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ABSTRACT

We develop an analytic model for the power spectra of polarized filamentary structures as a way to
study the Galactic polarization foreground to the Cosmic Microwave Background. Our approach is
akin to the cosmological halo-model framework, and reproduces the main features of the Planck 353
GHz power spectra. We model the foreground as randomly-oriented, three-dimensional, spheroidal
filaments, accounting for their projection onto the sky. The main tunable parameters are the distribu-
tion of filament sizes, the filament physical aspect ratio, and the dispersion of the filament axis around
the local magnetic field direction. The abundance and properties of filaments as a function of size
determine the slopes of the foreground power spectra, as we show via scaling arguments. The filament
aspect ratio determines the ratio of B-mode power to E-mode power, and specifically reproduces the
Planck-observed dust ratio of one-half when the short axis is roughly one-fourth the length of the long
axis. Filament misalignment to the local magnetic field determines the T'E cross-correlation, and to
reproduce Planck measurements, we need a (three-dimensional) misalignment angle with a root mean
squared dispersion of about 50 degrees. These parameters are not sensitive to the particular filament
density profile. By artificially skewing the distribution of the misalignment angle, this model can re-
produce the Planck-observed (and parity-violating) T'B correlation. The skewing of the misalignment
angle necessary to explain T'B will cause a yet-unobserved, positive FB dust correlation, a possible

target for future experiments.
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1. INTRODUCTION

Polarized Galactic microwave emission poses a chal-
lenge to the search for primordial B-mode polarization
in the Cosmic Microwave Background (CMB). The B-
mode signal could provide direct constraints on the en-
ergy scale of inflation, but the Milky Way foregrounds
may outshine it at all frequencies, everywhere on the
sky (Planck Collaboration et al. 2016a; Abazajian et al.
2016; Hervias-Caimapo et al. 2016; Thorne et al. 2017;
Remazeilles et al. 2018; Hanany et al. 2019). We have a
limited understanding of this foreground, and we must
learn more to ensure the reliability of future B-mode
measurements.

The foreground emission involves the turbulent inter-
play of gas, dust, and magnetic fields in the Galaxy’s
interstellar medium (ISM). The magnetic fields orga-
nize the flow and control the orientation of grains that
give rise to the polarized dust signal. Although Planck’s
353 GHz polarization channel has given us a first look,
several features of the dust polarization remain without
physical explanations.

For example, the amplitude of dust polarization B-
mode power is approximately half of F-mode power,
App/Agr = 0.53 £ 0.01, when fit on a large portion
of the sky (for Selffy = 0.52-0.71). Smaller patches also
show the same mean value App/Aggr = 0.51, with small
patch-to-patch dispersion ogp,pr = 0.18 (Planck Col-
laboration et al. 2016a, 2018). This observation defied
pre-Planck expectations. Random polarization orienta-
tions, or coherent orientations overlaying random polar-
ization intensity fluctuations, both yield equal amounts
of E and B (Zaldarriaga 2001; Kamionkowski & Kovetz
2014).

We have some understanding of dust physics and its
relationship to polarization modes. The amplitude and
orientation of the dust signal is set by the integrated
column density and magnetic field orientation. For F to
have more power than B qualitatively means that den-
sity fluctuations (structures in the ISM density field)
must prefer orientations parallel or perpendicular to the
local magnetic field (Rotti & Huffenberger 2019). This
picture is borne out by measurements of the magnetic
field orientation in individual, bright, filamentary struc-
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tures in the Planck 353 GHz data (Planck Collaboration
et al. 2016b). This is further validated by the observa-
tions that linear structures in neutral hydrogen emis-
sion, highlighted by a Rolling Hough Transformation,
also correlate with the magnetic field direction indicated
by Planck dust polarization (Clark et al. 2014, 2015).

Other aspects of the dust polarization also need physi-
cal explanations. Both F-mode and B-mode spectra fol-
low power laws (Cy o< £%), with approximately the same
slope, app = —2.42 4+ 0.02 and agy = —2.45 + 0.03.
(Planck Collaboration et al. 2016a, 2018) There is a
positive correlation between dust intensity and E-mode
polarization (noted by Caldwell et al. 2017), with corre-
lation coefficient rrp = 0.35740.003 (Planck Collabora-
tion et al. 2018) and significant scatter depending on the
sky area but little evidence for scale dependence. Per-
haps more intriguing is a parity-violating, positive T'B
correlation (Planck Collaboration et al. 2018). Finally,
the amplitude of dust polarization power correlates to
intensity in patches, roughly as (I >11)ftch, for both E and
B (Planck Collaboration et al. 2016a).

A few works have already tried to address these ob-
servations. Caldwell et al. (2017) examined the dust
polarization power spectra of slow, fast, and Alfvén
MHD waves in terms of two parameters: the ratio of gas
to magnetic pressure, and the anisotropy of the MHD
modes around the background field direction. They
found two regions of parameter space that can account
for the E to B ratio and positive T'E correlation but
judged that these scenarios are unlikely due to the uni-
formity of the polarization power spectrum across the
sky, and instead suggested that Planck may be seeing
large scale displacements that are driving the turbulent
ISM, rather than the turbulence itself.

On the other hand, Kandel et al. (2017) argued with a
similar analysis that the observed E/B power ratio can
be realized in an analytic MHD model, so long as the
turbulent flow is sub-Alfvénic. Kandel et al. (2018) ex-
tended this analysis to examine the T'E correlation and
synchrotron emission. Such an MHD analysis assumes
that the density is passively advected by the turbulent
motions, an assumption that may be violated for the
cold phase of the ISM. The formation of filaments in
the multiphase ISM (per Xu et al. 2019) could also af-
fect this MHD analysis.

