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ABSTRACT

We develop an analytic model for the power spectra of polarized filamentary structures as a way to

study the Galactic polarization foreground to the Cosmic Microwave Background. Our approach is

akin to the cosmological halo-model framework, and reproduces the main features of the Planck 353

GHz power spectra. We model the foreground as randomly-oriented, three-dimensional, spheroidal

filaments, accounting for their projection onto the sky. The main tunable parameters are the distribu-

tion of filament sizes, the filament physical aspect ratio, and the dispersion of the filament axis around

the local magnetic field direction. The abundance and properties of filaments as a function of size

determine the slopes of the foreground power spectra, as we show via scaling arguments. The filament

aspect ratio determines the ratio of B-mode power to E-mode power, and specifically reproduces the

Planck-observed dust ratio of one-half when the short axis is roughly one-fourth the length of the long

axis. Filament misalignment to the local magnetic field determines the TE cross-correlation, and to

reproduce Planck measurements, we need a (three-dimensional) misalignment angle with a root mean

squared dispersion of about 50 degrees. These parameters are not sensitive to the particular filament

density profile. By artificially skewing the distribution of the misalignment angle, this model can re-

produce the Planck-observed (and parity-violating) TB correlation. The skewing of the misalignment

angle necessary to explain TB will cause a yet-unobserved, positive EB dust correlation, a possible

target for future experiments.
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1. INTRODUCTION

Polarized Galactic microwave emission poses a chal-

lenge to the search for primordial B-mode polarization

in the Cosmic Microwave Background (CMB). The B-

mode signal could provide direct constraints on the en-

ergy scale of inflation, but the Milky Way foregrounds

may outshine it at all frequencies, everywhere on the

sky (Planck Collaboration et al. 2016a; Abazajian et al.

2016; Herv́ıas-Caimapo et al. 2016; Thorne et al. 2017;

Remazeilles et al. 2018; Hanany et al. 2019). We have a

limited understanding of this foreground, and we must

learn more to ensure the reliability of future B-mode

measurements.

The foreground emission involves the turbulent inter-

play of gas, dust, and magnetic fields in the Galaxy’s

interstellar medium (ISM). The magnetic fields orga-

nize the flow and control the orientation of grains that

give rise to the polarized dust signal. Although Planck’s

353 GHz polarization channel has given us a first look,

several features of the dust polarization remain without

physical explanations.

For example, the amplitude of dust polarization B-

mode power is approximately half of E-mode power,

ABB/AEE = 0.53 ± 0.01, when fit on a large portion

of the sky (for f effsky = 0.52–0.71). Smaller patches also

show the same mean value ABB/AEE = 0.51, with small

patch-to-patch dispersion σBB/EE = 0.18 (Planck Col-

laboration et al. 2016a, 2018). This observation defied

pre-Planck expectations. Random polarization orienta-

tions, or coherent orientations overlaying random polar-

ization intensity fluctuations, both yield equal amounts

of E and B (Zaldarriaga 2001; Kamionkowski & Kovetz

2014).

We have some understanding of dust physics and its

relationship to polarization modes. The amplitude and

orientation of the dust signal is set by the integrated

column density and magnetic field orientation. For E to

have more power than B qualitatively means that den-

sity fluctuations (structures in the ISM density field)

must prefer orientations parallel or perpendicular to the

local magnetic field (Rotti & Huffenberger 2019). This

picture is borne out by measurements of the magnetic

field orientation in individual, bright, filamentary struc-
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tures in the Planck 353 GHz data (Planck Collaboration

et al. 2016b). This is further validated by the observa-

tions that linear structures in neutral hydrogen emis-

sion, highlighted by a Rolling Hough Transformation,

also correlate with the magnetic field direction indicated

by Planck dust polarization (Clark et al. 2014, 2015).

Other aspects of the dust polarization also need physi-

cal explanations. Both E-mode and B-mode spectra fol-

low power laws (Cℓ ∝ ℓα), with approximately the same

slope, αBB = −2.42 ± 0.02 and αEE = −2.45 ± 0.03.

(Planck Collaboration et al. 2016a, 2018) There is a

positive correlation between dust intensity and E-mode

polarization (noted by Caldwell et al. 2017), with corre-

lation coefficient rTE = 0.357±0.003 (Planck Collabora-

tion et al. 2018) and significant scatter depending on the

sky area but little evidence for scale dependence. Per-

haps more intriguing is a parity-violating, positive TB

correlation (Planck Collaboration et al. 2018). Finally,

the amplitude of dust polarization power correlates to

intensity in patches, roughly as ⟨I⟩1.9patch, for both E and

B (Planck Collaboration et al. 2016a).

A few works have already tried to address these ob-

servations. Caldwell et al. (2017) examined the dust

polarization power spectra of slow, fast, and Alfvén

MHD waves in terms of two parameters: the ratio of gas

to magnetic pressure, and the anisotropy of the MHD

modes around the background field direction. They

found two regions of parameter space that can account

for the E to B ratio and positive TE correlation but

judged that these scenarios are unlikely due to the uni-

formity of the polarization power spectrum across the

sky, and instead suggested that Planck may be seeing

large scale displacements that are driving the turbulent

ISM, rather than the turbulence itself.

On the other hand, Kandel et al. (2017) argued with a

similar analysis that the observed E/B power ratio can

be realized in an analytic MHD model, so long as the

turbulent flow is sub-Alfvénic. Kandel et al. (2018) ex-

tended this analysis to examine the TE correlation and

synchrotron emission. Such an MHD analysis assumes

that the density is passively advected by the turbulent

motions, an assumption that may be violated for the

cold phase of the ISM. The formation of filaments in

the multiphase ISM (per Xu et al. 2019) could also af-

fect this MHD analysis.

Other works approach the problem using MHD sim-

ulations. For the most part, the ISM is filled with

trans- and super-sonic flows, which are non-linear (e.g.

Elmegreen & Scalo 2004; Burkhart et al. 2010). Both

Kritsuk et al. (2018) and Kim et al. (2019) made MHD

simulations of the ISM, and modeled the dust polar-

ization signals. Both works find slopes and power ratios

that are reasonably close to the observed values, but the

slopes are especially sensitive to the masking procedure.

What MHD simulations do not provide is a straightfor-

ward and direct way to understand why these polariza-

tion properties arise.

Here we seek to gain physical intuition with very sim-

ple models of polarized filaments. We do not yet know

to what degree filamentary structures contribute to the

polarization foreground. There is certainly evidence for

filamentary structure in HI and CMB data (Clark et al.

