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Abstract

This paper presents a partial differential equation framework for deep residual neural networks and for
the associated learning problem. This is done by carrying out the continuum limits of neural networks
with respect to width and depth. We study the wellposedness, the large time solution behavior, and the
characterization of the steady states of the forward problem. Several useful time-uniform estimates and sta-
bility/instability conditions are presented. We state and prove optimality conditions for the inverse deep
learning problem, using standard variational calculus, the Hamilton-Jacobi-Bellmann equation and the
Pontryagin maximum principle. This serves to establish a mathematical foundation for investigating the
algorithmic and theoretical connections between neural networks, PDE theory, variational analysis, optimal
control, and deep learning.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Deep learning is machine learning using neural networks with many hidden layers, and it
[9,37,25] has become a primary tool in a wide variety of practical learning tasks, such as image
classification, speech recognition, driverless cars, or game intelligence. As such, there is a press-
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ing need to provide a solid mathematical framework to analyze various aspects of deep neural
networks.

Deep Neural Networks (DNN) have been successful in supervised learning, particularly when
the relationship between the data and the labels is highly nonlinear. Their depths allow DNNs
to express complex data-label relationships since each layer nonlinearly transforms the features
and therefore effectively filters the information content.

Linear algebra was appropriate in the age of shallow networks, but is inadequate to explain
why deep networks perform better than shallow networks. The continuum limit is an effective
method for modeling complex discrete structures to facilitate their interpretability. The depth
continuum limit made a breakthrough by introducing a dynamical system viewpoint and going
beyond what discrete networks can actually do.

Most prior works on the dynamical systems viewpoint of deep learning have focused on
algorithm design, architecture improvement using ODEs to model residual neural networks.
However, the ODE description does not reveal any structure for hidden nodes with respect to
width. To fill in this gap, we propose a simple PDE model for DNNs that represents the contin-
uum limits of deep neural networks with respect to two directions: width and depth. One main
advantage of the PDE model over the ODE model in [29] is its ability to capture the intrinsic
selection dynamics among hidden units involved.

Also, and maybe most importantly, the forward and backward PDE problems can be dis-
cretized by numerical methods which lead to different network architectures (with respect to
depth and width) than the empirical explicit Euler scheme that was at the basis of the depth
continuum process. This allows much more mathematical sophistication with possible rewards
in stability, efficiency and speed gains compared to the simple layer-by-layer iteration technique
for the forward and backward problems. Moreover, in many applications it is sensible to limit the
parameter space by requiring the learning parameters to remain in bounded sets. Then the mini-
mization procedure can be replaced by a control theory approach leading to completely coupled
forward-backward PDEs, where the coupling occurs through the optimal controls. Numerical
techniques for control theory problems and mean field games can then be used, replacing the
classical variational methods (adapted gradient descent) often used for ML in neural networks.
We remark that limiting the parameter space is often preferential to classical (Tikhonov-type)
regularization procedures of the objective functional.

The main purpose of this paper is to focus on the study of the fundamental mathematical
aspects of the PDE formulation. We seek to gain new insight into the dynamics of the forward
propagation and the well-posedness of the learning problem, through a study of the PDE that
represents the forward propagation dynamics. In this framework the study of the impact of the
choice of the activation function on the network dynamics, stability and on the learning problem
becomes very apparent and rather straightforward to analyze by classical PDE techniques.

We point out that the link of deep learning to dynamical system and optimal control has at-
tracted increasing attention [13,16,20,29,33,38,40,41,57]. An appealing feature of this approach
is that the compositional structure is explicitly taken into account in the time evolution of the
dynamical systems, from which novel algorithms and network structures can be designed.

1.1. Discrete neural networks

A neural network can be seen as a recursively defined function ® on (a compact domain of)
R? into RV :
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Sd=LpoF;_1---LroFiolLj.
Here Ly is an affine linear map from RVe-1 to RV
Li(x) =ar — Byx,

where By are Ni x Ni_; matrices (network weights) and a; are Ny-vectors (network biases).
Obviously we have used No = d. Fy is a nonlinear mapping from R into itself, given by

Fi(y) =diag(o (y1), -+, 0 (yn,)) =20 (y),

where o : R — R is the so called network activation function. For details in the setup of neural
network functions and their approximation qualities we refer to [12].

Residual neural networks are set up slightly differently, in as much they add the current state
to the activation term on each level:

21 =21 +o(a; — Bzp).

Clearly, all the dimensions Ny are assumed to be equal here, i.e.,d=No=N;=---=Np_1 =
Np. After rescaling o with an artificial layer width T << 1, the recursion can be seen as an
explicit Euler step of the system of ordinary differential equations:

%z(t) =o(a() —BM)z(1), -1 <t <1,
where #; = 7/, and ¢t > 0 corresponds here to an artificially introduced time-like variable repre-
senting the depth of the network. By now this is a fairly common procedure in DNNs, we refer
to [13,16,20,29,40,41,57] and references therein.

We remark that more complicated network evolutions have been considered in the literature
[26,27,39,61,62], we shall comment on a specific example later on in this work.

In practical applications the dimensions Ny - -- N; vary significantly from one network layer
to the next, so in order not to have a-priori dimensional restrictions it makes sense to pose the
above ODE system on an infinitely dimensional space of continuously defined functions. This is
the approach which we shall take in this paper.

Obvious advantages arise. In the space-time continuous case we gain a lot of modeling
freedom and highly developed PDE theory and numerics can be applied to analyze and com-
pute geometric aspects of the problem like attractors, sharp fronts etc. Also the associated
inverse problem, namely to determine the weight and bias functions based on given data, can
be rephrased easily as a classical optimization and/or control problem.

Our approach allows to apply the very well developed PDE analysis and numerical analysis
technology to deep learning neural network problems. We remark that the purpose of the paper
is to present a PDE framework for deep learning for neural networks, opening up ML to so-
phisticated analytical and numerical techniques which go beyond the current state of the art in
ML. For this purpose we focus on the PDE formulation and certain basic mathematical prop-
erties while practical examples and more involved mathematical issues will be the subject of
subsequent works.
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1.2. Organization

The paper is organized as follows. We discuss main ingredients of deep learning for the clas-
sification problem and derive the PDE model for the forward propagation and the optimal control
formulation of deep learning in Sect. 2. In Sect. 3, we study the wellposedness, the large time
solution behavior, and the characterization of the steady states for the forward problem. Several
useful a priori estimates and stability/instability conditions are presented. Sect. 4 is devoted to the
back propagation problem and to show how optimal control theory can be applied. We compute
the gradient of the final network loss in terms of the network parameter functions, which in-
volves solving both forward and backward problems. We further develop a control theory based
on the Pontryagin maximum principle (PMP) [49], which provides explicit necessary condi-
tions for optimal controls. We finally show that the value function solves an infinite-dimensional
Hamilton—Jacobi-Bellman (HJB) partial differential equation. This dynamic programming ap-
proach provides the third way to characterize the optimal control parameters. Hence in this work
we establish the link between training deep residual neural networks and PDE parameter esti-
mation. The relation provides a general framework for designing, analyzing and training CNNs.
Finally, two numerical algorithms for the learning problem, one is gradient based and another is
PMP based, are presented in Sect. 5.