Other works approach the problem using MHD sim-
ulations. For the most part, the ISM is filled with
trans- and super-sonic flows, which are non-linear (e.g.
Elmegreen & Scalo 2004; Burkhart et al. 2010). Both
Kritsuk et al. (2018) and Kim et al. (2019) made MHD
simulations of the ISM, and modeled the dust polar-
ization signals. Both works find slopes and power ratios

that are reasonably close to the observed values, but the
slopes are especially sensitive to the masking procedure.
What MHD simulations do not provide is a straightfor-
ward and direct way to understand why these polariza-
tion properties arise.

Here we seek to gain physical intuition with very sim-
ple models of polarized filaments. We do not yet know
to what degree filamentary structures contribute to the
polarization foreground. There is certainly evidence for
filamentary structure in HI and CMB data (Clark et al.
2014; Planck Collaboration et al. 2016b) as well as in
simulations of the interstellar medium (de Avillez & Bre-
itschwerdt 2005; Hennebelle 2013). Using the HI mor-
phology alone, Clark & Hensley (2019) were able to re-
produce to high correlation the statistics of the polar-
ized sky, which indicates that filaments may be a signif-
icant contribution. However, apparent filaments found
in HI velocity channel maps may not be coherent den-
sity structures (physical filaments). Instead they could
be coherent velocity structures without the need for as-
sociated density enhancements (Yuen et al. 2019). Con-
sidering this second viewpoint, Hu et al. (2020) used a
combination of velocity gradients and principal compo-
nent analysis to predict polarization properties of the
ISM, and also reproduced the microwave sky to high
correlation.

Filamentary structure is a natural consequence of
strongly magnetized turbulence (Goldreich & Sridhar
1995; Kritsuk & Norman 2004; Heiles & Haverkorn
2012; Hennebelle 2013; Micelotta et al. 2018; Ossenkopf-
Okada & Stepanov 2019; Xu et al. 2019; Beattie et al.
2019). The distribution of filament properties is a non-
trivial function of the state of the gas. The properties of
velocity and magnetic field fluctuations in MHD turbu-
lence are better understood (e.g. Brandenburg & Lazar-
ian 2013) than the statistics of density, particularly for
turbulence with high sonic Mach number. For sub- and
trans-sonic gas, eddies are elongated in the direction of
the local mean magnetic field (Goldreich & Sridhar 1995;
Xu et al. 2019), while for supersonic gas, shocks form
perpendicular to the local mean field (Soler et al. 2013;
Beattie et al. 2019). The nearby ISM is certainly a mix-
ture of components (McKee & Ostriker 1977; Vazquez-
Semadeni 2009; Heiles & Haverkorn 2012), but typically
seems to have low velocity relative to the speed of sound
for the majority of the nearby high-latitude gas (Redfield
& Linsky 2004; McClure-Griffiths et al. 2006; Kalberla
et al. 2016; Skalidis & Pelgrims 2019; Clark & Hensley
2019). Our model depends on the distribution of fila-
ment properties and their alignment with the field, and
thus will depend on the properties of the kinematics of



the gas. The exact details of this relationship is the
focus of ongoing research.

The purpose of this paper is to explore what polariza-
tion power spectra are possible for filaments, and what
the observed power spectra can tell us about their phys-
ical properties. We compute their temperature and po-
larization power spectra using a method akin to the
cosmological halo model (e.g. Seljak 2000; Cooray &
Sheth 2002). However, instead of spherical halos, we
use magnetized, prolate-spheroidal filaments as the ba-
sic ingredients, and integrate over their population. Be-
cause turbulence is not well-understood in the multi-
phase ISM, we do not start with many prior constraints
on the statistics of the filament parameters.

We organize this paper so that in Section 2 we describe
our formalism for characterizing the filament signal and
for computing the power spectra. In Section 3, we show
the power spectra and discuss how the parameters of the
filament population affect them. In Section 4, we con-
clude and discuss the implications and possible future
directions. An appendix describes how the distributions
of filament and magnetic field orientations in three di-
mensions appear when projected onto the plane of the
sky.

2. METHOD

We define a projected filament profile, f(x), upon
which we paint the temperature (i.e. intensity) and po-
larization signals. Thus the temperature profile is:

T(x) = Tof (=), (1)
for sky position . We model the polarization with an
overall polarization fraction and polarization direction.

In terms of the Stokes parameters, the polarization for
a filament is

X(z)=(Q+iU)(x) @)
= fpol €xp(2i¢po1) To f ().

In the HEALPix polarization convention (Gérski et al.
2005), the +z-axis points south and the polarization
angle ¥yl increases east of south. Because we will inte-
grate over angles in our computation of the power spec-
trum (and because E and B fields are coordinate in-
dependent) we can analyze a filament that has its long
axis aligned (in projection) with the z-axis without loss
of generality. For simplicity, we assume that the in-
trinsic, microphysical contribution to fo1 is common to
all filaments, although we will account for geometrical
and projection effects in this work. If the long axis of
that filament were aligned with the local magnetic field,
the precession of the dust grains would cause the po-
larization angle to be ¥, = 90°, perpendicular to the
filament axis.
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Figure 1. Stokes parameters and scalar polarization quan-
tities for idealized filaments as we alter the aspect ratio. The
magnetic field (thin arrow) is vertical, so the polarization di-
rection is horizontal (thick line), making @ < 0 and U = 0.
In sky convention, north is to the top and east is to the left.
The filaments are 2, 5, and 20 times longer than they are
wide (axis ratio e = 0.5,0.2,0.05). Scalars E and B are on
the same color scale, which has half the range of the @ scale.
The T scale differs from @ by an arbitrary polarization frac-
tion.