2014; Planck Collaboration et al. 2016b) as well as in

simulations of the interstellar medium (de Avillez & Bre-

itschwerdt 2005; Hennebelle 2013). Using the HI mor-

phology alone, Clark & Hensley (2019) were able to re-

produce to high correlation the statistics of the polar-

ized sky, which indicates that filaments may be a signif-

icant contribution. However, apparent filaments found

in HI velocity channel maps may not be coherent den-

sity structures (physical filaments). Instead they could

be coherent velocity structures without the need for as-

sociated density enhancements (Yuen et al. 2019). Con-

sidering this second viewpoint, Hu et al. (2020) used a

combination of velocity gradients and principal compo-

nent analysis to predict polarization properties of the

ISM, and also reproduced the microwave sky to high

correlation.

Filamentary structure is a natural consequence of

strongly magnetized turbulence (Goldreich & Sridhar

1995; Kritsuk & Norman 2004; Heiles & Haverkorn

2012; Hennebelle 2013; Micelotta et al. 2018; Ossenkopf-

Okada & Stepanov 2019; Xu et al. 2019; Beattie et al.

2019). The distribution of filament properties is a non-

trivial function of the state of the gas. The properties of

velocity and magnetic field fluctuations in MHD turbu-

lence are better understood (e.g. Brandenburg & Lazar-

ian 2013) than the statistics of density, particularly for

turbulence with high sonic Mach number. For sub- and

trans-sonic gas, eddies are elongated in the direction of

the local mean magnetic field (Goldreich & Sridhar 1995;

Xu et al. 2019), while for supersonic gas, shocks form

perpendicular to the local mean field (Soler et al. 2013;

Beattie et al. 2019). The nearby ISM is certainly a mix-

ture of components (McKee & Ostriker 1977; Vazquez-

Semadeni 2009; Heiles & Haverkorn 2012), but typically

seems to have low velocity relative to the speed of sound

for the majority of the nearby high-latitude gas (Redfield

& Linsky 2004; McClure-Griffiths et al. 2006; Kalberla

et al. 2016; Skalidis & Pelgrims 2019; Clark & Hensley

2019). Our model depends on the distribution of fila-

ment properties and their alignment with the field, and

thus will depend on the properties of the kinematics of
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the gas. The exact details of this relationship is the

focus of ongoing research.

The purpose of this paper is to explore what polariza-

tion power spectra are possible for filaments, and what

the observed power spectra can tell us about their phys-

ical properties. We compute their temperature and po-

larization power spectra using a method akin to the

cosmological halo model (e.g. Seljak 2000; Cooray &

Sheth 2002). However, instead of spherical halos, we

use magnetized, prolate-spheroidal filaments as the ba-

sic ingredients, and integrate over their population. Be-

cause turbulence is not well-understood in the multi-

phase ISM, we do not start with many prior constraints

on the statistics of the filament parameters.

We organize this paper so that in Section 2 we describe

our formalism for characterizing the filament signal and

for computing the power spectra. In Section 3, we show

the power spectra and discuss how the parameters of the

filament population affect them. In Section 4, we con-

clude and discuss the implications and possible future

directions. An appendix describes how the distributions

of filament and magnetic field orientations in three di-

mensions appear when projected onto the plane of the

sky.

2. METHOD

We define a projected filament profile, f(x), upon

which we paint the temperature (i.e. intensity) and po-

larization signals. Thus the temperature profile is:

T (x) = T0f(x), (1)

for sky position x. We model the polarization with an

overall polarization fraction and polarization direction.

In terms of the Stokes parameters, the polarization for

a filament is

X(x)= (Q+ iU)(x) (2)

= fpol exp(2iψpol)T0f(x).

In the HEALPix polarization convention (Górski et al.

2005), the +x-axis points south and the polarization

angle ψpol increases east of south. Because we will inte-

grate over angles in our computation of the power spec-

trum (and because E and B fields are coordinate in-

dependent) we can analyze a filament that has its long

axis aligned (in projection) with the x-axis without loss

of generality. For simplicity, we assume that the in-

trinsic, microphysical contribution to fpol is common to

all filaments, although we will account for geometrical

and projection effects in this work. If the long axis of

that filament were aligned with the local magnetic field,

the precession of the dust grains would cause the po-

larization angle to be ψpol = 90◦, perpendicular to the

filament axis.
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Figure 1. Stokes parameters and scalar polarization quan-
tities for idealized filaments as we alter the aspect ratio. The
magnetic field (thin arrow) is vertical, so the polarization di-
rection is horizontal (thick line), making Q < 0 and U = 0.
In sky convention, north is to the top and east is to the left.
The filaments are 2, 5, and 20 times longer than they are
wide (axis ratio ϵ = 0.5, 0.2, 0.05). Scalars E and B are on
the same color scale, which has half the range of the Q scale.
The T scale differs from Q by an arbitrary polarization frac-
tion.

Working in the flat sky approximation, the Fourier

components of the scalar polarization modes are:

(E + iB)(ℓ) = exp(−2iϕℓ)X(ℓ). (3)

Fig. 1 shows the Stokes T,Q,U and scalar E,B quan-

tities on the sky for sample, north–south filaments with

ψpol = 90◦, so the magnetic field is parallel to the fil-

ament direction and the polarization is perpendicular.

(Our choice of coordinates implies that Stokes U is zero

in these cases.) When the magnetic field aligns with the

filament direction, Rotti & Huffenberger (2019) pointed

out that the real-space kernels for the E/B signals show

immediately that the E-type polarization is positive

along the filament, regardless of its orientation. Since

the temperature signal is also strong there, such fila-

ments naturally yields a strong and positive TE cross-

correlation, as observed in the Planck data. The same

work showed that the B signal is concentrated at the

ends of the filament, so filaments with long and thin as-

pect ratios will have less B power relative to E power

than more squat ones.

By parity symmetry, the TB and EB cross-correlations

are zero when the polarization is perpendicular to the

filament (i.e. ψpol = 90◦). In Fig. 2 we show how the E

and B patterns transform into each other (and change

sign) as ψpol varies away from 90◦. In these cases, the

TB and EB correlation can be non-zero for individ-

ual filaments, but so long as the average ⟨ψpol⟩ = 90◦,
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Figure 2. Like Fig. 1, but showing the polarization quanti-
ties as we alter the magnetic field direction (and hence the
polarization angle), for a fixed filament orientation. The Q
and U Stokes parameters follow HEALPix polarization con-
vention for a north–south filament, but the E and B fields are
coordinate independent and appropriate for any orientation.
Note that filaments with aligned magnetic fields (ψpol = 90◦)
have zero TB correlation. Filaments with relative polariza-
tion angles 90◦ < ψpol < 180◦ have positive TB correlations,
as depicted, while those with 0◦ < ψpol < 90◦ have negative
TB correlations (not shown).

there will be no overall cross-correlation for the whole

population.

