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Abstract

Deregulation of gene expression is associated with the pathogenesis of numerous human diseases including cancer.
Current data analyses on gene expression are mostly focused on differential gene/transcript expression in big data-driven
studies. However, a poor connection to the proteome changes is a widespread problem in current data analyses. This is
partly due to the complexity of gene regulatory pathways at the post-transcriptional level. In this study, we overcome these
limitations and introduce a graph-based learning model, PTNet, which simulates the microRNAs (miRNAs) that regulate
gene expression post-transcriptionally in silico. Our model does not require large-scale proteomics studies to measure the
protein expression and can successfully predict the protein levels by considering the miRNA–mRNA interaction network,
the mRNA expression, and the miRNA expression. Large-scale experiments on simulations and real cancer high-throughput
datasets using PTNet validated that (i) the miRNA-mediated interaction network affects the abundance of corresponding
proteins and (ii) the predicted protein expression has a higher correlation with the proteomics data (ground-truth) than the
mRNA expression data. The classification performance also shows that the predicted protein expression has an improved
prediction power on cancer outcomes compared to the prediction done by the mRNA expression data only or considering
both mRNA and miRNA. Availability: PTNet toolbox is available at http://github.com/CompbioLabUCF/PTNet
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Introduction
Powered by high-throughput transcriptomic technologies, the
RNA-seqmethod can comprehensively profile the transcriptome-
wide changes of gene expression in various biological models
including cancer cells [1, 2]. Currently, SRA-NCBI [3], the largest
public repository for sequencing data, has more than 800 000
human RNA-seq samples and 730 000 mouse RNA-seq samples.
These numbers are expected to grow rapidly due to the reduction
in the RNA-seq cost per sample and the increased demand for
RNA-seq experiments in biomedical research.

Currently, changes in gene expression in the transcriptome
are mostly documented by differential gene/transcript expres-
sion analyses. This is based on the assumption that the amount
of mRNAs and their corresponding protein are positively corre-
lated in a given biological model. However, in reality, it is becom-
ing evident that the correlation between the level of mRNA and
the corresponding protein is weak; recent studies have shown
that the correlation between the cellular protein levels and the
abundance of their corresponding mRNAs is approximately 0.4,
implying that ∼40% of the variations in protein abundance can
be explained by measuring the changes of mRNA amounts [4].
Consistently, this weak correlation was also found in cancer
tissues, and there are findings that question the validity of using
the mRNA expression as a way to understand gene expres-
sion [5]. The multiple layers of regulatory mechanisms involved
in gene expression after transcription is one explanation for
this weak correlation. Although the mRNA expression analysis
has its own value in understanding gene expression, it does
not provide comprehensive information on the proteome. In
an attempt to address this discrepancy, some studies [6, 7]
have proposed the use of gene-specific RNA-to-protein (RTP)
conversion factors. This method would allow for the estima-
tion of protein expression from transcriptomic data; however
such methods use the same RTP for all samples and therefore
fail to realize the difference between different biological con-
texts leading to false approximations. Consequently, to draw
accurate predictions about the proteome based on transcrip-
tomic data, post-transcriptional regulatorymechanismsmust be
considered.

Post-transcriptional gene regulation includes but is not lim-
ited to splicing, polyadenylation, nuclear export and microRNA
(miRNA)-regulated translation.Numerous bioinformatics pipelines
are available to profile post-transcriptional events such as
alternative splicing and alternative polyadenylation (APA).
Particularly, APA can occur in the 3’-untranslated region (3’-
UTR) of mRNAs and can produce an mRNA isoform with a
different 3’-UTR length. Recent studies found that more than
70% of the human genes have the capacity to produce 3’-UTR
APA isoforms, suggesting the prevalence of APA in the 3’-UTR [8].
AlthoughAPA in the 3’-UTRdoes not affect the coding capacity of
a gene, this region contains binding sites for post-transcriptional
regulatory mechanisms (e.g. miRNAs). Therefore, APA in the 3’-
UTR potentially affects themRNA stability or protein production
[9, 10]. Several studies showed that proliferating or transformed
cells favor the expression of mRNAs with shorter 3’-UTRs
through APA and lead to the activation of oncogenes [11, 12].
In addition, highly expressed mRNAs in cancer cells feature a
shorter 3’-UTR with fewer miRNA-binding sites and exhibit the
decrease of miRNA-mediated translational repression [13, 14].
miRNA expression profiles differ between normal tissues
and tumors in cancer patients [15, 16]. Recent studies have
shown that miRNA can serve as a molecular marker for the
early detection of cancer [17–19]. Therefore, it is important to

investigate how miRNAs post-transcriptionally regulate gene
expression in cancer. However, as the cancer transcriptome
data and the miRNA expression data are available through
high-throughput sequencing, the gene regulatory mechanism of
miRNA can only be predicted using miRNA–mRNA interaction
modeling. Three miRNA–mRNA interaction databases were
built up recently [20–22], and they provide the positional
information for each miRNA–mRNA interaction in the 3’-
UTR. However, considering the dynamic regulation of 3’-UTR
length by APA in cancer or perturbed cells, a simple one-
dimensional mapping of miRNA–mRNA interaction based on
the annotated gene structure may not provide a comprehensive
picture of post-transcriptional regulation of mRNAs in cancer
studies. In addition, the current competing endogenous
RNA (ceRNA) model largely ignores the dynamics of 3’-
UTR landscape for miRNA-binding sites caused by 3’-UTR
APA [23].