Working in the flat sky approximation, the Fourier
components of the scalar polarization modes are:

(E +1iB)(£) = exp(—2ige) X (£). 3)

Fig. 1 shows the Stokes T, Q,U and scalar F, B quan-
tities on the sky for sample, north—south filaments with
Ypol = 90°, so the magnetic field is parallel to the fil-
ament direction and the polarization is perpendicular.
(Our choice of coordinates implies that Stokes U is zero
in these cases.) When the magnetic field aligns with the
filament direction, Rotti & Huffenberger (2019) pointed
out that the real-space kernels for the E/B signals show
immediately that the E-type polarization is positive
along the filament, regardless of its orientation. Since
the temperature signal is also strong there, such fila-
ments naturally yields a strong and positive T'E cross-
correlation, as observed in the Planck data. The same
work showed that the B signal is concentrated at the
ends of the filament, so filaments with long and thin as-
pect ratios will have less B power relative to E power
than more squat ones.

By parity symmetry, the T'B and E B cross-correlations
are zero when the polarization is perpendicular to the
filament (i.e. ¥po1 = 90°). In Fig. 2 we show how the E
and B patterns transform into each other (and change
sign) as 1po varies away from 90°. In these cases, the
TB and EB correlation can be non-zero for individ-
ual filaments, but so long as the average (Yp01) = 90°,
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Figure 2. Like Fig. 1, but showing the polarization quanti-
ties as we alter the magnetic field direction (and hence the
polarization angle), for a fixed filament orientation. The Q
and U Stokes parameters follow HEALPix polarization con-
vention for a north—south filament, but the £ and B fields are
coordinate independent and appropriate for any orientation.
Note that filaments with aligned magnetic fields (¢po1 = 90°)
have zero T'B correlation. Filaments with relative polariza-
tion angles 90° < ¥po1 < 180° have positive T'B correlations,
as depicted, while those with 0° < 9po1 < 90° have negative
T B correlations (not shown).

there will be no overall cross-correlation for the whole
population.

2.1. Projection on the sky

We next discuss the projection of a three-dimensional
filament onto the plane of the sky. Many important
quantities depend on the angle to the line of sight of
(1) the long axis of the filament (6;) and (2) the mag-
netic field vector (fz).! Another important quantity
is the the plane-of-sky projection of the angle between
these vectors (1), which controls the polarization an-
gle and the amounts of F/B polarization present. We
depict these angles in Fig. 3. If the magnetic field di-
rection aligns somewhat with the filament direction, as
is the case in strong-field MHD, all these angles will be
correlated.

1 Elsewhere in the ISM literature, the angles are often given
with reference to the plane of the sky, e.g. vy = 90° — 0 and so
on.
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Figure 3. Geometry of the filament direction and the mag-
netic field. The long axis of the filament L points in the z—z
plane at an angle 61, from the line of sight. The magnetic
field H has an angle from the line of sight of 8. The angular
misalignment between the field and the filament is 0r,7. The
front view gives the projection of the misalignment onto the
plane of the sky, ¥ m.

We assume that on average, the filaments align with
the local magnetic field. In the appendix, we use sim-
ple geometry to compute the distribution of the mag-
netic field projection angle 6y and relative orientation
angle ¥y as a function of ;. We base the distribu-
tion on the assumption of a Gaussian distribution for
the angle (01,1) between the filament and the magnetic
field in three dimensions, characterized by the dispersion

The field angle 0y is correlated with ¥ g, so our nu-
merical procedure yields the tabulated joint distribu-
tion,

p(Wr,0u|0L). (4)

This distribution centers on aligned filaments (Y =
0°,0g = 0r), and the distribution for ¢,y broadens
for filaments nearly along the line of sight. Its precise
form is not vital for this discussion and is plotted in the
appendix in Fig. 8.

On the other hand, the probability distribution for
the line-of-sight angle of randomly oriented filaments is
determined purely by geometry,

p(aL) = SiIloL7 (5)

for 0, € [0,180°].

These quantities relate immediately to the polariza-
tion. Although the dust polarization fraction depends
on the microphysical details of the emission, it has a ge-
ometric dependence like f,o1 o sin? Oy (Fiege & Pudritz
2000). Meanwhile, the polarization angle for a filament
projected along the z-axis is ¥po1 = Y + 90°.

We model the filament as a prolate spheroid, and label
the major axis as L, and the minor axis as L. The
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Figure 4. Total intensity, polarization fraction, and polar-
ization amplitude dependence on the filament orientation.
Filament oriented along the line of sight have 81, = 0°, while
filaments in the plane of the sky have 6, = 90°. The fil-
ament is modeled with an axis ratio e = 0.25, and the fil-
ament direction (1) and the magnetic field direction (0x)
are either perfectly aligned or stochastically misaligned in
three-dimensions.

axis ratio is thus e = Ly/L, < 1. The column density
(and therefore the surface brightness and ultimately the
observed temperature perturbation) is proportional to
the density and the line of sight distance through the
filament, and so (approximately)

Ty o< po (L2 cos® 0r, + Li sin® 01,) 1z (6)

x poLq ((3052 0, + € sin? 0r) 12 )

where pg is a characteristic density for the filament. So
all else being equal, a filament that lies along the line
of sight will have the greatest column density and the
brightest temperature signal. On the other hand, fpo
sin® Ay, so if the magnetic field lies along the line-of-
sight, there is no polarization. The polarization fraction
is maximum when the magnetic field is perpendicular to
the line of sight.