1.3. Related work

The approximation properties of deep neural network models are fundamental in machine
learning. For shallow networks, there has been a long history of proving the so-called universal
approximation theorem, going back to the 1980s [15,28]. Such universal approximation theorems
can also be proved for wide networks, see [10] for a single layer with sufficient number of hidden
neurons, or deep networks, see [35,21] for networks of finite width with sufficient number of
layers. A systematic study on the network approximation theory has been recently made available
[23].

Continuous time recurrent networks have been known in 1980s like the one proposed by
Almeida [1] and Pineda [46], and analyzed by LeCun [34]. Recently, the interpretation of residual
networks by He et al. [26] as approximate ODE solvers in [19] spurred research in the use of
ODE:s to deep learning. Based on differential equations, there are studies on the continuum-in-
depth limit of neural networks [40,57] and on designing network architectures for deep learning
[13,16,29,41]. Indeed many state-of-the-art deep network architectures, such as PolyNet [64]
and FractalNet [39], can be considered as different discretizations of ODEs [36]. Theoretical
justification can be found in [42]. For models motivated by PDEs we refer the reader to [53].

The dynamical systems approach has also been explored in the direction of training algorithms
based on the PMP and the method of successive approximations [33,38]. The connection between
back-propagation and optimal control of dynamical systems is known since the earlier works on
control and deep learning [4,6,34]. For a rigorous analysis on formulations based on ODEs with
random data we refer to [20].

The present paper proposes a PDE model which represents a continuum limit of neural net-
works in both depth and width. Instead of the analysis of algorithms or architectures, we focus
on the mathematical aspects of the formulation itself and develop a wellposedness theory for the
forward and backward problems, and further characterize the optimality conditions and value
functions using both ODE (PMP) and PDE (HJB) approaches.

11543



H. Liu and P. Markowich Journal of Differential Equations 269 (2020) 11540-11574

2. Mathematical formulation

There are three main ingredients of deep learning for the classification problem: (i) forward
propagation transforms the input features in a nonlinear way to filter their information; (ii) Clas-
sification is described to predict the class label probabilities using the features at the final output
layer (i.e., the output of the forward propagation); and (iii) the learning problem is formulated to
estimate parameters of the forward propagation and classification to approximate the data-label
relation.

We start out by deriving the PDE representing the network architecture, i.e., the forward prop-
agation.

2.1. The ‘Thermodynamic’ limit
We shall now make the limit of infinite depth and infinite width of residual networks precise

in analogy to multi-particle physics we refer to it as the thermodynamic limit process:
At first consider a network of fixed width N and large depth L > 1, i.e.,

21 =2z +to(a—Bizy), [=0,1,---,L, 2.1
where z;,a; € RN, B; are N x N matrices, o is the given activation function and t > 0 is the
(artificially chosen) layer width. We set T = Lt. Note that the rescaling of the activation function
from o to To makes sense since iteration overflow and instability may occur when the iteration is
run for L large. That is why we think of 7 as a small ‘time step’ parameter and of o as an O(1)-
function. To allow for more general and more interesting results we let the coefficients a;, By
depend on 7, we denote the T-dependence by a superscript, i.e., a/, B/ and z;. We now define

the piecewise linear functions a® = a® (t) and B® = B' (¢) interpolating a; and, respectively, B}
so that

a*(t)y=af, B*(t) =B/, 1=0,--- , L.
Then we define the function z* := z7 (¢) on [0, T'] through the extended recursion
Ft+r)=z7"(t)+to(@ (1) — BT (1)z" (1)) (2.22)
for 0 <t <T — 7. We prescribe an initial datum for the recursion,

"(t)=z9, forO<t<rt (2.2b)
with zo € RV given. Note that 77 (#)) = z/ holds. We assume here that o grows almost linearly:
(Ay) AC, Cy > 0 such that |o(s)] < C; + Cas fors e R,

and that a®, BT are bounded independently of t in L* as t — 0:
(A2) AC; such that [[a” || oo (o, 7y:RN) + 1B | Loo (0. 7): R¥xNy < C3  for Y small.
The following convergence result holds.
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Theorem 2.1. Let (A1), (A2) hold and assume that there are functions a = a(t), B = B(t) such
that

a’(t) =9 a(t) p.w.a.e.on(0,T),

B (1) =Y B(t) p.w.a.e.on(0,T).

Then 7* 29 zast— 0in C([0, T]; RYN), where z = 7(¢) solves the IVP on RN :

z=o0(a—Bz), 0<r<T, (2.3a)
z(0) = zo. (2.3b)

Proof. From (A;) and (A;) we immediately conclude that the solution z¥ of (2.2) is uniformly
bounded as T — 0. Therefore (using recursion) also the difference quotient

FE+1)—-727@)
T
is uniformly bounded as T — 0 and the Arzela-Ascoli Theorem implies that — upon extraction of
a subsequence as T — 0 — there exists a function z € C ([0, T']) such that
"=z inC([0,T)),

F+T)—-727@)
T

— z(t) inD'[0,T).

The result then follows by integrating

Tt 4+T) =25 (¢
LHDZE0 @ty - B 0 ),

against a function ¢ € D[0, T') and passing to the limit T — 0 (using the Lebesque dominated
convergence Theorem on the right). This defines the ‘large depth’ limit process of the residual
neural networks. O

Note that the assumptions (A1), (A2) and in particular the convergence assumption of Theo-
rem 2.1 require the coefficients a;, B; to depend on the depth of the networks in an appropriate

way.
In order to understand the ‘infinite width’ limit N — oo we set out by choosing a dimension
n € N and an open Jordan set ¥ C R”. Let {Y1, ---, Y} be a disjoint partition of Y, where each

Yy is an open Jordan set with ¥ = UY_, ¥, such that

for any Lebesque integrable function f : ¥ — R. Now we denote the components of a = a(t) €
RN, B = B(t) e RV*N by
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a(®) =@ @),---,a" @), B@)= (B (1) =1,

and define the function

aly, 1) =d"(t) ifyex, (2.4a)
1 ..

b(y, w,1) = mB'f (t) ifeyeY,wey;. (2.4b)
j

Clearlya: Y x[0,T] - R,b:Y x Y x [0, T] — R are defined a.e. on their respective domains.
Consider now the IVP

fiy,t)y=0al,t)— /b(y, w,t) f(w,t)dw |, (2.5a)
Y
f(y’tz()):fl(y)’ )’GY’ (25b)

where f7 is given by

i) =25, ifyeYs.

Here zg = (z(l), iy ,z(’)\' ) is the initial datum for the ODE system of Theorem 2.1. Clearly the
(unique) solution of the IVP (2.5) is the function

fo.n=:=>@), ifyen,

where z(t) = (1 (¢), - -+, 2V (¢)) is the solution of the IVP for the ODE system (2.3).

This clearly shows that the function values of the solution f represent the residual networks
while the arguments y € Y can be interpreted as their labels.

To understand the limit process N — oo and to eliminate technicalities we assume that Y is
the unit cube in Rd, ie., Y = (0, 1)d. We assume N = Md, consider M — oo and denote h = %
Motivated by (2.4b) we let the coefficients of the ODE system depend on /4 and rescale the matrix
operator. We consider

in=0(an —h'Bhzp), 1 >0, (2.62)
zn(t = 0) = 2o, (2.6b)
where
= Eh @, 2 O), 0=, ),
an="(a},--.ay. Bu=O0) oy ).

We now partition Y into cube cells ¥; of width A, numbered arbitrarily: ¥ = Ul;”:d Y; and define
the function '
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an(y,0) =aj(ify € ¥,
bu(y, w,t)=b]/ (1) ifyeY;, wey;,
fu(y, )=z (1), ify € Y},
z00(y) =2zj. ify € Y;.

