, and we

write XR
e (a, b) for the subscheme defined by Ie(a, b) more generally. We write P R(a, b)

and P R
e for the corresponding homogeneous coordinate rings.

If F is the minimal free resolution of P F(a, b) as a module over

F[x0, . . . , xa, y0, . . . , yb],
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where F is a field of characteristic p, we say that Green’s conjecture holds for XF(a, b) if
βi,i+1(F ) = 0 for i ≥ max(a, b), and similarly for XF

e (a, b). Note that the presence of the
ideal of the rational normal curves of degree a and b inside the ideal of X(a, b) implies that
βi,i+1(F ) �= 0 for 0 < i < max(a, b), so that when Green’s conjecture holds, it is sharp.

We have already shown that P F(a, b) is Cohen-Macaulay. The hyperplane section, which
is a ribbon canonical curve, thus has minimal free resolution with the same Betti numbers
[11, Proposition 1.1.5]. Since the hyperplane is a ribbon of genus g = a+b+1 and Clifford
index b by [5, p. 730], this is what Green’s conjecture predicts for ribbons [5, Corollary
7.3]. Since ribbons do satisfy Green’s conjecture in characteristic 0 [12], it follows that this
is true for K3 carpets as well.

Returning to the general setting of a graded free complex F over a graded R-algebra P

with R = P0 ∼= P/P+, we define the kth constant strand of F , denoted F (k), to be the
submodule of elements of internal degree k of the complex F ⊗P R. Thus, F (k) has the form:

F (k) : · · · ← Rβk−2,k(F ) ← Rβk−1,k(F ) ← Rβk,k(F ) ← · · · .

We write Hi(F
(k) for the homology of this subcomplex at the term Rβi,k(F ). If R is a field,

F is any graded P -free resolution of a module M , and F ′ is the minimal free resolution
of M , then since the minimal free resolution is a summand of any free resolution, we have
βi,k(F

′) = Hi(F
(k)).

To survey what happens for all primes p at once, we work over Z. We have shown that
the homogenous ideal of X(a, b) ⊂ P

a+b+1
Z

is minimally generated by a Gröbner basis
consisting of forms with integer coefficients, and the coefficients of the lead terms are ±1.
Thus, the homogeneous coordinate ring PZ(a, b) of XZ(a, b) is a free Z-algebra, and any
free resolution over PZ(a, b) reduces, modulo a prime p, to a free resolution of PZ/p(a, b)

over in characteristic p.
This means that we can deduce properties in all characteristics from properties of a free

resolution over Z. We will use the (not necessarily minimal) free resolution introduced (in
a slightly different form) in [26], called the Schreyer resolution in Singular. See [6] for
a mathematical exposition, and [18] for an efficient algorithm. We have implemented a
Macaulay2 package K3Carpets.m2 [17] for exploration of these questions.

The definition of the Schreyer resolution of an ideal I , described in [6], starts with a
normalized Gröbner basis

f1, . . . , fn

of I , sorted first by degree and then by the reverse lexicographic order of the initial terms.
Each minimal monomial generator of the monomial ideal

Mi = (in(f1), . . . , in(fi−1)) : in(fi) for i = 2, . . . , n

determines a syzygy. One shows that these syzygies form a Gröbner basis for the first syzygy
module of f1, . . . , fn with respect to the induced monomial order. Their lead terms are
mjui for generators ui of F1 mapping to fi and mj ∈ Mi a minimal monomial generator.
Continuing with the algorithm, we get the finite free resolution F whose terms Fi are free
modules with chosen bases.

It will be useful in the proof of Theorem 5.4 to give each of the chosen basis elements of
Fp a name, which is a sequence m1, . . . , mp of monomials:
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Definition 5.1 The basis element ui of F1 gets as a name the monomial in(fi). If the min-
imal generator uj ∈ Fp is mapped to a syzygy with lead term muk ∈ Fp−1, then the name
of a generator uj of Fp is as follows:

name(uj ) = name(uk),m.

We define the name product of a generator Fp to be the product of the monomials in its
name. The total (internal, as opposed to homological) degree of a generator is thus the
degree of its name product.

For simplicity, when we write X(a, b), we will henceforward assume that a ≥ b. To
check whether Green’s conjecture holds, we only need to check a single homology group of
a constant strand in an arbitrary free resolution:

Proposition 5.2 The K3 carpet XF(a, b) over a field F satisfies Green’s conjecture if and
only if, for any graded free resolution F of the homogeneous coordinate ring of PZ(a, b),
the constant strand F (a+1) satisfies Ha(F

(a+1) ⊗Z F) = 0.

Proof We must show that in the minimal free resolution F ′ of P F(a, b), the term F ′
k , for

k ≥ a, has no generators of degree ≤ k + 1. The construction of the Schreyer resolution
F of PZ(a, b) shows that F has no generators of degree ≤ k, and since F ′ is a summand
of F ⊗Z F, the same is true for F . The hypothesis that Ha(F

(a+1) ⊗Z F) = 0 (for any
resolution F over the integers) implies that F ′

a does not have any generators of degree a+1,
either, proving the assertion for k = a. We complete the proof by induction on k ≥ a.

