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In this paper, we design and analyze second order positive and free energy satisfying 
schemes for solving diffusion equations with interaction potentials. The semi-discrete 
scheme is shown to conserve mass, preserve solution positivity, and satisfy a discrete 
free energy dissipation law for nonuniform meshes. These properties for the fully-discrete 
scheme (first order in time) remain preserved without a strict restriction on time steps. For 
the fully second order (in both time and space) scheme, a local scaling limiter is introduced 
to restore solution positivity when necessary. It is proved that such limiter does not 
destroy the second order accuracy. In addition, these schemes are easy to implement, and 
efficient in simulations. Both one and two dimensional numerical examples are presented 
to demonstrate the performance of these schemes.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with efficient numerical approximations to the following problem,{
∂tρ = ∇ · (∇ρ + ρ∇(V (x) + W ∗ ρ)), x ∈ � ⊂ Rd, t > 0,
ρ(x,0) = ρ0(x), x ∈ � ⊂ Rd,

(1.1)

subject to zero flux boundary conditions. Here � is a bounded domain in Rd , ρ = ρ(x, t) is the unknown density, V (x) is 
a confinement potential, and W (x) is an interaction potential, which is assumed to be symmetric.

Such problems appear in many applications. If W vanishes, this model includes heat equation (V (x) = 0) and the Fokker–
Planck equation (V (x) �= 0, see e.g. [47]). With interaction potentials, the equation can model nematic phase transition 
of rigid rod-like polymers [18], chemotaxis [46], and aggregation in biology (see [22,28,51] and references therein). For 
chemotaxis, a wide literature exists in relation to the Patlak-Keller-Segel system [29,45], and for rod-like polymers, the 
Doi-Onsager equation [15,18,37,41] is a well studied model.

Main properties of the solution to (1.1) are non-negativity, mass conservation and free energy dissipation, i.e.,

ρ0(x) ≥ 0 =⇒ ρ(x, t) ≥ 0, t > 0, (1.2)∫
�

ρ(x, t)dx =
∫
�

ρ0(x)dx, t > 0, (1.3)
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dE(ρ)

dt
= −

∫
�

ρ|∇(log(ρ) + V (x) + W ∗ ρ)|2dx = −I(ρ) ≤ 0, (1.4)

where the free energy associated to (1.1) is given by

E(ρ) =
∫
�

ρ log(ρ)dx +
∫
�

V (x)ρdx + 1

2

∫
�

∫
�

W (x− y)ρ(y)ρ(x)dydx. (1.5)

This energy functional is a sum of internal energy, potential energy, and the interaction energy. The functional I is referred 
to as the energy dissipation. The nice mathematical features (1.2)-(1.4) are crucial for the analytical study of (1.1), while free-
energy dissipation inequality (1.4) is particularly important to understand the large time dynamics of solutions of (1.1)(see 
e.g., [6,7,39]). There have been many studies about the connection between the free energy, the Fokker-Planck equation, 
and optimal transportation in a continuous state space (see e.g., [4,21,27,42,52]). These properties are also desired to be 
preserved by the numerical methods, and they are particularly important in the accuracy of long time numerical simulation.

One way of obtaining a structure-preserving numerical scheme is the minimizing movement approximation (see [1] and 
the references therein), also named Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al. [27]), which is given by

ρn+1 = argmin

{
1

2τ
W 2(ρn,ρ) + E(ρ)

}
.

Here, at each time step, the distance of the solution update acts as a regularization to the free energy. Yet such problems 
involving the Wasserstein distance W (ρn, ρ) are computationally demanding, see, e.g., [2,9,17,38] for some recent advances.

The second way of obtaining a structure-preserving numerical scheme is by a direct discretization of (1.1) so that these 
solution properties are preserved at the discrete level. This way has gained increasing attention in recent years, some closely 
related works include [8,32–36,50]. In [32], second order implicit numerical schemes designed for linear (yet singular) 
Fokker-Planck equations satisfy all three solution properties without any time step restriction. In [35], the authors extended 
the idea in [32] to a system of Poisson-Nernst-Planck equations using the explicit time discretization. For a more general 
class of nonlinear nonlocal equations,

∂tρ = ∇ · (ρ∇(H ′(ρ) + V (x) + W ∗ ρ)
)
, (1.6)

where H is a smooth convex function, a second order finite-volume method was constructed in [8], where positivity is 
enforced by using piecewise linear polynomials interpolating interface values. Structure preserving schemes based on the 
Chang-Cooper scheme [10] have been constructed in [44] to numerically solve nonlinear Fokker-Planck equations. Note that 
in [8,35,44] different time step restrictions are imposed in order to preserve the desired solution properties.

The construction of higher order schemes using the discontinuous Galerkin (DG) framework has recently been carried 
out for Fokker-Planck-type equations. We refer to [34] for energy satisfying DG schemes of arbitrary high order, and to [33]
for a DG scheme of third order to satisfy the discrete maximum principle for linear Fokker-Planck equations. In [36], the 
authors designed free energy satisfying DG schemes of any high order for Poisson-Nernst-Planck equations, but positive cell 
averages are shown to propagate in time only for special cases. While in [50], a high order nodal DG method for (1.6) was 
constructed using k + 1 Gauss–Lobatto quadrature points for degree k polynomials in order to preserve both the energy 
dissipation and the solution positivity; somehow degeneracy of accuracy in some cases was reported. Despite some well-
known advantages of the DG method, structural properties of the above fully discrete DG schemes are verified under some 
CFL conditions. It would be interesting to explore some explicit-implicit strategies for DG schemes.

In this paper we extend the idea in [32] to construct explicit-implicit schemes which are proven to preserve three main 
properties of (1.1) without a strict restriction on time steps. This therefore has improved upon the work [35]. Our main 
results include the scheme formulation, proofs of mass conservation, solution non-negativity, and the discrete free-energy 
dissipation law for both semi-discrete and fully discrete methods. In particular, the fully-discrete scheme (first order in time) 
is shown to satisfy three desired properties without strict restriction on time steps, in both one and two dimensional cases 
with nonuniform meshes. For the fully second order (in both time and space) scheme, we design a local scaling limiter to 
restore solution positivity, the limiter is build upon the one introduced in [31] and shown to preserve the second order 
accuracy.

More precisely, our scheme construction is based on a reformulation

∂tρ = ∇ ·
(
M∇

( ρ

M

))
, (1.7)

where M = e−V (x)−W ∗ρ , motivated by the fact that the equilibrium solutions of (1.1) may be expressed as ρ = Ce−V (x)−W ∗ρ . 
For linear Fokker-Planck equations, such reformulation with M = e−V (x) (so called non-logarithmic Landau form) has been 
used in [32], as well as in earlier works (see e.g., [5]). We note that for the general nonlinear nonlocal model (1.6), our 
scheme construction remains valid if we take M = ρe−H ′(ρ)−V (x)−W ∗ρ in the reformulation (1.7).

The advantage of formulation (1.7) can be seen from both spatial and temporal discretization. The symmetric spatial 
discretization of the one-dimensional version of (1.7) yields the semi-discrete scheme
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h j
d

dt
ρ j = h−1

j+1/2M j+1/2

(
ρ j+1

M j+1
− ρ j

M j

)
− h−1

j−1/2M j−1/2

(
ρ j

M j
− ρ j−1

M j−1

)
, (1.8)

in which the evaluation of M at cell interfaces {x j+1/2} and cell centers {x j} is easily available as defined in (2.4). Here ρ j
approximates the cell average of ρ(x, t) on j-th computational cell [x j−1/2, x j+1/2] of size h j , and h j+1/2 = (h j + h j+1)/2.

For time discretization of (1.8), we adopt an implicit-explicit approach to obtain

h j

ρn+1
j − ρn

j

τ
= h−1

j+1/2M
n
j+1/2

(
ρn+1

j+1

Mn
j+1

− ρn+1
j

Mn
j

)
− h−1

j−1/2M
n
j−1/2

(
ρn+1

j

Mn
j

− ρn+1
j−1

Mn
j−1

)
, (1.9)

where ρn
j approximates ρ j(t) at time t = nτ , see (3.1). This scheme is easy to implement, and is shown to preserve all three 

desired properties without a strict time step restriction. However, the scheme (1.9) is only first order in time. We further 
propose a fully second order scheme:

h j

ρ∗
j − ρn

j

τ/2
= h−1

j+1/2M
∗
j+1/2

(
ρ∗

j+1

M∗
j+1

− ρ∗
j

M∗
j

)
− h−1

j−1/2M
∗
j−1/2

(
ρ∗

j

M∗
j

− ρ∗
j−1

M∗
j−1

)
,

ρn+1
j = 2ρ∗

j − ρn
j ,

(1.10)

based on the predictor-corrector methodology, where M∗
j and M∗

j+1/2 are given in (5.1). This scheme is second order in 
both time and space, and it preserves solution positivity for small time steps. For large time steps, we use a local scaling 
limiter to restore the solution positivity.

Although we derive the schemes for the model equation (1.1), the methods can be applied to a larger class of PDE 
problems of drift-diffusion type; see [30].

Finally, we point out that the energy stability has always played an essential role in the accuracy of long time simulations 
of a gradient flow. The related works could also be found for other physical models such as the phase field equations 
[11,49,53], the thin film growth equations [12,54], and the Cahn-Hillard models [14,19,20,23,24,48,55,56]. In the case of 
the Cahn-Hilliard equation with a singular potential such as the Flory-Huggins potential, which is defined only when the 
solution lies strictly within an interval, we refer to [14,19] for theoretical justification of the positivity-preserving property 
of some finite difference schemes. Different from the present work, the key ingredient used in [14,19] is the singular nature 
of the logarithmic term around the boundary values which prevents the numerical solution from reaching these singular 
values.