Then (2.6) is equivalent to

O fu(y, 1) =0 (an(y, 1) —/bh(y, w, ) fp(w,)dw), >0, yeY, (2.7a)
Y
Ty, t=0)=z04(y), yev. (2.70)

We make the following assumption:

(A3) 3AC4 > O such that ||ap Loy x0,7)) + 1D llLoe (v xy x0,17)) + zo,nllLe(ry < Ca

for all & sufficiently small.
The following result is easy to show.

Theorem 2.2. Let o satisfy (A1), let (A3) hold and assume:

an(y, 1) el a(y,t) pw.a.e.inY x (0,T),
h—0 .
bp(y,w,t) — b(y,w,t) pw.a.e.inY xY x(0,T),
h—0 )
20,2 () = () powaee.inY.

Then the solution fy, of (2.7) satisfies

2 Dy x[0,T)),

where f solves

i, t)y=0 a(y,t)—/b(y,w,t)f(w,t)dw ,t>0,yeY,
Y

f.t=0=fi(y), yeY.
The result carries over to much more general domains Y albeit with additional proof techni-
calities. We also remark that the label set Y and its dimension n can be chosen freely to contribute

to the network architecture.
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2.2. The forward problem

The forward problem amounts to modeling and simulating the propagation of data. With com-
plex and huge sets of data, fast and accurate forward modeling is a significant step in deep
learning. It should be noted that typically the more parameters the model has, the less well-posed
the inverse problem is.

We first formulate a forward PDE to model the data propagation using residual neural net-
works [26]. Let y € Y denote the neuron identifier variable. Here we assume that Y is a domain
in R”. In order to construct a PDE-type model to describe the forward propagation in deep learn-
ing, we introduce an artificial time ¢ € [0, T]. The depth of the network is represented by the final
time 7. Let f(y,?) be a function describing the residual neural network at time ¢# with neuron
identifier y, its propagation is governed by the following PDE (of integro—differential type):

0 f Ot =0 | a(y, 1) — / b(y.2.0) f (2. 0)dz | | 238)

zeY

where o is the nonlinear activation function. Here b = b(y, z, t) is the selection weight function,
and a = a(y, t) is the bias function. The input learning data set f(y,t =0) = f7(y) then serves
as the initial data for the above differential equation. One of our objectives in this work is to
highlight the relation of the learning problem to this PDE model.

The activation function is typically (piecewise) smooth and monotonically non-decreasing. As
commonly used examples, we consider the arctan, the hyperbolic tangent, the sigmoid of form
ﬁ, and the Rectified Linear Unit (ReLU) activations given by

o(s)=sT,

the positive part of s. Our results also apply to other choices such as the leaky ReLu defined by
o (s) = max{0.1s, s}, and the Elu given by

s s >0,
TE =V g —1) s <0.

The performance of these activation functions varies on different tasks and data sets [51] and it
typically requires a parameter to be turned. Thus, the ReLLU remains one of the popular activation

functions due to its simplicity and reliability [24,37,45].
The network output function at final time 7 is given by

01(3)i= [ W2/ Tz 4 1), 29)
where W and p are weight and bias functions to be determined later.
2.3. The learning problem
In order to complete the learning problem, we need to define a prediction function by
CP* =h (07 ().
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One of the popular choices for % is the logistic regression function,

h(€) =e* /(1 +¢°).

The goal of the learning problem is to estimate the parameters of the forward propagation (i.e.,
a and b and the classifier W and w) from an observed label function C = C(y), so that the
DNN accurately approximates the data-label relation for the training data and generalizes to new
unlabeled data. The forward operator is highly nonlinear, and the learning problem most often
does not fulfill Hadamard’s postulate of well-posedness.

As we show below, the learning problem can be cast as a dynamic control problem, which pro-
vides new opportunities for applying theoretical and computational techniques from parameter
estimation to deep learning problems.

We phrase learning as an optimization problem

min J (CP'®, C) (2.10a)
such that 9, f(y,t) =0 | a(y,t) — /b(y, ) f(z,t)dz |, te€(,T], (2.10b)
Y

where J is a suitable choice of objective/loss function characterizing the difference between the
synthetic data CP™ generated by the current (and inaccurate) model parameter m = (a, b, W, )
and the observable true label C. This is a data-fitting approach, similar to many other inverse
problems that are formulated as PDE-constrained optimization.

The optimization problem in (2.10) is challenging for several reasons. Firstly, it is a high-
dimensional non-convex optimization problem, and therefore one has to be content with local
minima. Secondly, the computational costs per example are high, and the number of examples
is large. Thirdly, very deep architectures are prone to problems such as vanishing and exploding
gradients that may occur when the discrete forward (or backward) propagation is unstable.

2.4. The choice of the objective function and regularization

Typically the loss function J is chosen to be convex in its first argument and measures the
quality of the predicted class label probabilities. A typical choice is

1
J(C€™,0) =3 f ICP™(y) — C(y)Pdy.
Y

For classification the cross entropy loss is often used to measure the model performance [55,43].
To control noise and other undesirable effects occurring in inverse problems, one often adds
a regularization term so that

min J (CP™, C) + AR(m), (2.11a)
where the regularizer R is a convex penalty functional, and the parameter A > 0 balances between
minimizing the data fit and noise control. Choosing an “optimal” regularizer, R, and regulariza-

tion parameter X is both crucial and nontrivial; see, e.g., [5,25].
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3. Wellposedness of the forward problem

In order to identify useful structures of the deep learning problem, we first make some as-
sumptions on the parameters with which stability of the forward problem can be studied.

3.1. A general existence result
Most of our results will be obtained under the following:

Assumption 1. Y is a domain in R” and 0 < T < oo. The propagation operator

o (SLfD with S[f1=a(y,1) — / b(y.z.1) f(z.1)dz

zeY

satisfies:

e o is globally Lipschitz continuous with ¢ (0) =0 or |Y| < co.
e acL'((0,T),L*(Y)).
e be L'((0,T), L>(Y x Y))

Note that in the course of this paper we assume that the integral operator is bounded on L2(Y) a.e.
in ¢. This is clearly a restriction, but it represents the most common state of the art in network
propagation applications. More general (differential or pseudo-differential) operators may be
considered but this gives an entirely different flavor to the following analysis and is the topic of
further work.

The above conditions are sufficient to prove the following theorem of existence and unique-
ness by iteration.

Theorem 3.1. We suppose that Assumption I holds. Then,
1. for any initial function f; € LZ(Y) there exists a solution in C([0, T]; LZ(Y)) which solves

(2.8) with f(0,-) = f1. Furthermore,
2. for any two solutions fi, f> of (2.8) in C((0, T); L*>(Y)), one has the following stability prop-

erty:
vVt € [07 T]7 ||f1 (t7 ) - f2(t, ')”LZ(Y) = eLt“fl (07 ) - f2(0, ')”LZ(Y)’ (31)

for some L > 0. In particular, if f1(-,0) = f>(-,0), then fi(-,t) = fo(-,t) for all t > 0, so that
uniqueness holds.

