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Abstract

This paper presents a partial differential equation framework for deep residual neural networks and for 
the associated learning problem. This is done by carrying out the continuum limits of neural networks 
with respect to width and depth. We study the wellposedness, the large time solution behavior, and the 
characterization of the steady states of the forward problem. Several useful time-uniform estimates and sta-
bility/instability conditions are presented. We state and prove optimality conditions for the inverse deep 
learning problem, using standard variational calculus, the Hamilton-Jacobi-Bellmann equation and the 
Pontryagin maximum principle. This serves to establish a mathematical foundation for investigating the 
algorithmic and theoretical connections between neural networks, PDE theory, variational analysis, optimal 
control, and deep learning.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Deep learning is machine learning using neural networks with many hidden layers, and it 
[9,37,25] has become a primary tool in a wide variety of practical learning tasks, such as image 
classification, speech recognition, driverless cars, or game intelligence. As such, there is a press-
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ing need to provide a solid mathematical framework to analyze various aspects of deep neural 
networks.

Deep Neural Networks (DNN) have been successful in supervised learning, particularly when 
the relationship between the data and the labels is highly nonlinear. Their depths allow DNNs 
to express complex data-label relationships since each layer nonlinearly transforms the features 
and therefore effectively filters the information content.

Linear algebra was appropriate in the age of shallow networks, but is inadequate to explain 
why deep networks perform better than shallow networks. The continuum limit is an effective 
method for modeling complex discrete structures to facilitate their interpretability. The depth 
continuum limit made a breakthrough by introducing a dynamical system viewpoint and going 
beyond what discrete networks can actually do.

Most prior works on the dynamical systems viewpoint of deep learning have focused on 
algorithm design, architecture improvement using ODEs to model residual neural networks. 
However, the ODE description does not reveal any structure for hidden nodes with respect to 
width. To fill in this gap, we propose a simple PDE model for DNNs that represents the contin-
uum limits of deep neural networks with respect to two directions: width and depth. One main 
advantage of the PDE model over the ODE model in [29] is its ability to capture the intrinsic 
selection dynamics among hidden units involved.

Also, and maybe most importantly, the forward and backward PDE problems can be dis-
cretized by numerical methods which lead to different network architectures (with respect to 
depth and width) than the empirical explicit Euler scheme that was at the basis of the depth 
continuum process. This allows much more mathematical sophistication with possible rewards 
in stability, efficiency and speed gains compared to the simple layer-by-layer iteration technique 
for the forward and backward problems. Moreover, in many applications it is sensible to limit the 
parameter space by requiring the learning parameters to remain in bounded sets. Then the mini-
mization procedure can be replaced by a control theory approach leading to completely coupled 
forward-backward PDEs, where the coupling occurs through the optimal controls. Numerical 
techniques for control theory problems and mean field games can then be used, replacing the 
classical variational methods (adapted gradient descent) often used for ML in neural networks. 
We remark that limiting the parameter space is often preferential to classical (Tikhonov-type) 
regularization procedures of the objective functional.

The main purpose of this paper is to focus on the study of the fundamental mathematical 
aspects of the PDE formulation. We seek to gain new insight into the dynamics of the forward 
propagation and the well-posedness of the learning problem, through a study of the PDE that 
represents the forward propagation dynamics. In this framework the study of the impact of the 
choice of the activation function on the network dynamics, stability and on the learning problem 
becomes very apparent and rather straightforward to analyze by classical PDE techniques.

We point out that the link of deep learning to dynamical system and optimal control has at-
tracted increasing attention [13,16,20,29,33,38,40,41,57]. An appealing feature of this approach 
is that the compositional structure is explicitly taken into account in the time evolution of the 
dynamical systems, from which novel algorithms and network structures can be designed.

1.1. Discrete neural networks

A neural network can be seen as a recursively defined function � on (a compact domain of) 
Rd into RNL :
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� = LL ◦ FL−1 · · ·L2 ◦ F1 ◦ L1.