The rest of the paper is organized as follows. In section 2, we present a semi-discrete scheme for one dimensional 
problems. Theoretical analysis of three properties is provided. In section 3, we present fully discrete implicit-explicit schemes 
for one dimensional case and prove the desired properties. Section 4 is devoted to numerical schemes for two dimensional 
problems. In section 5, we extend the scheme to a fully second order (in both time and space) scheme, a mass conserving 
local limiter is also introduced to restore solution positivity. Numerical examples for one and two dimensional problems are 
presented in section 6. Finally, concluding remarks are given in section 7.

2. Numerical method: one dimensional case

We begin with⎧⎨
⎩

∂tρ = ∂x(∂xρ + ρ∂x(V (x) + W ∗ ρ)), x ∈ �, t > 0,
ρ(x,0) = ρ0(x), x ∈ �,

∂xρ + ρ∂x(V (x) + W ∗ ρ) = 0, x ∈ ∂�, t > 0,
(2.1)

and reformulate (2.1) as⎧⎨
⎩

∂tρ = ∂x(M∂x(ρ/M)), x ∈ �, t > 0,
ρ(x,0) = ρ0(x), x ∈ �,

M∂x(ρ/M) = 0, x ∈ ∂�, t > 0,
(2.2)

where M = e−V (x)−W ∗ρ . We propose a finite volume scheme for (2.2) over the interval � = [a, b]. For a given positive 
integer N , we partition domain � into computational cells I j = [x j− 1

2
, x j+ 1

2
] with mesh size h j = |I j | and cell center at 

x j = x j− 1
2

+ 1
2h j , j ∈ {1, 2, · · · , N}, we set h j+1/2 = (h j + h j+1)/2.

2.1. Semi-discrete scheme

We integrate on each computational cell I j to obtain

d

dt

∫
I

ρ(x, t)dx = M∂x(ρ/M)|x j+1/2 − M∂x(ρ/M)|x j−1/2 .
j
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Let ρ(t) = {ρ1, · · · , ρN} be the numerical solution approximating all cell averages and C j+1/2 be an approximation to 
M∂x(ρ/M)|x j+1/2 , then one has the following semi-discrete scheme,

d

dt
ρ j = C j+1/2 − C j−1/2

h j
, j = 1,2, · · · ,N, (2.3)

we define

C j+1/2 =
M j+ 1

2

h j+1/2

(
ρ j+1

M j+1
− ρ j

M j

)
for j = 1,2, · · · ,N − 1,

C1/2 = 0, CN+1/2 = 0.

Here M j+1/2 = Q 1(x j+1/2, ρ) and M j = Q 1(x j, ρ) with

Q 1(x, v) = e−V (x)−∑N
i=1 hiW (xi−x)vi , for x ∈R, v ∈RN . (2.4)

Note that the zero flux boundary conditions have been weakly enforced.

2.2. Scheme properties

We investigate three desired properties for this semi-discrete scheme. For the energy dissipation property, we define a 
semi-discrete version of the free energy (1.5) as

Eh(t) =
N∑
j=1

h j

(
ρ j log(ρ j) + V jρ j + 1

2
g jρ j

)
, (2.5)

where g j =∑N
i=1 hiW (xi − x j)ρi is a second order approximation of the convolution (W ∗ ρ)(x j).

The following theorem states that the semi-discrete scheme (2.3) is conservative, positive, and energy dissipating.

Theorem 2.1. The semi-discrete scheme (2.3) satisfies the following properties:
(1) Conservation of mass: for any t > 0 we have

N∑
j=1

h jρ j(t) =
N∑
j=1

h jρ j(0). (2.6)

(2) Positivity preserving: if ρ j(0) ≥ 0 for all j ∈ {1, · · · , N}, then ρ j(t) ≥ 0 for any t > 0.

(3) Energy dissipation: dEh(t)dt ≤ −Ih , where

Ih =
N−1∑
j=1

C j+1/2

(
log (

ρ j+1

M j+1
) − log (

ρ j

M j
)

)
≥ 0. (2.7)

Proof. (1) Summing all equations in (2.3), we have

d

dt

N∑
j=1

h jρ j(t) =
N∑
j=1

d

dt
h jρ j(t) = 0,

therefore (2.6) holds true for any t > 0.
(2) Let �F ( �ρ) be the vector field defined by the right hand side of (2.3), then

d

dt
�ρ = �F ( �ρ). (2.8)

Note that the hyperplane � = { �ρ :∑N
j=1 h jρ j =∑N

j=1 h jρ j(0)} is an invariant region of (2.8). We define a closed set �1 on 
this hyperplane by

�1 =
{

�ρ : ρ j ≥ 0, j = 1,2, · · · ,N,and
N∑
j=1

h jρ j =
N∑
j=1

h jρ j(0)

}
.

It suffices to show that �1 is invariant under system (2.8). This is the case if the vector field �F ( �ρ) strictly points to interior 
of �1 on its boundary ∂�1: i.e.,
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�F ( �ρ) · �v < 0,

where �v is outward normal vector on any part of ∂�1.
A direct calculation using (2.3) gives

�F ( �ρ) · �v =
N−1∑
j=1

v j

h j
C j+1/2 −

N∑
j=2

v j

h j
C j−1/2

= −
N−1∑
j=1

(
v j+1

h j+1
− v j

h j
)C j+1/2.

(2.9)

For each �μ ∈ ∂�1, we define the set S = { j : 1 ≤ j ≤ N and μ j = 0}, then the outward normal vector at �μ has the form

�v = (v1, v2, · · · , vN)T with vi =
{−αi, i ∈ S,
0, i /∈ S,

and αi > 0 if i ∈ S .
Note that if j, j + 1 ∈ S , then ρ j = ρ j+1 = 0 implies C j+1/2 = 0; if j, j + 1 /∈ S , then v j+1 = v j = 0. Therefore nonzero 

terms in (2.9) are those with j ∈ S, j + 1 /∈ S or j /∈ S, j + 1 ∈ S . Hence

�F ( �ρ) · �v = −
∑

j∈S, j+1/∈S

α j

h j

M j+ 1
2

h j+1/2

ρ j+1

M j+1
−

∑
j /∈S, j+1∈S

α j+1

h j+1

M j+ 1
2

h j+1/2

ρ j

M j
< 0.

Therefore �1 is an invariant region of (2.3), this completes the proof of (2).
(3) From the fact that W (x) = W (−x), it follows

d

dt

N∑
j=1

h j

2
g jρ j =

N∑
j=1

h j g j
dρ j

dt
. (2.10)

Differentiating the discrete free energy (2.5) with respect to time and using (2.10) we obtain

dEh(t)

dt
=

N∑
j=1

(log(ρ j) + 1+ V j + g j)h j
dρ j

dt

=
N∑
j=1

(log (
ρ j

M j
) + 1)(C j+1/2 − C j−1/2)

= −
N−1∑
j=1

C j+1/2

(
log (

ρ j+1

M j+1
) − log (

ρ j

M j
)

)

= −Ih ≤ 0.

Note that

Ih =
N−1∑
j=1

C j+1/2

(
log (

ρ j+1

M j+1
) − log (

ρ j

M j
)

)

=
N−1∑
j=1

1

h j+1/2
M j+1/2

(
ρ j+1

M j+1
− ρ j

M j

)(
log (

ρ j+1

M j+1
) − log (

ρ j

M j
)

)

and (x − y)(log x − log y) ≥ 0 for x, y ∈R+ , so we have Ih ≥ 0. �
3. Fully discrete scheme

For time discretization of (2.3), we use an implicit-explicit time discretization in order to construct an easy to implement 
yet stable numerical scheme without time step restriction.
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3.1. Scheme formulation and algorithm

Let τ be time step and ρn
j be the numerical solution at tn = nτ to approximate ρ j(tn). From given ρn

j , j = 1, 2, · · · , N , 
we update to get ρn+1

j by

ρn+1 − ρn

τ
= Cn,∗

j+1/2 − Cn,∗
j−1/2

h j
, j = 1,2, · · · ,N, (3.1)

with

Cn,∗
j+1/2 =

Mn
j+ 1

2

h j+1/2

(
ρn+1

j+1

Mn
j+1

− ρn+1
j

Mn
j

)
for j = 1,2, · · · ,N − 1,

Cn,∗
1/2 = Cn,∗

N+1/2 = 0,

(3.2)

where Mn
j+1/2 = Q 1(x j+1/2, ρn) and Mn

j = Q 1(x j, ρn). The initial data is chosen by

ρ0
j = 1

h j

∫
I j

ρ0(x)dx, j = 1,2, · · · ,N. (3.3)

3.2. Scheme properties

Define a fully discrete version En
h of the free energy (1.5) as

Enh =
N∑
j=1

h j

(
ρn

j log(ρ
n
j ) + V jρ

n
j + 1

2
gnjρ

n
j

)
, (3.4)

where gnj =∑N
j=1 hiW (xi − x j)ρ

n
i .

The following theorem states that the three desired properties are preserved by the scheme (3.1) without strict time step 
restriction.

Theorem 3.1. The fully discrete scheme (3.1) has the following properties:
(1) Conservation of mass:

N∑
j=1

h jρ
n
j =

∫
�

ρ0(x)dx for n ≥ 1. (3.5)

(2) Positivity preserving: if ρn
j ≥ 0 for all j = 1, · · · , N, then

ρn+1
j ≥ 0, j = 1, · · · ,N.

(3) Energy dissipation: there exists τ ∗ > 0 such that if τ ∈ (0, τ ∗), then

En+1
h − Enh ≤ −τ

2
Inh, (3.6)

where

Inh =
N−1∑
j=1

Cn,∗
j+1/2

(
log (

ρn+1
j+1

Mn
j+1

) − log (
ρn+1

j

Mn
j

)

)
≥ 0.