In this study, we present a biologically motivated graph-
based learning model, PTNet, to predict the protein expression
by integrating the mRNA expression, the miRNA expression, the
miRNA–mRNA interaction network and the dynamics of 3’-UTR
in the transcriptome. The proposed model harnesses the mRNA
and miRNA expression in cancer studies and can be applied to
existing big data to predict the protein expression; it eliminates
the need for a large-scale proteomics experiment. The experi-
mental results confirm that our proposed framework provides a
higher resolution of molecular signatures to better understand
biological mechanisms that lead to the disease state. Our model
also improves a cancer outcome prediction compared to the
prediction made by considering the mRNA or miRNA expression
only. An advanced deep learning method that integrates the
mRNA and miRNA expression data through a controlled fusion
layer is also proposed as a baseline method to compare the
cancer outcome prediction performance to the proposed graph-
based learning model.

Materials and methods
In this section, we first introduce a graph-based learning model,
PTNet, which is motivated by miRNA-mediated regulation of
gene expression to estimate the level of the corresponding
protein. We also introduce the strategies to evaluate the quality
of the estimated protein expression. Next, a deep learning-
based fusion network model is introduced as a baseline method
that integrates multi-omics data (i.e. mRNA and miRNA in
this study) to predict patient outcome. This model considers
the relation between the biological features within the same
omics and across different omics profiles by the fusion
network.

PTNet: graph-based learning model

miRNA–mRNA interaction and miRNA-mediated gene regulation

To estimate the protein expression from mRNA expression data,
we first accessed thewell-establishedmiRNA–mRNA interaction
database TargetScan [24] and collected the position information
for all possible miRNA-binding sites in the 3’-UTR of target
mRNAs. To establish the miRNA–mRNA interaction network, a
miRNA was connected to the expressed mRNAs that contain
the binding site in their 3’-UTRs. In the miRNA–mRNA inter-
active bipartite network, an interaction was valued as −1 to
imitate the miRNA-induced silencing on target mRNA, whereas
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In silico model for miRNA-mediated regulatory network 3

Table 1. Notations for PTNet model

Name Definition

X ∈ R
m×k mRNA expression, X = [x1, x2, ..xi, ..,xk]

Y ∈ R
n×k miRNA expression, Y = [y1, y2, ..yi, .., yk]

F ∈ R
m×k estimated protein expression, F = [f1, f2, ..f i, .., fk]

N ∈ {−1, 1}n×m adjacency matrix of miRNA–mRNA interaction network
DX ∈ R

m×m diagonal matrix: DX(i, i) = ∑
j |N(j, i)|

DY ∈ R
n×n diagonal matrix: DY(i, i) = ∑

j |N(i, j)|
S ∈ R

n×m normalized adjacency matrix, S = D
− 1

2
Y ND

− 1
2

X
λ ∈ R+ hyper-parameter

no interaction was valued as 1. However, this scoring is neglect-
ing the scenario in which mRNA loses miRNA-binding sites
due to 3’-UTR APA events. If the miRNA-binding site is located
within the lost 3’-UTR, the shorter mRNA will bypass miRNA-
mediated inhibitory regulation, whereas the longer isoform will
be suppressed in translation.

Graph-based learning algorithm

The notations to define the graph-based learning algorithm are
summarized in Table 1. Letm be the number of mRNAs, and n be
the number of miRNAs. The dimensions of the miRNA–mRNA
interaction network N, mRNA expression data X, and miRNA
expression data Y are n × m, m × k, and n × k, respectively,
with k being the number of samples. Predicted protein expres-
sion F corresponds to the dimension of the mRNA expression
dataset.

Given the values of mRNA expression X, miRNA expression
Y, and interaction network N, we applied a bipartite graph-
based learning model PTNet to predict the abundance of protein
expression F. Let G = (V,U,E,N) denote an undirected bipartite
graph, where V and U are two disjoint vertex sets that represent
miRNAs and mRNAs. E is a set of edges that stands for the
miRNA–mRNA interactions, and N ∈ {−1, 1} is the adjacency
matrix of the network. Since the miRNAs negatively regulate the
translation of mRNAs, the elements in the interaction network
N are either 1 (no connection) or -1 (connected).

For ith sample, the miRNA vertex set V is initialized by the
miRNA expression denoted by yi, which is learned from miRNA-
seq data. Similarly, the mRNA vertex set U is initialized by the
mRNA expression denoted by xi, which is learned from RNA-seq
data. Vector f i denotes the protein expression for sample iwhich
we desire to study and is shown in Figure 1. We also introduce
a vector ỹi, which can be considered, as the available miRNA
expression after mRNA blueis translated into its corresponding
protein. In this context, the cost function over G = (V,U,E,N) is
defined as

�(f i, ỹi) = ||f i||2 + ||̃yi||2 − 2fTi S̃yi

+ λ||f i − xi||2 + λ||̃yi − yi||2, (1)

where S is a normalized adjacency matrix based on N as shown
in Table 1 and λ is a regularization parameter for balancing the
cost terms on the right side of the equation. The first three terms
enforce the consistency between the connected vertex pairs in
the miRNA–mRNA bipartite graph. They penalize the miRNA–
mRNA interaction with a high estimated protein expression
but have the available miRNA that can bind to the mRNA to
further suppress its translation. The last two terms are fitting

Figure 1. An illustration of the proposed graph-based learningmodel onmiRNA–

mRNA bipartite graph to estimate the protein expression levels. The miRNA–

mRNA interaction networks are built up based on known miRNA-binding sites.

