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Abstract

Fine-tuned pre-trained language models can
suffer from severe miscalibration for both
in-distribution and out-of-distribution (OOD)
data due to over-parameterization. To mit-
igate this issue, we propose a regularized
fine-tuning method. Our method intro-
duces two types of regularization for bet-
ter calibration: (1) On-manifold regulariza-
tion, which generates pseudo on-manifold
samples through interpolation within the data
manifold. Augmented training with these
pseudo samples imposes a smoothness regu-
larization to improve in-distribution calibra-
tion. (2) Off-manifold regularization, which
encourages the model to output uniform dis-
tributions for pseudo off-manifold samples to
address the over-confidence issue for OOD
data. Our experiments demonstrate that the
proposed method outperforms existing cal-
ibration methods for text classification in
terms of expectation calibration error, mis-
classification detection, and OOD detection
on six datasets. Our code can be found
at https://github.com/Lingkai-Kong/

Calibrated-BERT-Fine-Tuning.

1 Introduction

Pre-trained language models have recently brought
the natural language processing (NLP) community
into the transfer learning era. The transfer learn-
ing framework consists of two stages, where we
first pre-train a large-scale language model, (e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2020) and T5 (Raffel
et al., 2019)) on a large text corpus and then fine-
tune it on downstream tasks. Such a fine-tuning
approach has achieved SOTA performance in many
NLP benchmarks (Wang et al., 2018, 2019).

Many applications, however, require trustwor-
thy predictions that need to be not only accurate
but also well calibrated. In particular, a well-
calibrated model should produce reliable confi-

Figure 1: The reliability diagrams on in-distribution
data (the first row) and the histograms of the model con-
fidence on out-of-distribution (OOD) data (the second
row) of CNN (Kim, 2014) and fine-tuned BERT-MLP
classifier (Devlin et al., 2019). Though BERT improves
classification accuracy, it makes over-confident predic-
tions for both in-distribution and OOD data.

dent estimates for both in-distribution and out-of-
distribution (OOD) data: (1) For in-distribution
data, a model should produce predictive probabili-
ties close to the true likelihood for each class, i.e.,
confidence ≈ true likelihood. (2) For OOD data,
which do not belong to any class of the training
data, the model output should produce high un-
certainty to say ‘I don’t know’, i.e., confidence
≈ random guess, instead of producing absurdly
wrong yet wildly confident predictions. Providing
such calibrated output probabilities can help us to
achieve better model robustness (Lee et al., 2018),
model fairness (Chouldechova, 2017) and improve
label efficiency via uncertainty driven learning (Gal
et al., 2017; Siddhant and Lipton, 2018; Shen et al.,
2018).

https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning
https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning
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Unfortunately, Guo et al. (2017) have shown that
due to over-parameterization, deep convolutional
neural networks are often miscalibrated. Our ex-
perimental investigation further corroborates that
fine-tuned language models can suffer from miscal-
ibration even more for NLP tasks. As shown in Fig-
ure 1, we present the calibration of a BERT-MLP
model for a text classification task on the 20NG
dataset. Specifically, we train a TextCNN (Kim,
2014) and a BERT-MLP using 20NG15 (the first
15 categories of 20NG) and then evaluate them on
both in-distribution and OOD data. The first row
plots their reliability diagrams (Niculescu-Mizil
and Caruana, 2005) on the test set of 20NG15.
Though BERT improves the classification accu-
racy from 83.9% to 87.4%, it also increases the
expected calibration error (ECE, see more details
in Section 2) from 4.0% to 9.5%. This indicates
that BERT-MLP is much more miscalibrated for
in-distribution data. The second row plots the his-
tograms of the model confidence, i.e., the maxi-
mum output probability, on the test set of 20NG5
(the unseen 5 categories of 20NG). While it is de-
sirable to produce low probabilities for these un-
seen classes, BERT-MLP produces wrong yet over-
confident predictions for such OOD data.

Such an aggravation of miscalibration is due to
the even more significant over-parameterization of
these language models. At the pre-training stage,
they are trained on a huge amount of unlabeled data
in an unsupervised manner, e.g., T5 is pre-trained
on 745 GB text. To capture rich semantic and syn-
tactic information from such a large corpus, the
language models are designed to have enormous
capacity, e.g., T5 has about 11 billion parameters.
At the fine-tuning stage, however, only limited la-
beled data are available in the downstream tasks.
With the extremely high capacity, these models
can easily overfit training data likelihood and be
over-confident in their predictions.

To fight against miscalibration, a natural option
is to apply a calibration method such as tempera-
ture scaling (Guo et al., 2017) in a post-processing
step. However, temperature scaling only learns a
single parameter to rescale all the logits, which is
not flexible and insufficient. Moreover, it cannot
improve out-of-distribution calibration. A second
option is to mitigate miscalibration during train-
ing using regularization. For example, Pereyra
et al. (2017) propose an entropy regularizer to pre-
vent over-confidence, but it can needlessly hurt

legitimate high confident predictions. A third op-
tion is to use Bayesian neural networks (Blundell
et al., 2015; Louizos and Welling, 2017), which
treat model parameters as probability distributions
to represent model uncertainty explicitly. However,
these Bayesian approaches are often prohibitive, as
the priors of the model parameters are difficult to
specify, and exact inference is intractable, which
can also lead to unreliable uncertainty estimates.

