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1. Introduction

This paper is concerned with efficient numerical approximations to the following problem,

dp=V-(Vo+pV(VX +W=xp), xeQcR? t>0, (11)
P, 0) = po(x), XxeQCRY, .

subject to zero flux boundary conditions. Here €2 is a bounded domain in R?, p = p(x,t) is the unknown density, V (x) is
a confinement potential, and W (x) is an interaction potential, which is assumed to be symmetric.

Such problems appear in many applications. If W vanishes, this model includes heat equation (V (x) = 0) and the Fokker—
Planck equation (V (x) # 0, see e.g. [47]). With interaction potentials, the equation can model nematic phase transition
of rigid rod-like polymers [18], chemotaxis [46], and aggregation in biology (see [22,28,51] and references therein). For
chemotaxis, a wide literature exists in relation to the Patlak-Keller-Segel system [29,45], and for rod-like polymers, the
Doi-Onsager equation [15,18,37,41] is a well studied model.

Main properties of the solution to (1.1) are non-negativity, mass conservation and free energy dissipation, i.e.,

poX) >0= p(x,t) >0, t>0, (1.2)
/p(x, t)dx=/p0(x)dx, t>0, (1.3)
Q Q
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dE(p) _

- —/,OIV(IOg(,O)+V(X)+W*,0)|2dx=—1(,0)SO, (14)

Q

where the free energy associated to (1.1) is given by

1
E(p) = / plog(p)dx + f V(opdxt f f W (x — y)p(y) p(x)dydx. (15)
Q Q Q Q

This energy functional is a sum of internal energy, potential energy, and the interaction energy. The functional I is referred
to as the energy dissipation. The nice mathematical features (1.2)-(1.4) are crucial for the analytical study of (1.1), while free-
energy dissipation inequality (1.4) is particularly important to understand the large time dynamics of solutions of (1.1)(see
e.g., [6,7,39]). There have been many studies about the connection between the free energy, the Fokker-Planck equation,
and optimal transportation in a continuous state space (see e.g., [4,21,27,42,52]). These properties are also desired to be
preserved by the numerical methods, and they are particularly important in the accuracy of long time numerical simulation.

One way of obtaining a structure-preserving numerical scheme is the minimizing movement approximation (see [1] and
the references therein), also named Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al. [27]), which is given by

1
p"+1 = argmin { sz(pn, )0) + E(IO)} .

Here, at each time step, the distance of the solution update acts as a regularization to the free energy. Yet such problems
involving the Wasserstein distance W (p", p) are computationally demanding, see, e.g., [2,9,17,38] for some recent advances.

The second way of obtaining a structure-preserving numerical scheme is by a direct discretization of (1.1) so that these
solution properties are preserved at the discrete level. This way has gained increasing attention in recent years, some closely
related works include [8,32-36,50]. In [32], second order implicit numerical schemes designed for linear (yet singular)
Fokker-Planck equations satisfy all three solution properties without any time step restriction. In [35], the authors extended
the idea in [32] to a system of Poisson-Nernst-Planck equations using the explicit time discretization. For a more general
class of nonlinear nonlocal equations,

dp=V-(pV(H (p)+ VX +W xp)), (1.6)

where H is a smooth convex function, a second order finite-volume method was constructed in [8], where positivity is
enforced by using piecewise linear polynomials interpolating interface values. Structure preserving schemes based on the
Chang-Cooper scheme [10] have been constructed in [44] to numerically solve nonlinear Fokker-Planck equations. Note that
in [8,35,44] different time step restrictions are imposed in order to preserve the desired solution properties.

The construction of higher order schemes using the discontinuous Galerkin (DG) framework has recently been carried
out for Fokker-Planck-type equations. We refer to [34] for energy satisfying DG schemes of arbitrary high order, and to [33]
for a DG scheme of third order to satisfy the discrete maximum principle for linear Fokker-Planck equations. In [36], the
authors designed free energy satisfying DG schemes of any high order for Poisson-Nernst-Planck equations, but positive cell
averages are shown to propagate in time only for special cases. While in [50], a high order nodal DG method for (1.6) was
constructed using k + 1 Gauss-Lobatto quadrature points for degree k polynomials in order to preserve both the energy
dissipation and the solution positivity; somehow degeneracy of accuracy in some cases was reported. Despite some well-
known advantages of the DG method, structural properties of the above fully discrete DG schemes are verified under some
CFL conditions. It would be interesting to explore some explicit-implicit strategies for DG schemes.

In this paper we extend the idea in [32] to construct explicit-implicit schemes which are proven to preserve three main
properties of (1.1) without a strict restriction on time steps. This therefore has improved upon the work [35]. Our main
results include the scheme formulation, proofs of mass conservation, solution non-negativity, and the discrete free-energy
dissipation law for both semi-discrete and fully discrete methods. In particular, the fully-discrete scheme (first order in time)
is shown to satisfy three desired properties without strict restriction on time steps, in both one and two dimensional cases
with nonuniform meshes. For the fully second order (in both time and space) scheme, we design a local scaling limiter to
restore solution positivity, the limiter is build upon the one introduced in [31] and shown to preserve the second order
accuracy.

More precisely, our scheme construction is based on a reformulation

0
dp=V (MV(M)), (17)
where M = e~V®~W=*p motivated by the fact that the equilibrium solutions of (1.1) may be expressed as p = Ce
For linear Fokker-Planck equations, such reformulation with M = e~V ® (so called non-logarithmic Landau form) has been
used in [32], as well as in earlier works (see e.g., [5]). We note that for the general nonlinear nonlocal model (1.6), our
scheme construction remains valid if we take M = pe~H'(P)=V®=Wx in the reformulation (1.7).
The advantage of formulation (1.7) can be seen from both spatial and temporal discretization. The symmetric spatial
discretization of the one-dimensional version of (1.7) yields the semi-discrete scheme

—VX)-Wxp_
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d 1 Pi+1  Pj 1 Pj  Pj-1
hjEpJ‘ =hi 1 ,Mjr12 <Mj+] - E —hiZy ,Mj-12 M_J - M) (1.8)

in which the evaluation of M at cell interfaces {x;;1,2} and cell centers {x;} is easily available as defined in (2.4). Here p;
approximates the cell average of p(x,t) on j-th computational cell [x;_1/2,Xj1/2] of size hj, and hj 12 = (hj +hj11)/2.
For time discretization of (1.8), we adopt an implicit-explicit approach to obtain

n+1 n n+1 n+1 n+1 n+1
h‘pj — Pj —hol v Pjt _ Pj —hl M Pj _ Pj-1 (1.9)
S A A A VI VT =202\ Ty T v ) :
J J J J—

where ,03? approximates p;(t) at time t =nt, see (3.1). This scheme is easy to implement, and is shown to preserve all three
desired properties without a strict time step restriction. However, the scheme (1.9) is only first order in time. We further
propose a fully second order scheme:

* * * * *
P e e (p_ . &) h M (ﬁ _ Pl ) |
7/2 J+1/277] M?H M7 j=1/277] M}‘ M;f_] (110)
Pt =2p} - pf,
based on the predictor-corrector methodology, where M’J'.‘ and M’; 41/ are given in (5.1). This scheme is second order in
both time and space, and it preserves solution positivity for small time steps. For large time steps, we use a local scaling
limiter to restore the solution positivity.

Although we derive the schemes for the model equation (1.1), the methods can be applied to a larger class of PDE
problems of drift-diffusion type; see [30].

Finally, we point out that the energy stability has always played an essential role in the accuracy of long time simulations
of a gradient flow. The related works could also be found for other physical models such as the phase field equations
[11,49,53], the thin film growth equations [12,54], and the Cahn-Hillard models [14,19,20,23,24,48,55,56]. In the case of
the Cahn-Hilliard equation with a singular potential such as the Flory-Huggins potential, which is defined only when the
solution lies strictly within an interval, we refer to [14,19] for theoretical justification of the positivity-preserving property
of some finite difference schemes. Different from the present work, the key ingredient used in [14,19] is the singular nature
of the logarithmic term around the boundary values which prevents the numerical solution from reaching these singular
values.

The rest of the paper is organized as follows. In section 2, we present a semi-discrete scheme for one dimensional
problems. Theoretical analysis of three properties is provided. In section 3, we present fully discrete implicit-explicit schemes
for one dimensional case and prove the desired properties. Section 4 is devoted to numerical schemes for two dimensional
problems. In section 5, we extend the scheme to a fully second order (in both time and space) scheme, a mass conserving
local limiter is also introduced to restore solution positivity. Numerical examples for one and two dimensional problems are
presented in section 6. Finally, concluding remarks are given in section 7.

2. Numerical method: one dimensional case

We begin with

9P = (Bep + Px(VX) + W % p)), XxeQ, >0,

0 (x,0) = po(x), x€Q, (2.1)
oxp + pdx(V(x)+ W x p) =0, xe o, t>0,

and reformulate (2.1) as

dp =0x(Mdy(p/M)), x€Q, t>0,

P, 0) = po(x), xeQ, (2.2)
Max(p/M) =0, XxedQ, t=>0,

where M = e~V®-W=0_We propose a finite volume scheme for (2.2) over the interval Q = [a, b]. For a given positive
integer N, we partition domain € into computational cells I; = [Xj,l, le] with mesh size h; = |I;| and cell center at
2 2

Xj=X; +%hj. je{1,2,--- N}, we set hj, 1= (hj+hji1)/2.

i=3
2.1. Semi-discrete scheme

We integrate on each computational cell I; to obtain

d
a ,O(X, t)dX:Max(/O/MNxH]/z _Max(p/M)|xj,1/2~

I
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Let p(t) ={p1,---, pn} be the numerical solution approximating all cell averages and Cj, 1,2 be an approximation to
Mox(p/M)lxj41)00 then one has the following semi-discrete scheme,

d Civip—Cj1p2 .
—pj= R IT2 g0 N, 2,
P h; J (2.3)
we define
M

1 X .
Ciytp =7 (pf“ —&> for j=1,2,-- ,N—1,

hjr12 \Mjy1 M;
C12=0, Cny1/2=0.