The miRNA vertex and mRNA vertex are initialized with miRNA expression and

mRNA expression, respectively. A graph-based learning model PTNet is applied

to imitate the miRNA regulation on the network and to estimate the protein

expression levels.

terms, which keep the estimated protein expression level and
the final miRNA expression level consistent with the initial
mRNA expression level and the miRNA expression level, respec-
tively. Similar to the algorithmproposed by [25–28], the optimiza-
tion problem in Equation (1) can be solved with an iterative label
propagation algorithm as follow,

f ti = (1 − α)xi + αS̃yt−1
i

ỹti = (1 − α)yi + αSTf t−1
i ,

where α = 1/(1+λ), t denotes the propagation iteration, ỹ0i = yi
and f0i = xi. The label propagation algorithm iteratively performs
propagation between the vertices of mRNA and miRNA in
both directions as shown in Figure 1 and will be converged
to a closed-form solution to get the protein expression level.
It imitates the post-transcriptional regulation events in cells
to capture the protein expression changes due to miRNA
regulation.
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Evaluation methods

Weused two criteria to evaluate the quality of the estimated pro-
tein expression proposed by PTNet and compare it to the mRNA
expression data and the data resulting from the integration
of mRNA and miRNA expression data. First, we measured the
consistency between the ground-truth protein expression (pro-
teomics data) and the estimated protein expression or mRNA
expression by correlation coefficients (CC). Second, we designed
cancer outcome classification tasks with the assumption that
a better quality of the protein expression estimation will lead
to better molecular signatures for disease phenotype prediction
compared to the estimation when only considering mRNA and
miRNA expressions.

Pearson CC

The protein expression was estimated for individual miRNA
neighborhood networks by PTNet [Equation (1)]. The Pearson CC
was applied to measure the consistency between the estimated
protein expression or mRNA expression and the true protein
expression. The formula of Pearson CC is defined as

r =
∑m

i=1(ai − ā)(bi − b̄)√∑m
i=1(ai − ā)2

√∑m
i=1(bi − b̄)2

,

where a is the estimated protein expression ormRNA expression
for one sample and b is the ground-truth. ā and b̄ denote the
average expression levels and m is the number of isoforms.

Classification model

A feed forward fully connected deep neural network was applied
for binary cancer outcome classification on estimated protein
expression, mRNA expression, or the integration of mRNA and
miRNA expressions. The cost function of the deep learning
model is

L = −hlog(p) − (1 − h)log(1 − p), (2)

where h is the truth label of the disease patients and p is the
predicted labels. Adam optimizer was used with a learning rate
of 0.01. 500 biological features that most correlated with the
labels of the training samples were selected as the input for
the learning model. This is a two-hidden layer neural network
with 250 and 100 neurons in each layer respectively. Both hidden
layers use the rectified linear unit as the activation function
and the dropout with a probability of 0.2. The output layer uses
Sigmoid as the activation function. The area under receiver
operating characteristic curve score was applied to evaluate
the performance of the classifiers and the quality of the input
biological features.

Deep learning-based fusion network

The proposed PTNet model considered both mRNA and miRNA
expressions in the analysis. To evaluate PTNet and make
a fair comparison, we also propose a deep learning-based
multi-omics feature extraction framework that considers the
relations between different multi-omics features (i.e. mRNA
expression and miRNA expression) for a disease outcome
prediction as a baseline method (Figure 2). In this framework,
one autoencoder for each input omics data is constructed
to project the high dimension low sample size omics profile

onto a low-dimensional embedding. The encoder encodes the
data, whereas the decoder reconstructs the original data. The
minimization of weighted reconstruction loss enforces the
features learned from the omics profiles to be salient and robust.
The autoencoders are designed with a loss function,

L =

k∑
i=1

(xi − xdi )

k
,

where xi and xdi are the original mRNA expression and recon-
structedmRNAexpression from the decoder for sample i, respec-
tively. k denotes the number of samples. xdi is enforced to be
as close to the original features as possible so that maximum
retention of information in the learned features is ensured. For
miRNA expression (Y), another autoencoder with the same loss
function is applied.

Then, the learned features, Xe and Ye from each network
are transformed into an input layer of a neural network by
considering the relations between the extracted features within
the same omics profile and across different omics profiles with a
controlled fusion technique. Specifically, the network parameter
W in the fusion network in Figure 2 is learned upon the relation
of the features within the mRNA expression data W11, the rela-
tion of the features between mRNA and miRNA expression data
W12 and so on. Different blocks in W are weighted by different
regularization coefficients λ and α.We apply �1-regularization on
the off-diagonal blocks in W with the assumption that the con-
nections between the features extracted from different omics
profiles are sparse. Thus, the loss function for this framework
is

min
W

L(Xe,Ye,h,W, λ,α) = ||C(Xe,Ye,W) − h||22

+ λ11||W11||2F + λ22||W22||2F + α12||W12||2F + α21||W21||2F
+ λ12||W12||1 + λ21||W21||1, (3)

where h is the truth label of patient outcomes. The first term
of the loss function is a binary cross-entropy loss whereas the
last two terms enforce the desired sparsity of W described
above. W11, W12, W21 and W22 are submatrices of W that cor-
respond to mRNA–mRNA, mRNA–miRNA, miRNA–mRNA and
miRNA–miRNA interaction in the fusion network, respectively.
The multi-omics features are the output of the fusion network
and two more layers are added after the fusion network for a
disease outcome prediction.