Fig. 4 relates the column density and polarization frac-
tion effects of the line-of-sight angle. It also shows that
since the polarized amplitude depends on the product
of these two, the filaments with the brightest polariza-
tion are inclined, but not perpendicular, to the line of
sight. The polarization maximum depends on axis ra-
tio through its impact on the column density. Nearly
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round filaments have the polarization maximum when
oriented near 90° to the line of sight, while in the limit
of thin filaments (¢ — 0) the polarization maximum ori-
entation approaches 6, = 45° for perfect magnetic field
alignment. If there is significant misalignment of the
magnetic field and filament directions, the situation can
become more complicated, depending on the particular
combination of axis ratio and misalignment dispersion.
In such cases, filaments along the line of sight can have
significant polarization. Still, the typical line-of-sight
orientation angle for maximum polarization, averaging
over the magnetic field directions, is around 0y, = 45°.

We compute the filament’s projected angular sizes
along its two axes as if it were a cylinder. These de-
pend on its distance R and are:

0, = (L2sin?0;, + L2cos*0,)"% /R (7)
= (sin® 0, + € cos? OL)1/2 L,/R
@bZLb/R = 6La/R.

Thus the projected axis ratio is
€

co =0,/0, = (8)
(sin® 0y, + €2 cos? GL)1/2

which goes to unity for filaments along the line of sight,

and to the true value (€) for filaments perpendicular to

the line of sight.

2.2. Filaments in Fourier space

For several terms in our power spectrum calculation,
we need the Fourier transform of the projected filament
profile:

1) = [ & f(a)exp(-it ). (9)

Rather than project rays through a 3-dimensional model
to obtain the filament profile, we make a simplifying as-
sumption for computational efficiency. From the size
and orientation of a filament, we take the angular di-
mensions and compute under the assumption that the
profile is a distortion from an axisymmetric function g:

f(z,y) =9(x/Oa,y/O) (10)
= g@y) = gr)
where ©,,0, are the semi-major and semi-minor axis
of the elliptical distortion. As we stated, by convention
and without loss of generality, we orient the long axis of
the filament along the z-axis.
Then the transform of f is simply related to the trans-
form of g:

f(£)=0,0, / d?z* g(x*) exp(—i(Qulpz™ + Oplyy™))
=0,0,g(l") (11)
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where £*(€) = (0272 + @%63)1/2 and

o) = [ #s" @) explit’-27)  (12)
= 27r/dr r g(r)Jo(£r).

The input profile g(x*) is real and even, and so the
Fourier transform is too. The power spectra we find
are not very sensitive to the profile that we use. In
this work we have used an exponential for the basic fil-
ament profile (g(r) = exp(—r)), but we have checked
our best-fitting power spectrum model with a Gaus-
sian profile (g(r) = exp(—r?/2)) and a Plummer profile
(g(r) = (1 +72)7%/2), and find the same results.

2.3. Parameters and one-filament term

For a parameterized set of filament properties,
= (La;Lb7'(/JLH76L79H7Ra .. ')7

we can write the number density distribution n(a), so
that the average number of filaments in a realization of
the sky is

_ / 49 do n(a) (13)

where the integral is over
do = dLadLbdz/)LHdHHdQLdR. (14)

Expressed another way, n(a) = (N)p(a), where the
normalized probability distribution of the filament pop-
ulation is

p(a) = p(La, Ly)p(Yrm, 0u|0L)p(0L)p(R) (15)

This integral over the population is at least six di-
mensional. For a screen at a distance R, it is five di-
mensional integral. Since the angular power spectrum
for foregrounds is a power law, if we can reproduce it on
a single screen, putting that screen at different distances
will maintain the same power spectrum. If we further
fix the physical aspect ratio of the filaments, it is a four
dimensional integral, over Lq,¥rm,0r,0n. (The pro-
jected aspect ratio will still vary with the line-of-sight
angle 6r,.)

The power spectrum contributions from filaments cor-
related with themselves are:

T:i/d@/da n(a) T(€a), (16)

=5 faoc |
CBB — %/dm/da n(a
CciF= QL d¢z/d0zn La)E(L, )"

CcFE da n(a) |E(€,a)?,

) |B(e,a)l?,

Similar expressions hold for the other cross correlations,
but these vanish if the orientations of the filaments are
random. These power spectra computations are directly
analogous to the 1-halo term in the cosmological halo
model (Seljak 2000).

3. RESULTS

There are clear relationships between the physical
properties of the filaments and the temperature and po-
larization power spectra that they produce. The slopes
of the power spectra are determined primarily by the
size distribution of filaments, with other effects respon-
sible for the smaller differences between the components.
The ratio of BB/EFE power is determined mostly by the
aspect ratio of the filaments and somewhat by the mis-
alignment of the filament directions to the background
magnetic field. These same factors also determine the
cross correlation 77, but here misalignment is much
more important. They also affect the TE/EFE power
ratio, but this quantity is more directly affected by the
overall polarization fraction.

3.1. Power spectrum shape

We can relate the slope of a power law spectrum to
scaling relations for parameters in the filament profiles.
This allows us to place constraints on the distribution of
filament sizes and the scaling of other parameters. For
a generic parameter ag, if the filament’s contribution to
the power spectrum scales as

Cy x /dao n(a) x af F(ag ) (17)

for any function F', and furthermore if the weighting dis-
tribution for the parameter is a power law, n(ag) o of),
then we can rescale the integration with a straightfor-
ward substitution, u = agl!/":

Cypoc = Prat/r (18)
/ d(agl*™) (al™YP x (gl F((ag £2/7)7)

oc g~ PFat/r /du uPul F(u”).