Here Mj11/2 = Q1(Xjy1/2, 0) and Mj = Q1(x;, p) with
N
Qi(x,v) =e VO-XimhiW&—vi - fory e R, v e RN, (2.4)
Note that the zero flux boundary conditions have been weakly enforced.

2.2. Scheme properties

We investigate three desired properties for this semi-discrete scheme. For the energy dissipation property, we define a
semi-discrete version of the free energy (1.5) as

N
1
En(t)=Y hj (p,- log(p)) + Vjpj + Egij-), (25)
j=1
where gj = Z,N:1 hiW (x; — x;j)p; is a second order approximation of the convolution (W * p)(x;).

The following theorem states that the semi-discrete scheme (2.3) is conservative, positive, and energy dissipating.

Theorem 2.1. The semi-discrete scheme (2.3) satisfies the following properties:
(1) Conservation of mass: for any t > 0 we have

N N
Zhjpj(t) =Zhjpj(0). (2.6)
j=1 j=1

(2) Positivity preserving: if pj(0) > 0 forall j € {1,---, N}, then p;(t) > 0 for any t > 0.

(3) Energy dissipation: dEd“t(o < —Iy, where

N-1

Pj+1 Pj
Ih=2_Ci+1p <log< M’; D) —log<M’j>> >0. (2.7)
j=1

Proof. (1) Summing all equations in (2.3), we have

d & Y d
T D hipity=Y_ g iPi®=0.
j=1 j=1

therefore (g.G) holds true for any t > 0.
(2) Let F(p) be the vector field defined by the right hand side of (2.3), then
d . - _
—p =F(p). 2.8
dt (») (2.8)

Note that the hyperplane ¥ = {5 : Z?’:] hjp; = Z?’:l hjp;(0)} is an invariant region of (2.8). We define a closed set X1 on
this hyperplane by

N N
¥ = {,5¢,Oj >0,j=1,2,---,N,and Zhjpjzzhjpj(o)}~
=1 =1

It suffices to show that ¥ is invariant under system (2.8). This is the case if the vector field F (p) strictly points to interior
of ¥1 on its boundary 9%q: i.e.,



H. Liu, W. Maimaitiyiming / Journal of Computational Physics 419 (2020) 109483 5
F(p) v <0,

where V is outward normal vector on any part of 3 %.
A direct calculation using (2.3) gives

N-1_ N

oo v v
F(p) VZZ—]_C]'H/Z Z Ci—12
=1 =2 2.9
N-1 : (2.9)
+
=- (h;ﬂ - h—])Cj+1/z
j=1

For each i € 9%, we define the set S={j:1<j<N and pu;=0}, then the outward normal vector at (i has the form

ies,
i¢s,

: —
=(v1,v2,---,vN) withv;= { 0 "

and o; >0 ifieS.
Note that if j, j+1€S, then pj = pjr1 =0 implies Cj112 =0;if j, j+ 1¢S5, then vj 1 =v;=0. Therefore nonzero
terms in (2.9) are those with jeS, j+1¢Sor j¢S, j+1€S. Hence

o Mivy i1 a1 Misy pj
hjhjr1/2 Mjpq hji1 hjr12 Mj

F:(,5)'\7=— <0.

jes.j+1¢s j#s.j+1es

Therefore 37 is an invariant region of (2.3), this completes the proof of (2).
(3) From the fact that W (x) = W (—x), it follows

N
ij &iPj= Z JgJ (2.10)

Differentiating the discrete free energy (2.5) with respect to time and using (2.10) we obtain

Q.|Q_

N
dEp(t) dpj
o g(log(p])—l—l—i-vj—i-g])h] i
N
=Z(log< )+1)(C1+1/2—C1 1/2)
j=1
N—1 Py
=2 Cisp (log( L) —og (L1 )
i Mj 1 M;
=—Ip <0.
Note that

N-1

Ih=2)_Cisp <log( DIty _log(£L ))
}

j=1
P+l Pj > (1 pm )
- ) —lo
h +1/2 2<Mj+1 M, gy g( )

and (x — y)(logx —logy) >0 for x,y e R*, so we have I, >0. O

3. Fully discrete scheme

For time discretization of (2.3), we use an implicit-explicit time discretization in order to construct an easy to implement
yet stable numerical scheme without time step restriction.



6 H. Liu, W. Maimaitiyiming / Journal of Computational Physics 419 (2020) 109483

3.1. Scheme formulation and algorithm

Let T be time step and p;? be the numerical solution at t; =nT to approximate p;(t,). From given p;?, j=1,2,---,N,
we update to get p?” by

ol — pn crx o —Ch*

= 2212, N, (3.1)
T hj
with
Mn . n+1 n+1
i+ 5 Pitq P
(S e B ¢ s L for j=1,2,---,N—1,
JRR T hjpap \MY, M) (3.2)
n,* n,*
C1/2 = CN+1/2 =0,
where M?+1/2 = Q1(Xjt1/2, ™) and M? = Q1(xj, p"). The initial data is chosen by
1
pPY=1 [ poodx, j=1.2,--.N. (33)
J P
3.2. Scheme properties
Define a fully discrete version E} of the free energy (1.5) as
N 1
Ep = h (p}“ log(p}) + Vjpl + 55}07) : (34)

where g} =31 hiW (x; — ;).

The following theorem states that the three desired properties are preserved by the scheme (3.1) without strict time step
restriction.

Theorem 3.1. The fully discrete scheme (3.1) has the following properties:
(1) Conservation of mass:

N
Zhjp;? :/po(x)dx forn>1. (3.5)
j=1 Q

(2) Positivity preserving: ifp}? >0forall j=1,---,N, then
pitt =0, j=1,--,N.
(3) Energy dissipation: there exists T* > 0 such that if T € (0, t*), then
T
1 _ g ——In, 3.6
h h = 2 h ( )

where

N-1 p’?+11 n+1
+
n=> :C,}fuz (log(M]T) —log ( 1\]/1n )) > 0.
j=1 Jj+1 j

Proof. Set G'}’* = p}”’l/M’]’.‘ and Ajy12 =T/hjy1/2, so the fully discrete scheme (3.1) can be rewritten into the following
linear system:

hipf =(hiM7 +1112M7 4 )G = Ais12MY 4 Gy

hjpf == hj12Mj 5GP + (M + Aja oMY + 21 oMy )G
_)‘j+1/2M?+1/zcl}fl j=23,---,N-1,

hn oy = — )»N—l/zM'K,_UzG"N’fl + (hyMYy + )»N—l/ZMnN_]/z)G?\i*~
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Note that the coefficient matrix of linear system (3.7) is strictly diagonally dominant, therefore (3.7) has a unique solution
for whatever t a priori chosen so dose (3.1) because ,o"'H G?’*M?.

(1) (3.5) follows from adding all equations in system (3.7) and using (3.3).
(2) Since ,o?“ = M?G?’* and M? > 0, it suffices to prove that

GM* = min {G"*}>0.
i 1<]<N{ iz

Assume 1 < i < N, from i-th equation of (3.7) we have

hipl! = —hi—12M{_y ;3G + (MM] 4 A1 2My 5 4 Riv12My )G = Aiv12MYy 4 5G4
< =Ric12Mi_y p G A (MY + Kic1 Mgy + Ri1 2Misq )G = AigraMi G
=hM} G},

Thus G" * p’ > 0. A similar argument applies if i=1 or i = N.
3)A dlrect calculation using (3.4) gives

N
EI B :th( n+1 log(p”“) — 10g(p§?) + Vjp] —Vip} + gn+1p7+1 g?ﬂ?)

j=1
N
=Y hi((eI T = phlog(P) + (of T = PV + (] = gl
j=1

n+1
1 5 n n+1 n+1 n+1 n J
+5g]-p, gip; + g] p; +pjlog(p—?))