Assuming that F ′
k has no generators of internal degree ≤ k + 1, the differential of F ′

would map any generators of Fk+1 having internal degree k+2 to scalar linear combinations
of generators of Fk having internal degree k+2. Because F ′ is minimal, this cannot happen.

Example 5.3 Here is the Betti table of the Schreyer resolution F of PZ(6, 6) computed with
Macaulay2:

0 1 2 3 4 5 6 7 8 9 10 11

0: 1 . . . . . . . . . . .

1: . 55 320 930 1688 2060 1728 987 368 81 8 .

2: . . 39 280 906 1736 2170 1832 1042 384 83 8

3: . . . 1 8 28 56 70 56 28 8 1

In this case, Proposition 5.2 shows that Green’s conjecture over F depends only on a
property of the 7th constant strand F (a+1) = F (7). In our example, this has the form as
follows:

0 ← Z
8 ← Z

1736 ← Z
1728 ← 0.

It has a surjective first map, so the vanishing of Ha(F
(7) ⊗ZF) is equivalent to the nondivis-

ibility by p of the determinant of a certain 1728× 1728 matrix M over Z. Computationally
we find that

detM = 21312 372 5120.
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Thus, in characteristic 0 or characteristic p �= 2, 3, 5, this carpet satisfies Green’s
conjecture with Betti tables.

0 1 2 3 4 5 6 7 8 9 10 11

0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1155 . . . . . .

2: . . . . . . 1155 1408 891 320 55 .

3: . . . . . . . . . . . 1

For the exceptional primes p, we can determine the Betti tables by computing the Smith
normal form of M and the other matrices in the constant strands of the nonminimal resolu-
tion. They are as follows:
p = 2 :

0: 1 . . . . . . . . . . .

1: . 55 320 900 1488 1470 720 315 80 9 . .

2: . . 9 80 315 720 1470 1488 900 320 55 .

3: . . . . . . . . . . . 1

p = 3 :
0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1162 48 7 . . . .

2: . . . . 7 48 1162 1408 891 320 55 .

3: . . . . . . . . . . . 1

p = 5 :
0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1155 120 . . . . .

2: . . . . . 120 1155 1408 891 320 55 .

3: . . . . . . . . . . . 1

.

Experimentally, we have strong evidence that p = 2 and p = 5 are also exceptional primes
for the general curve of genus 13, while a general curve of this genus in characteristic 3
satisfies Green’s Conjecture (see [7] and Remark 6.2 below). For characteristic p = 2,
the experiments support the conjecture that a general smooth curve of genus 13 has the
following the Betti table with much smaller numbers

0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1155 64 . . . . .

2: . . . . . 64 1155 1408 891 320 55 .

3: . . . . . . . . . . . 1

than the carpet, while, for p = 5, the experimental findings suggest that the Betti table of
the carpet coincides with the conjectural Betti table of a general smooth curve of genus 13.

The Schreyer resolution is rarely minimal, even for monomial ideals. Thus, the following
surprised us:

Theorem 5.4 Let a, b ≥ 2, and write I = I(2,1) for the saturated ideal defining XZ(a, b),
as exhibited in Theorem 4.2. The Schreyer resolution of in(I ) is minimal.

Proof In our case, the minimal generators of I form a Gröbner basis (Theorem 4.2), which
is thus automatically normalized. Let F denote the Schreyer resolution of J = in(I ).
Defining the Mi as above, we see from the construction that the Schreyer resolution G
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of in(f1), . . . , in(fn−1) is a subcomplex of F , and the quotient complex is the Schreyer
resolution of Mn, appropriately twisted and shifted.

There are n = (
a+b−1

2

)
generators of J , which we sort by degree refined by the reverse

lexicographic order as follows:
x2
1 , x1x2, x2

2 , . . . , x
2
a−1, x2y0, x3y0, . . . , xay0, x2y1, x3y1, . . . , xay1, y2

1 , x2y2, x3y2, . . .,
xay2, y1y2, y2

2 , . . . . . . , x2yb−2, x3yb−2, . . . , xayb−2, y1yb−2, y2yb−2, . . . , y
2
b−2,

y1yb−1, . . . , yb−2yb−1, y2
b−1.

Thus, for 1 ≤ k ≤ n − 1 we have the following:

in(fk) Range Mk

xixj 1 ≤ i ≤ j ≤ a − 1 (x1, . . . , xj−1)

xiyj 2 ≤ i ≤ a − 1, 0 ≤ j ≤ b − 2 (x1, . . . , xa−1, y0, . . . , yj−1)

xayj 0 ≤ j ≤ b − 2 (x2, . . . , xa−1, y0, . . . , yj−1, x
2
1 )

yiyj 1 ≤ i ≤ j ≤ b − 2 (x2, . . . , xa−1, y1, . . . , yj−1, x
2
1 )

yiyb−1 1 ≤ i < b − 1 (x2, . . . , xa−1, y1, . . . , yb−2, x
2
1 )

The monomial ideal Mn is more complicated. The initial term of fn is in(fn) = y2
b−1,

and we get the following:

Mn = (y1, . . . , yb−2, x
2
1 , x1x2, . . . , x

2
a−1, x2y0, . . . , xay0).

Lemma 5.5 The Schreyer resolution G of the ideal (in(f1), . . . , in(fn−1)) is the minimal
free resolution of this ideal.