The integral no longer has any multipole dependence
and evaluates to some constant value, whatever the de-
tails of F. Thus we are left with a powerlaw power
spectrum with

Cp o ¢~ tat)/r (19)

This argument holds not just for filaments, but for any
signal with a power-law power spectrum that is built
from a set of objects that are similarly related to each
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Figure 5. Power spectra slopes of temperature and polar-
ization are set chiefly by the distribution of filament lengths,
which has been chosen here so that the slopes match the dot-
ted line, C; oc £724. The ratios between the power spectra
are set by the overall polarization fraction, the aspect ratio of
filaments, and the misalignment between the filaments and
their local magnetic field. When maximum and minimum
sizes truncate the distribution of the filaments, the power
falls below the targeted slope (semi-transparent colors).

other, so long as they are weighted by powerlaw scalings
and distributions. So if we observe a powerlaw spectrum
with Cy o ¢°, it implies that the parameter distribu-
tion’s index is p = —rs — ¢ — 1, regardless of the objects’
profiles.

We walk through this scaling argument for a sim-
ple (and unrealistic) case—with plane-of-sky filaments
with identical surface brightnesses (Tp is the same for
all filaments) and a constant projected-axis-ratio (0 =
€0,)—and analyze the distribution for ©,, the angular
size of filaments. For the filament Fourier transform,
we have f(£) o ©2g(£*) with £* o« ©,. The power
spectrum contribution is proportional to f2, so compar-
ing the scaling for angular size parameter O, to equa-
tion 17, we find ¢ = 4 and » = 1. In the polariza-
tion case, to reproduce Cy o< £~ (meaning s = —2.4),
the number density distribution of such objects on the
sky must approximately scale like n(0,) < O where
p=24—4—1= —2.6. Indeed this yields the desired
power spectrum slope when calculated in our model.

In a more realistic case, with three-dimensional fila-
ments, we can make a similar argument to deduce the
distribution of filament lengths. Surface brightness de-
pends on column density, which is proportional to length
(after integrating out any distribution of axis ratios—
compare equation 7—and assuming a density normal-
ization independent of length). The solid angle scales
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like length squared. After squaring those three pow-
ers during the computation of the power spectrum, the
overall scaling is ¢ = 6. The multipole ¢ scaling should
also go like length, so r = 1, the same as the plane-of-
sky case above. So with no other dependence on length,
we should have distribution of lengths n(L,) o« (Lg)P
where p =24 —6 — 1= —4.6.2

We have verified that this distribution produces the
proper slope in Fig. 5. All the temperature and po-
larization spectra have the specified slope in common.
The complications of the modeling of the three dimen-
sional orientation are not important to the slope, only
the weighting and distribution of filament size.

Other than the slope, there are not clear features in
the Planck-measured spectra. We note that features in
the distribution of filament sizes would break the power-
law behavior of the resulting spectra. For example, if we
impose a maximum filament size (semi-transparent lines
in Fig. 5), it causes the low-£ behavior of Cy to deviate:
at scales much larger than the filament, the tempera-
ture spectrum adopts the flat, white, Poisson spectrum
of point sources. The FE and BB spectra flatten the
same way, and on scales large compared to the filaments,
the aspect ratios of the filaments become unimportant
and the amount of power in FF and BB equalize. The
TFE cross-correlation falls off at large scales, possibly be-
cause the positive and negative contributions to E are
being averaged over. If, on the other hand, we impose
a minimum filament size, it causes the high-¢ behavior
to deviate: the spectrum will drop off with increasing ¢,
where there is no more contribution to the power.

In yet more realistic cases, we can make the slopes
of all the temperature and polarization spectra differ.
For example, this can happen if there is another effect
that changes the size scaling of the polarization relative
to the temperature. For example, to make polarization
slope shallower than the temperature slope, one could
make smaller objects more polarized than large objects,
or if the aspect ratio of filaments changes as a function
of size.

Considering the Planck data, it is not immediately
clear what conclusion to draw. Planck Collaboration
et al. (2018) quote EE, BB, TE slopes for the dust fore-
ground, but not the TT slope. Using our own tools, we
have computed the T'T power spectrum based on the
Planck data, and find a TT slope that is about —2.6,

2 If the column density normalization depends on length, this
procedure yields a net distribution that is a product of the size dis-
tribution and the density squared distribution (both as a function
of length). Such a case could arise, for example, if small filaments
are collapsed versions of large ones and have higher density.
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somewhat steeper than the polarization spectra at —2.4
to —2.5. Like Planck Collaboration et al. (2018), for
the mask we used the LR71 polarization mask supple-
mented with a point source mask (based on intensity
maps), resulting in a mask with effective foy, >~ 0.6. We
can approximately reproduce a —2.6 temperature slope
and —2.4 polarization slope with n(L,) x L;** and
fpol L7998, This argues that in the unmasked region,
the polarization is higher in smaller filaments.

However, this conclusion may not be correct because
it depends sensitively on the mask. We reasoned that
small filaments, oriented along the line of sight, might
look like a point source and be included in the masked
area. These end-on filaments could also have low polar-
ization (note Fig. 4), and excluding them might not have
much effect on the polarization results. Thus for com-
parison, we recomputed the TT spectrum with different
masks. When we use only the polarization LR71 mask
without removing the additional point sources from the
intensity map, we get a shallower TT spectrum with
slope —2.5. When we use a mask that keeps the same
large scale features but does not mask any point sources
(Planck’s publicly available GAL70 mask) we find a T'T
slope of —2.1, notably shallower than the polarization
spectra. The polarization spectra change somewhat be-
tween these masks, but the changes in the polarization
slopes are small compared to the change in the TT
slopes. Some of the masked sources are extragalactic,
so this slope with all point sources unmasked is prob-
ably too shallow to describe the ISM component, but
can serve as a bound. The upshot is that we are not
certain whether the spectrum for all filaments is steeper
or shallower in temperature than polarization, and so it
is difficult to draw conclusions on the size dependence
of the polarization fraction.