1
<Zh (P = P log(G]™) + 5 g}0] — gt + 5 Lt pne),

n+1 n+1

here we have used pj” log( J,, ) < ,oj( P 1) and mass conservation Z] 1hj (p"“ — p;’) = 0. We proceed with
J
N h]pl’l+1 h
T Z(%) log(G}") =1 Z(log(G” L MG = G
j=1 j=1
-1 n,* n,*
h; 1/2 1/2(Gj G D) (3.8)
N-1
n * n,*
—T )i eMis (G — G ) (log Gl — log G
j=1
=—tly <0.
Here the sign of I} is implied by the monotonicity of the logarithmic function.
It remains to find a sufficient condition on time step 7 so that
N n+1
1 hjpi™" —hjp]
Zhj(ig?p, gioit + g?“ ! Z( L)10g(G}™). (39)

1 N 1,
From Z] 1h,g7p7+ =Y hjg'}+ pf it follows that

Zh( g5p] —g1pft + 3 g}’“ = Zh (@ — g = o)
——Zh,ZhW(x,—x,)(p”“ PHE; T = p])

||W||
=~ Zhj Zh i = 1ot = o]
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N n+1 n\ 2
[|W |0 (b — a)T? i TP
PRI Ao N A I I §
— 2 Z ] T )

j=1

where we have used the Cauchy-Schwarz inequality and b —a = ZI;’:] hj. Let E,ﬁ e RN be vectors defined as §j =

h; n+1_ n R . . .
M, iij=/hjlog G'}* then (3.9) is satisfied if

J
T

Wil —)7> 25 T -
— &P+ JEqi=<0

We claim that

£-7=0 ifandonlyif &=0. (3.10)
Therefore
O0<cp < —é;'ﬁ Sm for & #0,
2~ 18l
where cp may depend on numerical solutions at t, and t,;1. We thus obtain (3.9) by taking
T < * Cio
[IW oo (b —a)

Finally, we verify claim (3.10). Ifg -7} =0, then from (3.8) we have

N-1
- -1 n,% n,% n,% n,%
0=¢-11=— hj+1/2Mr}+1/2(1°ng+1 —logGy™)(G — G <0,
j=1
therefore we must have G'}‘* =constan for all j €{1,2,---, N}. This when inserted into scheme (3.1) leads to

p;?“ =pjforall je(1,2,---,N},

thus é =0. O

Remark 3.1. Though 7* in the above proof is not explicitly given, it is expected to be O(1) since %2’-’ tends to a quantity

of size O(1) as meshes are refined. More precisely, we have

—E-7 |%E(p)l
— — 39
HE 18 0(, )l
which is valid before reaching the steady state. This remark applies to Theorem 4.2 as well. Numerically energy dissipation

was observed for large time steps relative to the spatial mesh sizes, see Example 6.3. Furthermore, a more precise bound
for T* can be obtained with additional structural conditions on W; see the appendix.

Remark 3.2. One could take the Euler forward time discretization to obtain an explicit scheme: From p'}, j=1,2,---,N,
update to get ,o?“ by

pn+1 _ pn C C

n _
2

n
j—1/2
T h]’

j=12,--- N,

where

M

no n n
,+7<p1+1 _'OJ> for j=1,2,---,N—1

. n
hjvi2 \Mjy  Mj

n —
Citip=

C?/z = Clrzl+l/2 =0,
with M?H/z = Q1(xj41/2, ") and M? = Q1(xj, p™). One can show that the positivity preserving property is still met yet
under a CFL condition like T < yh?.



H. Liu, W. Maimaitiyiming / Journal of Computational Physics 419 (2020) 109483 9

3.3. Discussion on error estimates

It is desirable to obtain global-in-time error estimates by using the established energy dissipation law (3.6). But this
appears rather difficult for the nonlinear term in the scheme fits more for the positivity-preserving property than the energy
dissipation property. This said, we can obtain the local-in-time error estimate. The analysis includes both the truncation
error estimate and the energy estimate for the error equation, yet estimates of the nonlinear terms are much more involved.
We therefore only state the main result for (3.1), leaving detailed analysis to a separate publication.

Theorem 3.2. Assume that both W and V are Lipschitz continuous. Given smooth initial data po(x), suppose the unique, smooth
solution for (1.1) is given by p(x,t) on Q x [0, T] for some T finite, and the numerical solution for (3.1) is given by ,0? with ,0? =

hlj f,j po(x)dx. Then, provided T and h = max; h; are sufficiently small, for all positive integers n, such that nt < T, we have

N
Y 1ot = pf1Phy < C(x + k)2,
j=1

where C > 0 is independent of h and t.

To see the complex nature of estimates in handing nonlinear terms, we refer to [23,24] for the local-in-time error
estimates of finite difference schemes to the nonlocal Cahn-Hilliard equation.

4. Numerical method: two dimensional case

In this section, we extend our method to multi-dimensional problems. For simplicity, we only present schemes for the
two dimensional initial value problem,

{ do=V-(Vp+pVVE ) +W=xp)), (*xy)eQCR? >0,
px,y,0)=po(x, y), (x,y) €,

on a rectangular domain Q =[a, b] x [c, d] subject to zero flux boundary conditions.
For given positive integers Ny, Ny, we partition by a Cartesian mesh with computational cells

(4.1)

lij=1%_1. X 11 xy; 1. ¥l

where i€ {1,2,---,Ny},j€{1,2,---,Ny}. The mesh size is |I; j| = h;‘hj’ with the cell center at (x;, yj) = (Xi—1;2 +
1
sh yi-i2+ ihi‘/)v we set hi, ;= (hf +hi, 1)/2, h;”+1/2 = (hj" + h;‘:rl)/z'

4.1. Semi-discrete scheme

Let p(t) ={pi,j} be the numerical solution, then dimension by dimension spatial discretization of
dp=V- (MV(%)) . with M =e V&»-Wep,

yields the following semi-discrete scheme

d Civ1/2—Cic1/2.j . Cijs1j2 — Cij
—pij= i+1/2,j _ i—1/2,j + i,j+1/2 . i,j 1/2’ (4.2)
dt n n
where
Mit1p,j ( Piv1,j  Pij . ;
Civippj=—%—\+7———-7=), i=1,---,Ny—1,j=1,---,Ny,
e hf+1/2 Miv1j M ’ g
Ci,j+1/2=;]4+m<w_pl—f],>a i=1, Nej=1,-,Ny—1,
hj+l/2 Mz,]+1 Ml,]
C1/2.j =CnNe+1/2, =Cinj2=Ciny+12=0, i=1,---,Nx,j=1,---, Ny,
with Mii12,j = Qa(Xit1/2, ¥j» ), Mi jr1/2 = Q2(Xi, ¥jr1/2, p), and M; j = Qa(x;, ¥j, p). Where
X N X
Qa(x, y, v) = eV EN-EE D2 i W% yi=0Viifor x y e R, v € RNNy (4.3)

Let
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Ny N}’
1
Ep(t) = Z > hin) <,0i,j log(pi,j) + Vi jpij+ igi,jpi,j> .
i=1 j=1
be an approximation of the energy functional (1.5), with
Ny N}’

&ij= Z Zh W (X — Xi. Y1 = ¥ ) il
k=1 I=1
The following theorem states that the semi-discrete scheme (4.2) is conservative, positive, and energy dissipating.

Theorem 4.1. The semi-discrete scheme (4.2) satisfies the following properties:
(1) Conservation of mass: for any t > 0,

Ny Ny Ny N}’
D2 hihipi i) =) > hihipi ;).

i=1 j=1 i=1 j=1
(2) Positivity preserving: if p; j(0) > 0 foralli e {1,---, Ny}, je{1,---, Ny}, then p; j(t) > 0 forany t > 0.

(3) Energy dissipation: % < —Ip, where
Ny Ny—1 0
1
=Y Y H clﬂ/z,(log( Ly 1og(#>>
+1.j ij
j=1 i=1
SR i p
1
+Y ) hCijp (log( ”]> log(#)) > 0.
i=1 j=1 ]

Proof. The proof is similar to that of Theorem 2.1, details are therefore omitted. O

4.2. Fully discrete scheme

Let ,01.” i approximate p; j(tp), then (4.2) gives the following fully discrete scheme,

+1 n, n,* n,* n,*
Pl =P C1+1/2] G 1/2]+C11+1/2 Ry (4.4)
T h¥ h;’
where
n n+1 n+1
o _Mi+1/2,j<pi+1,j p:;) - Ny 1.j=1 N
+‘12’_ - ’ — L,y x— 1 — 1,y Yy
2 Wi \Miy; Mg
n+1 n+1
cn —M"””z(p”“ p”) i=1,-,Ngj=1,---,Ny—1
l,]+1/2_ y n n ) - s "t X - [ y_ )
hivip \Mij M
nox ANk n,% . .
C1/2,j_CNX+1/2j_C11/2_C1N+1/2_0’ i=1,---,Nx,j=1,---, Ny,

with Mi,; 5 o= Qa(it1/2, ¥j. P")y M"i 172 = Qa(Xi, ¥j1/2. "), and M = Qa(xi, yj. p).
The initial data is chosen as

/ po(x, y)dxdy. (4.5)

Ii j

0
p. .
LT |1 il
In 2D case, a discrete version of energy (1.5) may be defined as

Ny Ny

Zthhy <101 ] IOg(pl ]) + Vl ]p1 ] + g1 Jpl ]) (46)

i=1 j=1
where
Nx N.V

ZZh h W (xy — Xi,YI—Yj)PI?,I-

k=1 I=1
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Theorem 4.2. The fully discrete scheme (4.4) has the following properties:
(1) Conservation of mass:

Ny NY
ZZh"hypl j /po(x, y)dxdy, foralln>1. (4.7)
=1 j=1 Q

(2) Positivity preserving: ifp,?fj >0forallie(1,--- ,Ny}and je{1,---,Ny}, then

1
pl";" > 0.
(3) energy dissipation: there exists T* > 0 such that if T € (0, t*), then
T
EffT —Ef < =51k (4.8)
where
Ny Nx—1 ,OTH-l 'On+‘1
_ y i+1,j i,j
Th _Z Z e z+1/2 ](log ' —log M )
j=1 i=1 +1,j
Ny Ny—1 pn+1 pn+1
n,% i,j+1 L]
#3 X HCHptos gt —og iy =0
i=1 j=1 ,J+1 ij