Here Lk is an affine linear map from RNk−1 to RNk :

Lk(x) = ak − Bkx,

where Bk are Nk × Nk−1 matrices (network weights) and ak are Nk-vectors (network biases). 
Obviously we have used N0 = d . Fk is a nonlinear mapping from RNk into itself, given by

Fk(y) = diag(σ (y1), · · · , σ (yNk
)) :=: σ(y),

where σ : R → R is the so called network activation function. For details in the setup of neural 
network functions and their approximation qualities we refer to [12].

Residual neural networks are set up slightly differently, in as much they add the current state 
to the activation term on each level:

zl+1 = zl + σ(al − Blzl).

Clearly, all the dimensions Nk are assumed to be equal here, i.e., d = N0 = N1 = · · · = NL−1 =
NL. After rescaling σ with an artificial layer width τ << 1, the recursion can be seen as an 
explicit Euler step of the system of ordinary differential equations:

d

dt
z(t) = σ(a(t) − B(t)z(t)), tl−1 ≤ t ≤ tl ,

where tl = τ l, and t > 0 corresponds here to an artificially introduced time-like variable repre-
senting the depth of the network. By now this is a fairly common procedure in DNNs, we refer 
to [13,16,20,29,40,41,57] and references therein.

We remark that more complicated network evolutions have been considered in the literature 
[26,27,39,61,62], we shall comment on a specific example later on in this work.

In practical applications the dimensions N0 · · ·Nl vary significantly from one network layer 
to the next, so in order not to have a-priori dimensional restrictions it makes sense to pose the 
above ODE system on an infinitely dimensional space of continuously defined functions. This is 
the approach which we shall take in this paper.

Obvious advantages arise. In the space-time continuous case we gain a lot of modeling 
freedom and highly developed PDE theory and numerics can be applied to analyze and com-
pute geometric aspects of the problem like attractors, sharp fronts etc. Also the associated 
inverse problem, namely to determine the weight and bias functions based on given data, can 
be rephrased easily as a classical optimization and/or control problem.

Our approach allows to apply the very well developed PDE analysis and numerical analysis 
technology to deep learning neural network problems. We remark that the purpose of the paper 
is to present a PDE framework for deep learning for neural networks, opening up ML to so-
phisticated analytical and numerical techniques which go beyond the current state of the art in 
ML. For this purpose we focus on the PDE formulation and certain basic mathematical prop-
erties while practical examples and more involved mathematical issues will be the subject of 
subsequent works.
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1.2. Organization

The paper is organized as follows. We discuss main ingredients of deep learning for the clas-
sification problem and derive the PDE model for the forward propagation and the optimal control 
formulation of deep learning in Sect. 2. In Sect. 3, we study the wellposedness, the large time 
solution behavior, and the characterization of the steady states for the forward problem. Several 
useful a priori estimates and stability/instability conditions are presented. Sect. 4 is devoted to the 
back propagation problem and to show how optimal control theory can be applied. We compute 
the gradient of the final network loss in terms of the network parameter functions, which in-
volves solving both forward and backward problems. We further develop a control theory based 
on the Pontryagin maximum principle (PMP) [49], which provides explicit necessary condi-
tions for optimal controls. We finally show that the value function solves an infinite-dimensional 
Hamilton–Jacobi–Bellman (HJB) partial differential equation. This dynamic programming ap-
proach provides the third way to characterize the optimal control parameters. Hence in this work 
we establish the link between training deep residual neural networks and PDE parameter esti-
mation. The relation provides a general framework for designing, analyzing and training CNNs. 
Finally, two numerical algorithms for the learning problem, one is gradient based and another is 
PMP based, are presented in Sect. 5.

1.3. Related work

The approximation properties of deep neural network models are fundamental in machine 
learning. For shallow networks, there has been a long history of proving the so-called universal 
approximation theorem, going back to the 1980s [15,28]. Such universal approximation theorems 
can also be proved for wide networks, see [10] for a single layer with sufficient number of hidden 
neurons, or deep networks, see [35,21] for networks of finite width with sufficient number of 
layers. A systematic study on the network approximation theory has been recently made available 
[23].