In summary, in this method section, a two-step framework
toward the phenotype prediction is proposed: (i) learn the fea-
tures (estimate protein expression) through the graph-based
learning model PTNet and (ii) predict the disease phenotype
using the learned features as input in the classifier as described
in the ‘Classification model’ subsection. To predict disease out-
comes using themRNA expression, the same classifier is applied
without the first step of the framework for comparison. A multi-
omics deep learning-based fusion network is proposed to inte-
grate these two steps allowing themRNA andmiRNA expression
datasets as input and directly predicting the disease outcome as
output. This model also learns new multi-omics features from
mRNA and miRNA expression datasets similar to the graph-
based learning model using a fusion network without consider-
ing the biological interactions between miRNAs and mRNAs (N).
Therefore, the new multi-omics features are learned from each
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In silico model for miRNA-mediated regulatory network 5

Figure 2. Overview of the deep learning-based fusion network model. One autoencoder is constructed for each omics profiling data (left panel). Then, a fused network

is learned across the outputs frommulti-omics data to identify important multi-omics features (red nodes). Next, the fusedmulti-omics features are applied for disease

phenotype prediction. The structure of network parameters W in the fusion network is shown at the top right corner.

modality separately, instead of incorporating the knowledge
from post-transcriptional regulation.

Results
In the experiments, we first generated artificial datasets for two
biological conditions to test if the PTNet can capture the changes
of protein expression by considering the miRNA-mediated regu-
latory pathway. Next, we performed three experiments on The
Cancer Genome Atlas datasets to evaluate the performance
of PTNet. The first experiment was to compare the protein
expression estimated by PTNet with the proteome data. The
second experiment was to evaluate the prediction power of
the estimated protein expression on cancer patient outcomes.
The last experiment was to show the effects of 3’-UTR APA on
the miRNA–mRNA interaction network and the level of protein
expression.

Simulation

In this simulation experiment, we generated two artificial
miRNA–mRNA bipartite networks which have different inter-
actions due to 3’-UTR APA events between two biological
conditions as shown in Figure 3A. Both bipartite networks
consist of three miRNAs and four mRNAs. The expression
values of those miRNAs and mRNAs in this simulation were
randomized but the two conditions were set to maintain the
expression value of corresponding RNAs the same. Due to
the 3’-UTR APA events between two biological conditions,
miRNA3 loses its binding sites on mRNA2 in Condition 1 and
mRNA4 in Condition 2 as illustrated in Figure 3A. Theoretically,
the expression of protein2 would then increase, whereas the

expression of protein4 would decrease due to the reorganization
of miRNA3-binding in Condition 1.

Next, we imitate the miRNA regulation based on the
neighboring relations of each miRNA and estimate the protein
expression changes depending on themRNA expression,miRNA
expression and their role in post-transcriptional regulation as
formulated in Equation (1). We run PTNet twice, first with the
interactions corresponding to Condition 1 and second with two
interactions altered to simulate Condition 2 in Figure 3A. The
expression values of the mRNA2 and the mRNA4 are plotted in
Figure 3B. The initial value (iteration 0) of each plot represents
the original mRNA expression, whereas the final value of the
plot is its corresponding estimation of the protein expression.
From these experiments, we observed that the final estimated
values of the protein expression are lower than their original
mRNA values in Condition 1 since both mRNAs are bound
by miRNAs. Then in Condition 2, the estimated expression of
protein2 decreases further as a new miRNA (miRNA3) binds
to the mRNA2, whereas the protein4 expression increases
as the mRNA4 is free of miRNA-binding. In Figure 3B, the
predicted changes of the protein expression between the two
conditions are as we expected. The proposed model can imitate
miRNA-mediated regulation of gene expression and predict the
corresponding protein expression.

Experiments on TCGA datasets

Dataset

The proposed graph-based learning model PTNet and the base-
line method were tested on TCGA breast cancer (BRCA) and
ovarian cancer (OV) datasets [29, 30]. The RNA-seq gene expres-
sion and miRNA expression datasets were downloaded from
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6 Ahmed et al.

Figure 3. (A) Simulated miRNA–mRNA bipartite networks on two biological

conditions. The altered interactions due to 3’-UTR APA between two conditions

are highlighted as yellow and red lines. The miRNA vertex and mRNA vertex

are initialized with miRNA expression and mRNA expression, respectively. (B)
The changes of mRNA expression level. The initial value (iteration 0) of each plot

represents the original mRNA expression and the final value of the plot is its cor-

responding estimated protein expression. The iteration number represents the

iteration in the label propagation algorithm to solve the optimization algorithm

in equation (1) as discussed in subsection ‘graph-based learning algorithm’.