We propose a regularization approach to ad-
dressing miscalibration for fine-tuning pre-trained
language models from a data augmentation per-
spective. We propose two new regularizers using
pseudo samples both on and off the data manifold
to mitigate data scarcity and prevent over-confident
predictions. Specifically, our method imposes two
types of regularization for better calibration during
fine-tuning: (1) On-manifold regularization: We
first generate on-manifold samples by interpolat-
ing the training data and their corresponding labels
along the direction learned from hidden feature
space; training over such augmented on-manifold
data introduces a smoothness constraint within the
data manifold to improve the model calibration for
in-distribution data. (2) Off-manifold regulariza-
tion: We generate off-manifold samples by adding
relatively large perturbations along the directions
that point outward the data manifold; we penal-
ize the negative entropy of the output distribution
for such off-manifold samples to address the over-
confidence issue for OOD data.

We evaluate our proposed model calibration
method on six text classification datasets. For in-
distribution data, we measure ECE and the per-
formance of misclassification detection. For out-
of-distribution data, we measure the performance
of OOD detection. Our experiments show that
our method outperforms existing state-of-the-art
methods in both settings, and meanwhile maintains
competitive classification accuracy.

We summarize our contribution as follows: (1)
We propose a general calibration framework, which
can be applied to pre-trained language model fine-
tuning, as well as other deep neural network-based
prediction problems. (2) The proposed method
adopts on- and off-manifold regularization from
a data augmentation perspective to improve cali-
bration for both in-distribution and OOD data. (3)
We conduct comprehensive experiments showing
that our method outperforms existing calibration
methods in terms of ECE, miscalssification detec-
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tion and OOD detection on six text classification
datasets.

2 Preliminaries

We describe model calibration for both in-
distribution and out-of-distribution data.
Calibration for In-distribution Data: For in-
distribution data, a well-calibrated model is ex-
pected to output prediction confidence comparable
to its classification accuracy. For example, given
100 data points with their prediction confidence
0.6, we expect 60 of them to be correctly classi-
fied. More precisely, for a data point X , we denote
by Y (X) the ground truth label, Ŷ (X) the label
predicted by the model, and P̂ (X) the output prob-
ability associated with the predicted label. The
calibration error of the predictive model for a given
confidence p ∈ (0, 1) is defined as:

Ep = |P(Ŷ (X) = Y (X)|P̂ (X) = p)− p|. (1)

As (1) involves population quantities, we usually
adopt empirical approximations (Guo, 2017) to esti-
mate the calibration error. Specifically, we partition
all data points into M bins of equal size according
to their prediction confidences. Let Bm denote the
bin with prediction confidences bounded between
`m and um. Then, for any p ∈ [`m, um), we define
the empirical calibration error as:

Êp = Êm =
1

|Bm|

∣∣∣ ∑
i∈Bm

[
1(ŷi = yi)− p̂i

]∣∣∣, (2)

where yi, ŷi and p̂i are the true label, predicted
label and confidence for sample i.

To evaluate the overall calibration error of the
predictive model, we can futher take a weighted
average of the calibration errors of all bins, which is
also known as the expected calibration error (ECE)
(Naeini et al., 2015) defined as:

ECE =

M∑
m=1

|Bm|
n
Êm, (3)

where n is the sample size.
We remark that the goal of calibration is to mini-

mize the calibration error without significantly sac-
rificing prediction accuracy. Otherwise, a random
guess classifier can achieve zero calibration error.
Calibration for Out-of-distribution Data: In
real applications, a model can encounter test data
that significantly differ from the training data. For
example, they come from other unseen classes, or
they are potential outliers. A well-calibrated model

is expected to produce an output with high uncer-
tainty for such out-of-distribution (OOD) data, for-
mally,

P (Y = j) = 1/K ∀j = 1, ...,K,

where K is the number of classes of the training
data. As such, we can detect OOD data by setting
up an uncertainty threshold.

3 Calibrated Fine-Tuning via Manifold
Smoothing

We consider N data points of the target task S =
{(xi, yi)}Ni=1, where xi’s denote the input embed-
ding of the sentence and yi’s are the associated one-
hot labels. Let f(·) denote the feature extraction
layers (e.g., BERT); let g(·) denote the task-specific
layer; and let θ denote all parameters of f and g.
We propose to optimize the following objective at
the fine-tuning stage:

min
θ
F(θ) = Ex,y∼S`(g ◦ f(x), y)

+ λonRon(g ◦ f) + λoffRoff(g ◦ f), (4)

where ` is the cross entropy loss, and λon, λoff are
two hyper-parameters. The regularizers Ron and
Roff are for on- and off-manifold calibration, re-
spectively.