Proof. Set Gn,∗
j = ρn+1

j /Mn
j and λ j+1/2 = τ/h j+1/2, so the fully discrete scheme (3.1) can be rewritten into the following 

linear system:

h1ρ
n
1 =(h1M

n
1 + λ1+1/2M

n
1+1/2)G

n,∗
1 − λ1+1/2M

n
1+1/2G

n,∗
2 ,

h jρ
n
j = − λ j−1/2M

n
j−1/2G

n,∗
j−1 + (h jM

n
j + λ j−1/2M

n
j−1/2 + λ j−1/2M

n
j+1/2)G

n,∗
j

− λ j+1/2M
n
j+1/2G

n,∗
j+1 j = 2,3, · · · ,N − 1,

hNρn = − λN−1/2M
n Gn,∗ + (hNM

n + λN−1/2M
n )Gn,∗

.

(3.7)
N N−1/2 N−1 N N−1/2 N
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Note that the coefficient matrix of linear system (3.7) is strictly diagonally dominant, therefore (3.7) has a unique solution 
for whatever τ a priori chosen so dose (3.1) because ρn+1

j = Gn,∗
j Mn

j .
(1) (3.5) follows from adding all equations in system (3.7) and using (3.3).
(2) Since ρn+1

j = Mn
j G

n,∗
j and Mn

j > 0, it suffices to prove that

Gn,∗
i = min

1≤ j≤N
{Gn,∗

j } ≥ 0.

Assume 1 < i < N , from i-th equation of (3.7) we have

hiρ
n
i = −λi−1/2M

n
i−1/2G

n,∗
i−1 + (hiM

n
i + λi−1/2M

n
i−1/2 + λi+1/2M

n
i+1/2)G

n,∗
i − λi+1/2M

n
i+1/2G

n,∗
i+1

≤ −λi−1/2M
n
i−1/2G

n,∗
i + (hiM

n
i + λi−1/2M

n
i−1/2 + λi+1/2M

n
i+1/2)G

n,∗
i − λi+1/2M

n
i+1/2G

n,∗
i

= hiM
n
i G

n,∗
i .

Thus Gn,∗
i ≥ ρn

i
Mn

i
≥ 0. A similar argument applies if i = 1 or i = N .

(3) A direct calculation using (3.4) gives

En+1
h − Enh =

N∑
j=1

h j

(
ρn+1

j log(ρn+1
j ) − ρn

j log(ρ
n
j

)
+ V jρ

n+1
j − V jρ

n
j + 1

2
gn+1
j ρn+1

j − 1

2
gnjρ

n
j )

=
N∑
j=1

h j((ρ
n+1
j − ρn

j ) log(ρ
n+1
j ) + (ρn+1

j − ρn
j )V j + (ρn+1

j − ρn
j )g

n
j

+ 1

2
gnjρ

n
j − gnjρ

n+1
j + 1

2
gn+1
j ρn+1

j + ρn
j log(

ρn+1
j

ρn
j

))

≤
N∑
j=1

h j((ρ
n+1
j − ρn

j ) log(G
n,∗
j ) + 1

2
gnjρ

n
j − gnjρ

n+1
j + 1

2
gn+1
j ρn+1

j ),

here we have used ρn
j log(

ρn+1
j

ρn
j

) ≤ ρn
j (

ρn+1
j

ρn
j

− 1) and mass conservation 
∑N

j=1 h j(ρ
n+1
j − ρn

j ) = 0. We proceed with

τ

N∑
j=1

(
h jρ

n+1
j − h jρ

n
j

τ
) log(Gn,∗

j ) = τ

N∑
j=1

(log(Gn,∗
j )(h−1

j+1/2M
n
j+1/2(G

n,∗
j+1 − Gn,∗

j )

− h−1
j−1/2M

n
j−1/2(G

n,∗
j − Gn,∗

j−1)))

= −τ

N−1∑
j=1

h−1
j+1/2M

n
j+1/2(G

n,∗
j+1 − Gn,∗

j )(logGn,∗
j+1 − logGn,∗

j )

= −τ Inh ≤ 0.

(3.8)

Here the sign of Inh is implied by the monotonicity of the logarithmic function.
It remains to find a sufficient condition on time step τ so that

N∑
j=1

h j(
1

2
gnjρ

n
j − gnjρ

n+1
j + 1

2
gn+1
j ρn+1

j ) ≤ −τ

2

N∑
j=1

(
h jρ

n+1
j − h jρ

n
j

τ
) log(Gn,∗

j ). (3.9)

From 
∑N

j=1 h j gnjρ
n+1
j =∑N

j=1 h j g
n+1
j ρn

j it follows that

N∑
j=1

h j(
1

2
gnjρ

n
j − gnjρ

n+1
j + 1

2
gn+1
j ρn+1

j ) = 1

2

N∑
j=1

h j(g
n+1
j − gnj )(ρ

n+1
j − ρn

j )

= 1

2

N∑
j=1

h j

N∑
i=1

hiW (xi − x j)(ρ
n+1
i − ρn

i )(ρ
n+1
j − ρn

j )

≤ ||W ||∞
2

N∑
h j

N∑
hi |ρn+1

i − ρn
i ||ρn+1

j − ρn
j |
j=1 i=1
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≤ ||W ||∞(b − a)τ 2

2

N∑
j=1

h j

(
ρn+1

j − ρn
j

τ

)2

,

where we have used the Cauchy-Schwarz inequality and b − a = ∑N
j=1 h j . Let �ξ, �η ∈ RN be vectors defined as �ξ j =√

h j(ρ
n+1
j −ρn

j )

τ , �η j =
√
h j logG

n,∗
j , then (3.9) is satisfied if

||W ||∞(b − a)τ 2

2
|�ξ |2 + τ

2
�ξ · �η ≤ 0.

We claim that

�ξ · �η = 0 if and only if �ξ = 0. (3.10)

Therefore

0 < c0 ≤ −�ξ · �η
|�ξ |2 ≤ |η|

|ξ | for ξ �= 0,

where c0 may depend on numerical solutions at tn and tn+1. We thus obtain (3.9) by taking

τ ≤ τ ∗ = c0
||W ||∞(b − a)

.

Finally, we verify claim (3.10). If �ξ · �η = 0, then from (3.8) we have

0 = �ξ · �η = −
N−1∑
j=1

h−1
j+1/2M

n
j+1/2(logG

n,∗
j+1 − logGn,∗

j )(Gn,∗
j+1 − Gn,∗

j ) ≤ 0,

therefore we must have Gn,∗
j = constan for all j ∈ {1, 2, · · · , N}. This when inserted into scheme (3.1) leads to

ρn+1
j = ρn

j for all j ∈ {1,2, · · · ,N},
thus �ξ = 0. �
Remark 3.1. Though τ ∗ in the above proof is not explicitly given, it is expected to be O (1) since −�ξ · �η

|�ξ |2 tends to a quantity 
of size O (1) as meshes are refined. More precisely, we have

−�ξ · �η
|�ξ |2 → |∂t E(ρ)|

‖∂tρ(·, t)‖2 ,

which is valid before reaching the steady state. This remark applies to Theorem 4.2 as well. Numerically energy dissipation 
was observed for large time steps relative to the spatial mesh sizes, see Example 6.3. Furthermore, a more precise bound 
for τ ∗ can be obtained with additional structural conditions on W ; see the appendix.

Remark 3.2. One could take the Euler forward time discretization to obtain an explicit scheme: From ρn
j , j = 1, 2, · · · , N , 

update to get ρn+1
j by

ρn+1 − ρn

τ
= Cn

j+1/2 − Cn
j−1/2

h j
, j = 1,2, · · · ,N,

where

Cn
j+1/2 =

Mn
j+ 1

2

h j+1/2

(
ρn

j+1

Mn
j+1

− ρn
j

Mn
j

)
for j = 1,2, · · · ,N − 1,

Cn
1/2 = Cn

N+1/2 = 0,

with Mn
j+1/2 = Q 1(x j+1/2, ρn) and Mn

j = Q 1(x j, ρn). One can show that the positivity preserving property is still met yet 
under a CFL condition like τ ≤ γ h2.
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3.3. Discussion on error estimates

It is desirable to obtain global-in-time error estimates by using the established energy dissipation law (3.6). But this 
appears rather difficult for the nonlinear term in the scheme fits more for the positivity-preserving property than the energy 
dissipation property. This said, we can obtain the local-in-time error estimate. The analysis includes both the truncation 
error estimate and the energy estimate for the error equation, yet estimates of the nonlinear terms are much more involved. 
We therefore only state the main result for (3.1), leaving detailed analysis to a separate publication.

Theorem 3.2. Assume that both W and V are Lipschitz continuous. Given smooth initial data ρ0(x), suppose the unique, smooth 
solution for (1.1) is given by ρ(x, t) on � × [0, T ] for some T finite, and the numerical solution for (3.1) is given by ρn

j with ρ0
j =

1
h j

∫
I j

ρ0(x)dx. Then, provided τ and h = max j h j are sufficiently small, for all positive integers n, such that nτ ≤ T , we have

N∑
j=1

|ρ(x j, t
n) − ρn

j |2h j ≤ C(τ + h2)2,

where C > 0 is independent of h and τ .

To see the complex nature of estimates in handing nonlinear terms, we refer to [23,24] for the local-in-time error 
estimates of finite difference schemes to the nonlocal Cahn-Hilliard equation.