2.1. Projection on the sky

We next discuss the projection of a three-dimensional

filament onto the plane of the sky. Many important

quantities depend on the angle to the line of sight of

(1) the long axis of the filament (θL) and (2) the mag-

netic field vector (θH).1 Another important quantity

is the the plane-of-sky projection of the angle between

these vectors (ψLH), which controls the polarization an-

gle and the amounts of E/B polarization present. We

depict these angles in Fig. 3. If the magnetic field di-

rection aligns somewhat with the filament direction, as

is the case in strong-field MHD, all these angles will be

correlated.

1 Elsewhere in the ISM literature, the angles are often given
with reference to the plane of the sky, e.g. γH = 90◦ − θH and so
on.
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Figure 3. Geometry of the filament direction and the mag-
netic field. The long axis of the filament L points in the x–z
plane at an angle θL from the line of sight. The magnetic
field H has an angle from the line of sight of θH . The angular
misalignment between the field and the filament is θLH . The
front view gives the projection of the misalignment onto the
plane of the sky, ψLH .

We assume that on average, the filaments align with

the local magnetic field. In the appendix, we use sim-

ple geometry to compute the distribution of the mag-

netic field projection angle θH and relative orientation

angle ψLH as a function of θL. We base the distribu-

tion on the assumption of a Gaussian distribution for

the angle (θLH) between the filament and the magnetic

field in three dimensions, characterized by the dispersion

RMS(θLH).

The field angle θH is correlated with ψLH , so our nu-

merical procedure yields the tabulated joint distribu-

tion,

p(ψLH , θH |θL). (4)

This distribution centers on aligned filaments (ψLH =

0◦, θH = θL), and the distribution for ψLH broadens

for filaments nearly along the line of sight. Its precise

form is not vital for this discussion and is plotted in the

appendix in Fig. 8.

On the other hand, the probability distribution for

the line-of-sight angle of randomly oriented filaments is

determined purely by geometry,

p(θL) = sin θL, (5)

for θL ∈ [0, 180◦].

These quantities relate immediately to the polariza-

tion. Although the dust polarization fraction depends

on the microphysical details of the emission, it has a ge-

ometric dependence like fpol ∝ sin2 θH (Fiege & Pudritz

2000). Meanwhile, the polarization angle for a filament

projected along the x-axis is ψpol = ψLH + 90◦.

We model the filament as a prolate spheroid, and label

the major axis as La and the minor axis as Lb. The
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Figure 4. Total intensity, polarization fraction, and polar-
ization amplitude dependence on the filament orientation.
Filament oriented along the line of sight have θL = 0◦, while
filaments in the plane of the sky have θL = 90◦. The fil-
ament is modeled with an axis ratio ϵ = 0.25, and the fil-
ament direction (θL) and the magnetic field direction (θH)
are either perfectly aligned or stochastically misaligned in
three-dimensions.

axis ratio is thus ϵ = Lb/La < 1. The column density

(and therefore the surface brightness and ultimately the

observed temperature perturbation) is proportional to

the density and the line of sight distance through the

filament, and so (approximately)

T0∝ρ0
(︁
L2
a cos

2 θL + L2
b sin

2 θL
)︁1/2

(6)

∝ρ0La

(︁
cos2 θL + ϵ2 sin2 θL

)︁1/2
,

where ρ0 is a characteristic density for the filament. So

all else being equal, a filament that lies along the line

of sight will have the greatest column density and the

brightest temperature signal. On the other hand, fpol ∝
sin2 θH , so if the magnetic field lies along the line-of-

sight, there is no polarization. The polarization fraction

is maximum when the magnetic field is perpendicular to

the line of sight.

Fig. 4 relates the column density and polarization frac-

tion effects of the line-of-sight angle. It also shows that

since the polarized amplitude depends on the product

of these two, the filaments with the brightest polariza-

tion are inclined, but not perpendicular, to the line of

sight. The polarization maximum depends on axis ra-

tio through its impact on the column density. Nearly

round filaments have the polarization maximum when

oriented near 90◦ to the line of sight, while in the limit

of thin filaments (ϵ→ 0) the polarization maximum ori-

entation approaches θL = 45◦ for perfect magnetic field

alignment. If there is significant misalignment of the

magnetic field and filament directions, the situation can

become more complicated, depending on the particular

combination of axis ratio and misalignment dispersion.

In such cases, filaments along the line of sight can have

significant polarization. Still, the typical line-of-sight

orientation angle for maximum polarization, averaging

over the magnetic field directions, is around θL = 45◦.

We compute the filament’s projected angular sizes

along its two axes as if it were a cylinder. These de-

pend on its distance R and are:

Θa=
(︁
L2
a sin

2 θL + L2
b cos

2 θL
)︁1/2

/R (7)

=
(︁
sin2 θL + ϵ2 cos2 θL

)︁1/2
La/R

Θb=Lb/R = ϵLa/R.

Thus the projected axis ratio is

ϵΘ = Θb/Θa =
ϵ(︁

sin2 θL + ϵ2 cos2 θL
)︁1/2 (8)

which goes to unity for filaments along the line of sight,

and to the true value (ϵ) for filaments perpendicular to

the line of sight.

2.2. Filaments in Fourier space

For several terms in our power spectrum calculation,

we need the Fourier transform of the projected filament

profile:

f(ℓ) =

∫︂
d2x f(x) exp(−iℓ · x). (9)

Rather than project rays through a 3-dimensional model

to obtain the filament profile, we make a simplifying as-

sumption for computational efficiency. From the size

and orientation of a filament, we take the angular di-

mensions and compute under the assumption that the

profile is a distortion from an axisymmetric function g:

f(x, y) = g(x/Θa, y/Θb) (10)

= g(x∗, y∗) = g(r)

where Θa,Θb are the semi-major and semi-minor axis

of the elliptical distortion. As we stated, by convention

and without loss of generality, we orient the long axis of

the filament along the x-axis.

Then the transform of f is simply related to the trans-

form of g:

f(ℓ)=ΘaΘb

∫︂
d2x∗ g(x∗) exp(−i(Θaℓxx

∗ +Θbℓyy
∗))

=ΘaΘb g(ℓ
∗) (11)
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where ℓ∗(ℓ) = (Θ2
aℓ

2
x +Θ2

bℓ
2
y)

1/2 and

g(ℓ∗) =

∫︂
d2x∗ g(x∗) exp(iℓ∗ · x∗) (12)

= 2π

∫︂
dr r g(r)J0(ℓ

∗r).

The input profile g(x∗) is real and even, and so the

Fourier transform is too. The power spectra we find

are not very sensitive to the profile that we use. In

this work we have used an exponential for the basic fil-

ament profile (g(r) = exp(−r)), but we have checked

our best-fitting power spectrum model with a Gaus-

sian profile (g(r) = exp(−r2/2)) and a Plummer profile

(g(r) = (1 + r2)−5/2), and find the same results.