3.1 On-manifold Regularization
The on-manifold regularizerRon exploits the inter-
polation of training data within the data manifold
to improve the in-distribution calibration. Specifi-
cally, given two training samples (x, y) and (x̃, ỹ)
and the feature extraction layers f , we generate an
on-manifold pseudo sample (x′, y′) as follows:

x′∗ = arg min
x′∈B(x,δon)

Dx(f(x′), f(x̃)), (5)

y′ = (1− δy)y + δyỹ, (6)

where δon and δy are small interpolation parameters
for data and label, and Dx is a proper distance for
features extracted by f such as cosine distance,
i.e., Dx(a,b) = 〈a/‖a‖2,b/‖b‖2〉, and B(x, δon)
denotes an `∞ ball centered at x with a radius δon,
i.e.,

B(x, δon) = {x′ | ‖x′ − x‖∞ ≤ δon}.

As can be seen, x′∗ is essentially interpolat-
ing between x and x̃ on the data manifold, and
Dx(f(·), f(·)) can be viewed as a metric over such
a manifold. However, as f(·) is learnt from finite
training data, it can recover the actual data mani-
fold only up to a certain statistical error. Therefore,
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Mixup sampleInterpolation path

Figure 2: The on-manifold and off-manifold samples generated by our calibration procedure. Mixup adopts a
coarse linear interpolation and the generated data point may deviate from the data manifold.

we constrain x′∗ to stay in a small neighborhood
of x, which ensures x′∗ to stay close to the actual
data manifold.

This is different from existing interpolation
methods such as Mixup (Zhang et al., 2018; Verma
et al., 2019). These methods adopt coarse linear
interpolations either in the input space or latent fea-
ture space, and the generated data may significantly
deviate from the data manifold.

Note that our method not only interpolates x but
also y. This can yield a soft label for x′∗, when x
and x̃ belong to different classes. Such an inter-
polation is analogous to semi-supervised learning,
where soft pseudo labels are generated for the un-
labelled data. These soft-labelled data essentially
induce a smoothing effect, and prevent the model
from making overconfident predictions toward one
single class.

We remark that our method is more adaptive
than the label smoothing method (Müller et al.,
2019). As each interpolated data point involves
at most two classes, it is unnecessary to distribute
probability mass to other classes in the soft label. In
contrast, label smoothing is more rigid and enforces
all classes to have equally nonzero probability mass
in the soft label.

We then define the on-manifold regularizer as
Ron(g ◦ f) = E(x′,y′)∼Son

DKL(y′, g ◦ f(x′)),

where Son denotes the set of all pseudo labelled
data generated by our interpolation method, and
DKL denotes the KL-divergence between two prob-
ability simplices.

3.2 Off-manifold Regularization
The off-manifold regularizer, R2, encourages the
model to yield low confidence outputs for sam-
ples outside the data manifold, and thus mitigates

Algorithm 1 Our Proposed Efficient Stochastic Op-
timization Algorithm for Solving (4). d is the di-
mension of features.

for # training iterations do
Sample a mini-batch B = {xi, yi} from S.
// Generate on-manifold samples:
For each xi ∈ B, randomly select {x̃i, ỹi}
from B, initialize x′i ← xi + vi with vi ∼
UNIF[−δon, δon]d

∆′i ← sign(∇x′
i
Dx(f(x′i), f(x̃i)))

x′i ← Π‖x′
i−xi‖∞≤δon

(x′i − δon∆′i)
y′ ← (1− δy)yi + δyỹi
// Generate off-manifold samples:
For each xi ∈ B, initialize x′′i ← xi+v′i with
v′i ∼ UNIF[−δoff , δoff ]d

∆′′i ← sign(∇x′′
i
`(g ◦ f(x′′i ), y)

x′′i ← Π‖x′′
i −xi‖∞=δoff

(x′′i + δoff∆′′i )
Update θ using ADAM

end for

the over-confidence issue for out-of-distribution
(OOD) data. Specifically, given a training sample
(x, y), we generate an off-manifold pseudo sample
x

′′∗ by:

x
′′∗ = max

x′′∈S(x,δoff)
`(g ◦ f(x′′), y), (7)

where S(x, δoff) denotes an `∞ sphere centered at
x with a radius δoff .

Since we expect x′′∗ to mimic OOD data, we first
need to choose a relatively large δoff such that the
sphere S(x, δoff) can reach outside the data mani-
fold. Then, we generate the pseudo off-manifold
sample from the sphere along the adversarial direc-
tion. Existing literature (Stutz et al., 2019; Gilmer
et al., 2018) has shown that such an adversarial
direction points outward the data manifold.
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By penalizing the prediction confidence for these
off-manifold samples, we are able to encourage low
prediction confidence for OOD data. Hence, we
define the off-manifold regularizer as

Roff(g ◦ f) = Ex′′∼Soff
−H(g ◦ f(x′′)), (8)

where Soff denotes the set of all generated off-
manifold samples, andH(·) denotes the entropy of
the probability simplex.

3.3 Model Training
We can adopt stochastic gradient-type algorithms
such as ADAM (Kingma and Ba, 2014) to opti-
mize (4). At each iteration, we need to first solve
two inner optimization problems in (5) and (7),
and then plug x′ and x′′ into (4) to compute the
stochastic gradient. The two inner problems can
be solved using the projected sign gradient update
for multiple steps. In practice, we observe that one
single update step with random initialization is al-
ready sufficient to efficiently optimize θ. Such a
phenomenon has also been observed in existing lit-
erature on adversarial training (Wong et al., 2019).
We summarize the overall training procedure in
Algorithm 1.