Another feature of the Planck data is the differ-
ing slopes in E and B. We can reproduce this fea-
ture by varying the aspect ratio as a function of fil-
ament size. For the LR71 mask in Planck Collabo-
ration et al. (2018), the slopes for (BB,EE,TE) are
roughly (—2.5,—2.4,—2.5) and we found a T'T slope of
—2.6. So BB is steeper than EF, which should hap-
pen if smaller filaments are proportionally thinner than
longer ones. Modifying the aspect ratio in this way
also affects the T'T' slope, breaking the simple relation
that we saw earlier in this section. By trial and er-
ror, we found that this set of slopes are approximately
reproduced with the following parameter dependence:
eoxx LY n(L,) oc L4 and fpo o L%, Here we are
simply exploring what is possible, but the relationship
between the measured slopes and these filament param-
eters should be made more systematic and quantitative.

In light of these complications and uncertainties, in
what follows we keep a common slope of —2.4 for all
the temperature and polarization components while we
explore their other parameter dependences.

3.2. BB/EFE power ratio

The aspect ratio of the filaments is the major fac-
tor determining the ratio of B-mode power to E-mode
power. In Fig. 6, we plot the power ratio against the
aspect ratio for varying degrees of filament—magnetic
field misalignment. To reproduce the Planck-observed
ratio of ~ 0.5, filaments need to have an aspect ratio e
slightly less than 0.26, so filaments must be slightly less
than four times longer than they are wide. If the model
deviates too much from this ratio, the required magnetic
field misalignment is made so large that the model has
trouble fitting the T E correlation.

It is difficult to compare this result quantitatively to
the aspect ratios of observed filaments from the liter-
ature without making a detailed accounting of the fila-
ment selection function. Projection effects will also tend
to lower observed aspect ratios. The stacked filaments
in Fig. 7 of Planck Collaboration et al. (2016b) appear
to have axis ratios not so far from what we are find-
ing here. The filaments identified by the Rolling Hough
transformation in Clark et al. (2014) on HI maps tend
to be longer and thinner than this.

3.3. TFE cross-correlation

In the context of the filament model, we find that the
level of the TE cross correlation implies that filaments
cannot be precisely aligned to their local magnetic field
direction. The correlation coefficient is defined as

g =GR\ CPPCTT, (20)

and perfect alignment of the filaments and the fields
causes far too much TFE correlation compared to the
Planck observations.

The Planck dust data show r]Z ~ 0.35 with little
scale dependence (Planck Collaboration et al. 2018).
Fig. 7 shows that to match this, the field misalignment
angle 67,y must have an RMS dispersion of nearly 50°,
while maintaining the axis ratio € ~ 0.26 needed to re-
produce the BB/EE power ratio. If the misalignment
dispersion is independent of filament size, as in our mod-
eling, it causes no scale dependence: r!'¥ is constant.

Projection effects cause the distribution of the pro-
jected angle ¥y to have a positive kurtosis (see ap-
pendix, Fig. 10), and so we can describe its dispersion
in a few ways. For the RMS(6. ) = 50° case, 68 percent
of the probability is bounded by |t | < 45°. Alterna-
tively, [Var(yp)]'/? = 48°. For comparison, Planck
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Figure 6. Ratios of BB to EFE power as a function of
the physical filament axis ratio. Long and thin filaments (e
small) have less B-mode power than E-mode power. Short
and squat filaments (aspect ratio € close to unity) have B
power close to the E power. An aspect ratio of about ¢ = 0.26
can reproduce the Planck-observed ratio of about one half,
but this can be traded off against a slight dependence with
the dispersion in the misalignment angle 0.7 between the
filament direction and the magnetic field direction in three
dimensions.

0.50 <

L) —— RMS(0,y) = 35°
—0— RMS(0,y) = 40°
—8— RMS(0,y) = 45°
—o— RMS(0.4) = 50°
—8— RMS(0,y) = 55°
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Figure 7. Correlation coefficient of T'FE power as a function
of the axis ratio. Thinner filaments (small €) have stronger
TFE correlations for various magnetic field—filament misalign-
ments. Since the B-to-F power ratio requires € ~ 0.26 (Fig-
ure 6), the TE correlation is diagnostic of the misalignment
necessary to produce the Planck-observed r% = 0.35, which
needs RMS(frm) = 50°.
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Collaboration et al. (2016b) fit a Gaussian a with 19°
dispersion (1o) to the projected field—projected filament
histogram of relative orientations for the filaments they
found. Again this comparison is not direct because of
selection effects. Their Hessian-based selection of fil-
aments would disfavor filaments with small projected
aspect ratios (close to the line of sight), and such fila-
ments can have the largest differences in the projected
orientation.

The overall level of C7 ¥ (and the polarization spectra)
depends on the polarization fraction. The relative power
ratio has a dependence like

CLPJCPP o {foo) [ (Foor), (21)

while for the cross correlation it is

77 B o (Fpot) /(o). (22)

Thus a purely multiplicative rescaling of the polarization
fraction affects the ratios of the power in TT/TE/EE
but not the correlation coefficient 7.