2.3. Parameters and one-filament term

For a parameterized set of filament properties,

α = (La, Lb, ψLH , θL, θH , R, . . . ),

we can write the number density distribution n(α), so

that the average number of filaments in a realization of

the sky is

⟨N⟩ =
∫︂
dΩ dα n(α) (13)

where the integral is over

dα = dLadLbdψLHdθHdθLdR. (14)

Expressed another way, n(α) = ⟨N⟩p(α), where the

normalized probability distribution of the filament pop-

ulation is

p(α) = p(La, Lb)p(ψLH , θH |θL)p(θL)p(R) (15)

This integral over the population is at least six di-

mensional. For a screen at a distance R, it is five di-

mensional integral. Since the angular power spectrum

for foregrounds is a power law, if we can reproduce it on

a single screen, putting that screen at different distances

will maintain the same power spectrum. If we further

fix the physical aspect ratio of the filaments, it is a four

dimensional integral, over La, ψLH , θL, θH . (The pro-

jected aspect ratio will still vary with the line-of-sight

angle θL.)

The power spectrum contributions from filaments cor-

related with themselves are:

CTT
ℓ =

1

2π

∫︂
dϕℓ

∫︂
dα n(α) |T (ℓ, α)|2, (16)

CEE
ℓ =

1

2π

∫︂
dϕℓ

∫︂
dα n(α) |E(ℓ, α)|2,

CBB
ℓ =

1

2π

∫︂
dϕℓ

∫︂
dα n(α) |B(ℓ, α)|2,

CTE
ℓ =

1

2π

∫︂
dϕℓ

∫︂
dα n(α) T (ℓ, α)E(ℓ, α)∗.

Similar expressions hold for the other cross correlations,

but these vanish if the orientations of the filaments are

random. These power spectra computations are directly

analogous to the 1-halo term in the cosmological halo

model (Seljak 2000).

3. RESULTS

There are clear relationships between the physical

properties of the filaments and the temperature and po-

larization power spectra that they produce. The slopes

of the power spectra are determined primarily by the

size distribution of filaments, with other effects respon-

sible for the smaller differences between the components.

The ratio of BB/EE power is determined mostly by the

aspect ratio of the filaments and somewhat by the mis-

alignment of the filament directions to the background

magnetic field. These same factors also determine the

cross correlation rTE
ℓ , but here misalignment is much

more important. They also affect the TE/EE power

ratio, but this quantity is more directly affected by the

overall polarization fraction.

3.1. Power spectrum shape

We can relate the slope of a power law spectrum to

scaling relations for parameters in the filament profiles.

This allows us to place constraints on the distribution of

filament sizes and the scaling of other parameters. For

a generic parameter α0, if the filament’s contribution to

the power spectrum scales as

Cℓ ∝
∫︂
dα0 n(α0)× αq

0 F (α
r
0 ℓ) (17)

for any function F , and furthermore if the weighting dis-

tribution for the parameter is a power law, n(α0) ∝ αp
0,

then we can rescale the integration with a straightfor-
ward substitution, u = α0ℓ

1/r:

Cℓ∝ ℓ−(p+q+1)/r × (18)∫︂
d(α0ℓ

1/r) (α0ℓ
1/r)p × (α0ℓ

1/r)q F ((α0 ℓ
1/r)r)

∝ ℓ−(p+q+1)/r ×
∫︂
du upuq F (ur).

The integral no longer has any multipole dependence

and evaluates to some constant value, whatever the de-

tails of F . Thus we are left with a powerlaw power

spectrum with

Cℓ ∝ ℓ−(p+q+1)/r (19)

This argument holds not just for filaments, but for any

signal with a power-law power spectrum that is built

from a set of objects that are similarly related to each
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Figure 5. Power spectra slopes of temperature and polar-
ization are set chiefly by the distribution of filament lengths,
which has been chosen here so that the slopes match the dot-
ted line, Cℓ ∝ ℓ−2.4. The ratios between the power spectra
are set by the overall polarization fraction, the aspect ratio of
filaments, and the misalignment between the filaments and
their local magnetic field. When maximum and minimum
sizes truncate the distribution of the filaments, the power
falls below the targeted slope (semi-transparent colors).

other, so long as they are weighted by powerlaw scalings

and distributions. So if we observe a powerlaw spectrum

with Cℓ ∝ ℓs, it implies that the parameter distribu-

tion’s index is p = −rs−q−1, regardless of the objects’

profiles.

We walk through this scaling argument for a sim-

ple (and unrealistic) case—with plane-of-sky filaments

with identical surface brightnesses (T0 is the same for

all filaments) and a constant projected-axis-ratio (Θb =

ϵΘa)—and analyze the distribution for Θa, the angular

size of filaments. For the filament Fourier transform,

we have f(ℓ) ∝ Θ2
ag(ℓ

∗) with ℓ∗ ∝ Θa. The power

spectrum contribution is proportional to f2, so compar-

ing the scaling for angular size parameter Θa to equa-

tion 17, we find q = 4 and r = 1. In the polariza-

tion case, to reproduce Cℓ ∝ ℓ−2.4 (meaning s = −2.4),

the number density distribution of such objects on the

sky must approximately scale like n(Θa) ∝ Θp
a where

p = 2.4 − 4 − 1 = −2.6. Indeed this yields the desired

power spectrum slope when calculated in our model.

In a more realistic case, with three-dimensional fila-

ments, we can make a similar argument to deduce the

distribution of filament lengths. Surface brightness de-

pends on column density, which is proportional to length

(after integrating out any distribution of axis ratios—

compare equation 7—and assuming a density normal-

ization independent of length). The solid angle scales

like length squared. After squaring those three pow-

ers during the computation of the power spectrum, the

overall scaling is q = 6. The multipole ℓ scaling should

also go like length, so r = 1, the same as the plane-of-

sky case above. So with no other dependence on length,

we should have distribution of lengths n(La) ∝ (La)
p

where p = 2.4− 6− 1 = −4.6.2

We have verified that this distribution produces the

proper slope in Fig. 5. All the temperature and po-

larization spectra have the specified slope in common.

The complications of the modeling of the three dimen-

sional orientation are not important to the slope, only

the weighting and distribution of filament size.

Other than the slope, there are not clear features in

the Planck-measured spectra. We note that features in

the distribution of filament sizes would break the power-

law behavior of the resulting spectra. For example, if we

impose a maximum filament size (semi-transparent lines

in Fig. 5), it causes the low-ℓ behavior of Cℓ to deviate:

at scales much larger than the filament, the tempera-

ture spectrum adopts the flat, white, Poisson spectrum

of point sources. The EE and BB spectra flatten the

same way, and on scales large compared to the filaments,

the aspect ratios of the filaments become unimportant

and the amount of power in EE and BB equalize. The

TE cross-correlation falls off at large scales, possibly be-

cause the positive and negative contributions to E are

being averaged over. If, on the other hand, we impose

a minimum filament size, it causes the high-ℓ behavior

to deviate: the spectrum will drop off with increasing ℓ,

where there is no more contribution to the power.