UCSC Xena Hub [31]. For the gene expression, the log2(x + 1)
transformed RNA-Seq By Expectation-Maximization (RSEM) nor-
malized count was used in the analyses and 20 531 genes were
included in this study [32]. For themiRNA expression, the log2(x+
1) transformed RPM value was used in the analyses and 2166
miRNAs were included in this study. The clinical information of
the cancer studies was downloaded from cBioPortal [33]. There
are 185 Estrogen Receptor positive (ER+) and 54 ER negative (ER-)
samples in the BRCA dataset and 51 cancer patients in the early
stage (≤ IIIA) and 359 cancer patients in the late stage (> IIIA) in
the OV dataset. The protein spectral counts in the proteome data
downloaded from National Cancer Institute data portal1 was
used as the ground truth for the protein expression. ThemiRNA–
mRNA interaction network was obtained from TargetScanHu-
man [24], which predicts effective miRNA target sites within
mRNAs. A modified adjacency matrix with 163 568 interactions
was applied to represent the network, where each interaction
was valued as −1 to imitate the miRNA-mediated negative reg-
ulation of targeted mRNAs. No interaction was valued as 1.

PTNet improved the estimation of the protein expression

To evaluate the proposed graph-based learning model, we
first investigated the effect of an individual miRNA on its

1 https://cptac-data-portal.georgetown.edu/cptac/s/S015

neighborhood network and estimated the protein expression
of the corresponding mRNAs that bind to the miRNA. The
neighborhood network is defined by a targeted miRNA, all
mRNAs directly bound to the targeted miRNA (first-order
neighbor of targeted miRNA), and all miRNAs directly connected
to the first-order neighbor mRNAs. Interactions between the
selected miRNAs and mRNAs from the original interaction
network obtained from TargetScanHuman were applied as
the interactions in the neighborhood network. We performed
a comprehensive literature review of cancer related miRNAs
and selected miRNAs that were associated with BRCA and OV
pathogenesis (Tables 2 and 3). We then ran the proposed graph-
based learning model to estimate the protein expression for
the neighborhood networks. The predicted protein expression
was compared with the ground truth spectral count in terms of
Pearson CCs. Detailed results for TCGA BRCA and OV datasets
are provided in Tables 2 and 3, respectively. The tables contain
the name of the targeted miRNA, the references that describe
the relevance of the miRNAs in BRCA or OV, the number of
mRNAs in the neighborhood network, Pearson CC between
mRNA and ground truth spectral count, and lastly, Pearson
CC between our estimated protein expression and the ground
truth spectral count. From the results, we can see that in most
cases (i.e. 26 out of 29 in BRCA and 20 out of 24 in OV) the
estimated protein expression by considering miRNA regulation
achieved a higher correlation with the real protein expression
than when only considering mRNA expression.We further show
that the improvement in correlation is larger for the miRNAs
with less mRNA connected to them in Figures S1 and S2 in the
Supplementary document. The functions of these miRNAs in
BRCA and OV are available in Tables S1 and S2. Two case studies
in Figure S3 in the Supplementary document demonstrate that
PTNet is robust to false-negative and false-positive interactions
by randomly remove existing edges or add spurious edges to the
miRNA–mRNA bipartite network. The overall results signify the
ability of our model to reflect the miRNA regulation on mRNA
expression on real patient datasets.

PTNet improved cancer outcome prediction

To provide an additional evaluation of the quality of the esti-
mated protein expression, we designed two cancer outcome
prediction tasks by the assumptions that (i) protein expression is
a more direct mediator of cellular properties and it will provide
more predictive power compared to mRNA expression and (ii)
a better estimation of protein expression can provide better
molecular signatures for cancer outcome prediction. In this
experiment, the complete miRNA–mRNA interaction network
from TargetScanHuman was applied to estimate the protein
expression in the PTNet. The discriminative power of the esti-
mated protein abundancewas comparedwithmRNA expression
and the integration of mRNA and miRNA expressions in the
tasks. In each task, the dataset was divided into 5-folds with 3-
folds for training, 1-fold for validation (parameter tuning), and
1-fold for test. A fully connected deep neural network [Equa-
tion (2)] described in the Materials and methods section was
applied as the classifier for the estimated protein expression and
mRNA expression datasets. The proposed deep learning-based
fusion network [Equation (3)] was applied to integrate mRNA
and miRNA expressions as another baseline for comparison.We
repeated the 5-fold splitting 100 times by each method on each
dataset.

Breast cancer: The average area under the curve (AUC) of
receiver operating characteristic of the 100 repeats for predicting
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In silico model for miRNA-mediated regulatory network 7

Table 2. Protein abundance measured by proteomic data to evaluate the accuracy of estimated protein expression in BRCA dataset. The five
columns in the table show the name of the miRNA, the reference of the BRCA study related to the miRNA, the number of the connected mRNA,
CC between the real protein expression and the mRNA expression, and the CC between the real protein expression and the estimated protein
expression.