Proof For k < n, each Mk is generated by a regular sequence of monomials.The name
of each generator of Gp is thus an initial monomial of an fk , followed by a decreasing
sequence of distinct elements of Mk of length p − 1.

We must show that there are no constant terms in the differential Gp+1 → Gp for each
p > 0. The generators of Gp have degrees p + 1 and p + 2. The Za+b+2-grading of the
monomial ideal induces a Za+b+2-grading on G. Again, in this grading, a generator of Gp

has same total degree as its name product.
Each name product of a generator of Gp of degree p + 2 is divisible by x2

1 and some yj .
However, the only name products of generators of Gp+1 of degree p + 2 that are divisible
by x2

1 are monomials in F[x1, . . . , xa−1], and the conclusion follows.
To treat the case of Mn, we first study a smaller resolution:

Lemma 5.6 The Schreyer resolution H of the monomial ideal

JH = (x2
1 , x1x2, . . . , x

2
a−1, x2y0, . . . , xay0)

is the minimal free resolution of this ideal.

Proof We order the monomial generators mk of JH as indicated above, and obtain this time

mk Range (m1, . . . , mk−1) : mk

xixj 1 ≤ i ≤ j ≤ a − 1 (x1, . . . , xj−1)

xiy0 2 ≤ i ≤ a − 1 (x1, . . . , xa−1)

xay0 (x2, . . . , xa−1, x
2
1 )



18 D. Eisenbud, F.-O. Schreyer

As in the proof of Lemma 5.5, the generators of Hp for p ≥ 1 are in degree p+1 and p+2,
and only the name products of those in degree p + 2 are divisible by x2

1y0, so no constant
terms can occur in the differential by the Za+b+2-grading.

We continue now with the proof of Theorem 5.4. The resolution of Mn is the tensor prod-
uct of the resolution H from Lemma 5.6 with the Koszul complex K = K(y1, . . . , yb−2).
Thus, the terms of the complex F resolving in(I ) are built from the terms of G and terms
of the tensor product complex K ⊗ H shifted and twisted:

Fp = Gp ⊕
min(b−2,p−1)⊕

q=0

Kq ⊗ Hp−1−q(−2).

Since G is a subcomplex of F , the only possibly nonminimal parts of the differentials in F

have source in the subquotient complex K(y1, . . . , yb−2) ⊗ S[−1](−2) and target in G.
The Schreyer resolution FY of (y1, . . . , yb−1)

2 is a subcomplex of F of which
K(y1, . . . , yb−2) ⊗ S[−1](−2) is a subquotient. Since FY has only generators of degree
p + 1 in homological degree p ≥ 1, all maps of FY and hence F are minimal. This
completes the proof of Theorem 5.4.

Corollary 5.7 The minimal free resolution of in(I ) and the Schreyer resolution of I have
length a + b − 1 and their nonzero Betti numbers are as follows:

β0,0(F ) = 1,

βp,p+1(F ) = p

(
a

p + 1

)
+

b−2∑
j=0

(
(a − 2)

(
a + j − 1

p − 1

)
+

(
a + j − 2

p − 1

))

+
b−2∑
j=1

j

(
a + j − 2

p − 1

)
+ (b − 2)

(
a − 2 + b − 1

p − 1

)
+

(
b − 2

p − 1

)

for 1 ≤ p ≤ a + b − 2,

and

βp,p+2(F )

=
b−2∑
j=0

(
a + j − 2

p − 2

)
+

b−2∑
j=1

j

(
a + j − 2

p − 2

)
+ (b − 2)

(
a − 2 + b − 1

p − 2

)

+
p−2∑
q=0

(
b − 2

q

)(
(p − q − 1)

(
a

p − q

)

+(a − p + q + 1)

(
a

p − q − 2

)
+

(
a − 2

p − q − 4

))

for 2 ≤ p ≤ a + b − 1

and

βp,p+3(F ) =
(

a + b − 4

p − 3

)
for 3 ≤ p ≤ a + b − 1.
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Proof The complex H has length a and its nonzero Betti numbers are as follows:

β0,0(H) = 1,

βp,p+1(H) = p

(
a

p + 1

)
+ (a − p)

(
a

p − 1

)
+

(
a − 2

p − 3

)
for 1 ≤ p ≤ a

and

βp,p+2(H) =
(

a − 2

p − 2

)
for 2 ≤ p ≤ a.

The complex G has length a + b − 1 and its non-zero Betti numbers are as follows:

β0,0(G) = 1,

βp,p+1(G) = p

(
a

p + 1

)
+

b−2∑
j=0

(
(a − 2)

(
a + j − 1

p − 1

)
+

(
a + j − 2

p − 1

))

+
b−2∑
j=1

j

(
a − 2 + j

p − 1

)
+ (b − 2)

(
a − 2 + b − 1

p − 1

)

for 1 ≤ p ≤ a + b − 2

and

βp,p+2(G) =
b−2∑
j=0

(
a + j − 2

p − 2

)
+

b−2∑
j=1

j

(
a + j − 2

p − 2

)
+ (b − 2)

(
a − 2 + b − 1

p − 2

)

for 2 ≤ p ≤ a + b − 1.

The formula now follows from the following:

Fp = Gp ⊕
min(b−2,p−1)⊕

q=0

Kq ⊗ Hp−1−q(−2).