Proof. Existence follows from the recursive scheme

Po.0=f1),
W =aSLmD, HN0) = £

For f" € C((0,T); L*(Y)) := Q, f"*! is well-defined in the same space by
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t

) = fo+ / o (SLf")(t)dr,

0

which in the Q norm is bounded by

T T
| frll 2 +suplo’ ()] / (laC, Dl 2pyd + / 16C. - Dl 2y xrydzll f'll o + CoT
0 0

< fill2 +CoT + C1 + Ca(D)I1 f"ll o

where Co = |0 (0)||Y] if 0(0) #0, C| = sup |a/(~)|||a||L1((O,T)’L2(y)), and

T
Co(T) = suplo” ()| / 15C. - Dl 2 dT.
0

Note that we used the well-known fact that the operator norm in L? of the integral operator with
the kernel b equals the norm of b in L2, that is 1611 22(y xyy- By using the fact that C2(s) — 0 if
s — 0, we get an upper bound for { f*} uniformly in n:

I fillp2 + CoT + Cy
1 —Co(T)

1" <

if T is suitably small such that C5(T) < 1. Then, by studying f"+! — f” via

t

frt —f”=—/a’(~)/b(y,z,r)(f” — " Ydzdr,
Y

0

we have

1" = Mo < oM™ = " Mlo.

Thus one can conclude that { f"},cn is a Cauchy sequence in Q, which converges towards a
solution f of the equation (2.8) for C2(T) < 1. Global existence for any T then follows from a
continuity argument by extending the local solution, proceeding as for the uniform estimate on
{f"hen. O

3.2. Large time asymptotics, stability of steady states

Clearly, it is important to study the forward dynamics of the residual neural network problem.
Here we begin the discussion with the analysis of steady states and stability.

Note that the time horizon T is usually finite but often large in typical deep learning ap-
plications so that long time stability questions do become important, also for the design and
implementation of appropriate space-time discretizations. Also it is important to realize that from
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a standpoint of network architecture design mildly stable evolutions are highly desirable while
strongly stable ones lead to the cancellation or overdamping of fine structures in the network,
which is a highly undesirable feature. Thus qualitative and quantitative stability information is
needed, which can be used to impose additional constraints in the deep learning step, see e.g.,
[29].

For simplicity, we first assume the forward propagation operator to be autonomous. That is,

a=a(y), b=b(y, 2).

At the first glance this looks like an oversimplification because the output parameter functions a
and b of the deep learning optimization will — in realistic applications — be time-varying. How-
ever, it is clear that we cannot hope to understand the evolution dynamics of the non-autonomous
problem without understanding the autonomous one. We shall show that even the latter gives rise
to highly non-trivial and unexpected evolutive phenomena. Also, it is clear that long-time stabil-
ity considerations of the autonomous problem are highly relevant for long time stability issues
of the non-autonomous case (and for time-local stability of its time-discretizations). This will be
detailed later on, after we have reached an understanding of the autonomous dynamics.

We make two basic assumptions here:
(A1) o is globally Lipschitz and non-decreasing on R, so (s) > 0 on R, but ¢/(0) > 0 and o (0) =
0,
(A2)aeL*(Y),be L* (Y x Y).

Then the forward problem becomes

fi=o0(a— Bf), (3.2a)
f(,0) = fr(y). (3.2b)

Here the operator defined by

(Bf)(y) = / b(y.2) f(2)dz

Y

from L2(Y) into L2(Y) is Hilbert-Schmidt and consequently compact.

Let foo € L2(Y) be a steady state, i.e., Bfs = a. Note that steady states exist if and only if
a € R(B) (= Range of B), and they are non-unique if and only if N(B) (= Nullspace of B) is
non-trivial. To study the stability of f,, we first linearize (3.2) at f, so that its perturbation w
satisfies

w; = —0'(0)Bw,
w(=0)=w;j.
We obtain

—o’/(0)Bt

w(t)=e wy.

For an eigenvalue-eigenfunction pair (w, ¢) of B we obviously have e~ O ¢ as a solution of
the linearized IVP. Therefore if the spectrum of B contains an eigenvalue with negative real part,
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exponential instability holds for the linearized problem. If an eigenvalue of B with zero real part
exists, asymptotic stability for the linearized problem does not hold.
To obtain stability for the linearized problem, we can impose

(B, v) 2(y) = (Bsv,v) 2(y) 20 Vv e L*(Y),

where By = %(B + BT) is the symmetric part of B.

Assume now that B' = B and that all eigenvalues of B are positive (i.e., 0 is a spectral
value but not an eigenvalue!). Then asymptotic stability can be concluded from the solution
representation

o
w(r) = Zeia Oart éD L2(v)P1s

=1

where {¢;} is the C.O.N.S (complete orthonormal system) of eigenfunctions.
If w = 0 is an eigenvalue then stability (but not asymptotic stability) holds in the symmetric
case.

Remark 3.1. Note that the above comments remain true in the non-autonomous case when daqo :=
lima(t), boo := limb(¢) exist (in an appropriate sense) and when a, b are replaced by a, and,
respectively, boo.

We now turn to discuss nonlinear stability for the forward propagation problem using Lya-

punov functionals.
Set

u:=a— Bf,
so that u solves

up =—Bo(u),
u(t=0)=u;:=a— Bf].
In order to recover f from u we use the equation f; = o (1) so that

t

FO.0=f1(y) +/0(u(y,S))dS~ (3.3)

0

Multiply the u-equation by o (1) so that

% / S(u)dy = — f(BsG(u), o(u)) <0,
Y Y

(again assuming that By > 0). This gives after integration
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/E(u(y,t))dyS/E(ul(y))dy,

Y Y
where

S

(s) = / o (£)dE.

0

In order to obtain estimates for f we distinguish two cases. Firstly, we assume that
o(s)s >0 fors#0, 3.4
and |o (s)| > Cy|s| for |s| > C>, such that
2(s) > C3s>

for |s| > C4. This allows to estimate Bf the following way:
/ |Bf|*dy < 2/ la>dy +2/ la— Bf|’dy <C V¥t >0.
Y Y Y

Secondly, if only |o (s)| > C for |s| > C3, then

/|Bf(t)|dy <C Vt>0
Y

follows.
Similarly, from the equation f; = o (u) with u = a — Bf we conclude

/fthdy— %/afdy=—/0(u)udy§0,
Y Y Y

because of (3.4). Assume now that BT = B and B non-negative, we then have

1d

d
5 1B f1I7 0y, = 7@ Dy =- / o (u)udy.

Y

Thus

1
SIBY2F O3, = @ Nz
is monotonically decreasing and bounded from below, admitting a limit as  — oo.
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Also
o0
05//0(u(y,s))u(y,s)dyds < 00
0vY

and assuming a € R(B'/?),
1B f (D12, < K +2(a, f(0) 12y
—1/2 1/2 1/2
<K +2(8; 2a, B f (1)) 12y) < K+ CIB> FOll 2y
Thus
||B1/2f(t)”i2(Y) <K; Vt>0.

Again, the projection of f onto N(B) is not controlled by this estimate.
To collect facts, we have the following time-uniform estimates

Theorem 3.2. 1) If By > 0, then for any t > 0, we have

() f X(a = Bf(1)(y)dy < / X(a = Bf)(y)dy,
Y Y

where ¥/ = o, and
o
.. 1/2
@) [ 1B 0@~ BFGDIR: g ds <o0,
0

which implies that le/zft = le/zo (u) € L2(Y x (0, 00)).

2)Ifso(s) >0, B"=B, B>0andac R(Bl/z), then for allt > 0

(i) B2 FO 2y + 1@ fO) 2| < K.