miRNA name Literature # of connected mRNA CC of mRNA CC of protein

hsa-miR-487b [34] 15 0.305 0.612
hsa-miR-423-3p [35] 14 0.675 0.798
hsa-miR-10b [36] 320 0.295 0.403
hsa-miR-506-3p [37] 1262 0.285 0.314
hsa-miR-1249 [38] 13 0.753 0.859
hsa-miR-296-3p [39] 70 0.221 0.311
hsa-miR-431 [40] 152 0.286 0.375
hsa-miR-1224-5p [41] 197 0.348 0.372
hsa-miR-191 [42] 59 0.231 0.309
hsa-miR-376b [43] 243 0.398 0.469
hsa-miR-324-5p [44] 142 0.272 0.341
hsa-miR-145 [45] 849 0.254 0.322
hsa-miR-127-3p [46] 22 0.615 0.675
hsa-miR-382 [47] 206 0.257 0.313
hsa-miR-488 [48] 412 0.317 0.373
hsa-miR-154 [49] 162 0.325 0.38
hsa-miR-423-5p [35] 209 0.351 0.403
hsa-miR-451 [50] 28 0.446 0.498
hsa-miR-802 [51] 362 0.299 0.35
hsa-miR-140-5p [52] 419 0.301 0.35
hsa-miR-21 [53] 363 0.315 0.329
hsa-miR-29b [54] 1193 0.289 0.304
hsa-miR-155 [55] 529 0.256 0.271
hsa-miR-125b [56] 879 0.214 0.254
hsa-miR-221 [57] 480 0.348 0.372
hsa-miR-143-3p [58] 460 0.283 0.316
hsa-miR-196b [59] 355 0.457 0.429
hsa-miR-190 [60] 212 0.383 0.364
hsa-miR-146 [61] 270 0.245 0.229

Figure 4. Prediction results of the ER status on TCGA BRCA patients. Each dot

represents the AUC score from one splitting. Statistics (mean, median, and SD)

of the prediction performance of the 100 splittings are shown above each boxplot.

the ER status of the BRCA patients is reported in Figure 4. Each
dot on the boxplot represents the results from one random
splitting. Statistics (mean, median and SD) of the prediction
performance of the splitting are shown above each boxplot. The
protein expression estimated by PTNet achieved better average

classification results (0.968) than the ones using mRNA expres-
sion (0.946) and the integration of mRNA and miRNA expression
(0.961). Since the miRNA expression provides additional predic-
tive signals for BRCA outcome prediction on top of the mRNA
expression, the integration of both with the deep learning-based
fusion network model improved the prediction performance
compared to the use of mRNA expression only. However, the
fusion network model does not consider the miRNA regula-
tion mechanism in its formulation and the classification result
is worse than the one using estimated protein expression. In
Table 4, we also report the number of wins, ties, and losses. The
classification results using the mRNA expression and the com-
bination ofmRNA andmiRNA expression are comparedwith the
results using estimated protein expression. Out of the 100 split-
tings, the mRNA expression-based prediction only has 11 better
predictions than the estimated protein expression whereas the
estimated protein expression does a better prediction in 84
splittings. The combination of miRNA and mRNA expressions
yields a better prediction than considering the mRNA expres-
sion only. The model combining miRNA and mRNA expressions
wins 30 splittings against the estimated protein expression but
loses in 60 splittings. The overall result shows the consistent
improvement of the prediction in BRCA clinical variables using
the estimated protein abundance.

Ovarian cancer: The results for cancer stage prediction on OV
patients are illustrated in Figure 5. The results show the same
trend as on the BRCA dataset (Figure 4), though the overall AUC
score is lower than the prediction for the ER status in BRCA
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Table 3. Protein abundance measured by proteomic data to evaluate the accuracy of estimated protein expression in OV dataset. The five
columns in the table show the name of the miRNA, the reference of the OV study related to the miRNA, the number of the connected mRNA,
CC between the real protein expression and the mRNA expression, and the CC between the real protein expression and the estimated protein
expression.

miRNA name literature # of connected mRNA CC of mRNA CC of protein

hsa-miR-487b [62] 15 0.172 0.545
hsa-miR-423-3p [63] 14 0.355 0.678
hsa-miR-1249 [38] 13 0.667 0.857
hsa-miR-184 [64] 25 0.352 0.455
hsa-miR-324-5p [65] 142 0.292 0.39
hsa-miR-10b [66] 320 0.354 0.439
hsa-miR-329 [67] 338 0.251 0.333
hsa-miR-362-3p [68] 338 0.251 0.333
hsa-miR-760 [69] 502 0.263 0.34
hsa-miR-431 [70] 152 0.289 0.361
hsa-miR-1197 [71] 239 0.29 0.359
hsa-miR-138 [72] 660 0.268 0.334
hsa-miR-502-3p [73] 196 0.283 0.348
hsa-miR-382 [74] 206 0.27 0.33
hsa-miR-107 [75] 783 0.264 0.324
hsa-miR-145 [76] 849 0.318 0.376
hsa-miR-21 [77] 363 0.326 0.341
hsa-miR-221 [78] 480 0.295 0.311
hsa-miR-29b [79] 1193 0.260 0.309
hsa-miR-200c [80] 1144 0.312 0.366
hsa-miR-191 [81] 59 0.484 0.461
hsa-miR-152 [82] 759 0.277 0.265
hsa-miR-1251 [83] 104 0.279 0.270
hsa-miR-328 [84] 193 0.320 0.310

Table 4. The classification performance on TCGA BRCA dataset.
Average AUC scores and the number of times of win/tie/loss on
classification performance between estimated protein expression
and the baselines (i.e. mRNA expression and integration of mRNA
and miRNA expressions) on BRCA dataset.

Input data AUC score win/tie/loss

mRNA 0.946 11/5/84
mRNA+miRNA 0.961 30/10/60
estimated protein expression 0.968 –

Table 5. The classification performance on TCGA OV dataset. Aver-
age AUC scores and the number of times of win/tie/loss on clas-
sification performance between estimated protein expression and
the baselines (i.e. mRNA expression and integration of mRNA and
miRNA expressions) on OV dataset.