4. Numerical method: two dimensional case

In this section, we extend our method to multi-dimensional problems. For simplicity, we only present schemes for the 
two dimensional initial value problem,{

∂tρ = ∇ · (∇ρ + ρ∇(V (x, y) + W ∗ ρ)), (x, y) ∈ � ⊂ R2, t > 0,
ρ(x, y,0) = ρ0(x, y), (x, y) ∈ �,

(4.1)

on a rectangular domain � = [a , b] × [c , d] subject to zero flux boundary conditions.
For given positive integers Nx, Ny , we partition � by a Cartesian mesh with computational cells

Ii, j = [xi− 1
2
, xi+ 1

2
] × [y j− 1

2
, y j+ 1

2
],

where i ∈ {1, 2, · · · , Nx}, j ∈ {1, 2, · · · , Ny}. The mesh size is |Ii, j | = hx
i h

y
j with the cell center at (xi, y j) = (xi−1/2 +

1
2h

x
i , y j−1/2 + 1

2h
y
j ), we set hx

i+1/2 = (hx
i + hx

i+1)/2, h
y
j+1/2 = (hy

j + hy
j+1)/2.

4.1. Semi-discrete scheme

Let ρ(t) = {ρi, j} be the numerical solution, then dimension by dimension spatial discretization of

∂tρ = ∇ ·
(
M∇(

ρ

M
)
)

, with M = e−V (x,y)−W ∗ρ,

yields the following semi-discrete scheme

d

dt
ρi, j = Ci+1/2, j − Ci−1/2, j

hx
i

+ Ci, j+1/2 − Ci, j−1/2

hy
j

, (4.2)

where

Ci+1/2, j = Mi+1/2, j

hx
i+1/2

(
ρi+1, j

Mi+1, j
− ρi, j

Mi, j

)
, i = 1, · · · ,Nx − 1, j = 1, · · · ,Ny,

Ci, j+1/2 = Mi, j+1/2

hy
j+1/2

(
ρi, j+1

Mi, j+1
− ρi, j

Mi, j

)
, i = 1, · · · ,Nx, j = 1, · · · ,Ny − 1,

C1/2, j = CNx+1/2, j = Ci,1/2 = Ci,Ny+1/2 = 0, i = 1, · · · ,Nx, j = 1, · · · ,Ny,

with Mi+1/2, j = Q 2(xi+1/2, y j, ρ), Mi, j+1/2 = Q 2(xi, y j+1/2, ρ), and Mi, j = Q 2(xi, y j, ρ). Where

Q 2(x, y, v) = e−V (x,y)−∑Nx
k=1

∑Ny
l=1 h

x
kh

y
l W (xk−x,yl−y)vk,l , for x, y ∈ R, v ∈RNx×Ny . (4.3)

Let
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Eh(t) =
Nx∑
i=1

Ny∑
j=1

hx
i h

y
j

(
ρi, j log(ρi, j) + Vi, jρi, j + 1

2
gi, jρi, j

)
,

be an approximation of the energy functional (1.5), with

gi, j =
Nx∑
k=1

Ny∑
l=1

hx
kh

y
l W (xk − xi, yl − y j)ρk,l.

The following theorem states that the semi-discrete scheme (4.2) is conservative, positive, and energy dissipating.

Theorem 4.1. The semi-discrete scheme (4.2) satisfies the following properties:
(1) Conservation of mass: for any t > 0,

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j ρi, j(t) =

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j ρi, j(0).

(2) Positivity preserving: if ρi, j(0) ≥ 0 for all i ∈ {1, · · · , Nx} , j ∈ {1, · · · , Ny}, then ρi, j(t) ≥ 0 for any t > 0.

(3) Energy dissipation: dEh(t)dt ≤ −Ih , where

Ih =
Ny∑
j=1

Nx−1∑
i=1

hy
j Ci+1/2, j

(
log(

ρi+1, j

Mi+1, j
) − log (

ρi, j

Mi, j
)

)

+
Nx∑
i=1

Ny−1∑
j=1

hx
i Ci, j+1/2

(
log (

ρi, j+1

Mi, j+1
) − log (

ρi, j

Mi, j
)

)
≥ 0.

Proof. The proof is similar to that of Theorem 2.1, details are therefore omitted. �
4.2. Fully discrete scheme

Let ρn
i, j approximate ρi, j(tn), then (4.2) gives the following fully discrete scheme,

ρn+1
i, j − ρn

i, j

τ
= Cn,∗

i+1/2, j − Cn,∗
i−1/2, j

hx
i

+ Cn,∗
i, j+1/2 − Cn,∗

i, j−1/2

hy
j

, (4.4)

where

Cn,∗
i+1/2, j =

Mn
i+1/2, j

hx
i+1/2

(
ρn+1
i+1, j

Mn
i+1, j

− ρn+1
i, j

Mn
i, j

)
, i = 1, · · · ,Nx − 1, j = 1, · · · ,Ny,

Cn,∗
i, j+1/2 = Mn

i, j+1/2

hy
j+1/2

(
ρn+1
i, j+1

Mn
i, j+1

− ρn+1
i, j

Mn
i, j

)
, i = 1, · · · ,Nx, j = 1, · · · ,Ny − 1,

Cn,∗
1/2, j = Cn,∗

Nx+1/2, j = Cn,∗
i,1/2 = Cn,∗

i,Ny+1/2 = 0, i = 1, · · · ,Nx, j = 1, · · · ,Ny,

with Mn
i+1/2, j = Q 2(xi+1/2, y j, ρn), Mn

i, j+1/2 = Q 2(xi, y j+1/2, ρn), and Mn
i, j = Q 2(xi, y j, ρn).

The initial data is chosen as

ρ0
i, j =

1

|Ii, j|
∫
Ii, j

ρ0(x, y)dxdy. (4.5)

In 2D case, a discrete version of energy (1.5) may be defined as

Enh =
Nx∑
i=1

Ny∑
j=1

hx
i h

y
j

(
ρn
i, j log(ρ

n
i, j) + Vi, jρ

n
i, j +

1

2
gni, jρ

n
i, j

)
, (4.6)

where

gni, j =
Nx∑ Ny∑

hx
kh

y
l W (xk − xi, yl − y j)ρ

n
k,l.
k=1 l=1
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Theorem 4.2. The fully discrete scheme (4.4) has the following properties:
(1) Conservation of mass:

Nx∑
l=1

Ny∑
j=1

hx
i h

y
j ρ

n
i, j =

∫
�

ρ0(x, y)dxdy, for all n ≥ 1. (4.7)

(2) Positivity preserving: if ρn
i, j ≥ 0 for all i ∈ {1, · · · , Nx} and j ∈ {1, · · · , Ny}, then

ρn+1
i, j ≥ 0.

(3) energy dissipation: there exists τ ∗ > 0 such that if τ ∈ (0, τ ∗), then

En+1
h − Enh ≤ −τ

2
Inh, (4.8)

where

Inh =
Ny∑
j=1

Nx−1∑
i=1

hy
j C

n,∗
i+1/2, j(log

ρn+1
i+1, j

Mn
i+1, j

− log
ρn+1
i, j

Mn
i, j

)

+
Nx∑
i=1

Ny−1∑
j=1

hx
i C

n,∗
i, j+1/2(log

ρn+1
i, j+1

Mn
i, j+1

− log
ρn+1
i, j

Mn
i, j

) ≥ 0.

Proof. For simplicity of analysis we rewrite the scheme (4.4) as

hx
i h

y
j ρ

n
i, j =(hx

i h
y
j M

n
i, j + τ M̃n

i+1/2, j + τ M̃n
i−1/2, j + τ M̃n

i, j+1/2 + τ M̃n
i, j−1/2)G

n,∗
i, j

− τ M̃n
i+1/2, jG

n,∗
i+1, j − τ M̃n

i−1/2, jG
n,∗
i−1, j − τ M̃n

i, j+1/2G
n,∗
i, j+1 − τ M̃n

i, j−1/2G
n,∗
i, j−1,

(4.9)

with the following notations

M̃n
i+1/2, j =

hy
j

hx
i+1/2

Mn
i+1/2, j, M̃n

i, j+1/2 = hx
i

hy
j+1/2

Mn
i, j+1/2, Gn,∗

i, j = ρn+1
i, j

Mn
i, j

.

Note that the coefficient matrix of the linear system (4.9) (when consider Gn,∗
i, j as unknowns) is strictly diagonally dominant, 

therefore (4.9) always has a unique solution.
(1) Adding all equations in (4.4) and using (4.5) lead to (4.7).
(2) Since ρn+1

i, j = Mn
i, jG

n,∗
i, j and Mn

i, j > 0, it suffices to prove that Gn,∗
k,l = min{i, j} Gn,∗

i, j ≥ 0, the corresponding equation is

hx
kh

y
l ρ

n
k,l =(hx

kh
y
l M

n
k,l + τ M̃n

k+1/2,l + τ M̃n
k−1/2,l + τ M̃n

k,l+1/2 + τ M̃n
k,l−1/2)G

n,∗
k,l

− τ M̃n
k+1/2,lG

n+1
k+1,l − τ M̃n

k−1/2,lG
n+1
k−1,l − τ M̃n

k,l+1/2G
n+1
k,l+1 − τ M̃n

k,l−1/2G
n,∗
k,l−1

≤hx
kh

y
l M

n
k,lG

n,∗
k,l ,

therefore Gn,∗
k,l ≥ 0.