(iv) / f o(a— BF(s)() - (@ — Bf (s))(y)dyds < oc.
0Y

3.3. Characterization of steady states
Note that the equation
u; = —Bo(u)
may have other equilibria than u, = 0. In fact every u, such that o (#,) € N (B) is an equilibrium.
But u, = 0 is the only one which may correspond to the equilibrium f = f of the equation (3.2)

(it does if and only if @ € R(B)). Note that
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t
u(t)=uj — B/a(u(s))ds = u(t) —uy € R(B).
0

Since u; = a — Bf; we have u; —a € R(B) and u(t) —a € R(B). Consider 0 # u, € L*(Y)
such that o (u,) € N(B). Then the corresponding solution of the f-equation is

fOo.)y=fi+to(u,), u.=a— Bfi,

if u, —a € R(B). Clearly the linearly increasing component fo (i,) € N (B) is not seen by the
time-uniform estimates of Theorem 3.2.

To consider an example pick ¢ € L*(Y), l¢ll;2 = 1. Define u, = ¢, compute o, = o (¢).
Now choose ¥ € {o,}* and define the rank one operator

wﬁuw=/f@w&mwum
Y

Clearly u, = ¢ is an equilibrium of u; = —Bo (u). Alsou, = ¢ € R(B).Now leta = a¢ € R(B)
(¢ € R given) and choose f7 € L?(Y) such that

!ﬁw®=a—k

Then

@)= fr+to(9)

solves (3.2).

Lemma 3.3. If B is symmetric, o(s)s > 0 for all s € R then every equilibrium u, in R(B)
satisfies uoo (u.) = 0.

Proof. Since u, is an equilibrium, o (1,) € N (B). The conclusion follows from R(B) = N (B)*,
i.e.,

/ueo(ue)dy =0.

Y

Hence u,0(u,)=0. O

We shall now analyze the stability of u, = 0 for the case of non-symmetric B. Therefore we
consider the singular value decomposition of the operator B [58]:

(B =Y Wi, £ 2 ®i(),

=1
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where the singular values w; > 0 are the eigenvalues of |B|, {y;} and {¢;} are orthonomal sys-
tems, {y;} is complete in L%(Y) and ¢; = Uy, where B = U|B| is the polar decomposition of
B. Here U is a partial isometry so that N(U) = N(B). Set

f=Y_ fvn, ka/fWkdy-
Y

k=1

Thus

(B, Praey = Y i fifa(@r, ¥n)

=1 n=1
= f' DT/,

where f = (f1, f2,-- )T, D = diag(u1, 2, ---) and T is the generalized Gram matrix:

T = (¢, ¥n))-

Note that (Bf, f)2(yy = 0 for all f € L%(Y) if and only if DT is non-negative definite (not
necessarily symmetric).
Set

u(y, )=y w®¢1(y) + Z(y,1),

=1

where Z € R(B)™*. Thus

Bo (u(r)) = Zm(a(u(t)), V)¢ € R(B).

=1
Assuming again a € R(B) we have u(-,t) € R(B) for all + > 0. We conclude Z =0 and

o]

u(y,0)=> w)g(y).

=1

Thus, we find
4., = 3 d 3.5
Euz——uzfd I R (3.50)
Y =
u;(t:O):/uldndy. (3.5b)
Y

Now let B have rank N < oo (for simplicity’s sake, in order to avoid the need to discuss the
convergence of infinite series):
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N
(B =Y _ st (f ) 201 ().

=1

It is completely standard to show that u = 0 is an isolated equilibrium of (3.5) if the generalized
N x N gram matrix T = ((¢k, Y1) 2(y)) is invertible. Also, it is easy to show that

L(u):/E(u)dy

Y

is a Lyapunov function for (3.5) if the N x N matrix DT with D = diag(u1, --- , un) is positive
definite, i.e., L(#) > 0 and L(u) decreases along trajectories around the origin.
We conclude

Theorem 3.4. Let B have finite rank and let

(a) T be invertible;

(b) DT be positive-definite (not necessarily symmetric).

Then, the equilibrium u = 0 is locally asymptotically stable. The convergence of u(t) to zero is
exponential.

We remark that the local exponential stability of u induces local exponential stability of f.
The proof follows standard arguments using Lyapunov functionals for ODE systems [31].

If B is symmetric, then ¢y = V;, T =id and DT = D is positive definite if and only if B > 0.

Also note that it is a simple exercise in functional analysis to do away with the finite rank
assumption. The result carries over to the general case without change.

3.4. On solutions for the ReLu activation

Note that for the arctan, sigmoid, and hyperbolic tangent activation functions, the asymptotic
growth rate in time of the solution f is at most linear, no matter what the properties of the
operator B are. In this respect, the ReLLu and leaky ReLu activation functions behave worse than
we shall show below.

We now consider the activation function o (s) = s, which is one of the most popular activa-
tions used in practical applications. In this case with 7 > 0 assuming a € L0, T); LY(Y)) and
be L'((0,T); L®(Y x Y)), from the equation for f it follows by integration against sign( f)

d
;/UWMWS/mWMW+umwm/vmmw.
t YxY
Y Y

Y

Thus, from the Gronwall inequality we find

/If(y,t)|dy = /|fl()’)|d)’+ lallto,n;2 (vy) eXP(||b||L1((0,z);LOO(yXy)))-
Y Y

for 0 <t < T. It is actually not difficult to construct an example of a rank 1 integral operator
B such that the exponential upper bound is sharp. This tells us that for o (s) = s™, exponential
forward instability for f is possible.
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In the autonomous case and if By > 0, we can actually prove that || f (-, #)[| 2y has at most
linear growth in time.

Proposition 3.5. Let o (s) =57, a =a(y),b =b(y, z), and By = %(B + BT) > 0. Then there
exist Cy, Cp > 0 such that

IfOllp2yy <Ci+Cat Vi>0.
Proof. From f; =u™" and u =a — Bf we have
+

u;=—Bu™.

Using the Lyapunov argument from §3.2 gives
1d Fn2 + o+
2 ™ @) (y)dy=—(Bsu™,u")2y) <0.
Y

Thus

/ WHO)2()dy < C Vi > 0.
Y

This together with f; =u™ yields

/(f,)%zy <C Vit > 0.
Y

Using the relation f(t) = f1 + fot ds fds, we obtain the estimate as claimed. O

Note that the same result holds for the leaky ReLu activation.
3.5. Local conditioning of the forward problem

For numerical analysis and computational purpose it is beneficial to understand the condition-
ing of the forward propagation operator, which means that its linearization of the actual solution,
not only the steady state must be looked at. Also, the output of the learning problem will be time-
dependent functions a = a(y,t) and b = b(y, z,t) such that the forward propagation and its

linearization will be non-autonomous. Consider a solution # = u ¢ (y, t) of the forward problem
(3.2) and analyze the linearization in direction w = w(y, t), withu =a — Bf:

qw(y, 1) =—oc'(u(y, t))/b(y,z, Hw(z, 1)dz. (3.6)
Y

If the residual neural network problem is ‘very’ deep, and if u(#) is close to the stationary state
u =0 (assuming that a and b stabilize sufficiently fast as t — 00), then the dynamics for w will
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be close to the autonomous case considered above and controlled by the linearized autonomous
problem in the beginning of section 3.2, when b(y, z) is replaced by b(y, z,t = 00). This can
be shown by standard semi-group perturbation theory, just to get a more quantitative feeling,
multiply by % and integrate over Y:

1d w0,

2dt o’(u)
Y

" (uu(r)

1 fo 2
dy =B, )z — 5 [ T w oy,
Y

o’ wuy (1)
(') i . .
the local solution (instead of a stationary one). If f(¢) is far away from the stationary state, then

much less can be said about the operator —o’(w) B(¢) in general, except that it is bounded by

Here — measures the effect of the non-autonomous coefficients of the linearization at

sup o' BC, Dl L2 <y

as an operator from L?(Y) into itself. It is generally non self-adjoint, even if B(z) is self-adjoint.