Input data AUC score win/tie/loss

mRNA 0.719 31/1/68
mRNA+miRNA 0.726 40/0/60
estimated protein expression 0.752 –

patients. Prediction using the estimated protein expression gives
the best AUC score (0.752) followed by the combination of mRNA
and miRNA expression (0.726) and mRNA expression (0.719),
respectively. Numbers of wins, ties and losses are also reported
in Table 5. The superior discriminative power of the estimated
protein expression over the mRNA expression and the com-
bination of mRNA and miRNA expression for both BRCA and
OV is illustrated in this section. Therefore, estimated protein
expression from PTNet is a more accurate predictor of both

Figure 5. Prediction result of cancer stage on TCGA OV patients. Each dot

represents the AUC score from one splitting. Statistics (mean,median, and SD) of

the prediction performance of the 100 splittings are shown above each boxplot.

BRCA and OV phenotypes compared to mRNA expression and
concatenated mRNA and miRNA expression. The improvement
in cancer outcome prediction can be attributed to the miRNA-
mediated regulation mechanism, which we combined with the
mRNA expression.

Effects of APA events

In this subsection, we explored the effects of 3’-UTR APA on
miRNA-mediated regulation in 2-folds: (i) how it changes the
miRNA–mRNA interaction and (ii) whether a loss of a sponging
mRNA due to APA events reroutes miRNAs to other mRNAs and
consequently regulate their expression.
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To investigate the effects of 3’-UTR APA on themiRNA–mRNA
interaction network, the BRCApatientswere divided into the two
groups, ER positive and ER negative, and then two lists of mRNAs
undergoing APA events corresponding to each group were iden-
tified using pipeline APA-Scan [85] which takes aligned bam file
for each sample as input. APA-Scan reports the accurate 3’-UTR
cleavage site for eachmRNA transcript. If the identified cleavage
site is upstream of the miRNA-binding position, the transcript
will avoidmiRNA-mediated regulation and therewill be no inter-
actions between the miRNA and the transcript in the network.
This process perfectly illustrates the functional relation between
the miRNA-mediated gene regulation and 3’-UTR APA.

In the experiment, we randomly picked a target mRNA from
either list of genes undergoing APA events in the ER positive
samples or ER negative samples. A sub-network of its neigh-
borhood was built from the complete mRNA-miRNA interaction
network. The neighborhood network was defined by a targeted
mRNA, all miRNAs directly bind to it (first-order neighbor of
targeted mRNA), and mRNAs directly connected (second-order
neighbor of targeted mRNA) to the first-order neighbor miRNAs.
For presentation purposes, only 40mRNAs that contain the high-
est number of interactions with the first-order neighbormiRNAs
were selected as the second-order neighbor mRNAs. Interaction
between the selected miRNAs and mRNAs followed the original
interaction network.One network for each group (the ER positive
or negative group) was then constructed from this sub-network.
Figures 6 and 7 illustrate the two networks for the ER positive
and ER negative samples, which were built from the same sub-
network based on gene IGF2R by APA events. In this analysis, we
crosschecked the mRNAs present in the sub-network with the
list of mRNAs undergoing APA events for the ER positive and ER
negative samples respectively. The mRNAs showing APA events
in the ER positive samples were deleted from the network along
with their miRNA interactions in Figure 6. On the other hand,
the mRNAs showing APA events in the ER negative samples
were marked by red color to indicate that it is only present in
the ER positive network (Figure 6). The network for ER negative
samples illustrated in Figure 7 was constructed in a similar
procedure.

As mentioned above, the two networks for the ER positive
(Figure 6) and ER negative (Figure 7) samples were generated
from the same sub-network; therefore, they represent the same
neighborhood with the exception of the connections with the
mRNA undergoing 3’-UTR APA events. The mRNAs showing
APA events are marked with red rectangles whereas all other
mRNAs are marked with blue rectangles. Thus, mRNAs marked
with red rectangles in Figure 6 will not exist in Figure 7 and
vice-versa. All miRNA connections are denoted by gray lines
except the mRNAs with APA events, which are marked with red
lines. miRNAs are marked by green ovals. Three miRNAs, miR-
506-3p, miR-143-3p and miR-1224-5p that are marked as yellow
were listed in Table 2 and found as molecular signatures in
BRCA studies. All other connections stay the same between
the two networks. These two networks illustrate the dynamic
nature of miRNA–mRNA interaction from sample to sample. For
example, IGF2R marked by the red rectangle in Figure 6 is an
mRNA undergoing APA in the ER negative samples. Therefore,
this mRNA is present in the network of ER positive samples
but absent in the network of ER negative samples. In the ER
negative samples, this absence causes additional miRNAs to be
available for binding to other mRNAs and provides negative reg-
ulation of their expression. The prognostic power of APA events
in these genes in cancer are well documented in prior studies
[86–89].

Figure 6. miRNA–mRNA interaction network for BRCA ER positive samples.

Figure 7. miRNA–mRNA interaction network for BRCA ER negative samples.