Remark 5.8 The formula for βp,p+1(F ) can be simplified:

βp,p+1(F ) =
(

a − 2

p − 1

)
+

(
b − 2

p − 1

)
+ p

(
a + b − 1

p + 1

)
− 2

(
a + b − 3

p − 1

)
.

Using this and βp−2,p+1(F ) = (
a+b−4
p−1

)
, we can also obtain a simplified formula for the

βp,p+2(F )’s by using the identities:

βp,p+1(F ) − βp−1,p+1(F ) + βp−2,p+1(F )

= p

(
a + b − 3

p + 1

)
− (a + b − 2 − p)

(
a + b − 3

a + b − 1 − p

)

= a + b − 2 − p

p + 1

(
a + b − 2

p − 1

)
(a + b − 2p − 2).

Remark 5.9 Eliminating y0 from the equations of Xe(a, b) ⊂ P
a+b+1 gives the equations

of an Xe(a, b − 1) ⊂ P
a+b, and it follows that the Schreyer resolution of Xe(a, b − 1) is a

subcomplex of the Schreyer resolution of Xe(a, b). Indeed, the generators derived from
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in(fk) Range M ′
k

xixj 1 ≤ i ≤ j ≤ a − 1 (x1, . . . , xj−1)

xiyj 2 ≤ i ≤ a − 1, 1 ≤ j ≤ b − 2 (x1, . . . , xa−1, y1, . . . , yj−1)

xayj 1 ≤ j ≤ b − 2 (x2, . . . , xa−1, y1, . . . , yj−1, x
2
1 )

yiyj 2 ≤ i ≤ j ≤ b − 2 (x2, . . . , xa−1, y2, . . . , yj−1, x
2
1 )

yiyb−1 2 ≤ i ≤ b − 2 (x2, . . . , xa−1, y2, . . . , yb−2, x
2
1 )

belong to this subcomplex. For the last equation with lead term in(fn′) = y2
b−1, we get

M ′
n′ = (y2, . . . , yb−2, x

2
1 , x1x2, . . . , x

2
a−1, x2y1, . . . , xay1)

which is not a subset of the corresponding Mn. Hence, some generators of the Schreyer
resolution for Xe(a, b − 1) are not mapped to generators of the Schreyer resolution of
Xe(a, b) but rather to linear combinations.

Remark 5.10 The equations of Xe(a, b) allow a Z3-grading. The equations and the whole
resolution is homogenous for deg xi = (1, 0, i) and deg yj = (0, 1, j). The nonminimal
maps in the nonminimal resolution decompose into blocks with respect to this fine grading.

We can also compute the Betti table for the minimal resolutions of the K3 carpets
XF(a, b) over a field F of characteristic 2. Note that, because e1, e2 are elements of F, the
degenerate K3 surface XF

(0,1)(a, b) coincides with the carpet XF(a, b) = XF

(2,1)(a, b).

Theorem 5.11 Let a, b ≥ 2 and let F be an arbitrary field. The minimal free resolution
of the homogeneous coordinate ring of X := Xe(a, b) ⊂ P

a+b+1 for e = (0, 1) has Betti
numbers as follows:

βi,i+1 = i

(
a + b − 2

i + 1

)
+ (max(a − i, 0) + max(b − i, 0))

(
a + b − 2

i − 1

)

for i ≥ 1 and βi,i+2 = βa+b−1−i,a+b−i for 1 ≤ i ≤ a + b − 2. (These Betti numbers
coincide with the Betti numbers of a 4-gonal canonical curve of genus g = a + b + 1 with
relative canonical resolution invariants a − 2 and b − 2 (see [24, Example (6.2)]).

Proof The 2 × 2 minors of the matrix

m =
(

x0 x1 . . . xa−2 y0 y1 . . . yb−2
x2 x3 . . . xa −y2 −y3 . . . −yb

)

are contained in IX . Thus, X is contained in a four-dimensional rational normal scroll of
type

Y = S(�a/2�, �a/2� − 1, �b/2�, �b/2� − 1)

of degree f = a − 1 + b − 1. As a subscheme of the scroll, X is the complete intersection
of two divisors, whose classes are of class 2H − (a − 2)R and 2H − (b − 2)R, where
H, R ∈ Pic Y denote the hyperplane class and the ruling of Y . These are defined by the
vanishing of

x2
1 − x0x2, x

2
2 − x1x3, . . . , x

2
a−1 − xa−2xa

and

y2
1 − y0y2, y

2
2 − y1y3, . . . , y

2
b−1 − yb−2yb,
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respectively. In terms of the Cox ring F[s, t, u0, u1, v0, v1] of Y they are given by relative
quadrics {

u21 − stu20 if a ≡ 0 mod 2
su21 − tu20 if a ≡ 1 mod 2

and {
v21 − stv20 if b ≡ 0 mod 2
sv21 − tv20 if b ≡ 1 mod 2.

Thus by [24, Examples (3.6) and (6.2)], the minimal free resolution of IX is given by an
iterated mapping cone

C0 ← [Ca−2(−2) ⊕ Cb−2(−2) ← Cf −2(−4)]
where Cj denotes the j th Buchsbaum-Eisenbud complex associated to m. (The complexes
C0, C1 are also known as Eagon-Northcott complex and Buchsbaum-Rim complex of m.)