To reproduce the Planck-measure ratio C} £ /CFF ~
2.7 (in our case that already fits CPP/CF¥ and r]F)
requires fpo1 = 0.15 sin® 0. We have only modeled the
polarization fraction amplitude and the geometric de-
pendence on the magnetic field orientation, but in addi-
tion, the polarization fraction depends on grain geome-
try and small-scale turbulence (Fiege & Pudritz 2000),
and filaments need not in reality have all the same in-
trinsic polarization fraction.

Our other tests have shown that the T'E correlations
differ in their sensitive to intrinsic dispersion in the po-
larization fraction. For example, the correlation »7¥ is
not very sensitive to the maximum polarization fraction,
but the power ratio is very sensitive to it: decreasing the
maximum polarization fraction decreases CI' but de-
creases the denominator CFF more, and so raises the
ratio.

3.4. Parity violation: TB and EB

One surprising finding in the Planck Collaboration
et al. (2018) dust spectra is a non-zero T'B correlation,
with reTB ~ 0.05. Like ¥, the observed rTB corre-
lation has little scale dependence (up to multipoles of
several hundred).

Because non-zero T'B and EB are parity-violating
correlations, our model cannot reproduce them for
randomly-oriented filaments. To get a positive TB
correlation we would need to favor polarization angles
in the range 1,01 € [90°,180°] relative to the filament di-
rection (compare Fig. 2). Equivalently, this corresponds
to projected field angles in the range ¢y € [0°,90°].
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Such an effect may be due to some large scale feature in
the Galaxy’s magnetic field or differential gas flow (e.g.
Planck Collaboration et al. 2018; Bracco et al. 2019).

We can determine how far away from random this cor-
relation is by artificially weighting the distribution of the
projected misalignment angles, favoring the ¥y > 0
portion of the distribution of p(vpg,0x|0r) over the
Yrg < 0 portion, while keeping the same functional
form. We find that we can approximately reproduce the
Planck measured T'B correlation by giving the preferred
Yrg directions about 55 percent of the total weight,
rather than the 50 percent than comes naturally from
randomly oriented filaments. Similar to the 7 correla-
tion (also set by field—filament misalignment), this effect
is not scale dependent, and so 772 is constant to high ¢
in this model.

Our modeling comes from the 1-halo term only, and
shows that the T'B correlation can be explained if fil-
aments orientations in projection are slightly twisted
counterclockwise from the projected local magnetic field.
Our model does not address the structure of that under-
lying field, but we may speculate that some differential,
shearing hydrodynamic forcing could preferentially twist
the filaments, according to our point of view, from the
global mean field direction of the Milky way.

Bracco et al. (2019), argue that the observed TE and
T B correlations may be features of the large scale struc-
ture of the Galactic magnetic field. They show that a
helical component can create such correlations, but in
their modeling, the correlation show a strong scale de-
pendence, with TZTE’TB falling substantially already by
¢ = 22. The Planck spectra have much flatter rZTE’TB
correlations, consistent with the filament modeling here.

Planck did not detect an EB correlation, but since FE
and B both have a factor of the polarization fraction,
we would naturally expect this correlation to be smaller.
It may be there, hidden in the noise. In the presence of
a positive T'B correlation, in the context of the filament
modeling, we would expect a positive EB correlation too
(including at high-¢), and it should be a target for future
experiments. Both T'B and E'B dust correlations can
potentially interfere with sky-calibration of the polar-
ization angles of CMB-instruments (Abitbol et al. 2016)
or with CMB lensing reconstruction (e.g. Fantaye et al.
2012; Challinor et al. 2018).

4. CONCLUSIONS

We do not know how much of the dusty microwave
polarization foreground is due to filamentary structure,
but if it is a substantial portion, we can discern details
of the filament population from the foreground power
spectra. We showed that the slopes of the power spectra

relate to the distribution of lengths. We showed that the
BB/EE power ratio relates to the filament axis ratio.
We showed that the T'E cross-correlation relates to the
axis ratio and the RMS misalignment of filaments to the
magnetic field. We showed that T'B correlations could
be caused by a slight preference for one handedness in
the misalignment between the magnetic field and the
filament orientation.

Despite its relative success in reproducing the features
of the dust polarization power spectrum, this formalism
lacks some essential features for modeling the real sky.
Foremost, it begins with the assumption of a popula-
tion of filaments, which is not itself on a firm physi-
cal basis, and which may not be a unique way to ex-
plain the features in the foreground polarization power
spectra. Even in the context of filaments, this formal-
ism includes only the one-filament term in the power
spectra. This is obviously an approximation, for the
Planck data have shown that the Galaxy’s projected
magnetic field has coherent, large-scale features, and the
HI-identified filaments are clearly correlated with it and
with starlight polarization measurements (Clark et al.
2015). On the other hand, in the halo model, the tran-
sition from one-halo-dominated to two-halo-dominated
scales often leaves a mark on the power spectrum. Since
in the dust polarization spectra there are not clear fea-
tures, like a break in the slope, we may speculate that
the two-halo component may not be necessary to de-
scribe the main properties of the power spectra. Inclu-
sion of a proper two-halo formalism is complicated by
the correlated direction dependence of the filaments. We
may be able to import some of the techniques developed
to describe galaxy intrinsic alignments (e.g Schneider &
Bridle 2010), since the mathematical description of the
problem is similar.

We have not tried to systematically probe the param-
eter degeneracies or place proper uncertainties on any of
the parameters of this filament model. We can do this
straightforwardly by interfacing the model with a Monte
Carlo Markov Chain and developing a likelihood based
on the Planck dust spectra. We plan to pursue this in
further work.

By looking at observations and simulations of the fila-
mentary ISM, we could attempt to verify some of the
population statistics for filaments. For example, we
could compare the length distribution of actual or simu-
lated filaments to that implied by the slope of the power
spectra.