(3) A direct calculation using (4.6) gives

En+1
h − Enh =

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (ρ

n+1
i, j log(ρn+1

i, j ) − ρn
i, j log(ρ

n+1
i, j ) + ρn

i, j log(
ρn+1
i, j

ρn
i, j

)

+ V jρ
n+1
i, j + 1

2
gn+1
i, j ρn+1

i, j − Vi, jρ
n
i, j −

1

2
gni, jρ

n
i, j)

≤
Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (log(G

n,∗
i, j )(ρ

n+1
i, j − ρn

i, j) + 1

2
gni, jρ

n
i, j − gnjρ

n+1
i, j + 1

2
gn+1
i, j ρn+1

i, j ),

(4.10)

where we have used log(x) ≤ x − 1 and mass conservation property. By the symmetrical property of W (x, y) we have

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j g

n
i, jρ

n+1
i, j =

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j g

n+1
i, j ρn

i, j,

so that
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Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (
1

2
gni, jρ

n
i, j − gni, jρ

n+1
i, j + 1

2
gn+1
i, j ρn+1

i, j )

= 1

2

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (g

n+1
i, j − gni, j)(ρ

n+1
i, j − ρn

i, j)

= 1

2

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (

Nx∑
k=1

Ny∑
l=1

hx
kh

y
l W (xi − xk, y j − yl)(ρ

n+1
k,l − ρn

k,l))(ρ
n+1
i, j − ρn

i, j)

≤ ||W ||∞
2

⎛
⎝ Nx∑

i=1

Ny∑
j=1

hx
i h

y
j |ρn+1

i, j − ρn
i, j|
⎞
⎠

2

≤ ||W ||∞|�|
2

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (ρ

n+1
i, j − ρn

i, j)
2,

where |�| =∑Nx
i=1

∑Ny

j=1 h
x
i h

y
j . Substitution of the above inequality into (4.10) yields

En+1
h − Enh ≤

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j log(G

n,∗
i, j )(ρ

n+1
i, j − ρn

i, j) + ||W ||∞|�|
2

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j (ρ

n+1
i, j − ρn

i, j)
2

:= Fn
1 + Fn

2 .

We proceed using summation by parts and boundary conditions so that

Fn
1 =τ

Nx∑
i=1

Ny∑
j=1

log(Gn,∗
i, j )(M̃

n
i+1/2, j(G

n,∗
i+1, j − Gn,∗

i, j ) − M̃n
i−1/2, j(G

n,∗
i, j − Gn,∗

i−1, j))

+ τ

Nx∑
i=1

Ny∑
j=1

log(Gn,∗
i, j )(M̃

n
i, j+1/2(G

n,∗
i, j+1 − Gn,∗

i, j ) − M̃n
i, j−1/2(G

n,∗
i, j − Gn,∗

i, j−1))

= − τ

Nx−1∑
i=1

Ny∑
j=1

M̃n
i+1/2, j(log(G

n,∗
i+1, j) − log(Gn,∗

i, j ))(G
n,∗
i+1, j − Gn,∗

i, j )

− τ

Nx∑
i=1

Ny−1∑
j=1

M̃n
i, j+1/2(log(G

n,∗
i, j+1) − log(Gn,∗

i, j ))(G
n,∗
i, j+1 − Gn,∗

i, j )

= − τ Inh.

It remains to figure out a condition on τ so that Fn
2 + 1

2 F
n
1 ≤ 0. Let �ξ, �η ∈RNxNy be vectors defined as:

�ξ =
⎛
⎜⎝
√
hx
1h

y
1 (ρn+1

1,1 − ρn
1,1)

τ
, · · · ,

√
hx
Nx
hy
1 (ρn+1

Nx,1
− ρn

Nx,1
)

τ
, · · · ,

√
hx
Nx
hy
Ny

(ρn+1
Nx,Ny

− ρn
Nx,Ny

)

τ

⎞
⎟⎠

T

�η = (

√
hx
1h

y
1 log(Gn,∗

1,1), · · · ,

√
hx
Nx
hy
1 log(Gn,∗

Nx,1
), · · · ,

√
hx
Nx
hy
Ny

log(Gn,∗
Nx,Ny

))T ,

then Fn
2 + 1

2 F
n
1 ≤ 0 if

τ 2||W ||∞|�|�ξ |2 + τ �ξ · �η ≤ 0.

In similar manner as in 1D case, we can show that �ξ · �η = 0 if and only if �ξ = 0. Therefore

0 < c0 ≤ −�ξ · �η
|�ξ |2 ≤ |η|

|ξ | for ξ �= 0,

where c0 may depend on numerical solutions at tn and tn+1. We thus obtain the desired result (4.8) by taking τ ≤ τ ∗ =
c0 . �
||W ||∞|�|
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Remark 4.1. The schemes presented so far may be applied to the general class of nonlinear nonlocal equations (1.6), based 
on the reformulation

∂tρ = ∇ · (M∇ ρ

M
),

where M = ρe−H ′(ρ)−V (x)−W ∗ρ for ρ away from zero. The numerical solution may be oscillatory at low density, for which 
one could use either upwind numerical fluxes or non-oscillatory limiters as a remedy [8]. Note that for the aggregation 
equation (in the absence of diffusion), particle methods have been developed in [16,43]; Particle methods naturally conserve 
mass and positivity, yet a large number of particles is often required to resolve finer properties of solutions.

5. Second order in-time discretization

The numerical schemes presented so far are only first order in time. In this section we extend these schemes with a 
second order in time discretization.

5.1. Second order scheme for 1D problem

We replace (3.1) by a two step scheme

ρ∗
j − ρn

j

τ/2
= C∗

j+1/2 − C∗
j−1/2

h j
, j = 1,2, · · · ,N, (5.1a)

ρn+1
j = 2ρ∗

j − ρn
j , j = 1,2, · · · ,N, (5.1b)

where

C∗
j+1/2 =

M∗
j+ 1

2

h j+1/2
(
ρ∗

j+1

M∗
j+1

− ρ∗
j

M∗
j

), for j = 1,2, · · · ,N − 1,

C∗
1/2 = 0, C∗

N+1/2 = 0,

with M∗
j+1/2 = Q 1(x j+1/2, 32ρ

n − 1
2ρ

n−1) and M∗
j = Q 1(x j, 32ρ

n − 1
2ρ

n−1). The scheme (5.1) has following properties.

Theorem 5.1. Let ρn+1 be obtained from (5.1), then
(1) Conservation of mass:

N∑
j=1

h jρ
n
j =

∫
�

ρ0(x)dx, for n ≥ 1.

(2) Positivity preserving: if ρn
j ≥ 0 for all j = 1, · · · , N, then

ρn+1
j ≥ 0, j = 1, · · · ,N,

provided τ is sufficiently small.

Proof. (1) From the scheme construction, the conservation property remains hold.
(2) Setting

Gn
j = ρn

j

M∗
j

, g∗
j+1/2 = M∗

j+1/2

h j+1/2
,

and a careful regrouping leads to the following linear system(
M∗

1 + τ

2h1
g∗
3/2

)
Gn+1
1 − τ

2h1
g∗
3/2G

n+1
2 = b1,(

M∗
j + τ

2h j
(g∗

j+1/2 + g∗
j−1/2)

)
Gn+1

j − τ

2h j
g∗
j+1/2G

n+1
j+1 − τ

2h j
g∗
j−1/2G

n+1
j−1 = b j,(

M∗
N + τ

2hN
g∗
N−1/2

)
Gn+1

N − τ

2hN
g∗
N−1/2G

n+1
N−1 = bN ,

(5.2)

where j = 1, · · · , N − 1, with the right hand side vector given by
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b1 =
(
M∗

1 − τ

2h1
g∗
3/2

)
Gn
1 + τ

2h1
g∗
3/2G

n
2,

b j =
(
M∗

j − τ

2h j
(g∗

j+1/2 + g∗
j−1/2)

)
Gn

j + τ

2h j
g∗
j+1/2G

n
j+1 + τ

2h j
g∗
j−1/2G

n
j−1, j = 2, · · · ,N − 1,

bN =
(
M∗

N − τ

2hN
g∗
N−1/2

)
Gn

N + τ

2hN
g∗
N−1/2G

n
N−1.

The linear system (5.2) admits a unique solution {Gn+1
j } since its coefficient matrix is strictly diagonally dominant. Following 

the proof of (2) in Theorem 3.1, we see that Gn+1
j ≥ 0 is ensured if each b j ≥ 0, which is the case provided

τ ≤ min

{
2h1M∗

1

g∗
3/2

, min
1< j<N

2h jM∗
j

g∗
j+1/2 + g∗

j−1/2
,

2hNM∗
N

g∗
N−1/2

}
.

The stated result thus follows. �
Remark 5.1. We expect the energy dissipation to still hold for smaller time steps, as can be seen in Fig. 3(a) in our numerical 
tests. Moreover, the energy dissipation was also observed for relatively larger time steps, see Fig. 3 (b).

For large time step τ , non-negativity of ρn+1 obtained by the second order scheme (5.1) may not be guaranteed, we 
introduce a local limiter to resolve the solution positivity.

5.2. Local limiter and algorithm

We begin to design a local limiter to restore positivity of {c j}Nj=1 if 
∑N

j=1 c j > 0, but ck < 0 for some k. The idea is to 
find a neighboring index set Sk such that the local average

c̄k = 1

|Sk|
∑
j∈Sk

c j > 0,

where |Sk| denotes the minimum number of indexes for which c j �= 0 and c̄k > 0, then use this as a reference to define the 
following scaling limiter,

c̃ j = θc j + (1 − θ)c̄k, j ∈ Sk, (5.3)

where

θ = min

{
1,

c̄k
c̄k − cmin

}
, cmin = min

j∈Sk
c j.

Lemma 5.1. This limiter has the following properties:
(1) c̃ j ≥ 0 for all j ∈ Sk,
(2) 
∑

j∈Sk
c̃ j =∑ j∈Sk

c j , and
(3) |c̃ j − c j | ≤ |Sk|(− min j∈Sk c j).

Proof. (1) This follows from the definition of θ and (5.3).
(2) By (5.3) and the definition of c̄k , it follows that∑

j∈Sk

c̃ j = θ |Sk|c̄k + (1 − θ)c̄k|Sk| =
∑
j∈Sk

c j .