4 Experiments

To evaluate calibration performance for in-
distribution data, we measure the expected calibra-
tion error (ECE) and the misclassification detection
score. For out-of-distribution data, we measure the
OOD detection score.

We detect the misclassified and OOD samples by
model confidence, which is the output probability
associated with the predicted label P̂ (X). Specif-
ically, we setup a confidence threshold τ ∈ [0, 1],
and take the samples with confidence below the
threshold, i.e., P̂ (X) < τ , as the misclassified or
OOD samples. We can compute the detection F1

score for every τ : F1(τ), and obtain a calibration
curve (F1(τ) vs. τ ). Then, we set τupper as the up-
per bound of the confidence threshold, since a well
calibrated model should provide probabilities that
reflect the true likelihood and it is not reasonable to
use a large τ to detect them. We use the empirical
Normalized Bounded Area Under the Calibration
Curve (NBAUCC) as the overall detection score:

NBAUCCτupper =
1

M

M∑
i=1

F1

(τupper

M
i
)
,

where M is the number of sub-intervals for the
numerical integration. We set M = 50 through-

out the following experiments. Note that the tradi-
tional binary classification metrics, e.g., AUROC
and AUPR, cannot measure the true calibration be-
cause the model can still achieve high scores even
though it has high confidences for the misclassified
and OOD samples. We provide more explanations
of the metrics in Appendix C. We report the per-
formance when τupper = 0.5 here and the results
when τupper = 0.7 and 1 in Appendix D.

4.1 Datasets

For each dataset, we construct an in-distribution
training set, an in-distribution testing set, and an
OOD testing set. Specifically, we use the following
datasets:
20NG1. The 20 Newsgroups dataset (20NG) con-
tains news articles with 20 categories. We use Stan-
ford Sentiment Treebank (SST-2) (Socher et al.,
2012) as the OOD data.
20NG15. We take the first 15 categories of 20NG
as the in-distribution data and the other 5 categories
(20NG5) as the OOD data.
WOS (Kowsari et al., 2017). Web of Science
(WOS) dataset contains scientific articles with 134
categories. We use AGnews (Zhang et al., 2015) as
the OOD data.
WOS100. We use the first 100 classes of WOS as
the in-distribution data and the other 34 classes
(WOS34) as the OOD data.
Yahoo (Chang et al., 2008). This dataset contains
questions with 10 categories posted to ‘Yahoo! An-
swers’. We randomly draw 2000 from 140, 000
samples for each category as the training set. We
use Yelp (Zhang et al., 2015) as the OOD data.
Yahoo8. We use the first 8 classes of Yahoo as the
in-distribution data and the other 2 classes (Yahoo2)
as the OOD data.

The testing set of OOD detection consists of
the in-distribution testing set and the OOD data.
More dataset details can be found in Appendix A.
We remark that 20NG15, WOS100, and Yahoo8 are
included to make OOD detection more challenging,
as the OOD data and the training data come from
similar data sources.

4.2 Baselines

We consider the following baselines:
• BERT (Devlin et al., 2019) is a pre-trained base
BERT model stacked with one linear layer.

1We use the 20 Newsgroups dataset from: http://
qwone.com/˜jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
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•Temperature Scaling (TS) (Guo, 2017) is a post-
processing calibration method that learns a single
parameter to rescale the logits on the development
set after the model is fine-tuned.
• Monte Carlo Dropout (MCDP) (Gal and
Ghahramani, 2016) applies dropout at testing time
for multiple times and then averages the outputs.
• Label Smoothing (LS) (Müller et al., 2019)
smoothes the one-hot label by distributing a certain
probability mass to other non ground-truth classes.
• Entropy Regularized Loss (ERL) (Pereyra
et al., 2017) adds a entropy penalty term to pre-
vent DNNs from being over-confident.
• Virtual Adversarial Training (VAT) (Miyato
et al., 2018) introduces a smoothness-inducing ad-
versarial regularizer to encourage the local Lips-
chitz continuity of DNNs.
•Mixup (Zhang et al., 2018; Thulasidasan et al.,
2019) augments training data by linearly interpo-
lating training samples in the input space.
• Manifold-mixup (M-mixup) (Verma et al.,
2019) is an extension of Mixup, which interpolates
training samples in the hidden feature space.

4.3 Implementation Details
We use ADAM (Kingma and Ba, 2014) with β1 =
0.9 and β2 = 0.999 as the optimizer. For our
method, we simply set λon = λoff = 1, δon =
10−4, δoff = 10−3, and δy = 0.1 for all the ex-
periments. We also conduct an extensive hyper-
parameter search for the baselines. See more de-
tails in Appendix B.