Because this filament model is non-Gaussian, we may
be able to use it to design novel diagnostics to probe for
residual foregrounds in surveys that aim for the primor-
dial B-modes (in the spirit of Kamionkowski & Kovetz



2014; Rotti & Huffenberger 2016; Philcox et al. 2018;
Coulton & Spergel 2019). Similarly, we could use this
model to compute the four-point contributions to polar-
ized CMB lensing estimators. This could help place con-
straints on potential foreground contamination. Such
statistics may be sensitive to the internal density struc-
ture of the filaments in a way that the power spectrum
is not.

Due to its flexibility, its ability to model the Planck
dust polarization data, its ease of computation, and its
straightforward interpretation, this filament model may
become a useful tool in the study of CMB polarization
foregrounds.
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APPENDIX

A. DISTRIBUTIONS OF ANGLES

We describe the directions of (the long-axis of) the filament and the magnetic field with the coordinates in Fig. 3.
The line of sight lies along the z-axis, while z-axis is down, and the y-axis is left. We assume that the filament (L)
lies in the x—z plane, making angle 0, to the line-of-sight. Equivalently, the directions can be expressed as a rotation
around the y-axis:

L =Ry(0.)z. (A1)

The magnetic field (H) we describe with respect to the filament axis, using spherical-polar coordinates (0rg, ¢rH):

H-= R£(¢LH)Ry(0LH)f‘ (A2)

When we numerically generate realizations of these directions, we use the Rodrigues rotation formula to rotate the
vectors around the proper axis. We use the distribution of 0 values to statistically characterize the misalignment
in three dimensions between the filaments and their local magnetic fields.
An important quantity for computing the polarization of this filament is the angle that the magnetic field makes
with the line-of-sight, expressed as:
cosfy =H - . (A3)

When projected onto the plane of the sky, the filament and the field are separated by a misalignment angle ¥y s,
computed as:
tanz/;LH:Hy/Hx (A4)

in the proper quadrant. For dust, the polarization angle relative to the filament direction is ¢¥po =Yg + 7/2.

For a particular filament angle 8, and field—filament misalignment 0r,f, changing the angle ¢y rotates the field H
to sweep out a cone around the filament direction. We can use the fact that p(¢ry) is uniform on [0, 27] to numerically
accumulate the joint distribution of the field angle and projected field—filament misalignment:

p(Ow,Yrulfr,0nm). (A5)

Because of the projections, this makes a loop of probability in the (0x,vn) parameter space. When the separation
between the filament and field 0y g is small, the loop centers tightly around 0y = 6, ¥y = 0, and when 0y is
larger, the loop is larger and more distorted.
If we make an assumption for the distribution of the field—filament misalignment angle 015, we can marginalize over
it.
p(Om,Yru|fr) = /daLHp(GH»wLHWLaGLH)p(GLH)~ (A6)

In Fig. 8, we show this joint distribution for several filament directions, under the assumption that the misalignment

angle is Gaussian distributed. For filaments along the line of sight (small 6;), the distribution in projected angle
(vrm) is broad, which makes sense as variations in the angle ¢y cause a wide variety of ¥,y angles. In Fig. 9, we
also examine the marginal distributions p(vzz|0r) and p(6|07).% In Fig. 10, we further marginalize over the filament
angles to get the distribution of the projected field—filament misalignment:

p(Yrm) = /d9L dO0r p(Yru|0L)p(0L). (A7)

These marginalized distribution have positive kurtosis and are more sharply peaked than the Gaussian distribution
from which they are derived. It is important to note that the polarized flux in practice will depend both on the
polarization fraction (dependent on sin? fr) and the optical depth (dependent on the filament physical size, aspect
ratio, and orientation 6 ), and so the observed distribution of misalignment above some signal-to-noise cut will differ,
and must be computed from the multidimensional distribution accounting for survey characteristics.

3 At the beginning we fixed the plane-of-sky orientation of the filament, but we could have favored the magnetic field instead, and by
symmetry we should have p(6|0r) = p(0L|05).
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Figure 8. The joint distribution of the line-of-sight angle of the magnetic field (fx) and the projected angle between the
magnetic field and the long-axis of the filament (1), under the assumption that the magnetic field direction has a Gaussian
random distribution around the filament direction. The contours mark lines of constant probability density, and the number
records the integrated probability outside the contour. The peak of the distribution is at ¥pxg = 0°, 0y = 01, corresponding
to a filament aligned with the local magnetic field. The distribution is symmetric in the projected separation so we only show
the half with ¥z > 0°. In the left column, the field and filament are more closely aligned (RMS(0rx) = 10°) than in the
right column (RMS(frg) = 50°). In the top row, the filament is perpendicular to the line-of-sight (0 = 90°) and so is in the
plane of the sky. In the bottom row, the filament aligns nearly along the line of sight (6 = 10°). For filaments along the line
of sight (small 61), even a small misalignment with magnetic field can cause the projected angle (¢¥rx) to vary widely, and so

the distribution of the projected angle is broad.
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Figure 9. (Left) Distribution of the magnetic field angle, for three different filament angles, assuming a Gaussian distribution
for the misalignment of the field and filament angle in three-dimensions. Each distribution peaks at the filament direction
(for aligned filaments). (Right) Distribution of the projected misalignment between the filament and the magnetic field. The

distribution is symmetric about ¥ruz = 0°.
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Figure 10. The distribution of the projected filament—field misalignment angle for randomly oriented filaments, under the

assumption that the three-dimensional misalignment angle is Gaussian distributed, for various misalignment dispersions. The
projected distribution is symmetric around ¢y = 0.