Proof. For simplicity of analysis we rewrite the scheme (4.4) as

y y )
hih) pft s =(WEhIMY  + TMY, 5+ TV 1/21+IM,1+]/2+1MU 12617

tMl+1/2]Gl+1] tM! 1/216n ‘ch 1+1/ZG: j+1 tMu 1/261 -1’ @9
with the following notations
_ y ~ X pn+1
Miiip2,j= h>_<—JMzr'l+1/2,j’ Mij12 = P M G = 1\;11{1 :
i+1/2 j+1/2 i

Note that the coefficient matrix of the linear system (4.9) (when consider G * as unknowns) is strictly diagonally dominant,
therefore (4.9) always has a unique solution.
(1) Adding all equations in (4.4) and using (4.5) lead to (4.7).
(2) Since ,o"Jr1 = Mf]G7J* and M P> 0, it suffices to prove that G l =min j G * >0, the corresponding equation is
y y n,x
heh iy =(hh Mk1+TMk+1/21+TMk 1/21+TM1< 14172 +TMy 172Gkl
ka+1 /2, Gy

y
h h Mlekl’

n,%
1<+1 ! th—l/Z,IGk—l,l - TMk,1+1/2Gk,l+1 - TM1<,1—1/2GI<,1—1

therefore GZ [ >0.
3)A direct calculation using (4.6) gives

Nx Ny n+1

Eptt —Ep =Y " hin) (ol log(pf T — pf' jlog (T +
i=1 j=1 ij

1
+V]pn+1+ g?-}_]pzﬂj—] Vi.jpirfj_ig?,jloln,j) (4.10)
Ny Ny

1 1

1 1 1 1

<D D hihjog(GrD [T — Pl + 8l el — gjery + gy e,
i=1 j=1

where we have used log(x) <x — 1 and mass conservation property. By the symmetrical property of W (x, y) we have

Ny Ny Ny Ny

y +1 Y on+1
2D _hihjeriely =2 ) hihjer} ol
i=1 j=1 i=1 j=1

so that
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Ny Ny
Y 1 +1 ,n+1
ZZ”"“ g?,jpif 8P + gf] pij )
i=1 j=1
Nx N}’
=LY - )
i=1 j=1
Nx Ny Nx Ny
= —Zzh"hy(zzhﬁhfw(xi — % Y = YD = e O = pf )
i=1 j=1 k=1 I=1
Ny 2
||W|| &
= = Zzh’"’y nH_pul
i=1 j=1
|IW|| 12|
< 0 Zzhxhy n+1 _ loln,])27
i=1 j=1
where |Q| = Zf’:ﬁ Z;\’y1 hj‘hj' Substitution of the above inequality into (4.10) yields
& Wi o &
BB =3 Y mn g @t — ol + S S 2
i=1 j=1 i=1 j=1
= F{ + F}.
We proceed using summation by parts and boundary conditions so that
Ny NY
Fn =T ZZIOg(Gn *)(MH-]/Z ](Gx+1 j Gl ]) Ml 1/2, ](G?j - G?L*l,j))
i=1 j=1
Nx Ny
n, n,
+IZZIOg(G *)(M ]+1/2(Gl j+1 Gz]) Mnj 1/2(611 —G,-,;(_l))
i=1 j=1
Nx—1 Ny
n, n,
=-1 Z ZMI+1/2 ](IOg(GH-] ]) - IOg(Gl j*))(GH-l j Gi,;()
i=1 j=1
Nx Ny 1
n, n,
- tZ Z M1 ]+1/2(10g(GI j+1) IOg(Gz ]*))(Gl j+1 Gi,;)
i=1 j=1
=—Tl}.

It remains to figure out a condition on 7 so that F} 4+ %F? <0. Let E-‘ 17 € RNxNy be vectors defined as:

T
N R L) ) BN, (PR, = Phiony)
é: = . AERREN . AERR
= (\/W{h] log(GY'}). - hy, by log(G™,), -+ . /iy hy, 1og (G )

then FJ + 1F} <0 if
T2||W|loo|QUEI* + TE -7 < 0.

In similar manner as in 1D case, we can show that § -1) =0 if and only if é’ = 0. Therefore

—E-ii _Inl
O<cp<—=2—=<— foré#£0,
= ER T *

where cgp may depend on numerical solutions at t; and t;,1. We thus obtain the desired result (4.8) by taking 7 < t* =
Co

. O

[IW]lool$2]
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Remark 4.1. The schemes presented so far may be applied to the general class of nonlinear nonlocal equations (1.6), based
on the reformulation

&p=V%MV%L

where M = pe~H'(W=V®=W*p for o away from zero. The numerical solution may be oscillatory at low density, for which
one could use either upwind numerical fluxes or non-oscillatory limiters as a remedy [8]. Note that for the aggregation
equation (in the absence of diffusion), particle methods have been developed in [16,43]; Particle methods naturally conserve
mass and positivity, yet a large number of particles is often required to resolve finer properties of solutions.

5. Second order in-time discretization

The numerical schemes presented so far are only first order in time. In this section we extend these schemes with a
second order in time discretization.

5.1. Second order scheme for 1D problem

We replace (3.1) by a two step scheme

pr—pt C* - C*
J jo_ Zit1/2 j 1/2, j=1,2,---,N, (5.1a)
T/2 h;

Pyt =207 = pf. j=1.2.-- N, (5.1b)

where

"f * *
+3  Piy1 P

C for j=1,2,---,N—1,

* _

+1/2 = 1. - ’

T2 hjp My, M;
CT/ZZO’ C;‘\:JJF«I/Z:O,

with M3 » = Q1(Xj41/2, 3p"— 3o 1) and M3 = Qi(xj, 3p" — 1p"1). The scheme (5.1) has following properties.

Theorem 5.1. Let p" 1 be obtained from (5.1), then

(1) Conservation of mass:

N

Zhjp}’ =/po(x)dx, forn>1.

j=1 Q

(2) Positivity preserving: if,o;.’ >0forall j=1,---,N, then
p7+1207 j:‘l»"'aN7

provided t is sufficiently small.

Proof. (1) From the scheme construction, the conservation property remains hold.
(2) Setting

n *
Gl B M
R T

and a careful regrouping leads to the following linear system

* T * n+1 T * n+1 __
(Ml + %gm) G- %gmcz =b1,
M’f+i( * +g% 1) G”+1_L * G”+1_L * Gl p. (5.2)
37 oy B2 T 812 ) i T g 812 i T g 811251 =P :
M* + Lg* Gn+1 _ Lg* Gn+1 — bN
N T opySN-172 ) BN 2hy SN-1/27N-1 ’
where j=1,---,N — 1, with the right hand side vector given by
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_ * T & n T * n
by = <M1 - ﬁgyz) G+ ﬁgzz/zc ;
bj= M*.‘_L(g”f 12+g%‘ 1/2) (;”..,.Lg”f 12@", 1+Lg>’f 12(;". 1 i=2,--,N—-1,
I 2h; j+1/ j=1/ 77 2h; J+1/2%j+ 2h; J=1/27j-

T T
by = (M}kv - Mg?im/z) GN+ i 8N-1/2CN-1

The linear system (5.2) admits a unique solution {G’}.H} since its coefficient matrix is strictly diagonally dominant. Following
the proof of (2) in Theorem 3.1, we see that G'}“ > 0 is ensured if each bj > 0, which is the case provided

| 2h M3 , 2h; M7 2hy M,
T <min —, mi p - , - .
832 1<j<N &i 1+ & 12 8&N-12
The stated result thus follows. O

Remark 5.1. We expect the energy dissipation to still hold for smaller time steps, as can be seen in Fig. 3(a) in our numerical
tests. Moreover, the energy dissipation was also observed for relatively larger time steps, see Fig. 3 (b).

For large time step T, non-negativity of p"*! obtained by the second order scheme (5.1) may not be guaranteed, we
introduce a local limiter to resolve the solution positivity.

5.2. Local limiter and algorithm

We begin to design a local limiter to restore positivity of {cj}?’:1 if Z?’:l cj >0, but ¢ <0 for some k. The idea is to
find a neighboring index set Sj such that the local average

_ 1
Ck:m ZCJ >0,
kL jesi

where |Si| denotes the minimum number of indexes for which c; # 0 and ¢, > 0, then use this as a reference to define the
following scaling limiter,

Cj=0cij+1—-0)ck, jeSk, (5.3)
where
. Ck .
Q:mm{l,_i}, Cmin = MiNc;.
Ck — Cmin J€eSk

Lemma 5.1. This limiter has the following properties:
(1)¢j =0 forall j e Sy,

2 Zjesk Cj=2jes, Cj» and

(3)Icj — ¢j| < [Skl(—minjes, ¢j).

Proof. (1) This follows from the definition of # and (5.3).
(2) By (5.3) and the definition of ¢y, it follows that

D G =0ISia+ A —0aSi =Y cj.
J€Sk JjeSk
(3) From (5.3) it follows that for all j € S,

&= il = (1= 0)] — ¢ = —cmin =S
(Ck — Cmin)
Cmax — C,
< (—Cpmin) Max {1, _'"Lk}
Ck — Cmin

where Cmgy := maxjes, ¢j and Cmin := Minjes, ¢;. Note that Zjesk (€k — ¢j) =0 implies

Z(Cj—fk)z Z(Ek—cj),

jesy jesy
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in which each term involved on both sides is nonnegative. Hence, cmax — Ck < |Sk|(Ck — Cmin). Obviously, |S| > 1. Hence the
claimed bound follows. O

Remark 5.2. In general, |Si| may not be bounded. For instance, we let

ci= ! forj=1 N—1, andcy = !
]_2] J=1 s s N = 27
then 29\’:1 cj= % — 2,,1—71 > 0, but le\’:z c]~=—2N1—71 < 0. This implies that |Sy| = N since Sy ={1,---, N}.