For the purpose of numerical discretization it is important to understand the time-local stabil-
ity properties of the linearization (3.6). As usually done in ODE theory we freeze the coefficients
of (3.6) at a fixed time fy > 0 and find the problem

By, 1) = — / o' (3, 10))b (3, 2, 1) (2, 1)z,
Y

whose analysis is totally analogous to the first part of Section 3.2 when b(y, z) is replaced by
o (u(y, t9))b(y, z, to) and ¢’ (0) by 1. Globally growing/decaying modes w represent local insta-
bility/stability of the nonlinear problem (3.2) at time ¢ = 7o (see also [26]).

Strong stability properties can be obtained by considering other conditions of neural networks.
Here we just mention only one example (see [53])

fi=B'o(a— Bf),
ft=0)=fi.

A simple energy method shows that the associated flow in L2(Y) is contractive, if only o/ <0
on R, i.e., any two solutions fi, f> satisfy

/1) = L2Dl2vy < 112 =0) = L2 =0)I12(yy-
4. Back propagation and optimal control
4.1. Computing cost gradients

The main technical difficulty in training continuous-depth networks is performing reverse-
mode differentiation (also known as back propagation). We introduce the following notation:

GZG(YJ)» b:b(y,Z,l), ua,b Z:a—Bbf, fzfa,bs

11560



H. Liu and P. Markowich Journal of Differential Equations 269 (2020) 11540-11574

where f, ;, solves (4.1) below and

(Byv)(y) = / b(y, 2, v (2)dz.

Y

For the sake of simplicity in the calculation, we consider first optimizing a simple terminal value
loss functional

1 -
Jah) = f a3 T) = F)2dy
Y

subject to

O fap=0(a— Bp fup), (4.1a)
Jap(@®=0)= fr. (4.1b)

Here f(y) is the target output function. Let the Gateaux differential of f in a along direction &
be

1
g =D, fap(a)=lim _(fa+ea,b - fa,b),
e—0€
then

g =0 (ugp)(a — Bpg),
g(t =0) =0.

Let M, (2, s) be the evolution system [48] generated by —o /(i ) Bp, i.€. 2(t) := My (2, 5)20
solves

2t =—0"(uap(1))Bpz, 1 =5,
z(s) = zo.

Then
t
g(t)=/Ma,b(t,S)(U’(ua,b(S)Ot(S))dS-
0

Similarly, & = Dy, f (8) solves

hy = —0"(ua,p)(Bph + Bg f),
h(t=0) =0,

which gives
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t
h(t):_/Ma,b(t’s)(o'/(ua,b(s)Bﬁf(s))ds~
0

We proceed to compute the derivatives of J with respect to a and b as follows:

Do (a, b)(@) = / an(.T) = FONg(y. T)dy
Y

T
_ / ad(0.T) = FO) / Mo (T, )(0" (tta.p () () (¥)dsdy
Y 0

T

= / / a(y,5)0" (U p(y, Mg (T, )*(fup(y, T) — f(¥)dyds.
0 Y
Thus
DaJ(a,b)(y,s) =0 (g p(y,$)Map(T,)*(far(T) — HH).
Define

rr() = (far(T) — ).

Clearly, r(s) := M, (T, s)*rr solves the co-state terminal value problem,

re = (0" (uap(s)Bp)*r = By (0 (ua,p)(s)r),

r(T)=rr.

Note that Bjf = B, with b"(y, z,1) = b(z, y,t). Thus, r(s) = r, 5, and r4 5 solves

Orap = Byt (0 (Uap)($)rap(s)), (4.2a)
Fa(T) = fap(T) — f. (4.2b)

We conclude
DaJ(a,b)(y,s) =0 (uap(y, $)rap(y,s). 4.3)

As for the gradient with respect to b we have

Dy J(a,b)(B)

= / (fap 3, T) = FONA(y, T)dy
Y
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T
__ / as(3.T) = 7)) / Mo (T, $)(0" (tap)(5) Bp fas () ()dsdy
Y 0

T
:_//G/(Ma,b(s))Bﬁfa,b(S)Ma,b(T,S)*(fa’b(T) — A )dyds
0Y
T
= _///:3()’»Z’S)fa,b(ZaS)U/(Ma,b(y’S))Ma,b(T»S)*(fa,b(T) — H)dydzds
0OYY

~—

T
/ f B2, 8) fu (@ )0 (e (vs $))ras (v, $)dsdydz.
Y O

This gives
DyJ (a,b)(y,2,8) = = fab(z, )0 (Ua (¥, $))rap(y,s). (4.4)
We collect the results on the gradient of J in the following:

Proposition 4.1. We have

(@) DaJ(a,b)(y,s) =0 (uap(y, )rap(y,s),
(”) DbJ((l, b)(% 2, S) = _fa,b(zr S)U/(ua,b(yv s))ru,b(yv S).

Therefore, conditions (necessary and sufficient) for a stationary point
(a,b) € L>(Y x (0,T)) x L>(Y x Y x (0, T))

of the functional J (a, b) are:
(a) solve

fi=o@—Bpf),0<t<T, f@=0)=f

for f'= fap = fab(y,1), ap:=a— Bpfan;
(b) solve

rs = By (0 (ua,p)($)r(s)), 0<s <T,

rs=T)= fap(T)— f
forr =r,p =rap(y,s). Then the stationarity condition is
o' (Ua (¥, SNTap(y,s) =0, ae ye¥, se(0,T); 4.5)
while (ii) of Proposition 4.1 does not add any additional information.
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Remark 4.1. If o’ > 0 (this holds for arctan, hyperbolic tangent, and Sigmoid), the above con-
dition implies that the optimal (a*, b*) exists if and only if f is reachable in the sense that the
above two derivatives vanish if and only if there exist parameter functions a* and b* such that
Sa (v, T) = f(y) ace. in Y. For the ReLu activation instead the situation is entirely different
asany f, p witha < By f,p € Y x (0, T) is a stationary point of I (a, b), which makes the search
of a minimizer in general very difficult.

Remark 4.2. Note that the conclusion of Remark 4.1 does not hold if the cost functional is
regularized by, say, the Tikhonov regularizer

T T
R(a,b):/[|a(y,t)|2dtdy+ / /Ib(y,z, n2dtdydz

Yy 0 YxY 0

such that J (a, b) is replaced by

Jmod(a, b) == J(a,b) + AR(a,b). 4.6)

Then
DgJmod(a, b) = (0/(”a,b)ra,b)(yv s)+ ra(y,s), (4.7a)
Dy Jmod(a, b) = — fu.p(z, ) (0" (Uap)rap)(y, ) + Ab(y, 2, 5) (4.7b)

This is commonly done in the deep learning applications.