Continuous time recurrent networks have been known in 1980s like the one proposed by 
Almeida [1] and Pineda [46], and analyzed by LeCun [34]. Recently, the interpretation of residual 
networks by He et al. [26] as approximate ODE solvers in [19] spurred research in the use of 
ODEs to deep learning. Based on differential equations, there are studies on the continuum-in-
depth limit of neural networks [40,57] and on designing network architectures for deep learning 
[13,16,29,41]. Indeed many state-of-the-art deep network architectures, such as PolyNet [64]
and FractalNet [39], can be considered as different discretizations of ODEs [36]. Theoretical 
justification can be found in [42]. For models motivated by PDEs we refer the reader to [53].

The dynamical systems approach has also been explored in the direction of training algorithms 
based on the PMP and the method of successive approximations [33,38]. The connection between 
back-propagation and optimal control of dynamical systems is known since the earlier works on 
control and deep learning [4,6,34]. For a rigorous analysis on formulations based on ODEs with 
random data we refer to [20].

The present paper proposes a PDE model which represents a continuum limit of neural net-
works in both depth and width. Instead of the analysis of algorithms or architectures, we focus 
on the mathematical aspects of the formulation itself and develop a wellposedness theory for the 
forward and backward problems, and further characterize the optimality conditions and value 
functions using both ODE (PMP) and PDE (HJB) approaches.
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2. Mathematical formulation

There are three main ingredients of deep learning for the classification problem: (i) forward 
propagation transforms the input features in a nonlinear way to filter their information; (ii) Clas-
sification is described to predict the class label probabilities using the features at the final output 
layer (i.e., the output of the forward propagation); and (iii) the learning problem is formulated to 
estimate parameters of the forward propagation and classification to approximate the data-label 
relation.

We start out by deriving the PDE representing the network architecture, i.e., the forward prop-
agation.

2.1. The ‘Thermodynamic’ limit

We shall now make the limit of infinite depth and infinite width of residual networks precise 
in analogy to multi-particle physics we refer to it as the thermodynamic limit process:

At first consider a network of fixed width N and large depth L � 1, i.e.,

zl+1 = zl + τσ (al − Blzl), l = 0,1, · · · ,L, (2.1)

where zl, al ∈ RN , Bl are N × N matrices, σ is the given activation function and τ > 0 is the 
(artificially chosen) layer width. We set T = Lτ . Note that the rescaling of the activation function 
from σ to τσ makes sense since iteration overflow and instability may occur when the iteration is 
run for L large. That is why we think of τ as a small ‘time step’ parameter and of σ as an O(1)-
function. To allow for more general and more interesting results we let the coefficients al, Bl

depend on τ , we denote the τ -dependence by a superscript, i.e., aτ
l , Bτ

l and zτ
l . We now define 

the piecewise linear functions aτ = aτ (t) and Bτ = Bτ (t) interpolating aτ
l and, respectively, Bτ

l

so that

aτ (tl) = aτ
l , Bτ (tl) = Bτ

l , l = 0, · · · ,L.

Then we define the function zτ := zτ (t) on [0, T ] through the extended recursion

zτ (t + τ) = zτ (t) + τσ (aτ (t) − Bτ (t)zτ (t)) (2.2a)

for 0 ≤ t ≤ T − τ . We prescribe an initial datum for the recursion,

zτ (t) = z0, for 0 ≤ t ≤ τ (2.2b)

with z0 ∈ RN given. Note that zτ (tl) = zτ
l holds. We assume here that σ grows almost linearly:

(A1) ∃C1,C2 > 0 such that |σ(s)| ≤ C1 + C2s for s ∈R,

and that aτ , Bτ are bounded independently of τ in L∞ as τ → 0:

(A2) ∃C3 such that ‖aτ‖L∞((0,T );RN) + ‖Bτ‖L∞((0,T );RN×N ) ≤ C3 for ∀τ small.

The following convergence result holds.
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Theorem 2.1. Let (A1), (A2) hold and assume that there are functions a = a(t), B = B(t) such 
that

aτ (t)
τ→0−→ a(t) p.w.a.e. on (0, T ),

Bτ (t)
τ→0−→ B(t) p.w.a.e. on (0, T ).