4.4 Main Results
Our main results are summarized as follows:
Expected Calibration Error: Table 1 reports the
ECE and predictive accuracy of all the methods.
Our method outperforms all the baselines on all the
datasets in terms of ECE except for Yahoo, where
only ERL is slightly better. Meanwhile, our method
does not sacrifice the predictive accuracy.
Misclassification Detection: Table 2 compares
the NBAUCC0.5 on misclassification detection of
different methods. As shown, our method outper-
forms all the baselines on all the six datasets.
Out-of-distribution Detection: Table 2 reports
the NBAUCC0.5 on OOD detection of different
methods. Again, our method achieves the best per-
formance on all the six datasets. The improvement
is particularly remarkable on the 20NG dataset,
where NBAUCC0.5 increases from 47.00 to 63.92
compared with the strongest baseline. We also find
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Figure 3: Calibration curves of OOD detection and
misclassification detection on WOS. Our method can
achieve high F1 scores starting from a small threshold
which indicates that it indeed provides low confidences
for misclassified and OOD samples; the F1 scores of
the baselines peak at high thresholds which indicates
that they are poorly calibrated.

that detecting the unseen classes from the original
dataset is much more challenging than detecting
OOD samples from a totally different dataset.
Significance Test: We perform the Wilcoxon
signed rank test (Wilcoxon, 1992) for significance
test. For each dataset, we conduct experiments us-
ing 5 different random seeds with significance level
α = 0.5. We find that our model outperforms other
baselines on all the datasets significantly, with only
exceptions of ERL in ECE on Yahoo and ERL in
misclassification detection on 20NG.

4.5 Parameter Study

We investigate the effects of the interpolation pa-
rameters for on-manifold data, i.e., δon and δy, and
the perturbation size for off-manifold samples, i.e.,
δoff . The default values are δon = 10−4, δoff =
10−3 and δy = 0.1. Figure 4 shows the reuslts on
20NG15, 20NG, WOS100, and WOS datasets. Our
results are summarized as follows:
• The performance of all metrics versus δon is sta-
ble within a large range from 10−5 to 10−2. When
δon is larger than 10−1, the predictive accuracy be-
gins to drop.
• The performance versus δoff is more sensitive:
(1) when δoff is too small, ECE increases dramati-
cally becasue the generated off-manifold samples
are too close to the manifold and make the model
under-confident. (2) when δoff is too large, the
off-manifold regularization is too weak and OOD
detection performance drops.
• In general, δon should be small to let x′ stay on
the data manifold while δoff should be large to let
x′′ leave the data manifold. However, the regular-
ization effect of Ron (Roff ) depends on both λon
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Model
ECE Accuracy

20NG15 20NG WOS100 WOS Yahoo8 Yahoo 20NG15 20NG WOS100 WOS Yahoo8 Yahoo
BERT 9.24 11.61 6.81 6.74 10.11 10.54 87.42 84.55 81.94 79.40 73.58 71.89
TS 4.42 8.17 3.63 4.43 5.18 4.24 87.42 84.55 81.94 79.40 73.58 71.89
MCDP 6.88 9.17 4.00 3.55 6.54 6.72 87.45 84.55 82.09 79.67 73.67 71.99
LS 4.35 6.15 4.35 4.67 4.89 3.61 87.54 85.02 81.95 79.47 73.66 71.54
ERL 7.16 6.10 3.74 3.35 3.42 2.96 87.67 84.83 81.96 79.48 73.63 72.01
VAT 9.07 11.28 7.27 6.76 10.96 7.92 87.61 85.20 81.65 79.71 73.71 72.08
Mixup 5.98 9.02 4.72 4.21 4.60 5.18 87.49 84.86 81.97 79.51 73.88 71.82
M-mixup 5.04 7.78 6.48 6.68 7.01 6.07 87.40 84.45 81.77 79.57 73.67 72.03

Ours 3.69 4.43 3.24 3.04 3.03 3.42 87.44 84.53 81.59 79.06 73.71 72.17

Table 1: ECE and accuracy (in percentage). We report the average performance of 5 random initializations.

Misclassification Detection OOD Detection
Data

20NG15 20NG WOS100 WOS Yahoo8 Yahoo
20NG15 20NG WOS100 WOS Yahoo8 Yahoo

( OOD ) 20NG5 SST-2 WOS34 AGnews Yahoo2 Yelp
BERT 2.30 2.86 16.53 20.52 7.47 8.43 2.66 21.65 23.12 49.84 8.35 13.88
TS 6.08 5.74 21.20 23.76 10.48 12.74 6.62 32.64 28.12 53.32 11.55 20.27
MCDP 4.37 5.28 20.44 24.16 10.12 10.75 3.99 25.10 27.28 53.52 9.98 15.93
LS 4.72 6.75 20.37 23.56 11.19 16.15 5.70 41.08 27.12 58.48 12.02 19.81
ERL 8.54 10.35 20.49 25.13 12.89 15.47 8.78 47.00 27.73 56.67 13.78 23.47
VAT 2.52 3.36 18.70 19.96 6.54 10.37 2.96 29.62 23.41 54.60 7.42 17.65
Mixup 4.99 4.51 20.65 24.80 10.75 11.29 5.86 31.84 26.77 58.02 11.62 19.84
M-mixup 2.16 3.16 16.94 19.39 9.09 11.79 2.36 26.08 24.08 51.39 10.08 22.41

Ours 9.10 10.76 26.93 30.80 14.34 17.88 9.69 63.92 35.60 71.13 14.94 29.40

Table 2: NBAUCC0.5 on misclassification detection and OOD detection. We report the average performance of 5
random initializations.