In Figure 6, miR-143-3p, which was shown to play a role in
the inhibition of tumor cell proliferation and invasion (Table 2),
is connected to genes IGF2R and IGFBP5. IGF2R undergoes 3’-
UTR APA in the ER negative samples and consequently loses its
binding to miR-143-3p. As a result, more miR-143-3p is available
for regulatory binding to IGFBP5 mRNA. To investigate whether
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this loss of connection negatively regulates the expression of
IGFBP5 by allowingmoremiR-143-3p to bind to IGFBP5mRNA, the
changes in the rank of themagnitude of IGFBP5 expression in the
ER positive samples were compared to the ER negative samples.
All ranks are calculated in a descending order of expression.
First, in the ER positive samples, changes in the rank (�Rp =
Rpg − Rpp) between IGFBP5 expression among all genes (Rpg) and
the corresponding protein among all proteins (Rpp) is calculated.
Then the same approach was taken to calculate the rank for
the ER negative samples (�Rn = Rng − Rnp) and compared with
each other. We found the change of rank in the ER negative
samples to be higher than the change in the ER positive samples
(–1955 versus –1344) (�Rn versus �Rp), which signifies the neg-
ative regulatory effect of miRNA on the IGFBP5 expression. The
ranking comparison can be interpreted in such a way that the
drop of IGFBP5 expression ranking in the proteome of ER negative
samples is higher than that of ER positive samples. IGF2RmRNA,
on the other hand, being free from miRNA inhibition rose its
ranking higher in the proteome of ER negative samples than the
ER positive ones (902 versus 426) (�Rn versus �Rp). Therefore,
this experiment demonstrates how 3’-UTR APA events change
the miRNA–mRNA interaction(s) and cause negative regulation
on the expression of mRNAs.

Discussion
Although the proteome mostly determines biology and clini-
cal outcomes in human disease pathogenesis, the application
of current proteome profiling technologies is less exhaustive
than transcriptome profiling due to technical limitations such
as the dynamic range of data acquisition. Thus, transcriptome
profiling using RNA-seq experiments is widely used instead
to understand the gene expression in most big data-driven
studies. Despite such popularity, the data analysis has been
one-dimensional in such a way that differential gene expres-
sion analysis has been a standard procedure for most data
processing. It limited a comprehensive understanding of the
role of the transcriptome by excluding the post-transcriptional
regulations and incurred a pervasive problem of poor correla-
tion between the transcriptome and the proteome in big data-
driven studies. In this study, we argue that PTNet, a multi-
dimensional data analysis model, can overcome the problems
in current data analyses and provide evidence that it performs
better in assessing the proteome changes and improves the pre-
diction of clinical outcomes compared to current data analysis
tools.

Our model highly considers the changes of miRNA-binding
sites in the transcriptome. Previously, it was suggested that
ceRNAs can modulate the regulatory mechanism of miRNAs
[90, 91]. However, in this model, the expression level of ceRNAs
has been the major focus as miRNAs were known to target
multiple mRNAs in cells. As miRNAs are known to bind to 3’-
UTR of mRNAs for the regulation of gene expression, the qual-
itative and quantitative information on 3’-UTR APA events is
critical to understand the regulatory network of miRNAs. So far,
numerous bioinformatics pipelines for 3’-UTR APA events have
been developed using RNA-seq or 3’-end biased RNA-seq [85, 92–
94]. Although they provide a comprehensive profile of 3’-UTR
APA events, we demonstrated that integrating two sequencing
results (RNA-seq and 3’-end biased RNA-seq) could provide a
better resolution of 3’-UTR APA profiling [93]. In this regard, it
would be important to develop pipelines that could provide a
higher resolution of 3’-UTR APA profiling by considering various
RNA-seq resources.

Conclusion
In this study, we introduce a graph-based learning model to
predict protein expression in cells. Our model focuses on two
particular post-transcriptional regulatory mechanisms in gene
expression; miRNA-mediated gene regulation and 3’-UTR APA
events. A deep learning-based fusion networkwas also proposed
to combine the mRNA and miRNA expression profiles with-
out considering the miRNA–mRNA interactions as a baseline
method. We observed the estimated protein expression is more
consistent with the true protein expression and has more dis-
criminative power to classify clinical variables of cancer patients
compared to either the mRNA expression or the combination of
mRNA and miRNA expression.We also analyzed the effect of 3’-
UTR APA events on the ceRNA model where multiple targeting
capacity of miRNAs can show the dynamic relationship with
their target mRNAs with an intuition that an mRNA losing its
miRNA-binding site will result in the regulation of other mRNAs
by the same miRNA. Our results show the negative regulation
caused by miRNA when one of its neighboring mRNAs undergo
3’-UTR APA. Our findings in this study signify the importance of
considering post-transcriptional regulation in cancer research.
The proposed efficient and scalable computational methods
enable a better understanding of the molecular basis of cancer
pathogenesis and provide a previously unrecognized perspective
in cancer data mining.

Key Points
• A new graph-based learning model is developed to
imitate the miRNA regulation based on the neigh-
boring relations of each miRNA in the miRNA–mRNA
interaction network and predict the protein expres-
sion changes.

• A new class of molecular signatures based on esti-
mated protein expression provide more accurate can-
cer diagnostic and prognostic information compared
to mRNA and miRNA expressions.

• One mRNA loses its miRNA-binding sites due to 3’-
UTR APA, the spare miRNA will bind to the other
connected mRNAs in the miRNA–mRNA interaction
network and negatively regulate their expression.

• A deep learning-based multi-omics fusion network
model that considers the relations between differ-
ent multi-omics features is proposed as a baseline
method.
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Information about TCGA and the investigators and insti-
tutions who constitute the TCGA research network can be
found at http://cancergenome.nih.gov. The dbGaP accession
number to the specific version of the TCGA dataset is
phs000178.v8.p7.
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