The above limiter when applied to {p;} with c; =h;p; gives

- Ck
pi=0pj+1—0)", (5.4)
j
where
. Ck . _ 1
0 =min{1l, ——— ¢, Cpmin=minhjp;, cx=— hipj.
{ Ck—Cmm] T es, M ‘ |Sk|j§§:k I

Such limiter still respects the local mass conservation. In addition, for any sequence g; with g; > 0, we have
10j — gjl < (1 +[Sklor) I],T;aSXI,Oj —gjl, Je€Sk,
k

where « is the upper bound of mesh ratio h;/h;j. Let p; be the approximation of p(x) > 0, we let gj = p(x;) or the average
of p on Ij, so we can assert that the accuracy is not destroyed by the limiter as long as [Sila is uniformly bounded. In
practice, it is indeed the case as verified by our numerical tests when using shape-regular meshes.

Indeed, the boundedness of |Si| can be proved rigorously for shape-regular meshes.

Theorem 5.2. Let p(x) > 0, be in C2(2), and {pj} be an approximation of p(x) such that |p; — p(xj)| < Ch?, where h = mini<j<nh;
and hj < ah for some o > 0. If p, < 0 (or only finite number of neighboring values are negative), then there exists K* > 0 finite such
that

|Sk| = K*7

where K* may depend on the local meshes associated with Sy.

Proof. Under the assumption p; < 0, p must touch zero near x,. We discuss the case where p(x*) =0 and p’(x*) =0
with p(x) > 0 for x > x* locally with x* € I;. The case where p(x) > 0 for x < x* can be handled as well. Without loss of
generality, we consider k=1 with x* € Iy, and || I p(x)dx > 0. It suffices to find K such that

K
Zhjpj>0. (5.5)
=1

Using the error bound we have

pj > p(xj) — Ch>.

Also from p € C?> we can deduce that

p(xj) = pj— M3,
with A = 21—4 maxyxeq |p”| and the cell average p; = ,}—J f,j p(x)dx. Combining these we see that the left hand side of (5.5) is
bounded from below by

K K
Zhjpj EZh]‘(ﬁj —Ch? —)»h?)
j=1 j=1
XK+1/2 K
> / p(x)dx — ()»-i—C)Zh?

X1/2 j=1
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XK+1/2

K
p(x)dx — (» + O)h?ar? Zhj
j=1

A%

X1/2
1

/p (977 +X1/2) do — (. + C)hzaz n,
0

where 71 := Zﬁ; hj, and we have used h; < ha. Using the fact Kh <, the term in the bracket is bounded below by

1

/,0 (61 +x1/2) d0 — (A + O /K2,
0

which is positive if
a/A+Cn
> .
\/fol 0 (077 +X1/2) do

This can be ensured if we take

K

K=|A]+1,
where for Q = [a, b],
as/A+Cz
A= max s
z€lh1,b—d] \/fol ol (92 + X]/z) do

which is bounded and depends on hi. For general cases a different bound can be identified and it may depend on local
meshes. O

Note that our numerical solutions feature the following property: if p;' =0, then p;‘“ = 2,0;5‘ - ,07 > 0 due to the fact

that p;!‘ >0 for all j=1,---,N. This means that if pg(x) = 0 on an interval, then ,o} cannot be negative in most of nearby
cells. Thus negative values appear only where the exact solution turns from zero to a positive value, and the number of
these values are finitely many. Our result in Theorem 5.2 is thus applicable.

Algorithm. We have the following algorithm:

1) Initialization: From initial data pg(x), obtain p? = % fl,- po(x)dx, j=1,---,N, by using a second order quadrature.
2) Update to get {p}} by the first order scheme (3.1).
3) Marching from {p?} to {p}”’l} forn=1,2,---, based on (5.1).

4) Reconstruction: if necessary, locally replace p;‘ﬂ by ﬁ}”l

(
(
(
( using the limiter defined in (5.4).
The following algorithm can be called to find an admissible set S, used in (5.4).

(i) Start with S = {k}, m=1.
(ii) f k—m=>1 and cx_,, # 0, then set Sy = Sy U {k —m}.
If ¢, > 0, then stop, else go to (iii).
(iii) If k+m < N and cxy+m # 0, then set Sy = S, U {k +m}.
If ¢, > 0, then stop, else set m=m + 1 and go to (ii).

5.3. Second order scheme for 2D problem

A similar two step time-discretization technique can be applied to higher dimensional problems. In the 2D case, that
with scheme (4.2) gives the following fully discrete scheme,

pii= P Cinp =Sl | Sl = S
/2 h¥ hY

]
P =200 =Pl (5.6)

, (5.6a)
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where
* * *
c;‘;l/z’j:;\/}ll;“/z’f(%_%), i=1,--,Ny—1,j=1,---,Ny,
i+1/2 it+1,j ij
* * *
Cij+1/2:%(%_%>, i=1, Nuj=1, Ny—1,
j+1/2 ij+1 ij

CT/Z,j = CITJX-H/ZJ = ka,l/z = ka,Ny+1/2 =0, i=1,--- Ny, j=1,---, Ny,
with MY, 5 5= Qa(Xit1/2, ¥ 30" = 30" 1) M1 ji12 = Qi Y jr172, 30" — 30" 1), and M = Qa(xi, yj, 50" = 50" 1).

In an entirely similar fashion (details are therefore omitted), we can prove the following.

Theorem 5.3. The fully discrete scheme (5.6) has the following properties:
(1) Conservation of mass:

Nx N)’

Zzh?hfﬂﬁffpo(x, y)dxdy, forn>1.
Q

i=1 j=1

(2) Positivity preserving: if,o{fj >0forallie{l,--- ,Nx}and je{1,---,Ny}, then
Pl =0,

provided Tt is sufficiently small.

5.4. Local limiter and algorithm

If the time step 7 is not small, positivity of p,?"j is not guaranteed for n > 2. We use the following limiter to resolve this
issue:

- Ck,1
pij =0pij+(1—0)—=7, (5.7)
hihj
with
6 =min{1, _L , Cmin= min h)-(h}«/pij, E‘k1=L Z h’-‘hy«p,-j,
Cik,l — Cmin Gjeser 1 TSkl A

(i, ))€Sk,1
where Sy ; denotes the minimum number of indexes for which p; j # 0 and ¢y > 0.

The limiter (5.7) can be shown to be nonnegative and satisfy the local mass conservation. In addition, for any g; ; >0
we have

16i,j — &i,jl < (1 +|Skgle) max |oij—&ijl. (@))€ Sk
(i,J)€Sk,1

where « is the upper bound of 2D mesh ratios. Hence the second order accuracy remains for shape-regular meshes since
|Sk.1| can be shown bounded as in the one-dimensional case.

Algorithm. Our algorithm for 2D problem is given as follows:

(1) Initialization: From initial data po(x, y), obtain pgj = % fli.j po(x, y)dxdy, i=1,--- Ny, j=1,---,Ny, by using a
second order quadrature.
(2) Update to get {,oilij} by the first order scheme (4.4).

(3) March from {p{fj} to {,02}'1} based on the scheme (5.6).

(4) Reconstruction: if necessary, locally replace pi"f by ﬁ?f

using the limiter defined in (5.7).
The following algorithm can be called to find an admissible set Si; used in (5.7).

(i) Start with Sg;={k,D}, m=1.
(ii) For dy = max{1,! —m}:min{l4+m, Ny} and dx = max{1,k —m} : min{k 4+ m, Ny},
If (dx,dy) ¢ S and cy_p, # 0, then set Sy = Si; U {(dx.dy)}.
If ¢;; > 0, then stop, else go to (iii).
(iii) Set m=m+ 1 and go to (ii).
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Table 1
Accuracy of scheme (3.1) with T =0.1h and 7 = h?.
N Errors and orders with T =0.1h Errors and orders with T = h?
1! error Order 1°° error Order I' error Order 1°° error Order
40 0.70474E-01 - 0.26268E-01 0.10451E-00 0.46075E-01

80 0.32212E-01 11295 0.15021E-01 0.8063 0.25847E-01 2.0156  0.11397E-01 2.0153
160  0.15796E-01 1.0280  0.79593E-02 09163  0.64441E-02  2.0039  0.28433E-02 2.0030
320  0.78955E-02 1.0005  0.40881E-02  0.9612  0.16098E-02 2.0011 0.71027E-03 2.0011

Table 2
Accuracy of scheme (5.1) with T =h.

N 1" error Order 1°° error Order

40 0.14049E-00 - 0.43022E-01 -

80 0.35941E-01 1.9668 0.10729E-01 2.0036
160 0.90784E-02 1.9851 0.26805E-02 2.0009
320 0.22814E-02 1.9925 0.67108E-03 1.9980

6. Numerical examples

In this section, we implement the fully discrete schemes (3.1) and (4.4) and second order extensions (5.1) and (5.6).
Errors in 1-D case are measured in the following discrete norms:

N
n ~n

en =h2|pi = pil,
i=1

n ~n

epo = Max |o; — PO |-
1<i<N PP
Here 5} is cell average of the exact solution on I; at time t =nt.