(λoff ) and δon (δoff ). Therefore, it is not necessary
to let δon be smaller than δoff . We can also tune
λon and λoff to achieve better performance.
• The performance versus δy is relatively stable
except for the metric of ECE. When δy is larger
than 0.2, ECE begins to increase.

4.6 Ablation Study
We investigate the effectiveness of the on-manifold
regularizer Ron and the off-manifold regularizer
Roff via ablation studies. Table 3 shows the results
on the 20NG15 and 20NG datasets.
• As expected, removing either component in our
method would result in a performance drop. It
demonstrates that these two components comple-
ment each other. All the ablation models outper-
form the BERT baseline model, which demon-
strates the effectiveness of each module.
•We observe that the optimal δon is different when
using only Ron. This indicates that the hyperpa-
rameters ofRon andRoff should be jointly tuned,
due to the joint effect of both components.

• By removingRoff , we observe a severe OOD per-
formance degradation on the 20NG dataset (from
63.92 to 43.87). This indicates that Roff is vital
to out-of-distribution calibration. Meanwhile, the
performance degradation is less severe on 20NG15
(from 9.69 to 7.94). It is becauseRon can also help
detect the OOD samples from similar data sources.
(20NG5).
• By removingRon, the in-distribution calibration
performance drops as expected.

5 Related Works and Discussion

Other Related Works: Lakshminarayanan et al.
(2017) propose a model ensembling approach to
improve model calibration. They first train multi-
ple models with different initializations and then
average their predictions. However, fine-tuning
multiple language models requires extremely inten-
sive computing resources.

Kumar et al. (2018) propose a differentiable sur-
rogate for the expected calibration error, called
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Figure 4: Parameter study of δon, δoff and δy .

Dataset 20NG15 20NG
Model δon Accuracy ECE OOD Mis Accuracy ECE OOD Mis
BERT - 87.42 9.24 2.66 2.30 84.55 11.61 21.65 2.86

w/Roff - 86.48 6.51 6.22 6.09 83.90 7.98 55.40 7.12

w/Ron 10−2 88.73 2.77 7.94 8.08 85.60 5.00 35.80 8.66

w/Ron 10−3 88.29 3.52 7.39 6.83 85.69 4.43 38.00 9.01

w/Ron 10−4 87.93 4.48 5.33 4.83 85.12 6.76 43.87 5.95

w/Ron 10−5 87.61 4.69 3.83 4.73 85.39 6.35 35.70 5.30

w/ Both 10−4 87.44 3.69 9.69 9.10 84.53 4.43 63.92 10.76

Table 3: Ablation study on the 20NG15 and 20NG datasets. For OOD detection and misclassification detection, we
report BAUCC0.5. We set δy = 0.1 and δoff = 10−3.

maximum mean calibration error (MMCE), using
kernel embedding. However, such a kernel embed-
ding method is computationally expensive and not
scalable to the large pre-trained language models.

Accelerating Optimization: To further improve
the calibration performance of our method, we can
leverage some recent minimax optimization tech-
niques to better solve the two inner optimization
problems in (5) and (7) without increasing the com-
putational complexity. For example, Zhang et al.
(2019) propose an efficient approximation algo-
rithm based on Pontryagin’s Maximal Principle to
replace the multi-step projected gradient update for

the inner optimization problem. Another option is
the learning-to-learn framework (Jiang et al., 2018),
where the inner problem is solved by a learnt opti-
mizer. These techniques can help us obtain x′ and
x′′ more efficiently.

Connection to Robustness: The interpolated
training samples can naturally promote the local
Lipschitz continuity of our model. Such a local
smoothness property has several advantages: (1)
It makes the model more robust to the inherent
noise in the data, e.g., noisy labels; (2) it is partic-
ularly helpful to prevent overfitting and improve
generalization, especially for low-resource tasks.
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Extensions: Our method is quite general and can
be applied to other deep neural network-based prob-
lems besides language model fine-tuning.

6 Conclusion

We have proposed a regularization method to mit-
igate miscalibration of fine-tuned language mod-
els from a data augmentation perspective. Our
method imposes two new regularizers using gener-
ated on- and off- manifold samples to improve both
in-distribution and out-of-distribution calibration.
Extensive experiments on six datasets demonstrate
that our method outperforms state-of-the-art cali-
bration methods in terms of expected calibration
error, misclassification detection and OOD detec-
tion.
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A Dataset Details

#Train #Dev #Test #Label
20NG15 7010 1753 5833 15
20NG5 - - 1699 5
20NG 9051 2263 7532 20
SST-2 - - 1822 2
WOS100 16794 4191 13970 100
WOS34 - - 4824 34
WOS 22552 5639 18794 134
AGnews - - 7600 4
Yahoo8 16000 4000 48000 8
Yahoo2 - - 12000 2
Yahoo 20000 5000 60000 10
Yelp - - 38000 2

Table 4: Dataset statistics and dataset split. ’-’ denotes
that this part is not used. The original Yahoo dataset
contains 140, 000 training samples for each class which
is too large; we randomly draw 2, 000 and 500 samples
for each class as our training and development set.

All the data are publicly available. We also offer
the links to the data as follows:

1. 20NG: http://qwone.com/˜jason/

20Newsgroups/.

2. SST-2: https://nlp.stanford.edu/

sentiment/index.html.