In yet more realistic cases, we can make the slopes

of all the temperature and polarization spectra differ.

For example, this can happen if there is another effect

that changes the size scaling of the polarization relative

to the temperature. For example, to make polarization

slope shallower than the temperature slope, one could

make smaller objects more polarized than large objects,

or if the aspect ratio of filaments changes as a function

of size.

Considering the Planck data, it is not immediately

clear what conclusion to draw. Planck Collaboration

et al. (2018) quote EE,BB, TE slopes for the dust fore-

ground, but not the TT slope. Using our own tools, we

have computed the TT power spectrum based on the

Planck data, and find a TT slope that is about −2.6,

2 If the column density normalization depends on length, this
procedure yields a net distribution that is a product of the size dis-
tribution and the density squared distribution (both as a function
of length). Such a case could arise, for example, if small filaments
are collapsed versions of large ones and have higher density.
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somewhat steeper than the polarization spectra at −2.4

to −2.5. Like Planck Collaboration et al. (2018), for

the mask we used the LR71 polarization mask supple-

mented with a point source mask (based on intensity

maps), resulting in a mask with effective fsky ≃ 0.6. We

can approximately reproduce a −2.6 temperature slope

and −2.4 polarization slope with n(La) ∝ L−4.4
a and

fpol ∝ L−0.08
a . This argues that in the unmasked region,

the polarization is higher in smaller filaments.

However, this conclusion may not be correct because

it depends sensitively on the mask. We reasoned that

small filaments, oriented along the line of sight, might

look like a point source and be included in the masked

area. These end-on filaments could also have low polar-

ization (note Fig. 4), and excluding them might not have

much effect on the polarization results. Thus for com-

parison, we recomputed the TT spectrum with different

masks. When we use only the polarization LR71 mask

without removing the additional point sources from the

intensity map, we get a shallower TT spectrum with

slope −2.5. When we use a mask that keeps the same

large scale features but does not mask any point sources

(Planck’s publicly available GAL70 mask) we find a TT

slope of −2.1, notably shallower than the polarization

spectra. The polarization spectra change somewhat be-

tween these masks, but the changes in the polarization

slopes are small compared to the change in the TT

slopes. Some of the masked sources are extragalactic,

so this slope with all point sources unmasked is prob-

ably too shallow to describe the ISM component, but

can serve as a bound. The upshot is that we are not

certain whether the spectrum for all filaments is steeper

or shallower in temperature than polarization, and so it

is difficult to draw conclusions on the size dependence

of the polarization fraction.

Another feature of the Planck data is the differ-

ing slopes in E and B. We can reproduce this fea-

ture by varying the aspect ratio as a function of fil-

ament size. For the LR71 mask in Planck Collabo-

ration et al. (2018), the slopes for (BB,EE, TE) are

roughly (−2.5,−2.4,−2.5) and we found a TT slope of

−2.6. So BB is steeper than EE, which should hap-

pen if smaller filaments are proportionally thinner than

longer ones. Modifying the aspect ratio in this way

also affects the TT slope, breaking the simple relation

that we saw earlier in this section. By trial and er-

ror, we found that this set of slopes are approximately

reproduced with the following parameter dependence:

ϵ ∝ L0.1
a , n(La) ∝ L−4.45

a , and fpol ∝ L−0.1
a . Here we are

simply exploring what is possible, but the relationship

between the measured slopes and these filament param-

eters should be made more systematic and quantitative.

In light of these complications and uncertainties, in

what follows we keep a common slope of −2.4 for all

the temperature and polarization components while we

explore their other parameter dependences.

3.2. BB/EE power ratio

The aspect ratio of the filaments is the major fac-

tor determining the ratio of B-mode power to E-mode

power. In Fig. 6, we plot the power ratio against the

aspect ratio for varying degrees of filament–magnetic

field misalignment. To reproduce the Planck-observed

ratio of ∼ 0.5, filaments need to have an aspect ratio ϵ

slightly less than 0.26, so filaments must be slightly less

than four times longer than they are wide. If the model

deviates too much from this ratio, the required magnetic

field misalignment is made so large that the model has

trouble fitting the TE correlation.

It is difficult to compare this result quantitatively to

the aspect ratios of observed filaments from the liter-

ature without making a detailed accounting of the fila-

ment selection function. Projection effects will also tend

to lower observed aspect ratios. The stacked filaments

in Fig. 7 of Planck Collaboration et al. (2016b) appear

to have axis ratios not so far from what we are find-

ing here. The filaments identified by the Rolling Hough

transformation in Clark et al. (2014) on HI maps tend

to be longer and thinner than this.

3.3. TE cross-correlation

In the context of the filament model, we find that the

level of the TE cross correlation implies that filaments

cannot be precisely aligned to their local magnetic field

direction. The correlation coefficient is defined as

rTE
ℓ = CTE

ℓ /
√︂
CEE

ℓ CTT
ℓ , (20)

and perfect alignment of the filaments and the fields

causes far too much TE correlation compared to the

Planck observations.

The Planck dust data show rTE
ℓ ≈ 0.35 with little

scale dependence (Planck Collaboration et al. 2018).

Fig. 7 shows that to match this, the field misalignment

angle θLH must have an RMS dispersion of nearly 50◦,

while maintaining the axis ratio ϵ ≈ 0.26 needed to re-

produce the BB/EE power ratio. If the misalignment

dispersion is independent of filament size, as in our mod-

eling, it causes no scale dependence: rTE
ℓ is constant.

Projection effects cause the distribution of the pro-

jected angle ψLH to have a positive kurtosis (see ap-

pendix, Fig. 10), and so we can describe its dispersion

in a few ways. For the RMS(θLH) = 50◦ case, 68 percent

of the probability is bounded by |ψLH | < 45◦. Alterna-

tively, [Var(ψLH)]1/2 = 48◦. For comparison, Planck
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Figure 6. Ratios of BB to EE power as a function of
the physical filament axis ratio. Long and thin filaments (ϵ
small) have less B-mode power than E-mode power. Short
and squat filaments (aspect ratio ϵ close to unity) have B
power close to the E power. An aspect ratio of about ϵ = 0.26
can reproduce the Planck-observed ratio of about one half,
but this can be traded off against a slight dependence with
the dispersion in the misalignment angle θLH between the
filament direction and the magnetic field direction in three
dimensions.
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Figure 7. Correlation coefficient of TE power as a function
of the axis ratio. Thinner filaments (small ϵ) have stronger
TE correlations for various magnetic field–filament misalign-
ments. Since the B-to-E power ratio requires ϵ ≈ 0.26 (Fig-
ure 6), the TE correlation is diagnostic of the misalignment
necessary to produce the Planck-observed rTE ≈ 0.35, which
needs RMS(θLH) ≈ 50◦.