Part of Theorem 5.11 generalizes as follows.

Theorem 5.12 (Resonance) Suppose p(z) = z2−e1z+e2 has distinct nonzero roots t1, t2 ∈
F such that t2/t1 is a primitive kth root of unity and a, b ≥ k + 1, and set X := XF

e (a, b).
(1) X is contained in a rational normal scroll of type

Y = S(a0, . . . , ak−1, b0, . . . , bk−1)

with
ai = |{0 ≤ j ≤ a | j ≡ i mod k}| − 1

and
bi = |{0 ≤ j ≤ b | j ≡ i mod k}| − 1.

(2) The map Y → P
1 induces a fibration of X into 2k-gons.

(3) If a, b ≥ 2k2, then X has graded Betti numbers β�,�+1 = 0 for � > a+b−1+2−2k
and β�,�+2 = 0 for � < 2k − 2. In particular, the range of nonzero Betti numbers coincides
with range predicted by Green’s conjecture for a general 2k-gonal curve of genus g =
a + b + 1.

We speak of the phenomenon in the Theorem as resonance because it comes from a
periodicity induced by (t2/t1)

k = 1. In characteristic 0, Green’s conjecture is known to hold
for general d-gonal curves of every genus by [1], and it is known in every characteristic for
some d-gonal curve of genus g if g > (d −1)(d −2) by [25]. However, we do not know that
the family of curves of genus g and gonality d is irreducible. Indeed, the Hurwitz scheme
could be reducible in positive characteristics (see [19, Example 10.3]).

Proof of Parts (1) and (2) By Theorem 4.2, X is the union of the two scrolls defined by the
minors of the matrices

m� =
(

x0 x1 . . . xa−1 | y0 y1 . . . yb−1
x1 x2 . . . xa | t�y1 t�y2 . . . t�yb

)
for � = 1, 2

respectively.
Applying an automorphism of Pa+b−1, we may assume that t1 = 1 and thus that t = t2

is a kthe root of unity. The minors of the matrix

m =
(

x0 x1 . . . xa−k | y0 y1 . . . yb−k

xk xk+1 . . . xa | yk yk+1 . . . yb

)
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lie in the intersection of the ideals of minors of m1 and m2, as one sees from the formulas

k−1∑
�=0

tk−�−1
∣∣∣∣ xi+� yj−�−1
xi+�+1 tyj−�

∣∣∣∣ =
∣∣∣∣ xi yj−k

xi+k tkyj

∣∣∣∣ ,
which hold for 0 ≤ i ≤ a − k and k ≤ j ≤ b. Thus, the scheme X is contained in a
2k-dimensional scroll of the type claimed (for example(

x0 xk . . . x(a0−1)k
xk x2k . . . xa0k

)

is a submatrix of m).
Since X = S1 ∪ S2 is the union of two scrolls whose basic sections Ca and Cb coincide,

we find a pencil of 2k-gons (away from the ramification points at 0 and infinity of the k-
power map from P

1 to P
1) as follows by alternating rulings from S1 and S2. Starting from

a general point (1 : s : s2 : . . . : sa : 0 . . . 0) ∈ Ca , we have a ruling of the first scroll S1
connecting it to the point (0 : . . . : 0 : 1 : s : . . . : sb) ∈ Cb. The ruling of the second scroll
S2 joins this point on Cb with the point (1 : ts : . . . : (ts)a : 0 : . . . : 0).

3-resonance

Continuing with a ruling of the first scroll, and so on, this process closes with a 2k-gon,
since t is a primitive kth root of unity.

The map Y → P
1 sends a point of Y to the ratio of the two rows of m evaluated at that

point, so the 2k-gon is contained in the fiber defined by the following:

(
sk,−1

) (
x0 x1 . . . xa−k y0 y1 . . . yb−k

xk xk+1 . . . xa yk yk+1 . . . yb

)
= 0.

Since sk = s̃ has k distinct solutions for s̃ �= 0, the fiber of the composition X = S1∪S2 ↪→
Y → P

1 over the point (1 : s̃) contains precisely k rulings of each of the two scrolls S�.
Hence, the 2k-gon is the complete fiber of X → P

1.
The last statement follows by resolving the relative resolution ofX in the 2k-dimensional

scroll Y by an iterated mapping cone built from Buchsbaum-Eisenbud complexes following
the strategy of [25]. Before we discuss details, we look at an example.

Example 5.13 We consider cases of 3-resonance, k = 3, and take X = X(−1,1)(a, b) ⊂
P

a+b+1
F

, since the polynomial p(z) = z2 + z + 1 has as zeroes the primitive third roots
of unity. Note that in characteristic 3, the union of scrolls X(−1,1)(a, b) coincides with
the carpet X(a, b) = X2,1(a, b), so in characteristic 3, there is no 3-resonance, but the
considerations of the free resolution below are the same. By Theorem 4.2, the scheme
X = X(−1,1) ⊂ P

a+b+1
F

is defined by the ideal I(−1,1) generated by the 2 × 2 minors of the
two matrices (

x0 x1 . . . xa−1
x1 x2 . . . xa

) (
y0 y1 . . . yb−1
y1 y2 . . . yb

)
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and the entries of the (a − 1) × (b − 1) matrix⎛
⎜⎜⎜⎝

x0 x1 x2
x1 x2 x3
...