The above analysis is well generalizable to the classification problem of section 2.3 and sec-
tion 2.4 for which only the final cost needs to be modified by

_ 1 pre 2
J(a,b>—§/|c () — CO)Pdy
Y

with
CP ) =h(Or (). 0r() = [ W02 Tz + ()
Y
For the back propagation, we obtain the same equation

rs = Byt (0" (ua,p)($)r(s)), 0<5 < T,

but with a different terminal condition

r T) = f (CP°(y) — CONR (O (W (y, 2)dy.
Y
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4.2. Pontryagin maximum principle

We now view the deep learning problem in the framework of the mathematical control theory
using the Pontryagin maximum principle to obtain optimal controls for the network parameter
functions a and b, see [22]. This is a standard application of control theory but is of particular
interest, when optimizers (a, b) which vary in regions with boundaries, are sought, possibly as
an alternative to the Tikhonov functional regularization (4.6).

In fact for the deep learning problem the maximum principle can be used to (rather) explic-
itly compute the optimal parameter function in terms of the optimal state and co-state variables
obtaining bang-bang type controls.

Leta =a(y,t) and b =b(y, z, t) be in a measurable set A C R2 pointwise a.e., now (looking
for maximizers instead of minimizers, to keep in line with the usual convention in control theory).
Define

1 -
1@J»=—5/kmuxr>—fu»%y
Y

Look for

max I (a,b)=1(a*,b").
(a,b)eA

As usual in control theory we define the Hamiltonian

H(f,r,a,b) ::/a(a — By f)rdy,

Y
where r is the co-state variable. Let (a*, b*) be optimal for /. Define f* = f = p+, then
ff=0@ —Bpf*), 0<t <T,
fr=0)=fr.
Also define the optimal co-state r* by
= Byt (o'(@* — Bp« f*)r*), 0<t <T,
r*e=T)=f— fXT),
where (b*) T (y, z,1) = b*(z, y, t). Then (a*, b*) satisfies the Pontryagin maximum—principle.

H(f* r*,a*,b*)= max H(f* r*,a,b)
(a,b)eA

(a,b)eA
Y

= max /a(a — By fHr*dy. 4.8)

It is a classical result of control theory and we refer the reader to [7]. Note that the Hamiltonian
is constant along the coupled dynamics:
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d
EH(f*(t), ri (1), a* (1), b* (1)) =0.

As an example, take A=[a",aT] x [b~,bT] C R2. Let o be strictly increasing in R. Then one
concludes immediately defining xq as the indicator function on the set €2,

a*(y, D xpe20y =a’ xpe=01(y, 1) +a = xpr<0) (¥, 1),
and
b*(y, 2, 1) xre20y (v, ) X 20y (2, 1)
=b" (Xp+=0) (0 DX 2012, 1) + X <0y, D X2 <02, 1))
+ b7 (xpr=0y (0 DX <0 (25 1) + X <0y (Vs DX (=012 1)) -

Note that this defines a* and b* completely iff the sets where »* and f* equal 0 have both zero
Lebesgue measure in Y x (0, T'). For a general control set A, compact in RZ, set:

Kj= {(a,b) eR x LZ(Y)‘ (a,b(2)) e Aa.e.in Y}.

K 4 is closed in R x L2(Y). For f € L?(Y) define the affine linear functional

Tr(a,b)y=a— /b(z)f(z)dz. 4.9)

Y

Clearly, Ty : K4 — R assumes its minimum at (a;, b;) and maximum at (a}', b}') in K 4 since
Ty is bounded on K4, weakly continuous and minimizing and maximizing sequences in K4
have weakly converging subsequences in K 4. Clearly, uniqueness of argmin ad argmax does not
hold in general (for example if the Lebesgue measure of the set where f = 0 is positive). Again
assuming that o is strictly increasing, there are pairs in the set of argmin and argmax such that:

a*(y, 1) xp+=0) = a}i(,)x{r*w} 0. 0) +a g xirr <0 (3, 1), (4.10a)
b* (3, 2, D X(r+20) = b e (1) @D X1+ =0 (03 1) + b e 1y (D X <0y (9, ). (4.10b)

Similarly as above this does not define a* and b* in full generality.

Note that the forward evolution for f* and the backward evolution for the co-state r* are
now coupled in a highly nonlinear way through the optimal controls (a*, b*). Existence and
uniqueness issues for this highly nonlinear initial-terminal value problem will be the subject of
future work.

In particular we remark that the Pontryagin Maximum Principle does not give any information
on optimality if the state f is reachable by a control in K 4. In this case r* = 0, maxI = 0 and
the optimal control has to be computed as in Section 4.1.

Remark 4.3. For the network loss function of the classification problem
1 pre 2
I(a,b) = —3 IC,, — Cl7dy,
Y
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with
Chy()="h / fab@ W@ Y)dz+ p(y) | =h(0ap.1()),
Y

the only modification again is the terminal value of the co-state,

1) == [(€1,0) = COMN O GIW (3. 20y,
Y

4.3. Functional Halmilton-Jacobi-Bellman PDE

We now present an alternative approach to the control problem based on the dynamic pro-
gramming principle. Consider

O f(y,s)=0(a(y,s) — (Bpf)(y,s)), t<s<T,
f.0)=v(y)

for general v(-) € L2(Y ). Let a general cost functional be defined by

T
1 -
Jor(a,b) = / / L(f(3,5),a, b)dyds + 5 / (. T) - P)dy,
t Y Y

where the first term denotes the running cost and the second term is a terminal cost. Define a
value functional as

F(v,t)= inf J,(a,b)=J,(a",b").
(a.b)eA

Note that F (v, T) = % fy(v(y) — f)2dy. By the dynamic programming principle (see e.g., [7])
we conclude

Theorem 4.2. Assume the value functional F is smooth in its arguments (v,t). Then F(v,t)

solves the functional Hamilton-Jacobi-Bellman (HJB) equation

B,F(v,t)—i—(nlljgnA /DUF(v,t)o(a—Bbv)dy—i-/L(v,a,b)dy =0 4.11)
a,b)e
Y Y

with the terminal condition

1 ~
F.T)=3 /(v(y) — f)*dy. (4.12)
Y
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Remark 4.4. Note that D, F (v, t) is the L? variational gradient of the functional F(¢) : L2(Y) >
R.
(i) We can express the HIB as

o F(v,t)+ H(v,D,F(v,1)) =0,

where we define the Hamiltonian as

H(v,r) = min /a(a—Bbv)rdy+/L(v,a,b)dy
(a,b)eA
Y Y

It is easy to see that the characteristic system of this functional HIB equation in the case L =0
is precisely the coupled optimal control system of the previous section.
Note that the HIB equation ‘lives’ in the space of functionals on the space L>(Y).

Theorem 4.2 is an important statement that links smooth solutions of the HIB equation with
solutions of the optimal control problem, and hence the minimization problem (2.10) in deep
learning. By taking the min in (4.11), the HIB allows to identify the optimal control (a, b). In this
sense, the HIB equation gives a necessary and sufficient condition for optimality of the learning
problem (2.10). This demonstrates an essential observation from the optimal control viewpoint
of deep learning: the minimization can be viewed as a variational problem, whose solution can be
characterized by a suitably defined Hamilton-Jacobi-Bellman equation. This very much parallels
classical calculus of variations. However, we should note there is a price to pay for obtaining
such a feedback control: the HIB equation is general difficult to solve numerically.

Nevertheless, we present main steps for designing the optimal control (a*, b*) using the above
dynamic programming approach.

Step 1. Solve the HIB equation
% F(, 1)+ H(, DyF(v,1))=0 0<1<T,
subject to the terminal condition (4.12) to find the value functional F (v, ).