Collaboration et al. (2016b) fit a Gaussian a with 19◦

dispersion (1σ) to the projected field–projected filament

histogram of relative orientations for the filaments they

found. Again this comparison is not direct because of

selection effects. Their Hessian-based selection of fil-

aments would disfavor filaments with small projected

aspect ratios (close to the line of sight), and such fila-

ments can have the largest differences in the projected

orientation.

The overall level of CTE
ℓ (and the polarization spectra)

depends on the polarization fraction. The relative power

ratio has a dependence like

CTE
ℓ /CEE

ℓ ∝ ⟨fpol⟩/⟨f2pol⟩, (21)

while for the cross correlation it is

rTE
ℓ ∝ ⟨fpol⟩/⟨f2pol⟩1/2. (22)

Thus a purely multiplicative rescaling of the polarization

fraction affects the ratios of the power in TT/TE/EE

but not the correlation coefficient rTE .

To reproduce the Planck-measure ratio CTE
ℓ /CEE

ℓ ∼
2.7 (in our case that already fits CBB

ℓ /CEE
ℓ and rTE

ℓ )

requires fpol = 0.15 sin2 θH . We have only modeled the

polarization fraction amplitude and the geometric de-

pendence on the magnetic field orientation, but in addi-

tion, the polarization fraction depends on grain geome-

try and small-scale turbulence (Fiege & Pudritz 2000),

and filaments need not in reality have all the same in-

trinsic polarization fraction.

Our other tests have shown that the TE correlations

differ in their sensitive to intrinsic dispersion in the po-

larization fraction. For example, the correlation rTE is

not very sensitive to the maximum polarization fraction,

but the power ratio is very sensitive to it: decreasing the

maximum polarization fraction decreases CTE
ℓ but de-

creases the denominator CEE
ℓ more, and so raises the

ratio.

3.4. Parity violation: TB and EB

One surprising finding in the Planck Collaboration

et al. (2018) dust spectra is a non-zero TB correlation,

with rTB
ℓ ≈ 0.05. Like rTE , the observed rTB corre-

lation has little scale dependence (up to multipoles of

several hundred).

Because non-zero TB and EB are parity-violating

correlations, our model cannot reproduce them for

randomly-oriented filaments. To get a positive TB

correlation we would need to favor polarization angles

in the range ψpol ∈ [90◦, 180◦] relative to the filament di-

rection (compare Fig. 2). Equivalently, this corresponds

to projected field angles in the range ψLH ∈ [0◦, 90◦].
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Such an effect may be due to some large scale feature in

the Galaxy’s magnetic field or differential gas flow (e.g.

Planck Collaboration et al. 2018; Bracco et al. 2019).

We can determine how far away from random this cor-

relation is by artificially weighting the distribution of the

projected misalignment angles, favoring the ψLH > 0

portion of the distribution of p(ψLH , θH |θL) over the

ψLH < 0 portion, while keeping the same functional

form. We find that we can approximately reproduce the

Planck measured TB correlation by giving the preferred

ψLH directions about 55 percent of the total weight,

rather than the 50 percent than comes naturally from

randomly oriented filaments. Similar to the rTE correla-

tion (also set by field–filament misalignment), this effect

is not scale dependent, and so rTB is constant to high ℓ

in this model.

Our modeling comes from the 1-halo term only, and

shows that the TB correlation can be explained if fil-

aments orientations in projection are slightly twisted

counterclockwise from the projected local magnetic field.

Our model does not address the structure of that under-

lying field, but we may speculate that some differential,

shearing hydrodynamic forcing could preferentially twist

the filaments, according to our point of view, from the

global mean field direction of the Milky way.

Bracco et al. (2019), argue that the observed TE and

TB correlations may be features of the large scale struc-

ture of the Galactic magnetic field. They show that a

helical component can create such correlations, but in

their modeling, the correlation show a strong scale de-

pendence, with rTE,TB
ℓ falling substantially already by

ℓ = 22. The Planck spectra have much flatter rTE,TB
ℓ

correlations, consistent with the filament modeling here.

Planck did not detect an EB correlation, but since E

and B both have a factor of the polarization fraction,

we would naturally expect this correlation to be smaller.
It may be there, hidden in the noise. In the presence of

a positive TB correlation, in the context of the filament

modeling, we would expect a positive EB correlation too

(including at high-ℓ), and it should be a target for future

experiments. Both TB and EB dust correlations can

potentially interfere with sky-calibration of the polar-

ization angles of CMB-instruments (Abitbol et al. 2016)

or with CMB lensing reconstruction (e.g. Fantaye et al.

2012; Challinor et al. 2018).

4. CONCLUSIONS

We do not know how much of the dusty microwave

polarization foreground is due to filamentary structure,

but if it is a substantial portion, we can discern details

of the filament population from the foreground power

spectra. We showed that the slopes of the power spectra

relate to the distribution of lengths. We showed that the

BB/EE power ratio relates to the filament axis ratio.

We showed that the TE cross-correlation relates to the

axis ratio and the RMS misalignment of filaments to the

magnetic field. We showed that TB correlations could

be caused by a slight preference for one handedness in

the misalignment between the magnetic field and the

filament orientation.

Despite its relative success in reproducing the features

of the dust polarization power spectrum, this formalism

lacks some essential features for modeling the real sky.

Foremost, it begins with the assumption of a popula-

tion of filaments, which is not itself on a firm physi-

cal basis, and which may not be a unique way to ex-

plain the features in the foreground polarization power

spectra. Even in the context of filaments, this formal-

ism includes only the one-filament term in the power

spectra. This is obviously an approximation, for the

Planck data have shown that the Galaxy’s projected

magnetic field has coherent, large-scale features, and the

HI-identified filaments are clearly correlated with it and

with starlight polarization measurements (Clark et al.

2015). On the other hand, in the halo model, the tran-

sition from one-halo-dominated to two-halo-dominated

scales often leaves a mark on the power spectrum. Since

in the dust polarization spectra there are not clear fea-

tures, like a break in the slope, we may speculate that

the two-halo component may not be necessary to de-

scribe the main properties of the power spectra. Inclu-

sion of a proper two-halo formalism is complicated by

the correlated direction dependence of the filaments. We

may be able to import some of the techniques developed

to describe galaxy intrinsic alignments (e.g Schneider &

Bridle 2010), since the mathematical description of the

problem is similar.

We have not tried to systematically probe the param-

eter degeneracies or place proper uncertainties on any of

the parameters of this filament model. We can do this

straightforwardly by interfacing the model with a Monte

Carlo Markov Chain and developing a likelihood based

on the Planck dust spectra. We plan to pursue this in

further work.