...
...

xa−2 xa−1 xa

⎞
⎟⎟⎟⎠

⎛
⎝ 0 0 1

0 −1 0
1 0 0

⎞
⎠

⎛
⎝ y0 y1 . . . yb−2

y1 y2 . . . yb−1
y2 y3 . . . yb

⎞
⎠ .

We suppose for concreteness that a, b ≡ 2 mod 3. Then, the scheme X is contained in a
scroll Y of type

Y = S

(
a − 2

3
,
a − 2

3
,
a − 2

3
,
b − 2

3
,
b − 2

3
,
b − 2

3

)
.

In terms of the Cox ring (≡ toric coordinate ring) F[s, t, u0, u1, u2, v0, v1, v2] of Y , the
remaining equations reduce to an ideal sheaf ICox generated by nine relative quadrics that
are the 2 × 2 minors of the matrices(

u0 u1 su2
u1 u2 tu0

)
and

(
v0 v1 sv2
v1 v2 tv0

)

together with

u2v0 + u1v1 + u0v2, tu0v0 + su2v1 + su1v2, tu1v0 + tu0v1 + su2v2.

The relative resolution constructed in [24, Section 3] can be regarded as a complex of free
modules over the Cox ring which sheafifies to a resolution of OX by locally free OY -
modules. In our specific case, it has the Betti table:

0 1 2 3 4

total: 1 9 16 9 1

0: 1 . . .

1: . 3 . . .

2: . 6 16 6 .

3: . . . 3

4: . . . . 1

where we have given all the variables in the Cox ring degree 1.
We specialize further and take a = b = 8. Then,

Y = S(2, 2, 2, 2, 2, 2) ⊂ P
17
F

is a rational normal scroll of degree f = 12 isomorphic to P
1
F

× P
5
F
.

The relative resolution of OX = OXe(8,8) as anOY -module has shape

OX ← OY ← OY (−2H + 3R)6 ⊕ OY (−2H + 4R)3 ← OY (−3H + 5R)16 ←
OY (−4H + 6R)3 ⊕ OY (−4H + 7R)3 ← OY (−6H + 10R) ← 0.

Here, H and R denote the hyperplane class and the ruling of Y .
Each term in the relative resolution is resolved by a Buchsbaum-Eisenbud complex Cj

associated to the defining matrix m of Y regarded as a map m : F → G between vector
bundles F ∼= O(−1)f and G ∼= O2 on Pa+b+1.

0 ← OY (jR) ← SjG ← Sj−1G ⊗ F ← . . .

. . . ← �jF ← �j+2F ⊗ �2G∗ ← . . .

. . . ← �fF ⊗ �2G∗ ⊗ (Sf −j−2G)∗ ← 0,



24 D. Eisenbud, F.-O. Schreyer

for 0 ≤ j ≤ f − 2 (see [24] and [14, Theorem A2.10 and Exercise A2.22]). Two further
facts are important to us:

(1) The complexes Cj remain exact under the global section functor

E �→ �∗(F) = ⊕n∈ZH 0(Pa+b+1, E(n)),

i.e., we obtain projective resolutions of �∗(OY (jR)) over the polynomial ring
F[x0, . . . , xa, y0, . . . , yb] = �∗(OPa+b+1). (This holds because the complexes Cj have
length f − 1 < dimP

a+b+1.)
(2) The complex Cj has j linear maps followed by a quadratic map and further linear

maps.
By (1), we can resolve the relative resolution by the iterated mapping cone of complex

Cj (−d)’s. In our specific example, this is the iterated mapping cone

⊕6C3(−2) ⊕3C7(−4)
C0 ← [ ⊕ ← [ ⊕16C5(−3) ← [ ⊕ ← C10(−6) ] ] ]

⊕3C4(−2) ⊕6C6(−4)
.

The iterated mapping cone F is not minimal. However, the complex Cj (−d) for d ≥ 2
does not contribute to the linear strand in a range outside the contribution of the Eagon-
Northcott complex C0, which proves assertion (3) of Theorem 5.12 in this specific case.
Indeed, the additional contribution of maximal homological degree comes from the complex
⊕3C7(−4)[−3]. It is a contribution to β10,11(F ) = dim(F10 ⊗S F)11 to which also C0

contributes since
10 < length C0 = f − 1 = 11.

The presence of C0 and its dual inside the minimal resolution gives a lower bound on the
Betti numbers, which is realized for example in the case of X(−1,1)(6, 6) in characteristic 3
computed in Example 5.3, and therefore in characteristic 0 and all but finitely many other
primes. Further computation shows that the only exceptional primes for X(−1,1)(6, 6) are 2
and 5.

Proof of Theorem 5.12 (3) We continue with the proof of Theorem 5.12 keeping the
notation of the first part of the proof.

The Cox ring F[s, t, u0, . . . , uk, v0, . . . , vk] is Z2-graded with s, t of degree (0, 1) and
deg ui = (1, −ai) and deg vi = (1, −bi). The ideal ICox of X = Xe(a, b) in the Cox ring
is obtained by substituting

xj = sai−�t�ui if j = �k + i with 0 ≤ i < k

and
yj = sbi−�s�vi if j = �k + i with 0 ≤ i < k

into the generators of the ideal Ie and saturating with the ideal (s, t).
We can alter and refine this grading to a Z3-grading by setting deg s = deg t = (0, 0, 1),

deg ui = (1, 0, a0 − ai) and deg vi = (0, 1, b0 − bi), since the substituted equations are
homogeneous with respect to this grading. The last component of the degree of each variable
of the Cox ring is now 0 or 1.