6.1. One-dimensional tests

Example 6.1. (Accuracy test) In this example we test the accuracy of scheme (3.1) and scheme (5.1) Consider the initial value
problem with source term

{ dp = (O + (V) +W %))+ F(x,0), t>0, xe[-7, 7],

p(x,0) = 2+ cos(x), xel[-m, ], (6.1)

subject to zero flux boundary conditions. Here we take V (x) = cos(x), W (x) = cos(x), and

F(x,t) = me 2 (2 cos®(x) + 2 cos(x) — 1) + e £(2 cos® (x) + 2 cos(x) — 3).

One can check that the exact solution to (6.1) is

p(x, t) =e 52+ cos(x)).

We compute to t = 1, first use time step T = 0.1h and T = h? to check accuracy of scheme (3.1), then use T =h to check
accuracy of scheme (5.1), results are reported in Table 1 and Table 2 respectively. We see that the scheme (3.1) is first order
accurate in time and second order accurate in space, while the scheme (5.1) is second order accurate both in time and
space.

Note that the exact solution is p(x,t) = et (24 cos(x)), which is far above 0 for t € [0, 1]. Hence the positivity-preserving
limiter is not activated in this test.

Example 6.2. In this example, we study dynamics of linear Fokker-Plank equations by considering the following problem

0rp = 0x(0xp +xp), t>0, xe[-5, 5], (6.2)

with initial condition

2
p(x.0) = I Jge 2 dx, xe[-3.5, 3.5],

0, otherwise,

and zero flux boundary conditions (dxp + xp0)|x=+5 = 0.
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Fig. 1. First order scheme for Example 6.2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 2. Second order scheme (with and without limiter) for Example 6.2.
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Fig. 3. Second order scheme energy and total mass (without limiter for 7 =0.01, with limiter for t =0.1) for Example 6.2.

This is (2.1) with V(x) =

b

2

2

and W (x) = 0. The steady state to (6.2) is eq(x) = e~'7. We use the time step T =0.1 to

compute solutions up to t =4, with N =200. In Fig. 1(a) are snap shots of p obtained by the first order scheme (3.1) at
t=0, 0.2, 0.5, 1, 4, and the steady state. Fig. 1(b) shows the mass conservation and energy decay. We observe from this
figure that the solution of problem (6.2) becomes indistinguishable from the steady state after t = 2. Compared in Fig. 2 are
numerical solutions obtained by the second order scheme (5.1) with and without the local limiter. We see that the limiter
produces positive solutions and reduces solution oscillations.

Both mass conservation and energy dissipation for the second order scheme are given in Fig. 3. In Fig. 3(a), we take
T = 0.01, for which no limiter is needed. In Fig. 3(b), we take T = 0.1, the limiter keeps being invoked at each step.

19

total mass
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Fig. 5. Solution evolution and energy dissipation for Example 6.3 with o =5.

Example 6.3. (Doi-Onsager equation with the Maier-Saupe potential) In this example, we consider the Doi-Onsager equation
with Maier-Saupe potential

dp = d(@xp +apd(W % p))), W) =sin*(x) t >0, xe€[0,27] 64
— _ x+1 K
P(x,0) = 525
subject to zero flux boundary conditions. Here « is the intensity parameter. Stationary solutions of (6.4) have been an
interesting subject of study, since when « increases, phase transition from isotropic state to nematic state will appear. A
detailed characterization of solutions can be found in [37]: for 0 < o < a™ =4, the only stationary solution is the isotropic
1

state peq(x) = 5-. When « > o™ besides the constant solution peq(x) = % there are other solutions given by

e—n* Cos 2(x—Xg)
N=—————
Peq(X) f()zﬂ R,

where xp is arbitrary, n* > %«/1 — 4/« is uniquely determined by

f02” cos(2x)e~n" cosX) gy N 2 0
f0277 e~ cos(2%) dx o ’

We use scheme (3.1) and choose the time step T = 0.1 to compute up to T =30 with N =80. In Fig. 4(a) are snap shots of
solutions to (6.4) for « =3 <a* at t =0, 0.5, 5, 15, 25, 30. Fig. 4 (b) shows mass conservation and energy decay, from
which we can observe that the problem (6.4) is already at steady state peq(X) = % after t = 20. In Fig. 5(a) are snap shots
of solutions to (6.4) for ¢ =5>a* att =0, 0.5, 1, 5, 25, 35. Fig. 5 (b) shows mass conservation and energy decay, which
tells that problem (6.4) is at already steady state after t = 30. In Fig. 6 are the free energy plots for different time steps, we
observe energy dissipation even for large time steps. Our method gives satisfying results for the problem, consistent with
the numerical results obtained in [13] by an explicit scheme with Euler forward time discretization.
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Table 3
Efficiency of schemes (3.1) and (5.1) (CPU times in seconds).

Scheme (3.1) Scheme (5.1) Limiter in (5.1) Cost for limiter

Example 6.2, T =4 0.31307E-00 0.48877E-01 0.63181E-02 13%
Example 6.3 ¢ =3, T =25 0.15611E+02 0.16166E+01 - -
Example 6.3, « =5, T =25 0.14853E+02 0.16315E+01 - -

Table 4

Accuracy of scheme (4.4) and (5.6).
NxN Scheme (4.4) with T = 0.1h? Scheme (5.6) with T =0.1h

1" error Order  [°° error Order I' error Order  [*° error Order

10x10  0927816E-1 - 0.175767E-1 - 0.31090E-01 - 0.84728E-02 -
20 x 20 0.232384E-1 1.997 0.446660E-2  1.976 0.77577E-02  2.003 0.22012E-02  1.945
40 x40  0.581196E-2  1.999 0.112137E-2 1.994 0.19368E-02  2.002 0.55550E-03  1.986
80 x 80  0.145297E-2  2.000  0.280607E-3  1.999 0.48558E-03  1.996 0.13975E-03 1.991

In Table 3, we compare the efficiency of schemes (3.1) and (5.1) using Example 6.2 and Example 6.3. We choose 7 =
0.01 for the first order scheme and T = 0.1 for the second order scheme so that they have same accuracy. We see from
Table 3 that the second order scheme is more efficient than the first order scheme in all three cases. We also see that, in
Example 6.2, the limiter in the second order scheme takes about 13% of the total computational time, but no limiter is used
in Example 6.3 because the exact solutions are away from zero.

6.2. Two-dimensional tests

Example 6.4. (Accuracy test) We consider the initial value problem with source term,

ohp =

V-(Vo+pVVx y)+Fxyt), t>0 x yel-5, Z1x[-5, 51,
px,y,0) = ,

IxI
2 + sin(x) sin(y), x yel-% ZIx[-%, %]

subject to zero flux boundary conditions, here V (x, y) = sin(x) sin(y), and

(6.5)

Fix,y,t)=e"t(2 sin? (%) sinz(y) + 5sin(x) sin(y) — cos? (x) sinz(y) —sin? (%) cosz(y) —2).
This problem has the exact solution
p(x,t) = et (2 + sin(x) sin(y)).
We choose 7 = 0.1h? in scheme (4.4) and 7 = 0.1h in scheme (5.6). Errors and orders at t =1 are listed in Table 4, in this

test uniform meshes with h = h* =hY = /N have been used.

Finally we mention that there is a class of equations in which the interaction is modeled through a potential governed by
the Poisson equation. The celebrated model is the Patlak-Keller-Segel system of the chemotaxis [25,26]. The original model
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Fig. 7. Solution evolution for Example 6.5 (sub-critical).

is a coupled parabolic system, and the one related to our model equation (1.1) is the parabolic-elliptic version of the form
(see e.g., [40])
dp = Ap—V-(xpVc), t>0, xeR2,
—Ac = p,
p(x,0) = po(X), x € R2,
Here, p(x,t) is the cell density, c(x,t) is the chemical attractant concentration, the parameter xy > 0 is the sensitivity of
bacteria to the chemical attractant. It has been shown in [3] that the solution behavior of problem (6.6) is quite different

when crossing a critical mass. If the initial mass M = [2 po(x, y)dxdy is smaller than a critical value M = 87/, then the
solution exists globally. When M > M¢, the solution will blow up in finite time, which is referred to as chemotactic collapse.

(6.6)
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Fig. 8. Solution evolution for Example 6.5 (super-critical).

Example 6.5. (Patlak-Keller-Segal system). In this example, we test the method’s capacity in capturing solution concen-
trations for the Patlak-Keller-Segal system (6.6). Using the Green function for the Poisson equation, this system can be
reformulated as (1.1) with V =0 and

W(x, y) = % log(\/x2 + y2). (6.7)

In our simulation, we restrict to a bounded domain 2 subject to zero flux boundary conditions, using formulation (4.1) with
V(x,y) =0 and W defined in (6.7). We fix x =1 and consider both the sub-critical case with
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2(r—-0.2), x,y)e[-1,1]x[-1,1],
0, x,y) e Q\[-1,1] x [-1,1],

pPo(x,y) =

on 2 =[-5,5] x [—5, 5], and super-critical case with
2(r+0.2), (xy)el[-1,1]x[-1,1],
0, (%, y) € Q\[-1,1] x [-1,1],

pPo(x,y) =

on Q=[-1.5,1.5] x [-1.5, 1.5], for which we know that the solution blows-up at finite time.