By looking at observations and simulations of the fila-

mentary ISM, we could attempt to verify some of the

population statistics for filaments. For example, we

could compare the length distribution of actual or simu-

lated filaments to that implied by the slope of the power

spectra.

Because this filament model is non-Gaussian, we may

be able to use it to design novel diagnostics to probe for

residual foregrounds in surveys that aim for the primor-

dial B-modes (in the spirit of Kamionkowski & Kovetz
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2014; Rotti & Huffenberger 2016; Philcox et al. 2018;

Coulton & Spergel 2019). Similarly, we could use this

model to compute the four-point contributions to polar-

ized CMB lensing estimators. This could help place con-

straints on potential foreground contamination. Such

statistics may be sensitive to the internal density struc-

ture of the filaments in a way that the power spectrum

is not.

Due to its flexibility, its ability to model the Planck

dust polarization data, its ease of computation, and its

straightforward interpretation, this filament model may

become a useful tool in the study of CMB polarization

foregrounds.
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Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ,

622, 759, doi: 10.1086/427976

Hanany, S., Alvarez, M., Artis, E., et al. 2019, arXiv

e-prints, arXiv:1902.10541.

https://arxiv.org/abs/1902.10541

Heiles, C., & Haverkorn, M. 2012, SSRv, 166, 293,

doi: 10.1007/s11214-012-9866-4

Hennebelle, P. 2013, A&A, 556, A153,

doi: 10.1051/0004-6361/201321292

Herv́ıas-Caimapo, C., Bonaldi, A., & Brown, M. L. 2016,

MNRAS, 462, 2063, doi: 10.1093/mnras/stw1787

Hu, Y., Yuen, K. H., & Lazarian, A. 2020, ApJ, 888, 96,

doi: 10.3847/1538-4357/ab60a5

Kalberla, P. M. W., Kerp, J., Haud, U., et al. 2016, ApJ,

821, 117, doi: 10.3847/0004-637X/821/2/117

Kamionkowski, M., & Kovetz, E. D. 2014, PhRvL, 113,

191303, doi: 10.1103/PhysRevLett.113.191303

Kandel, D., Lazarian, A., & Pogosyan, D. 2017, MNRAS,

472, L10, doi: 10.1093/mnrasl/slx128

—. 2018, MNRAS, 478, 530, doi: 10.1093/mnras/sty1115

https://arxiv.org/abs/1610.02743
http://doi.org/10.1093/mnras/stw030
http://doi.org/10.1093/mnras/stz1416
http://doi.org/10.1051/0004-6361/201833961
http://doi.org/10.1007/s11214-013-0009-3
http://doi.org/10.1088/0004-637X/708/2/1204
http://doi.org/10.3847/1538-4357/aa679c
http://doi.org/10.1088/1475-7516/2018/04/018
http://doi.org/10.3847/1538-4357/ab5803
http://doi.org/10.1103/PhysRevLett.115.241302
http://doi.org/10.1088/0004-637X/789/1/82
http://doi.org/10.1016/S0370-1573(02)00276-4
http://doi.org/10.1088/1475-7516/2019/10/056
http://doi.org/10.1051/0004-6361:20042146
http://doi.org/10.1146/annurev.astro.41.011802.094859
http://doi.org/10.1088/1475-7516/2012/12/017
http://doi.org/10.1086/317228
http://doi.org/10.1086/175121
http://doi.org/10.1086/427976
https://arxiv.org/abs/1902.10541
http://doi.org/10.1007/s11214-012-9866-4
http://doi.org/10.1051/0004-6361/201321292
http://doi.org/10.1093/mnras/stw1787
http://doi.org/10.3847/1538-4357/ab60a5
http://doi.org/10.3847/0004-637X/821/2/117
http://doi.org/10.1103/PhysRevLett.113.191303
http://doi.org/10.1093/mnrasl/slx128
http://doi.org/10.1093/mnras/sty1115


12

Kim, C.-G., Choi, S. K., & Flauger, R. 2019, ApJ, 880, 106,

doi: 10.3847/1538-4357/ab29f2

Kritsuk, A. G., Flauger, R., & Ustyugov, S. D. 2018,

PhRvL, 121, 021104,

doi: 10.1103/PhysRevLett.121.021104

Kritsuk, A. G., & Norman, M. L. 2004, ApJL, 601, L55,

doi: 10.1086/381737

McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M.,

Green, A. J., & Haverkorn, M. 2006, ApJ, 652, 1339,

doi: 10.1086/508706

McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148,

doi: 10.1086/155667

Micelotta, E. R., Juvela, M., Padoan, P., et al. 2018, arXiv

e-prints, arXiv:1810.10014.

https://arxiv.org/abs/1810.10014

Ossenkopf-Okada, V., & Stepanov, R. 2019, A&A, 621, A5,

doi: 10.1051/0004-6361/201731596

Philcox, O. H. E., Sherwin, B. D., & van Engelen, A. e.

2018, MNRAS, 479, 5577, doi: 10.1093/mnras/sty1769

Planck Collaboration, Adam, R., Ade, P. A. R., et al.

2016a, A&A, 586, A133,

doi: 10.1051/0004-6361/201425034

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al.

2016b, A&A, 586, A141,

doi: 10.1051/0004-6361/201526506

Planck Collaboration, Akrami, Y., Ashdown, M., et al.

2018, ArXiv e-prints. https://arxiv.org/abs/1801.04945

Redfield, S., & Linsky, J. L. 2004, ApJ, 613, 1004,

doi: 10.1086/423311

Remazeilles, M., Banday, A. J., Baccigalupi, C., et al. 2018,

Journal of Cosmology and Astro-Particle Physics, 2018,

023, doi: 10.1088/1475-7516/2018/04/023

Rotti, A., & Huffenberger, K. 2016, JCAP, 2016, 034,

doi: 10.1088/1475-7516/2016/09/034

—. 2019, JCAP, 2019, 045,

doi: 10.1088/1475-7516/2019/01/045

Schneider, M. D., & Bridle, S. 2010, MNRAS, 402, 2127,

doi: 10.1111/j.1365-2966.2009.15956.x

Seljak, U. 2000, MNRAS, 318, 203,

doi: 10.1046/j.1365-8711.2000.03715.x

Skalidis, R., & Pelgrims, V. 2019, A&A, 631, L11,

doi: 10.1051/0004-6361/201936547

Soler, J. D., Hennebelle, P., Martin, P. G., et al. 2013, ApJ,

774, 128, doi: 10.1088/0004-637X/774/2/128

Thorne, B., Dunkley, J., Alonso, D., & Næss, S. 2017,

MNRAS, 469, 2821, doi: 10.1093/mnras/stx949

Vazquez-Semadeni, E. 2009, arXiv e-prints,

arXiv:0902.0820. https://arxiv.org/abs/0902.0820

Xu, S., Ji, S., & Lazarian, A. 2019, ApJ, 878, 157,

doi: 10.3847/1538-4357/ab21be

Yuen, K. H., Hu, Y., Lazarian, A., & Pogosyan, D. 2019,

arXiv e-prints, arXiv:1904.03173.