3. WOS: https://data.mendeley.com/

datasets/9rw3vkcfy4/2.

4. AGnews: https://github.com/yumeng5/

WeSTClass.

5. Yahoo: https://www.kaggle.com/

soumikrakshit/yahoo-answers-dataset.

6. Yelp: https://github.com/yumeng5/

WeSTClass.

B Experiment Details

We use ADAM (Kingma and Ba, 2014) with β1 =
0.9 and β2 = 0.999 as the optimizer in all the
datasets. We use the learning rate of 5 × 10−5

and batch size 32 except 1 × 10−5 and 16 for
Yahoo8 and Yahoo. We set the maximum num-
ber of epochs to 5 in Yahoo8 and Yahoo and 10 in
the other datasets. We use the dropout rate of 0.1
as in (Devlin et al., 2019). The documents are tok-
enized using wordpieces and are chopped to spans

no longer than 150 tokens on 20NG15 and 20NG
and 256 on other datasets..
Hyper-parameters: For our method, we use
λon = λoff = 1, δon = 10−4, δoff = 10−3 and
δy = 0.1 for all the datasets. We then conduct
an extensive hyper-parameter search for the base-
lines: for label smoothing, we search the smooth-
ing parameter from {0.05, 0.1} as in (Müller et al.,
2019); for ERL, the penalty weight is chosen from
{0.05, 0.1, 0.25, 0.5, 1, 2.5, 5}; for VAT, we search
the perturbation size in {10−3, 10−4, 10−5} as in
(Jiang et al., 2020); for Mixup, we search the in-
terpolation parameter from {0.1, 0.2, 0.3, 0.4} as
suggested in (Zhang et al., 2018; Thulasidasan
et al., 2019); for Manifold-mixup, we search from
{0.2, 0.4, 1, 2, 4}. We perform 10 stochastic for-
ward passes for MCDP at test time. For hyper-
parameter tuning, we run all the methods 5 times
and then take the average. The hyper-parameters
are selected to get the best ECE on the development
set of each dataset. The interpolation of Mixup is
performed on the input embeddings obtained from
the first layer of the language model; the interpo-
lation of Manifold-mixup is performed on the fea-
tures obtained from the last layer of the language
model.

C Metrics of Misclassification and
Out-of-distribution detection

Existing works on out-of-distribution (OOD) de-
tection and misclassification detection (Hendrycks
and Gimpel, 2016) use traditional binary classifi-
cation metrics, e.g., AUPR and AUROC. As we
discussed in Section 1 and 2, the output probability
of a calibrated model should reflect the true likeli-
hood. However, AUROC and AUPR cannot reflect
true model calibration because the model can still
achieve high scores even though it has high con-
fidences for misclassified and OOD samples. We
argue that it is more reasonable to use the Normal-
ized Bounded Area Under the Calibration Curve
(NBAUCC) defined as in Section 4.

Table 5 shows an illustrative example. As can
be seen, h1 is better calibrated than h2, since h1

can detect OOD samples under a wide range of
threshold (0.15 < τ < 0.9) while h2 requires
an absurdly large threshold (0.85 < τ < 0.9).
However, if we use the traditional AUPR and
AUROC metrics, we will conclude that h1 is as
well calibrated as h2 since AUPRh1 = AUPRh2

= 0.417 and AUROCh1 = AUROCh2= 1. On the

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html
https://data.mendeley.com/datasets/9rw3vkcfy4/2
https://data.mendeley.com/datasets/9rw3vkcfy4/2
https://github.com/yumeng5/WeSTClass
https://github.com/yumeng5/WeSTClass
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://github.com/yumeng5/WeSTClass
https://github.com/yumeng5/WeSTClass
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Model Confidence Optimal τ AUPR AUROC NBAUCC1 NBAUCC0.5xin,1 xin,2 xout,1 xout,2

h1 (Miscalibrated) 0.9 0.95 0.8 0.85 (0.85, 0.9) 0.417 1 0.145 0
h2 (Well-calibraterd) 0.9 0.95 0.1 0.15 (0.15, 0.9) 0.417 1 0.845 0.773

Table 5: NBAUCC vs. AUROC/AUPR

other hand, if we use NBAUCC, we will have
NBAUCCh1

1 = 0.845 > NBAUCCh1
1 = 0.145,

or NBAUCCh1
0.5 = 0.773 > NBAUCCh1

0.5 = 0
which can reflect the true calibration of the two
classifiers.

We remark that it is more appropriate to use
NBAUCC0.5 than NBAUCC1 since a calibrated
model should provide low confidences for the mis-
classified and OOD samples and it is unreasonable
to use a large threshold to detect them.