Then zτ τ→0−→ z as τ → 0 in C([0, T ]; RN), where z = z(t) solves the IVP on RN :

ż = σ(a − Bz), 0 ≤ t ≤ T , (2.3a)

z(0) = z0. (2.3b)

Proof. From (A1) and (A2) we immediately conclude that the solution zτ of (2.2) is uniformly 
bounded as τ → 0. Therefore (using recursion) also the difference quotient

zτ (t + τ) − zτ (t)

τ

is uniformly bounded as τ → 0 and the Arzela-Ascoli Theorem implies that – upon extraction of 
a subsequence as τ → 0 – there exists a function z ∈ C([0, T ]) such that

zτ → z in C([0, T ]),
zτ (t + τ) − zτ (t)

τ
→ ż(t) in D′[0, T ).

The result then follows by integrating

zτ (t + τ) − zτ (t)

τ
= σ(aτ (t) − Bτ (t)zτ (t)),

against a function φ ∈ D[0, T ) and passing to the limit τ → 0 (using the Lebesque dominated 
convergence Theorem on the right). This defines the ‘large depth’ limit process of the residual 
neural networks. �

Note that the assumptions (A1), (A2) and in particular the convergence assumption of Theo-
rem 2.1 require the coefficients al, Bl to depend on the depth of the networks in an appropriate 
way.

In order to understand the ‘infinite width’ limit N → ∞ we set out by choosing a dimension 
n ∈N and an open Jordan set Y ⊂Rn. Let {Y1, · · · , YN } be a disjoint partition of Y , where each 
Yk is an open Jordan set with Y = ∪N

k=1Yk , such that

∫
Y

f (v)dv =
N∑

k=1

∫
Yk

f (v)dv

for any Lebesque integrable function f : Y → R. Now we denote the components of a = a(t) ∈
RN , B = B(t) ∈ RN×N by
11545



H. Liu and P. Markowich Journal of Differential Equations 269 (2020) 11540–11574
a(t) = (a1(t), · · · , aN(t)), B(t) = (Bij (t))i,j=1,··· ,N ,

and define the function

a(y, t) = ak(t) if y ∈ Yk, (2.4a)

b(y,w, t) = 1

|Yj |B
ij (t) if ∈ y ∈ Yi,w ∈ Yj . (2.4b)

Clearly a : Y ×[0, T ] → R, b : Y ×Y ×[0, T ] → R are defined a.e. on their respective domains.
Consider now the IVP

ft (y, t) = σ

⎛
⎝a(y, t) −

∫
Y

b(y,w, t)f (w, t)dw

⎞
⎠ , (2.5a)

f (y, t = 0) = fI (y), y ∈ Y, (2.5b)

where fI is given by

fI (y) = zk
0, if y ∈ Yk.

Here z0 = (z1
0, · · · , zN

0 ) is the initial datum for the ODE system of Theorem 2.1. Clearly the 
(unique) solution of the IVP (2.5) is the function

f (y, t) = zk(t), if y ∈ Yk,

where z(t) = (z1(t), · · · , zN(t)) is the solution of the IVP for the ODE system (2.3).
This clearly shows that the function values of the solution f represent the residual networks 

while the arguments y ∈ Y can be interpreted as their labels.
To understand the limit process N → ∞ and to eliminate technicalities we assume that Y is 

the unit cube in Rd , i.e., Y = (0, 1)d . We assume N = Md , consider M → ∞ and denote h = 1
M

. 
Motivated by (2.4b) we let the coefficients of the ODE system depend on h and rescale the matrix 
operator. We consider

żh = σ(ah − hdBhzh), t ≥ 0, (2.6a)

zh(t = 0) = z0, (2.6b)

where

zh = (z1
h(t), · · · , zMd

h (t)), z0 = (z1
0, · · · , zMd

0 ),

ah = (a1
h, · · · , aMd

h ), Bh = (b
ij
h )i,j=1,··· ,Md ).

We now partition Y into cube cells Yj of width h, numbered arbitrarily: Y = ∪Md

j=1Yj and define 
the function
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ah(y, t) = a
j
h(t) if y ∈ Yj ,

bh(y,w, t) = b
ij
h (t) if y ∈ Yi, w ∈ Yj ,

fh(y, t) = z
j
h(t), if y ∈ Yj ,

z0,h(y) = z
j

0, if y ∈ Yj .