https://arxiv.org/abs/1904.03173

Zaldarriaga, M. 2001, PhRvD, 64, 103001,

doi: 10.1103/PhysRevD.64.103001

http://doi.org/10.3847/1538-4357/ab29f2
http://doi.org/10.1103/PhysRevLett.121.021104
http://doi.org/10.1086/381737
http://doi.org/10.1086/508706
http://doi.org/10.1086/155667
https://arxiv.org/abs/1810.10014
http://doi.org/10.1051/0004-6361/201731596
http://doi.org/10.1093/mnras/sty1769
http://doi.org/10.1051/0004-6361/201425034
http://doi.org/10.1051/0004-6361/201526506
https://arxiv.org/abs/1801.04945
http://doi.org/10.1086/423311
http://doi.org/10.1088/1475-7516/2018/04/023
http://doi.org/10.1088/1475-7516/2016/09/034
http://doi.org/10.1088/1475-7516/2019/01/045
http://doi.org/10.1111/j.1365-2966.2009.15956.x
http://doi.org/10.1046/j.1365-8711.2000.03715.x
http://doi.org/10.1051/0004-6361/201936547
http://doi.org/10.1088/0004-637X/774/2/128
http://doi.org/10.1093/mnras/stx949
https://arxiv.org/abs/0902.0820
http://doi.org/10.3847/1538-4357/ab21be
https://arxiv.org/abs/1904.03173
http://doi.org/10.1103/PhysRevD.64.103001


13

APPENDIX

A. DISTRIBUTIONS OF ANGLES

We describe the directions of (the long-axis of) the filament and the magnetic field with the coordinates in Fig. 3.

The line of sight lies along the z-axis, while x-axis is down, and the y-axis is left. We assume that the filament (L)

lies in the x–z plane, making angle θL to the line-of-sight. Equivalently, the directions can be expressed as a rotation

around the y-axis:

L̂ = Rŷ(θL)ẑ. (A1)

The magnetic field (H) we describe with respect to the filament axis, using spherical-polar coordinates (θLH , ϕLH):

Ĥ = RL̂(ϕLH)Rŷ(θLH)L̂ (A2)

When we numerically generate realizations of these directions, we use the Rodrigues rotation formula to rotate the

vectors around the proper axis. We use the distribution of θLH values to statistically characterize the misalignment

in three dimensions between the filaments and their local magnetic fields.

An important quantity for computing the polarization of this filament is the angle that the magnetic field makes

with the line-of-sight, expressed as:

cos θH = Ĥ · ẑ. (A3)

When projected onto the plane of the sky, the filament and the field are separated by a misalignment angle ψLH ,

computed as:

tanψLH = Ĥy/Ĥx (A4)

in the proper quadrant. For dust, the polarization angle relative to the filament direction is ψpol = ψLH + π/2.

For a particular filament angle θL and field–filament misalignment θLH , changing the angle ϕLH rotates the field H

to sweep out a cone around the filament direction. We can use the fact that p(ϕLH) is uniform on [0, 2π] to numerically

accumulate the joint distribution of the field angle and projected field–filament misalignment:

p(θH , ψLH |θL, θLH). (A5)

Because of the projections, this makes a loop of probability in the (θH , ψLH) parameter space. When the separation

between the filament and field θLH is small, the loop centers tightly around θH = θL, ψLH = 0, and when θLH is

larger, the loop is larger and more distorted.

If we make an assumption for the distribution of the field–filament misalignment angle θLH , we can marginalize over

it.

p(θH , ψLH |θL) =
∫︂
dθLH p(θH , ψLH |θL, θLH)p(θLH). (A6)

In Fig. 8, we show this joint distribution for several filament directions, under the assumption that the misalignment

angle is Gaussian distributed. For filaments along the line of sight (small θL), the distribution in projected angle

(ψLH) is broad, which makes sense as variations in the angle ϕLH cause a wide variety of ψLH angles. In Fig. 9, we

also examine the marginal distributions p(ψLH |θL) and p(θH |θL).3 In Fig. 10, we further marginalize over the filament

angles to get the distribution of the projected field–filament misalignment:

p(ψLH) =

∫︂
dθL dθH p(ψLH |θL)p(θL). (A7)

These marginalized distribution have positive kurtosis and are more sharply peaked than the Gaussian distribution

from which they are derived. It is important to note that the polarized flux in practice will depend both on the

polarization fraction (dependent on sin2 θH) and the optical depth (dependent on the filament physical size, aspect

ratio, and orientation θL), and so the observed distribution of misalignment above some signal-to-noise cut will differ,

and must be computed from the multidimensional distribution accounting for survey characteristics.

3 At the beginning we fixed the plane-of-sky orientation of the filament, but we could have favored the magnetic field instead, and by
symmetry we should have p(θH |θL) = p(θL|θH).
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Figure 8. The joint distribution of the line-of-sight angle of the magnetic field (θH) and the projected angle between the
magnetic field and the long-axis of the filament (ψLH), under the assumption that the magnetic field direction has a Gaussian
random distribution around the filament direction. The contours mark lines of constant probability density, and the number
records the integrated probability outside the contour. The peak of the distribution is at ψLH = 0◦, θH = θL, corresponding
to a filament aligned with the local magnetic field. The distribution is symmetric in the projected separation so we only show
the half with ψLH > 0◦. In the left column, the field and filament are more closely aligned (RMS(θLH) = 10◦) than in the
right column (RMS(θLH) = 50◦). In the top row, the filament is perpendicular to the line-of-sight (θL = 90◦) and so is in the
plane of the sky. In the bottom row, the filament aligns nearly along the line of sight (θL = 10◦). For filaments along the line
of sight (small θL), even a small misalignment with magnetic field can cause the projected angle (ψLH) to vary widely, and so
the distribution of the projected angle is broad.
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Figure 9. (Left) Distribution of the magnetic field angle, for three different filament angles, assuming a Gaussian distribution
for the misalignment of the field and filament angle in three-dimensions. Each distribution peaks at the filament direction
(for aligned filaments). (Right) Distribution of the projected misalignment between the filament and the magnetic field. The
distribution is symmetric about ψLH = 0◦.
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Figure 10. The distribution of the projected filament–field misalignment angle for randomly oriented filaments, under the
assumption that the three-dimensional misalignment angle is Gaussian distributed, for various misalignment dispersions. The
projected distribution is symmetric around ψLH = 0.