(3) From (5.3) it follows that for all j ∈ Sk ,

|c̃ j − c j| = (1− θ)|c̄k − c j| = −cmin
|c̄k − c j|

(c̄k − cmin)

≤ (−cmin)max

{
1,

cmax − c̄k
c̄k − cmin

}
,

where cmax := max j∈Sk c j and cmin := min j∈Sk c j . Note that 
∑

j∈Sk
(c̄k − c j) = 0 implies∑

j∈S+
(c j − c̄k) =

∑
j∈S−

(c̄k − c j),
k k
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in which each term involved on both sides is nonnegative. Hence, cmax − c̄k ≤ |Sk|(c̄k − cmin). Obviously, |Sk| ≥ 1. Hence the 
claimed bound follows. �
Remark 5.2. In general, |Sk| may not be bounded. For instance, we let

c j = 1

2 j
for j = 1, · · · ,N − 1, and cN = −1

2
,

then 
∑N

j=1 c j = 1
2 − 1

2N−1 > 0, but 
∑N

j=2 c j = − 1
2N−1 < 0. This implies that |SN | = N since SN = {1, · · · , N}.

The above limiter when applied to {ρ j} with c j = h jρ j gives

ρ̃ j = θρ j + (1− θ)
c̄k
h j

, (5.4)

where

θ = min

{
1,

c̄k
c̄k − cmin

}
, cmin = min

j∈Sk
h jρ j, c̄k = 1

|Sk|
∑
j∈Sk

h jρ j .

Such limiter still respects the local mass conservation. In addition, for any sequence g j with g j ≥ 0, we have

|ρ̃ j − g j| ≤ (1 + |Sk|α)max
j∈Sk

|ρ j − g j|, j ∈ Sk,

where α is the upper bound of mesh ratio hi/h j . Let ρ j be the approximation of ρ(x) ≥ 0, we let g j = ρ(x j) or the average 
of ρ on I j , so we can assert that the accuracy is not destroyed by the limiter as long as |Sk|α is uniformly bounded. In 
practice, it is indeed the case as verified by our numerical tests when using shape-regular meshes.

Indeed, the boundedness of |Sk| can be proved rigorously for shape-regular meshes.

Theorem 5.2. Let ρ(x) ≥ 0, be in C2(�), and {ρ j} be an approximation of ρ(x) such that |ρ j −ρ(x j)| ≤ Ch2 , where h = min1≤ j≤N h j

and h j ≤ αh for some α > 0. If ρk < 0 (or only finite number of neighboring values are negative), then there exists K ∗ > 0 finite such 
that

|Sk| ≤ K ∗,

where K ∗ may depend on the local meshes associated with Sk.

Proof. Under the assumption ρk < 0, ρ must touch zero near xk . We discuss the case where ρ(x∗) = 0 and ρ ′(x∗) = 0
with ρ(x) > 0 for x > x∗ locally with x∗ ∈ Ik . The case where ρ(x) > 0 for x < x∗ can be handled as well. Without loss of 
generality, we consider k = 1 with x∗ ∈ I1, and 

∫
I1

ρ(x)dx > 0. It suffices to find K such that

K∑
j=1

h jρ j > 0. (5.5)

Using the error bound we have

ρ j ≥ ρ(x j) − Ch2.

Also from ρ ∈ C2 we can deduce that

ρ(x j) ≥ ρ̄ j − λh2j ,

with λ = 1
24 maxx∈� |ρ ′′| and the cell average ρ̄ j = 1

h j

∫
I j

ρ(x)dx. Combining these we see that the left hand side of (5.5) is 
bounded from below by

K∑
j=1

h jρ j ≥
K∑
j=1

h j(ρ̄ j − Ch2 − λh2j )

≥
xK+1/2∫
x

ρ(x)dx − (λ + C)

K∑
j=1

h3j

1/2
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≥
xK+1/2∫
x1/2

ρ(x)dx − (λ + C)h2α2
K∑
j=1

h j

=
⎡
⎣ 1∫

0

ρ
(
θη + x1/2

)
dθ − (λ + C)h2α2

⎤
⎦η,

where η :=∑K
j=1 h j , and we have used h j ≤ hα. Using the fact Kh ≤ η, the term in the bracket is bounded below by

1∫
0

ρ
(
θη + x1/2

)
dθ − (λ + C)η2α2/K 2,

which is positive if

K >
α

√
λ + Cη√∫ 1

0 ρ
(
θη + x1/2

)
dθ

.

This can be ensured if we take

K = �A� + 1,

where for � = [a, b],

A = max
z∈[h1,b−a]

α
√

λ + Cz√∫ 1
0 ρ

(
θ z + x1/2

)
dθ

,

which is bounded and depends on h1. For general cases a different bound can be identified and it may depend on local 
meshes. �

Note that our numerical solutions feature the following property: if ρn
j = 0, then ρn+1

j = 2ρ∗
j − ρn

j ≥ 0 due to the fact 
that ρ∗

j ≥ 0 for all j = 1, · · · , N . This means that if ρ0(x) = 0 on an interval, then ρ1
j cannot be negative in most of nearby 

cells. Thus negative values appear only where the exact solution turns from zero to a positive value, and the number of 
these values are finitely many. Our result in Theorem 5.2 is thus applicable.

Algorithm. We have the following algorithm:

(1) Initialization: From initial data ρ0(x), obtain ρ0
j = 1

h j

∫
I j

ρ0(x)dx, j = 1, · · · , N , by using a second order quadrature.
(2) Update to get {ρ1

j } by the first order scheme (3.1).
(3) Marching from {ρn

j } to {ρn+1
j } for n = 1, 2, · · · , based on (5.1).

(4) Reconstruction: if necessary, locally replace ρn+1
j by ρ̃n+1

j using the limiter defined in (5.4).

The following algorithm can be called to find an admissible set Sk used in (5.4).

(i) Start with Sk = {k}, m = 1.
(ii) If k −m ≥ 1 and ck−m �= 0, then set Sk = Sk ∪ {k −m}.

If c̄k > 0, then stop, else go to (iii).
(iii) If k +m ≤ N and ck+m �= 0, then set Sk = Sk ∪ {k +m}.

If c̄k > 0, then stop, else set m =m + 1 and go to (ii).

5.3. Second order scheme for 2D problem

A similar two step time-discretization technique can be applied to higher dimensional problems. In the 2D case, that 
with scheme (4.2) gives the following fully discrete scheme,

ρ∗
i, j − ρn

i, j

τ/2
= C∗

i+1/2, j − C∗
i−1/2, j

hx
i

+ C∗
i, j+1/2 − C∗

i, j−1/2

hy
j

, (5.6a)

ρn+1
i, j = 2ρ∗

i, j − ρn
i, j, (5.6b)
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where

C∗
i+1/2, j =

M∗
i+1/2, j

hx
i+1/2

(
ρ∗
i+1, j

M∗
i+1, j

− ρ∗
i, j

M∗
i, j

)
, i = 1, · · · ,Nx − 1, j = 1, · · · ,Ny,

C∗
i, j+1/2 = M∗

i, j+1/2

hy
j+1/2

(
ρ∗
i, j+1

M∗
i, j+1

− ρ∗
i, j

M∗
i, j

)
, i = 1, · · · ,Nx, j = 1, · · · ,Ny − 1,

C∗
1/2, j = C∗

Nx+1/2, j = C∗
i,1/2 = C∗

i,Ny+1/2 = 0, i = 1, · · · ,Nx, j = 1, · · · ,Ny,

with M∗
i+1/2, j = Q 2(xi+1/2, y j, 32ρ

n − 1
2ρ

n−1), M∗
i, j+1/2 = Q 2(xi, y j+1/2, 32ρ

n − 1
2ρ

n−1), and M∗
i, j = Q 2(xi, y j, 32ρ

n − 1
2ρ

n−1). 
In an entirely similar fashion (details are therefore omitted), we can prove the following.

Theorem 5.3. The fully discrete scheme (5.6) has the following properties:
(1) Conservation of mass:

Nx∑
i=1

Ny∑
j=1

hx
i h

y
j ρ

n
i, j =

∫
�

ρ0(x, y)dxdy, for n ≥ 1.

(2) Positivity preserving: if ρn
i, j ≥ 0 for all i ∈ {1, · · · , Nx} and j ∈ {1, · · · , Ny}, then

ρn+1
i, j ≥ 0,

provided τ is sufficiently small.

5.4. Local limiter and algorithm

If the time step τ is not small, positivity of ρn
i, j is not guaranteed for n ≥ 2. We use the following limiter to resolve this 

issue:

ρ̃i, j = θρi, j + (1− θ)
c̄k,l
hx
i h

y
j

, (5.7)

with

θ = min

{
1,

c̄k,l
c̄k,l − cmin

}
, cmin = min

(i, j)∈Sk,l
hx
i h

y
j ρi, j, c̄k,l = 1

|Sk,l|
∑

(i, j)∈Sk,l

hx
i h

y
j ρi, j,

where Sk,l denotes the minimum number of indexes for which ρi, j �= 0 and c̄k,l > 0.
The limiter (5.7) can be shown to be nonnegative and satisfy the local mass conservation. In addition, for any gi, j ≥ 0

we have

|ρ̃i, j − gi, j| ≤ (1+ |Sk,l|α) max
(i, j)∈Sk,l

|ρi, j − gi, j|, (i, j) ∈ Sk,l,

where α is the upper bound of 2D mesh ratios. Hence the second order accuracy remains for shape-regular meshes since 
|Sk,l| can be shown bounded as in the one-dimensional case.