For the description of the generators of ICox, the residues 0 ≤ α, β < k with α ≡ a, β ≡
b mod k will play a role. Writing j = �k + i as above the j th column of the matrix MX

after substitution becomes(
xj

xj+1

)
=

(
sai−�t�ui

sai+1−�t�ui+1

)
or

(
sak−1−�t�uk−1

sa0−�−1t�+1u0

)
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in case j + 1 ≡ 0 mod k. Thus, the minors of the 2 × k matrix

A =
(

u0 u1 . . . suα . . . uk−1
u1 u2 . . . uα+1 . . . tu0

)

lie in ICox, where the factor s occurs only once in the first row, more precisely in front of
uα , and the factor t occurs once in the second row in front of u0. Likewise, we get a 2 × k

matrix B involving the v’s.
A similar pattern arises from the (a − 1) × 3 and 3 × (b − 1) Hankel matrices entering

the definition of the bilinear equations (4.1) of Xe(a, b). The Hankel matrix involving the
x’s becomes the (k − 1) × 3 matrix A′ which is the transpose of

⎛
⎝ u0 u1 . . . suα−1 suα . . . uk−2

u1 u2 . . . suα uα+1 . . . uk−1
u2 u3 . . . uα+1 uα+2 . . . tu0

⎞
⎠ .

There are all together at most three factors s and one factor t . Similarly, we get a 3× (k −1)
matrix B ′ involving the v’s. The generators of ICox of degree (1, 1, ∗) are obtained from the
entries of the (k − 1) × (k − 1) matrix

C = A′DB ′

with D the 3×3 antidiagonal matrix with entries 1,−e1, e2 from (4.1). The ideal generated
by entries of C might be not saturated with respect to st . For example, the form

suα+1vβ−1 − e1s
2uαvβ + e2suα−1vβ+1

is divisible by s.
By [24], there are exactly

(2k−1
2

) − 1 relative quadrics. From the calculation above, we

see
(
k
2

)
relative quadrics of each of types (2, 0, ∗) and (0, 2, ∗), and (k−1)2 relative quadrics

of type (1, 1, ∗). Since

2

(
k

2

)
+ (k − 1)2 =

(
2k − 1

2

)
,

we see that there is one superfluous relative quadric, and since the ones of type (2, 0, ∗) and
(0, 2, ∗) are independent, it is of type (1, 1, ∗). In summary, the ideal sheaf ICox depends
only on the residue classes α, β of a and b mod k and is generated by

2

(
k

2

)
+ (k − 1)2 − 1 =

(
2k − 1

2

)
− 1

relative quadratics of degrees (2, 0, ∗), (0, 2, ∗), (1, 1, ∗)where ∗ represents values between
0 and 4.

The �th free module in our relative resolution E� has generators of degree (d1, d2, d3)

with d1 + d2 = � + 1 for 1 ≤ � ≤ 2k − 3. The last module is cyclic with a generator of
degree (k, k, 2k − α − β). Indeed, this is the sum of the degree of all variables of the Cox
ring, which equals the degree of the generator of its canonical module. By adjunction, the
relative resolution has to end with this term, since Xe(a, b) has a trivial canonical bundle.
The resolution is self-dual.
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The sequences

d� = min{d3 | ∃ a generator of E� of degree (d1, d2, d3) with d1 + d2 = � + 1}
and

d� = max{d3 | ∃ a generator of E� of degree (d1, d2, d3) with d1 + d2 = � + 1}
are weakly increasing, because for each generator of the Cox ring the third component of
its degree is nonnegative.

We write Pic(Y ) = ZH ⊕ ZR, where H denotes a hyperplane section and R a fiber of
Y → P

1. In terms of the Pic(Y )-grading a generator of degree (d1, d2, d3) corresponds to a
summand

OY (−(d1 + d2)H + (d1a0 + d2b0 − d3)R).

To establish assertion (3) of Theorem 5.12, we must show that the multidegree
(d1, d2, d3) of every generator of E� for 1 ≤ � ≤ 2k − 3 satisfies

d1 + d2 − 1 + d1a0 + d2b0 − d3 ≤ degY − 1 = f − 1.

Indeed, the left-hand side is the length of the contribution of

Cd1a0+d2b0−d3(−d1 − d2)

to the linear part of the iterated mapping cone, while the right-hand side is the length of the
C0.

Note that −d3 ≤ −d� = −(2k − α − β) + d(2k−2−�) holds by the self-duality of the
relative resolution. Because ωX

∼= OX , the last term in the relative resolution has to be
OY (−2kH + (f − 2)R) ∼= ωY so f − 2 = ka0 + kb0 − (2k − α − β).

Thus, utilizing a0 ≥ b0, we see that the conditions

� − (2k − 1 − �)b0 + d2k−2−� ≤ 1

suffice. We use the rough estimate d2k−2−� ≤ 2k, which holds since the maximal d3 in
the relative resolution is 2k − α − β ≤ 2k. The desired inequality holds for all � with
1 ≤ � ≤ 2k − 3 if

b0 ≥ 2k − 2 = max

{
2k + � − 1

2k − 1 − �
| � = 1, . . . , 2k − 3

}
.