Step 2. Use F (v, t) and the HIB equation to construct an optimal (a*, b*):
(i) for each v € L2(Y) and each time ¢ € [0, T'], define
@) (). bw®))(y. 2)) = argming, 44 /DUF(v,l)G(a — Bpv)dy +/L(v,a,b)dy
Y Y
(i1) Next we find f (v, s) by solving the following PDE
O f=0@W)(y,0) = By )y 1<s<T,

f@®) =v.
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(iii) Finally define the feedback control

a*(y,8) =a(f ()N, b* (v, 2,9) :=b(f($sN(.2), 1=s=<T.
Theorem 4.3. The control (a*, b*) is optimal.
Proof. By standard arguments from dynamic programing, see [7]. O

It is worth noting that the HIB equation is a global characterization of the value function, in
the sense that it must in principle be solved over the entire space of input-target distributions. Of
course, one would not expect this to be the case in practice for any non-trivial machine learning
problem; hence it would be desirable to solve the HIB locally by some Lagrangian approach
in order to apply to nearby input-label samplings. Another limitation of the HIB formulation
is that it assumes the value function is smooth, which is often not the case. A more flexible
characterization of the value function is to relax the solution space in an appropriate sense, such
as the viscosity sense [11].

5. Two iterative algorithms

Deep Neural Networks have drastically advanced the state-of-the-art performance in many
computer science applications, yet in the face of such significant developments, the age-old
stochastic gradient descent (SGD) algorithm [54] remains one of the most popular method for
training DNNs. Finding new and simple hyper-parameter tuning routines that boost the perfor-
mance of state of the art algorithms remains one of the most pressing problems in machine
learning (see, e.g., [8,25]). Based on the gradients obtained in Section 4.1, and the Pontryagin
maximum principle presented in Section 4.2, we will allude briefly to two respective algorithms
in this section.

5.1. Gradient descent

We recall that the gradient of the cost functional

1 -
Jah) = / Fans T) = F)2dy
Y

is given by
DyJ =0 (uap(y, sNrap(y,s), DpJ =—fu6(z,8)0Wap(y,s)rap(y,s),

where u, , =a — By fa.p, and r, 1S obtained by solving

at”a,szbT(O—/(“a,b(Ys S))ra,b(y’s), 0<s<T,

rab(T) = fap( T) — f().

We remark that the conditioning of the backward problem for r, j is identical to the conditioning
of the forward problem. More precisely, witht =T —5,0 <1 <T, R, 5(7) :=r4,(s) we obtain
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atRa,b()’v t) = _BbT(Tfr)(U/(ua,b(% T - T)))Ra,b(y, T)a 0 S T S T

Note that the generator of the evolution equation for R, j at T is precisely the transposed of the
generator of the linearized convolution equation for f; 5 at time 7 — v and we can estimate

||BbT(T_r) o U/(Mu,b(T - T))||L2(Y)_>L2(y) <sup|o'[[|b(-,-, T — T)||L2(ny)~
R

(compare to section 3.5).

GD and SGD have advantages of easy implementation and being fast for well-conditioned
and strongly convex objectives. However, they have convergence issues, especially when the
problem is ill-conditioned; there is an extensive volume of research for designing algorithms to
speed up the convergence (see, e.g., [18,32,47,60]). To achieve fast convergence with large time
steps (learning rates) we present the following algorithm.

Algorithm 1.

Inputs: 7(y), f1(y), a’, b° as initial guess, step size 7.

Outputs: a, b and J (a, b)

1.Fork=1,2,--- iterate until convergence.

2. Employ the Proximal Alternating Minimization (PAM) method [2] for a and b,

1
a**! = argmin,, {J(a,bk)+2—||a—ak||2}. (5.1a)
T
1
b1 = argmin, {J(a"+1,b)+ 2—||b—bk||2}. (5.1b)
T
3. Update f as

= f i (v,9)

by solving

df=0@ —Buuf), f=0=7f.

Note that this algorithm needs to be modified when the cost functional is regularized. For the
Tikhonov regularizer given in Remark 4.2, we replace J (a, b) by Jmod(a, b) defined in (4.6) and
use (4.7) for the gradients.

For a class of objective functions, (5.1) is analyzed in [2], where it is called the Proximal
Alternating Minimization (PAM) method. Here, at each step, the distance of the parameter update
acts as a regularization to the original loss function. Compared to GD (or SGD), the PAM has
the advantage of being monotonically decreasing, which is guaranteed for any step size t > 0.
Indeed, by the definition of (a**!, b**+1) in (5.1),

1
J(ak+1’bk+l) < J(ak’bk) -5 (||ak+1 _ak”2 i ”bk+1 _bk”2>.
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We remark that (5.1a) is the celebrated proximal point algorithm (PPA) [52]. PPA based implicit
gradient descent algorithms have been explored in [63] for the classic k-means problem, and in
[14] for accelerating the training of DNNS.

‘We should point out that training deep neural networks using gradient-based optimization fall
into the noncovex nonsmooth optimization. Many researchers have been working on mathemati-
cally understanding the GD method and its ability to solve nonconvex nonsmooth problems (see,
e.g., [3,30,44,59]). Accelerating the gradient method is also a subject of intensive studies (see,
e.g., [56,05]).

5.2. Hamiltonian maximization

When training is recast as a control problem, necessary optimality conditions are formulated
by the Pontryagin maximum principle (PMP). This formulation can lead to an alternative frame-
work for training algorithms. There are actually many methods for the numerical solution of
the PMP (see the survey article [50]), here we follow the method of successive approximations
(MSA) [17], which is an iterative method based on alternating propagation and optimization
steps. For recent works using PMP based MSA algorithms to train neural networks, we refer to
[33,38].

Recall the Hamiltonian of the form

H(vsrvavb)z/a(a_Bbv)rdy.
Y

We thus present the following algorithm.

Algorithm 2.

Inputs: 7(y), f1(-), a°, b° as initial guess.
Outputs: a, b and J (a, b)

1.Fork=1,2,--- iterate until convergence.

2. find £k = fak pr by solving the forward problem

o f =o@ —Byf). fG=0=f.
3. find ¥ = rqk pk by solving the backward problem
dr = By (o' (@ — B f5), re=T)=f - f&D).
4. Update (a, b) by

@, bty = argmax 4 H(f*. r*, a, b).

Since o is non-decreasing, the linear programing problem (4.9) (see Section 4.2) may be used
to update (a, b).

As is the case with the maximum principle, the above algorithm consists of two major com-
ponents: the forward-backward Hamiltonian dynamics and the maximization for the optimal
parameters at each step. An important feature of the algorithm is that the Hamiltonian maxi-
mization is decoupled for each step. In the language of deep learning, the optimization step is

11571



H. Liu and P. Markowich Journal of Differential Equations 269 (2020) 11540-11574

decoupled for different network layers and only the Hamiltonian involves propagation through
the layers. This allows the parallelization of the maximization step, which is typically most time-
consuming.

One advantage of this approach is that it does not rely on gradients with respect to the trainable
parameters through back-propagation. An additional advantage is that one has a good control of
the error through explicit estimates on the Hamiltonian (see [33]). Overall, the approach opens
up new avenues to attack training problems associated with deep learning.

Finally, we point out that both the forward and backward PDE problems when discretized
by numerical methods can lead to different network architectures (with respect to depth and
width). Implementation and convergence analysis of the above two learning algorithms with
proper discrete network architectures for specific application tasks are left to further work.
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