Algorithm. Our algorithm for 2D problem is given as follows:

(1) Initialization: From initial data ρ0(x, y), obtain ρ0
i, j = 1

Ii, j

∫
Ii, j

ρ0(x, y)dxdy, i = 1, · · · , Nx, j = 1, · · · , Ny , by using a 
second order quadrature.

(2) Update to get {ρ1
i, j} by the first order scheme (4.4).

(3) March from {ρn
i, j} to {ρn+1

i, j } based on the scheme (5.6).
(4) Reconstruction: if necessary, locally replace ρn+1

i, j by ρ̃n+1
i, j using the limiter defined in (5.7).

The following algorithm can be called to find an admissible set Sk,l used in (5.7).

(i) Start with Sk,l = {(k, l)}, m = 1.
(ii) For dy = max{1, l −m} : min{l +m, Ny} and dx = max{1, k −m} : min{k +m, Nx},

If (dx, dy) /∈ S and ck−m �= 0, then set Sk,l = Sk,l ∪
{
(dx,dy)

}
.

If c̄k,l > 0, then stop, else go to (iii).
(iii) Set m =m + 1 and go to (ii).
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Table 1
Accuracy of scheme (3.1) with τ = 0.1h and τ = h2.

N Errors and orders with τ = 0.1h Errors and orders with τ = h2

l1 error Order l∞ error Order l1 error Order l∞ error Order

40 0.70474E-01 - 0.26268E-01 - 0.10451E-00 - 0.46075E-01 -
80 0.32212E-01 1.1295 0.15021E-01 0.8063 0.25847E-01 2.0156 0.11397E-01 2.0153
160 0.15796E-01 1.0280 0.79593E-02 0.9163 0.64441E-02 2.0039 0.28433E-02 2.0030
320 0.78955E-02 1.0005 0.40881E-02 0.9612 0.16098E-02 2.0011 0.71027E-03 2.0011

Table 2
Accuracy of scheme (5.1) with τ = h.

N l1 error Order l∞ error Order

40 0.14049E-00 - 0.43022E-01 -
80 0.35941E-01 1.9668 0.10729E-01 2.0036
160 0.90784E-02 1.9851 0.26805E-02 2.0009
320 0.22814E-02 1.9925 0.67108E-03 1.9980

6. Numerical examples

In this section, we implement the fully discrete schemes (3.1) and (4.4) and second order extensions (5.1) and (5.6). 
Errors in 1-D case are measured in the following discrete norms:

el1 = h
N∑

i=1

|ρn
i − ρ̄n

i |,

el∞ = max
1≤i≤N

|ρn
i − ρ̄n

i |.

Here ρ̄n
i is cell average of the exact solution on Ii at time t = nτ .

6.1. One-dimensional tests

Example 6.1. (Accuracy test) In this example we test the accuracy of scheme (3.1) and scheme (5.1) Consider the initial value 
problem with source term{

∂tρ = ∂x(∂xρ + ρ∂x(V (x) + W ∗ ρ)) + F (x, t), t > 0, x ∈ [−π, π ],
ρ(x,0) = 2+ cos(x), x ∈ [−π, π ], (6.1)

subject to zero flux boundary conditions. Here we take V (x) = cos(x), W (x) = cos(x), and

F (x, t) = πe−2t(2cos2(x) + 2cos(x) − 1) + e−t(2cos2(x) + 2cos(x) − 3).

One can check that the exact solution to (6.1) is

ρ(x, t) = e−t(2+ cos(x)).

We compute to t = 1, first use time step τ = 0.1h and τ = h2 to check accuracy of scheme (3.1), then use τ = h to check 
accuracy of scheme (5.1), results are reported in Table 1 and Table 2 respectively. We see that the scheme (3.1) is first order 
accurate in time and second order accurate in space, while the scheme (5.1) is second order accurate both in time and 
space.

Note that the exact solution is ρ(x, t) = e−t(2 +cos(x)), which is far above 0 for t ∈ [0, 1]. Hence the positivity-preserving 
limiter is not activated in this test.

Example 6.2. In this example, we study dynamics of linear Fokker-Plank equations by considering the following problem

∂tρ = ∂x(∂xρ + xρ), t > 0, x ∈ [−5, 5], (6.2)

with initial condition

ρ(x,0) =
⎧⎨
⎩

1
7

∫
�
e

−x2
2 dx, x ∈ [−3.5, 3.5],

0, otherwise,
(6.3)

and zero flux boundary conditions (∂xρ + xρ)|x=±5 = 0.
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Fig. 1. First order scheme for Example 6.2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Second order scheme (with and without limiter) for Example 6.2.

Fig. 3. Second order scheme energy and total mass (without limiter for τ = 0.01, with limiter for τ = 0.1) for Example 6.2.

This is (2.1) with V (x) = x2

2 and W (x) = 0. The steady state to (6.2) is ρeq(x) = e− x2
2 . We use the time step τ = 0.1 to 

compute solutions up to t = 4, with N = 200. In Fig. 1(a) are snap shots of ρ obtained by the first order scheme (3.1) at 
t = 0, 0.2, 0.5, 1, 4, and the steady state. Fig. 1(b) shows the mass conservation and energy decay. We observe from this 
figure that the solution of problem (6.2) becomes indistinguishable from the steady state after t = 2. Compared in Fig. 2 are 
numerical solutions obtained by the second order scheme (5.1) with and without the local limiter. We see that the limiter 
produces positive solutions and reduces solution oscillations.

Both mass conservation and energy dissipation for the second order scheme are given in Fig. 3. In Fig. 3(a), we take 
τ = 0.01, for which no limiter is needed. In Fig. 3(b), we take τ = 0.1, the limiter keeps being invoked at each step.
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Fig. 4. Solution evolution and energy dissipation for Example 6.3 with α = 3.

Fig. 5. Solution evolution and energy dissipation for Example 6.3 with α = 5.

Example 6.3. (Doi-Onsager equation with the Maier-Saupe potential) In this example, we consider the Doi-Onsager equation 
with Maier-Saupe potential{

∂tρ = ∂x(∂xρ + αρ∂x(W ∗ ρ))), W (x) = sin2(x) t > 0, x ∈ [0,2π ]
ρ(x,0) = x+1

2π(π+1) ,
(6.4)

subject to zero flux boundary conditions. Here α is the intensity parameter. Stationary solutions of (6.4) have been an 
interesting subject of study, since when α increases, phase transition from isotropic state to nematic state will appear. A 
detailed characterization of solutions can be found in [37]: for 0 < α ≤ α∗ = 4, the only stationary solution is the isotropic 
state ρeq(x) = 1

2π . When α > α∗ besides the constant solution ρeq(x) = 1
2π , there are other solutions given by

ρeq(x) = e−η∗ cos2(x−x0)∫ 2π
0 e−η∗ cos(2x)dx

,

where x0 is arbitrary, η∗ > α
2

√
1− 4/α is uniquely determined by∫ 2π

0 cos(2x)e−η∗ cos(2x)dx∫ 2π
0 e−η∗ cos(2x)dx

+ 2η

α
= 0.

We use scheme (3.1) and choose the time step τ = 0.1 to compute up to T = 30 with N = 80. In Fig. 4(a) are snap shots of 
solutions to (6.4) for α = 3 < α∗ at t = 0, 0.5, 5, 15, 25, 30. Fig. 4 (b) shows mass conservation and energy decay, from 
which we can observe that the problem (6.4) is already at steady state ρeq(x) = 1

2π after t = 20. In Fig. 5(a) are snap shots 
of solutions to (6.4) for α = 5 > α∗ at t = 0, 0.5, 1, 5, 25, 35. Fig. 5 (b) shows mass conservation and energy decay, which 
tells that problem (6.4) is at already steady state after t = 30. In Fig. 6 are the free energy plots for different time steps, we 
observe energy dissipation even for large time steps. Our method gives satisfying results for the problem, consistent with 
the numerical results obtained in [13] by an explicit scheme with Euler forward time discretization.
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Fig. 6. Energy dissipation for Example 6.3 with τ = 0.01,0.1,1.

Table 3
Efficiency of schemes (3.1) and (5.1) (CPU times in seconds).

Scheme (3.1) Scheme (5.1) Limiter in (5.1) Cost for limiter

Example 6.2, T = 4 0.31307E-00 0.48877E-01 0.63181E-02 13%
Example 6.3 α = 3, T = 25 0.15611E+02 0.16166E+01 – –
Example 6.3, α = 5, T = 25 0.14853E+02 0.16315E+01 – –

Table 4
Accuracy of scheme (4.4) and (5.6).
N × N Scheme (4.4) with τ = 0.1h2 Scheme (5.6) with τ = 0.1h

l1 error Order l∞ error Order l1 error Order l∞ error Order

10× 10 0.927816E-1 - 0.175767E-1 - 0.31090E-01 - 0.84728E-02 -
20× 20 0.232384E-1 1.997 0.446660E-2 1.976 0.77577E-02 2.003 0.22012E-02 1.945
40× 40 0.581196E-2 1.999 0.112137E-2 1.994 0.19368E-02 2.002 0.55550E-03 1.986
80× 80 0.145297E-2 2.000 0.280607E-3 1.999 0.48558E-03 1.996 0.13975E-03 1.991

In Table 3, we compare the efficiency of schemes (3.1) and (5.1) using Example 6.2 and Example 6.3. We choose τ =
0.01 for the first order scheme and τ = 0.1 for the second order scheme so that they have same accuracy. We see from 
Table 3 that the second order scheme is more efficient than the first order scheme in all three cases. We also see that, in 
Example 6.2, the limiter in the second order scheme takes about 13% of the total computational time, but no limiter is used 
in Example 6.3 because the exact solutions are away from zero.