D Additional Results

Table 6 and 7 report the NBAUCCs of all the meth-
ods on misclassification and OOD detection when
τupper = 0.7 and τupper = 1. Table 8 and 9 report
the ablation study results of all the methods when
τupper = 0.7 and τupper = 1. Figure 5 and 6 report
the parameter study results of all the methods when
τupper = 0.7 and τupper = 1.
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Misclassification Detection OOD Detection
Data

20NG15 20NG WOS100 WOS Yahoo8 Yahoo
20NG15 20NG WOS100 WOS Yahoo8 Yahoo

( OOD ) 20NG5 SST-2 WOS34 AGnews Yahoo2 Yelp
BERT 17.86 18.48 35.84 39.08 28.83 29.67 13.52 42.86 40.04 59.42 26.63 38.30
TS 23.74 23.58 38.34 40.76 31.10 32.63 19.74 50.00 42.96 60.70 28.30 42.07
MCDP 23.58 24.58 38.54 41.20 31.43 32.57 16.82 44.96 42.74 60.72 27.47 39.83
LS 21.22 23.24 37.22 40.12 30.93 34.30 18.76 55.24 42.54 63.62 27.87 40.77
ERL 24.04 25.68 37.87 41.17 32.27 33.90 22.10 54.20 42.67 62.10 28.73 43.37
VAT 17.80 17.50 35.90 38.80 27.87 31.13 13.00 49.00 40.30 62.50 25.80 40.63
Mixup 21.42 21.86 37.72 40.92 30.97 32.97 16.70 50.94 42.13 62.98 28.00 44.57
M-mixup 17.86 19.24 36.48 38.33 29.67 31.50 14.06 44.56 41.51 61.30 27.43 44.20
Ours 26.50 28.10 40.93 43.70 33.07 35.13 23.20 66.36 46.73 68.10 29.70 46.43

Table 6: NBAUCC1 on misclassification detection and OOD detection. We report the average performance of 5
random initializations.

Misclassification Detection OOD Detection
Data

20NG15 20NG WOS100 WOS Yahoo8 Yahoo
20NG15 20NG WOS100 WOS Yahoo8 Yahoo

( OOD ) 20NG5 SST-2 WOS34 AGnews Yahoo2 Yelp
BERT 8.26 8.70 26.95 31.18 18.52 19.46 7.05 33.24 32.97 57.45 18.86 27.68
TS 14.60 13.72 31.73 33.89 22.32 24.61 12.91 43.55 37.84 59.86 22.17 34.03
MCDP 13.14 14.21 31.05 34.74 21.41 22.62 9.85 36.96 36.97 60.06 19.99 29.45
LS 12.45 14.24 30.92 33.51 22.94 27.52 11.63 49.60 36.04 65.28 22.38 33.00
ERL 17.92 20.04 30.83 35.26 25.07 27.34 15.43 55.69 36.69 61.93 24.07 36.74
VAT 8.44 9.66 29.39 30.57 17.23 21.74 7.26 41.35 32.56 60.81 17.64 31.17
Mixup 13.33 11.87 31.71 35.24 22.62 22.80 11.50 43.60 37.09 65.51 22.19 33.66
M-mixup 8.67 9.89 27.33 29.61 20.33 23.05 7.18 37.10 33.57 58.13 20.66 36.42
Ours 18.35 20.18 36.63 40.01 25.94 29.15 16.55 68.72 43.40 72.62 25.03 41.11

Table 7: NBAUCC0.7 on misclassification detection and OOD detection. We report the average performance of 5
random initializations.

Dataset 20NG15 20NG
Model δon Accuracy ECE OOD Mis Accuracy ECE OOD Mis
BERT - 87.42 9.24 13.52 17.86 84.55 11.61 42.86 18.48
w/Roff - 86.48 6.51 18.10 24.53 83.90 7.98 63.73 25.40
w/Ron 10−2 88.73 2.77 22.83 27.40 85.60 5.00 51.53 27.40
w/Ron 10−3 88.29 3.52 21.03 24.13 85.69 4.43 53.87 26.30
w/Ron 10−4 87.93 4.48 17.43 21.63 85.12 6.76 57.47 21.93
w/Ron 10−5 87.61 4.69 15.73 21.43 85.39 6.35 52.07 21.63
w/ Both 10−4 87.44 3.69 23.20 26.50 84.53 4.43 66.36 28.10

Table 8: Ablation study on the 20NG15 and 20NG datasets. For OOD detection and misclassification detection, we
report NBAUCC1. We set δy = 0.1 and δoff = 10−3.
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Dataset 20NG15 20NG
Model δon Accuracy ECE OOD Mis Accuracy ECE OOD Mis
BERT - 87.42 9.24 7.05 8.26 84.55 11.61 33.24 8.70
w/Roff - 86.48 6.51 11.75 14.79 83.90 7.98 62.67 15.42
w/Ron 10−2 88.73 2.77 15.27 18.35 85.60 5.00 46.67 18.39
w/Ron 10−3 88.29 3.52 13.86 15.66 85.69 4.43 50.07 18.17
w/Ron 10−4 87.93 4.48 10.61 12.59 85.12 6.76 53.64 13.18
w/Ron 10−5 87.61 4.69 8.71 12.25 85.39 6.35 46.24 12.20
w/ Both 10−4 87.44 3.69 16.55 18.35 84.53 4.43 68.72 20.18

Table 9: Ablation study on the 20NG15 and 20NG datasets. For OOD detection and misclassification detection, we
report NBAUCC0.7. We set δy = 0.1 and δoff = 10−3.
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Figure 5: Parameter study of δon, δoff and δy . We use NBAUCC1 for OOD and misclassification detection.
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Figure 6: Parameter study of δon, δoff and δy . We use NBAUCC0.7 for OOD and misclassification detection.