We take time step T =0.01, and set Ny = Ny =51 so that a single cell is located at the center of the computational
domain, where one can view a clear picture of the blow-up phenomena in super-critical case. In Fig. 7 are snap shots of
numerical solutions in the sub-critical case at t =0, 2, 8, 12, 16, from which we observe that the numerical solution
dissipates in time, the last picture in Fig. 7 shows mass conservation and energy dissipation. In Fig. 8 are snap shots of
numerical solutions in super-critical case at t =0, 0.5, 1, 1.5, 2, we observe that numerical solutions tend to concentrate
at the origin.

Let us remark that in [50] the same concentration phenomena was observed, using a DG method for this problem with
periodic boundary conditions. Different boundary conditions do not affect the concentration profile since the solution is
compactly supported in our setting. In the super-critical case, the peak in our result is slightly lower than that captured in
[50], this is expected because the solution is concentrated at a single point, and cell averaging near the origin can decrease
the height of the peak.

7. Concluding remarks

In this paper, we have developed positive and free energy satisfying schemes for diffusion equations with interaction
potentials; since such equations are governed by a free energy dissipation law and are featured with non-negative solutions.
Based on the non-logarithmic Landau reformulation of the model, we constructed a simple, easy-to-implement fully discrete
numerical scheme (first order in time) which proved to satisfy all three desired properties of the continuous model: mass
conservation, free energy dissipation and non-negativity, without a strict time step restriction. For a fully second order (in
both time and space) scheme, we designed a local scaling limiter to restore solution positivity when necessary. Moreover,
we proved rigorously that the limiter does not destroy the second order approximation accuracy. Numerical examples have
demonstrated the superior performance of these schemes, in particular, the three solution properties numerically confirmed
are consistent with our theoretical findings.
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Appendix A. A refined time step bound for energy dissipation

Here we present an alternative proof of (3.9), i.e

Ny J:On+1 hjpj
D hiGEie) —gieit + 5 P Z( —L s,y =log(G)), (A1)
j=1

in order to have a more precise bound on 7*. To this end we make the following assumptions:

e The matrix W = (W; j) with W; j = W (x; — x;) is positive definite; both W and V are Lipschitz continuous.
e Meshes are shape-regular so that al< hi/h; <a for some a > 1.

In addition, we assume that
1/22
m}axhjnth/ I

¢J+1 ¢1

is uniformly bounded with respect to h;. Here Dy denotes a finite difference operator (Dp¢); := . Our numerical

tests suggest that such bound may always be true if W is Lipschitz continuous, see Fig. 9 for a typical example.
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Fig. 9. Values of h||Dy W !/2||2 for the Lipschitz kernel W (x) = el on x € [—1, 1] with uniform mesh size h= 2.

We now proceed to bound t*. First using hj,o;? = (W‘lg")j, the left hand side in (A.1) can be rewritten as

N
1 _ 1 _1
=53 W@ —ghlj(ef™ —g) = SIW ™29,
j=1
where ¢ := g"t! — g". On the other hand, using the scheme (3.1) and summation by parts, we have

N N
T T
Il == Y = Ciii)dj = -3 Y Chiip@ir — o)
=1 =1
. 1
Z (¢j+1 - ¢j)2

hj

N
T 2
<o | 2hi(Caag)
= =1

where we used the Cauchy-Schwarz inequality. Under the assumption on W, we have

N 2
(@j+1 — @) _1
Y =AWl
_ J
j=1
(A.4) when inserted into (A.3) and using (A.2) allows us to obtain
(A.5)

cr2 &
Iy < > Zhj(c;'ﬁﬂ/z)z
j=1
Finally (3.6), or (A.1) is satisfied if
2c & T &
Iy < N D hi(Cp)? < ) Y G W =¥
j=1 j=1

Thus it suffices to bound from below the following

Y Gl Wi =¥ 1 { -V ]
c Zy:l hj(c7+1/2)2 T hIC;‘l]/z
=l min Vin ~ I/:J* -
| e )
using @ = max{h;/h;} and the mean-value theorem

1 . 1
>— min
“aC n Oy, +a=-0yH |~
J Mj+1/2e J+1 j
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where 6 € (0, 1). By using M?+1/2 —e Vit12 82 we have

[O-D(Vj+8)—0(V j11+87, )]
1* ¥ =2 1 1 V128
0y +(1-0)y* n+ n+1y1—

M?+1/2e( Tt A=0)y75) ('Oj+1 )G(Ioj )y1-0

> 1 ne[vj+1/z—(1—e)vj—ovm]e[gj!ﬂ/z—(l—@)g?—Gg?ﬂ]
max n Oy,
o U o 20L+/ pooidnh
T maxp ,0,?
Hence we may take
o 1 o= 20L(1+ g po(X)dX)h

o€ maxg pf

Remark A.1. This is only a sufficient bound to ensure the energy stability, yet it indicates a need to carefully tune the time
step when numerical density becomes large.

References

[1] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lect. Math., ETH Ziirich., Birkhduser Verlag,
Basel, 2005.
[2] J.-D. Benamou, G. Carlier, M. Laborde, An augmented Lagrangian approach to Wasserstein gradient flows and applications, ESAIM Proc. Surv. 54 (2016)
1-17.
[3] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron.
J. Differ. Equ. 44 (2006) 1.
[4] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math. 44 (1991) 375-417.
[5] C. Buet, S. Dellacheris, On the Chang and Cooper scheme applied to a linear Fokker-Planck equation, Commun. Math. Sci. 8 (2010) 1079-1090.
[6] J.A. Carrillo, A. Jiingel, P.A. Markowich, G. Toscani, A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized
Sobolev inequalities, Monatshefte Math. 133 (1) (2001) 1-82.
[7] J.A. Carrillo, RJ. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation
estimates, Rev. Mat. Iberoam. 19 (3) (2003) 971-1018.
[8] J.A. Carrillo, A. Chertock, Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys.
17 (1) (2015) 233-258.
[9] J.A. Carrillo, K. Craig, L. Wang, C.-Z. Wei, Primal dual methods for Wasserstein gradient flows, arXiv preprint: arXiv:1901.08081, 2019.
[10] J.S. Chang, G. Cooper, A practical difference scheme for Fokker-Planck equations, J. Comput. Phys. 6 (1) (1970) 1-16.
[11] K.L. Cheng, C. Wang, S.M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun.
Comput. Phys. 26 (2019) 1335-1364.
[12] K. Cheng, Z. Qiao, C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy
stability, J. Sci. Comput. 81 (2019) 154-185.
[13] TJ. Chenhall, On the Doi-Onsager model of rigid rod-like polymers, Masters thesis, lowa State University, 2016, advisor: Hailiang Liu.
[14] W. Chen, C. Wang, X. Wang, S. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential,
J. Comput. Phys. 3 (2019) 100031.
[15] P. Constantin, 1. Kevrekidis, E.S. Titi, Asymptotic states of a Smoluchowski equation, Arch. Ration. Mech. Anal. 174 (2004) 365-384.
[16] K. Craig, A. Bertozzi, A blob method for the aggregation equation, Math. Comput. 85 (2016) 1681-1717.
[17] M. Cuturi, G. Peyre, Semidual regularized optimal transport, SIAM Rev. 60 (4) (2018) 941-965.
[18] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, 1986.
[19] L. Dong, C. Wang, H. Zhang, Z. Zhang, A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a
Flory-Huggins-Degennes energy, Commun. Math. Sci. 17 (4) (2019) 921-939.
[20] DJ. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in: Computational and Mathematical Models of Microstructural
Evolution, San Francisco, CA, 1998, in: Mater. Res. Soc. Sympos. Proc., vol. 529, MRS, 1998, pp. 39-46.
[21] W. Gangbo, RJ. Mccann, Optimal maps in MongeOs mass transport problems, C. R. Acad. Sci. Paris 321 (1995) 1653-1658.
[22] D. Griinbaum, A. Okubo, Modeling social animal aggregations, in: S.A. Levin (Ed.), Frontiers of Theoretical Biology, in: Lecture Notes in Biomathematics,
vol. 100, Springer-Verlag, 1994.
[23] Z. Guan, C. Wang, S.M. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math. 128 (2014) 377-406.
[24] Z. Guan, ].S. Lowengrub, C. Wang, Convergence analysis for second order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard
equations, Math. Methods Appl. Sci. 40 (18) (2017) 6836-6863.
[25] D. Horstmann, From 1970 until now: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver. 105 (2003) 103-165.
[26] D. Horstmann, From 1970 until now: the Keller-Segel model in chemotaxis and its consequences II, Jahresber. Dtsch. Math.-Ver. 106 (2004) 51-69.
[27] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM ]. Math. Anal. 29 (1) (1998) 1-17.
[28] K. Kawasaki, Diffusion and the formation of spatial distributions, Math. Sci. 16 (183) (1978) 47-52.
[29] EF. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399-415.
[30] H. Liu, W. Maimaitiyiming, Unconditional positivity-preserving and energy stable schemes for a reduced Poisson-Nernst-Planck system, Commun.
Comput. Phys. 27 (5) (2020) 1505-1529.
[31] H. Liu, W. Maimaitiyiming, A second order positive scheme for the reduced Poisson-Nernst-Planck system, J. Comput. Appl. Math. (2019), submitted
for publication.
[32] H. Liu, H. Yu, An entropy satisfying conservative method for the Fokker-Planck equation of the finitely extensible nonlinear elastic dumbbell model,
SIAM ]. Numer. Anal. 50 (3) (2012) 1207-1239.
[33] H. Liu, H. Yu, Maximum-principle-satisfying third order discontinues Galerkin schemes for Fokker-Planck equations, SIAM J. Sci. Comput. 36 (5) (2014)
2296-2325.