6.2. Two-dimensional tests

Example 6.4. (Accuracy test) We consider the initial value problem with source term,{
∂tρ = ∇ · (∇ρ + ρ∇V (x, y)) + F (x, y, t), t > 0, (x, y) ∈ [−π

2 , π
2 ] × [−π

2 , π
2 ],

ρ(x, y,0) = 2+ sin(x) sin(y), (x, y) ∈ [−π
2 , π

2 ] × [−π
2 , π

2 ], (6.5)

subject to zero flux boundary conditions, here V (x, y) = sin(x) sin(y), and

F (x, y, t) = e−t(2 sin2(x) sin2(y) + 5 sin(x) sin(y) − cos2(x) sin2(y) − sin2(x) cos2(y) − 2).

This problem has the exact solution

ρ(x, t) = e−t(2+ sin(x) sin(y)).

We choose τ = 0.1h2 in scheme (4.4) and τ = 0.1h in scheme (5.6). Errors and orders at t = 1 are listed in Table 4, in this 
test uniform meshes with h = hx = hy = π/N have been used.

Finally we mention that there is a class of equations in which the interaction is modeled through a potential governed by 
the Poisson equation. The celebrated model is the Patlak-Keller-Segel system of the chemotaxis [25,26]. The original model 
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Fig. 7. Solution evolution for Example 6.5 (sub-critical).

is a coupled parabolic system, and the one related to our model equation (1.1) is the parabolic-elliptic version of the form 
(see e.g., [40])⎧⎨

⎩
∂tρ = �ρ − ∇ · (χρ∇c), t > 0, x ∈R2,

−�c = ρ,

ρ(x,0) = ρ0(x), x ∈R2.

(6.6)

Here, ρ(x, t) is the cell density, c(x, t) is the chemical attractant concentration, the parameter χ > 0 is the sensitivity of 
bacteria to the chemical attractant. It has been shown in [3] that the solution behavior of problem (6.6) is quite different 
when crossing a critical mass. If the initial mass M = ∫R2 ρ0(x, y)dxdy is smaller than a critical value Mc = 8π/χ , then the 
solution exists globally. When M > Mc , the solution will blow up in finite time, which is referred to as chemotactic collapse.
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Fig. 8. Solution evolution for Example 6.5 (super-critical).

Example 6.5. (Patlak–Keller–Segal system). In this example, we test the method’s capacity in capturing solution concen-
trations for the Patlak–Keller–Segal system (6.6). Using the Green function for the Poisson equation, this system can be 
reformulated as (1.1) with V = 0 and

W (x, y) = χ

2π
log(

√
x2 + y2). (6.7)

In our simulation, we restrict to a bounded domain � subject to zero flux boundary conditions, using formulation (4.1) with 
V (x, y) = 0 and W defined in (6.7). We fix χ = 1 and consider both the sub-critical case with



24 H. Liu, W. Maimaitiyiming / Journal of Computational Physics 419 (2020) 109483
ρ0(x, y) =
{
2(π − 0.2), (x, y) ∈ [−1,1] × [−1,1],
0, (x, y) ∈ �\[−1,1] × [−1,1],

on � = [−5, 5] × [−5, 5], and super-critical case with

ρ0(x, y) =
{
2(π + 0.2), (x, y) ∈ [−1,1] × [−1,1],
0, (x, y) ∈ �\[−1,1] × [−1,1],

on � = [−1.5, 1.5] × [−1.5, 1.5], for which we know that the solution blows-up at finite time.
We take time step τ = 0.01, and set Nx = Ny = 51 so that a single cell is located at the center of the computational 

domain, where one can view a clear picture of the blow-up phenomena in super-critical case. In Fig. 7 are snap shots of 
numerical solutions in the sub-critical case at t = 0, 2, 8, 12, 16, from which we observe that the numerical solution 
dissipates in time, the last picture in Fig. 7 shows mass conservation and energy dissipation. In Fig. 8 are snap shots of 
numerical solutions in super-critical case at t = 0, 0.5, 1, 1.5, 2, we observe that numerical solutions tend to concentrate 
at the origin.

Let us remark that in [50] the same concentration phenomena was observed, using a DG method for this problem with 
periodic boundary conditions. Different boundary conditions do not affect the concentration profile since the solution is 
compactly supported in our setting. In the super-critical case, the peak in our result is slightly lower than that captured in 
[50], this is expected because the solution is concentrated at a single point, and cell averaging near the origin can decrease 
the height of the peak.

7. Concluding remarks

In this paper, we have developed positive and free energy satisfying schemes for diffusion equations with interaction 
potentials; since such equations are governed by a free energy dissipation law and are featured with non-negative solutions. 
Based on the non-logarithmic Landau reformulation of the model, we constructed a simple, easy-to-implement fully discrete 
numerical scheme (first order in time) which proved to satisfy all three desired properties of the continuous model: mass 
conservation, free energy dissipation and non-negativity, without a strict time step restriction. For a fully second order (in 
both time and space) scheme, we designed a local scaling limiter to restore solution positivity when necessary. Moreover, 
we proved rigorously that the limiter does not destroy the second order approximation accuracy. Numerical examples have 
demonstrated the superior performance of these schemes, in particular, the three solution properties numerically confirmed 
are consistent with our theoretical findings.
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Appendix A. A refined time step bound for energy dissipation

Here we present an alternative proof of (3.9), i.e.,

N∑
j=1

h j(
1

2
gnjρ

n
j − gnjρ

n+1
j + 1

2
gn+1
j ρn+1

j ) ≤ −τ

2

N∑
j=1

(
h jρ

n+1
j − h jρ

n
j

τ
)ψ∗

j , ψ∗
j := log(G∗

j ), (A.1)

in order to have a more precise bound on τ ∗ . To this end we make the following assumptions:

• The matrix W = (Wi, j) with Wi, j = W (xi − x j) is positive definite; both W and V are Lipschitz continuous.
• Meshes are shape-regular so that α−1 ≤ hi/h j ≤ α for some α ≥ 1.

In addition, we assume that

max
j

h j‖DhW
1/2‖2

is uniformly bounded with respect to h j . Here Dh denotes a finite difference operator (Dhφ) j := φ j+1−φ j
h j

. Our numerical 
tests suggest that such bound may always be true if W is Lipschitz continuous, see Fig. 9 for a typical example.
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Fig. 9. Values of h‖DhW 1/2‖2 for the Lipschitz kernel W (x) = e−|x| on x ∈ [−1,1] with uniform mesh size h = 2
N .

We now proceed to bound τ ∗ . First using h jρ
n
j = (W−1gn) j , the left hand side in (A.1) can be rewritten as

IInh =1

2

N∑
j=1

[W−1(gn+1 − gn)] j(gn+1
j − gnj ) = 1

2
||W− 1

2 φ||2, (A.2)

where φ := gn+1 − gn . On the other hand, using the scheme (3.1) and summation by parts, we have

IInh =τ

2

N∑
j=1

(C∗
j+1/2 − C∗

j−1/2)φ j = −τ

2

N∑
j=1

C∗
j+1/2(φ j+1 − φ j)

≤τ

2

⎛
⎝ N∑

j=1

h j(C
∗
j+1/2)

2

⎞
⎠

1
2
⎛
⎝ N∑

j=1

(φ j+1 − φ j)
2

h j

⎞
⎠

1
2

,

(A.3)

where we used the Cauchy-Schwarz inequality. Under the assumption on W , we have
N∑
j=1

(φ j+1 − φ j)
2

h j
≤ C ||W− 1

2 φ||2. (A.4)

(A.4) when inserted into (A.3) and using (A.2) allows us to obtain

IInh ≤ Cτ 2

2

N∑
j=1

h j(C
∗
j+1/2)

2. (A.5)

Finally (3.6), or (A.1) is satisfied if

IInh ≤ τ 2C

2

N∑
j=1

h j(C
∗
j+1/2)

2 ≤ τ

2

N∑
j=1

C∗
j+1/2(ψ

∗
j+1 − ψ∗

j ).

Thus it suffices to bound from below the following∑N
j=1 C

∗
j+1/2(ψ

∗
j+1 − ψ∗

j )

C
∑N

j=1 h j(C∗
j+1/2)

2
≥ 1

C
min

j

{
ψ∗

j+1 − ψ∗
j

h jC∗
j+1/2

}

= 1

C
min

j

⎧⎨
⎩

ψ∗
j+1 − ψ∗

j
h j

h j+1/2
Mn

j+1/2(e
ψ∗

j+1 − eψ∗
j )

⎫⎬
⎭

using α = max{hi/h j} and the mean-value theorem

≥ 1

αC
min

j

⎧⎨
⎩ 1

Mn e(θψ∗
j+1+(1−θ)ψ∗

j )

⎫⎬
⎭ ,

(A.6)
j+1/2
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where θ ∈ (0, 1). By using Mn
j+1/2 = e−V j+1/2−gnj+1/2 , we have

1

Mn
j+1/2e

(θψ∗
j+1+(1−θ)ψ∗

j )
=e[(θ−1)(V j+gnj )−θ(V j+1+gnj+1)]

(ρn+1
j+1 )θ (ρn+1

j )1−θ
· eV j+1/2+gnj+1/2

≥ 1

maxk,n ρn
k

e[V j+1/2−(1−θ)V j−θV j+1]e[gnj+1/2−(1−θ)gnj−θ gnj+1]

≥ 1

maxk,n ρn
k

e−2αL(1+∫ ρ0(x)dx)h.

Hence we may take

τ ∗ = 1

αC maxk,n ρn
k

e−2αL
(
1+∫� ρ0(x)dx

)
h.

Remark A.1. This is only a sufficient bound to ensure the energy stability, yet it indicates a need to carefully tune the time 
step when numerical density becomes large.
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