Since b+1 = kb0− (k−1−β) ≤ kb0, this follows from our assumption a ≥ b ≥ 2k2.

Remark 5.14 A proof of Theorem 5.12 (3) for a, b � k can be deduced by substantially
easier arguments, which do not rely on the description of ICox but only on the existence of
a relative resolution proved in [24] and an analysis of how the numerical data change when
we re-embed Y by H ′ = H + jR. Since

• (a, b) will be replaced by (a + jk, b + jk) and thus f by f + 2jk and
• OY (−dH + cR) = OY (−dH ′ + (c + dj)R)

the conclusion of (3) is obvious for j sufficiently large. Based on experiments, we
conjecture that the optimal bound is a ≥ b ≥ k2 − k. This is true for k ≤ 5.

For further information and conjectures about relative resolutions of canonical curves
(see [8, 9]).
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6 Conjectures and Computational Results

Remark 6.1 It follows from Proposition 5.2 that Green’s conjecture is true for the balanced
carpetX(a, a) if and only if a certain f (a)×f (a) integer matrix has a nonzero determinant,
where,

f (a) = a

(
2a − 1

a + 1

)
− 2

(
2a − 3

a − 1

)

by Remark 5.8. By Theorem 5.11, we know that βa,a+1(X(a, a)) = a
(2a−2

a+1

)
over fields of

characteristic 2. Hence,

2a(2a−2
a+1 )

is a factor of this determinant. For small a, the relevant values are as follows:

a 2 3 4 5 6 7

| det | 1 24 23236 2266315 213123725120 26774310205315

f (a) 0 9 64 350 1728 8085
a
(2a−2

a+1

)
0 3 24 140 720 3465

One step in achieving a proof of Green’s conjecture using K3 carpets might be to give an
explanation of the prime power factorizations of the determinants in the table above.

The data in this table was produced by our Macaulay2 [22] package K3Carpets.m2 ver-
sion 0.5 [17]. Here is how these determinants are actually computed. The first step is the
computation of the Schreyer resolution of an carpet X(a, a) over F[x0, . . . , xa, y0, . . . , ya]
for a large finite prime field F = Z/(p). In practice, we take p = 32003. The second step
is to lift the matrices in the resolution to P = Z[x0, . . . , xa, y0, . . . , ya] by using the bijec-
tion of Z/32003 with the integers in the interval [−16001, 16001]. The resulting matrices
define the Schreyer resolution over P if and only if the lifted matrices form a complex. After
checking this, we use the fine grading to find the blocks in the crucial constant strand. For
the computation of the determinants of the blocks, we use their Smith normal forms. The
final step is the factorization of the product of all determinants of all blocks.

Remark 6.2 The enormous size ot the determinants in Remark 6.1 must correspond to
a combination of the resonance phenomenon with the exceptional behavior of Green’s
conjecture in positive characteristic.

Experimental data of [7], see also [10], suggests that a general canonical curve of odd
genus g = 2a + 1 violates Green’s conjecture in small characteristic in the following cases:

a g = 2a + 1 Primes βa−1,a+1 = βa,a+1

3 7 2 1
4 9 3 6
5 11 2, 3 28, 10
6 13 2, 5 64, 120
7 15 2, 3, 5 299, 390, 315

For genus g = 7, 9, this is rigorously proven by [24] and [23]. For genus g = 11, 13, 15,
we know that the examples found in [7] violate the full Green conjecture; however, we do
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not know whether their Betti numbers coincide with the Betti numbers of the general curve
of the given genus in these characteristics.

Computing a nonminimal resolution of the K3 union of scrolls Xe(a, a) over the coef-
ficient ring Z[e1, e2], we find the following values of the determinant of the crucial
nonminimal part.

a ± det

3 2e31e
3
2

4 36e321 e322
5 246310e2201 e2352 (e21 − e2)

5

6 2645120e12481 e14642 (e21 − e2)
72

7 239033905315e63771 e83022 (e21 − e2)
630(e21 − 2e2)7

Based on these values, we propose two conjectures:

Conjecture 6.3 For e = (e1, e2) ∈ F
2 with e2 �= 0 the union of scrolls Xe(a, a) has a pure

resolution over an field F of characteristic 0 unless the polynomial p(z) = z2 − e1z + e2 =
(z − t1)(z − t2) has roots such that t2/t1 �= 1 is a kth root of unity for some k ≤ a+1

2 .

Conjecture 6.4 For general e = (e1, e2) ∈ F
2
, the union of scrolls Xe(a, a) over an

algebraically closed field F of characteristic p has a pure resolution if p ≥ a. In particular,
Green’s conjecture holds for the general curve over a field of characteristic p of genus g if
p ≥ g−1

2 .

By the table above and Remark 5.9, both conjectures hold for g ≤ 15.
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18. Eröcal, B., Motsak, O., Schreyer, F.-O., Steenpaß, A.: Refined algorithms to compute syzygies. J. Symb.

Comput. 74, 308–327 (2016)
19. Fulton, W.: Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. Math. (2) 90, 542–

575 (1969)
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