http://refhub.elsevier.com/S0021-9991(20)30257-6/bibBB769F966255DE89D24DD9D5B1E2538Ds1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibBB769F966255DE89D24DD9D5B1E2538Ds1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib442BEF115731946811E0DB23137FF9BFs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib442BEF115731946811E0DB23137FF9BFs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib49CD882F445A1D2BBDE015DE2ED841E3s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib49CD882F445A1D2BBDE015DE2ED841E3s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib9A70AA1DB6F10CA8F9072D5A1F820F3Ds1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib1D59B567D57CA91246C45D7D8BCFBC28s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib516DF17958B6D0D7D17D9AFA0C9C3D15s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib516DF17958B6D0D7D17D9AFA0C9C3D15s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibFE49E1D3E02BFB02C21D36BD332926A8s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibFE49E1D3E02BFB02C21D36BD332926A8s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib3ED0EB8FEC3F16566EFBF5204F23C3A2s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib3ED0EB8FEC3F16566EFBF5204F23C3A2s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0FABEBA64AA2B099B884E80CE42CC269s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib470B01F6212A85966A530F206D4AFF02s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibACF5658ACC81EE9F5D28BD52BA2F5C16s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibACF5658ACC81EE9F5D28BD52BA2F5C16s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0A765D9EC3EAB9B8BB54853B69C0EBB4s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0A765D9EC3EAB9B8BB54853B69C0EBB4s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib7D8BC5F1A8D3787D06EF11C97D4655DFs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib2B2117522F0E68894A46F3D9D82CAA6Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib2B2117522F0E68894A46F3D9D82CAA6Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibB1BDB69E447B48BA53AA4F3C7431CE50s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0D131E32ED6CD754667D57DA9F14EB27s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibCB66C984D9249513FDE3A7FE6825C57Ds1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibDAB64DD7929C2865DC147E4B1D3FB22Fs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibA822D1CD30AA3E9AC578A7563EC65B0Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibA822D1CD30AA3E9AC578A7563EC65B0Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib44A56F4DF3513A012722E8B0FCB5BA0Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib44A56F4DF3513A012722E8B0FCB5BA0Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0C028EB8C29C81C11BFCD4F549504EC3s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib48026085F3BC2A792AB841375F56591Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib48026085F3BC2A792AB841375F56591Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibF1D958D4B1EE40D2B2E42DBFF428185Cs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibC3926936E0F50B07FA3EC6B3773D4D03s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibC3926936E0F50B07FA3EC6B3773D4D03s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibBEDE840AB98D582A5A04ACE44AD6F852s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibACFE347EA340EA6B338A511B4A97B12Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibF8C12B11D64B380F19577360A9E1EC80s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib724D1584BF4E22B0F09DCB7BA8960E3As1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib73F3A04131D5EF0ACB7F65FAB54CB2A1s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib92BC814AF2F7C6F942416B3FEEC0C86Ds1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib92BC814AF2F7C6F942416B3FEEC0C86Ds1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib866279EE3D6D597EEF28EFC395963BA6s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib866279EE3D6D597EEF28EFC395963BA6s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib8EFCAD38337648986EB7D98FF4029812s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib8EFCAD38337648986EB7D98FF4029812s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib93A840FA71C52617311C827354E93440s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib93A840FA71C52617311C827354E93440s1

H. Liu, W. Maimaitiyiming / Journal of Computational Physics 419 (2020) 109483 27

[34] H. Liu, H. Yu, The entropy-satisfying discontinues Galerkin method for Fokker-Planck equations, ]. Sci. Comput. 62 (2015) 803-830.

[35] H. Liu, Z. Wang, A free energy satisfying finite difference method for Poisson-Nernst-Planck equations, J. Comput. Phys. 268 (2014) 363-376.

[36] H. Liu, Z. Wang, A free energy satisfying discontinues Galerkin method for one-dimensional Poisson-Nernst-Planck systems, J. Comput. Phys. 328 (2017)
413-437.

[37] H. Liu, H. Zhang, P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential,
Commun. Math. Sci. 3 (2) (2005) 201-218.

[38] W.-C. Li, J.-F. Lu, L. Wang, Fisher information regularization schemes for Wasserstein gradient flows, arXiv preprint: arXiv:1907.02152v2, 2019.

[39] RJ. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997) 153-179.

[40] V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42 (1973) 63-105.

[41] L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N.Y. Acad. Sci. 51 (1949) 627-659.

[42] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ. 26 (1-2) (2001) 101-174.

[43] M. Campos-Pinto, J.A. Carrillo, F. Charles, Y.-P. Choi, Convergence of a linearly transformed particle method for aggregation equations, Numer. Math.
139 (2018) 743-793.

[44] L. Pareschi, M. Zanella, Structure preserving schemes for nonlinear Fokker-Planck equations and applications, J. Sci. Comput. 74 (3) (2018) 1575-1600.

[45] C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (3) (1953) 311-338.

[46] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhduser Verlag, Basel, 2007.

[47] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, second edition, Springer Series in Synergetics, vol. 18, Springer-Verlag,
Berlin, 1989.

[48] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., Ser. A 28 (2010) 1669-1691.

[49] ]. Shen, X. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chin. Ann. Math., Ser. B 31 (2010)
74-758.

[50] Z. Sun, J.A. Carrillo, C.-W. Shu, A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction poten-
tials, J. Comput. Phys. 352 (2018) 76-104.

[51] C.M. Topaz, A.L. Bertozzi, M.A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol. 68 (2006) 1601-1623.

[52] C. Villani, Topics in Optimal Transportation, American Mathematical Society, 2003.

[53] S.M. Wise, C. Wang, ].S. Lowengrub, An energy stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal.
47 (2009) 2269-2288.

[54] C. Xu, T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM ]. Numer. Anal. 44 (2006) 1759-1779.

[55] X. Yang, Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J.
Comput. Phys. 302 (2016) 509-523.

[56] X.F. Yang, ]. Zhao, On linear and unconditionally energy stable algorithms for variable mobility Cahn-Hilliard type equation with logarithmic Flory-
Huggins potential, Commun. Comput. Phys. 25 (2019) 703-728.


http://refhub.elsevier.com/S0021-9991(20)30257-6/bib305A3ABEB26AD590FEE6771BC6C6D089s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib4B4BC04D4AC0AFFF9B7E1EEEA1CFFF9As1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib535BB882A39435DDB2B9049AFBA05465s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib535BB882A39435DDB2B9049AFBA05465s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibEB58222379B67A6FC9C7854D1D91907Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibEB58222379B67A6FC9C7854D1D91907Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib6C1AF75821DFE790E14FC65D3B4EBC2Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib7F0CC5E36EEF7AD8DC06A6CB6AC67D9Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib66ABDAD13FBBBC27AE222F104D83EB2As1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibA1673BF9490FAF2C19EA567E62776253s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibA444B1B06D8EF7FACBABB09759ADFC1Fs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib27C37ADB2E06509B80146BC35AE12C6Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib27C37ADB2E06509B80146BC35AE12C6Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib126EECE369CFA73FC581164C8613B6B2s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibC86D0586D84C98D9D3EB4CD9AC30ACF4s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibBD10D92667EBFF58944894731005EB7Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibC05F0CF023847EC6825E43B22450AEB3s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibC05F0CF023847EC6825E43B22450AEB3s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib1F69B82E76DC356AF3A0900F6F68943Es1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0DFAC4025124837F79FB0DB9930C22A0s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib0DFAC4025124837F79FB0DB9930C22A0s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibD7FB95A565D5B96F24FD2A30A7231729s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibD7FB95A565D5B96F24FD2A30A7231729s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib2383D45545CCDAB0D14082029CE15444s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib8CD9BF4E80FCC47D5EDC8A41CA2B79A3s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib326040C38AD5B2B14B50F392DCFAF71Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib326040C38AD5B2B14B50F392DCFAF71Bs1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bibF5A1ACE75C16FE5B4595C2AB63733508s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib4D11D93D28AACE835FF9CF44746BCF87s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib4D11D93D28AACE835FF9CF44746BCF87s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib677FCC362BC96CD9127F2E024C98FA67s1
http://refhub.elsevier.com/S0021-9991(20)30257-6/bib677FCC362BC96CD9127F2E024C98FA67s1

	Positive and free energy satisfying schemes for diffusion with interaction potentials
	1 Introduction
	2 Numerical method: one dimensional case
	2.1 Semi-discrete scheme
	2.2 Scheme properties

	3 Fully discrete scheme
	3.1 Scheme formulation and algorithm
	3.2 Scheme properties
	3.3 Discussion on error estimates

	4 Numerical method: two dimensional case
	4.1 Semi-discrete scheme
	4.2 Fully discrete scheme

	5 Second order in-time discretization
	5.1 Second order scheme for 1D problem
	5.2 Local limiter and algorithm
	5.3 Second order scheme for 2D problem
	5.4 Local limiter and algorithm

	6 Numerical examples
	6.1 One-dimensional tests
	6.2 Two-dimensional tests

	7 Concluding remarks
	Acknowledgements
	Appendix A A refined time step bound for energy dissipation
	References