Then (2.6) is equivalent to

∂tfh(y, t) = σ(ah(y, t) −
∫
Y

bh(y,w, t)fh(w, t)dw), t > 0, y ∈ Y, (2.7a)

fh(y, t = 0) = z0,h(y), y ∈ Y. (2.7b)

We make the following assumption:

(A3) ∃C4 > 0 such that ‖ah‖L∞(Y×(0,T )) + ‖bh‖L∞(Y×Y×(0,T )) + ‖z0,h‖L∞(Y ) ≤ C4

for all h sufficiently small.
The following result is easy to show.

Theorem 2.2. Let σ satisfy (A1), let (A3) hold and assume:

ah(y, t)
h→0−→ a(y, t) p.w.a.e. in Y × (0, T ),

bh(y,w, t)
h→0−→ b(y,w, t) p.w.a.e. in Y × Y × (0, T ),

z0,h(y)
h→0−→ fI (y) p.w.a.e. in Y.

Then the solution fh of (2.7) satisfies

fh
h→0−→ f in D′(Y × [0, T )),

where f solves

ft (y, t) = σ

⎛
⎝a(y, t) −

∫
Y

b(y,w, t)f (w, t)dw

⎞
⎠ , t > 0, y ∈ Y,

f (y, t = 0) = fI (y), y ∈ Y.

The result carries over to much more general domains Y albeit with additional proof techni-
calities. We also remark that the label set Y and its dimension n can be chosen freely to contribute 
to the network architecture.
11547



H. Liu and P. Markowich Journal of Differential Equations 269 (2020) 11540–11574
2.2. The forward problem

The forward problem amounts to modeling and simulating the propagation of data. With com-
plex and huge sets of data, fast and accurate forward modeling is a significant step in deep 
learning. It should be noted that typically the more parameters the model has, the less well-posed 
the inverse problem is.

We first formulate a forward PDE to model the data propagation using residual neural net-
works [26]. Let y ∈ Y denote the neuron identifier variable. Here we assume that Y is a domain 
in Rn. In order to construct a PDE-type model to describe the forward propagation in deep learn-
ing, we introduce an artificial time t ∈ [0, T ]. The depth of the network is represented by the final 
time T . Let f (y, t) be a function describing the residual neural network at time t with neuron 
identifier y, its propagation is governed by the following PDE (of integro–differential type):

∂tf (y, t) = σ

⎛
⎝a(y, t) −

∫
z∈Y

b(y, z, t)f (z, t)dz

⎞
⎠ , (2.8)

where σ is the nonlinear activation function. Here b = b(y, z, t) is the selection weight function, 
and a = a(y, t) is the bias function. The input learning data set f (y, t = 0) = fI (y) then serves 
as the initial data for the above differential equation. One of our objectives in this work is to 
highlight the relation of the learning problem to this PDE model.

The activation function is typically (piecewise) smooth and monotonically non-decreasing. As 
commonly used examples, we consider the arctan, the hyperbolic tangent, the sigmoid of form 

1
1+e−s , and the Rectified Linear Unit (ReLU) activations given by

σ(s) = s+,

the positive part of s. Our results also apply to other choices such as the leaky ReLu defined by 
σ(s) = max{0.1s, s}, and the Elu given by

σ(s) =
{

s s > 0,

α(es − 1) s ≤ 0.

The performance of these activation functions varies on different tasks and data sets [51] and it 
typically requires a parameter to be turned. Thus, the ReLU remains one of the popular activation 
functions due to its simplicity and reliability [24,37,45].

The network output function at final time T is given by

OT (y) :=
∫

W(y, z)f (z, T )dz + μ(y), (2.9)

where W and μ are weight and bias functions to be determined later.

2.3. The learning problem

In order to complete the learning problem, we need to define a prediction function by

Cpre = h(OT (y)) .
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One of the popular choices for h is the logistic regression function,

h(ξ) = eξ /(1 + eξ ).

The goal of the learning problem is to estimate the parameters of the forward propagation (i.e., 
a and b and the classifier W and μ) from an observed label function C = C(y), so that the 
DNN accurately approximates the data-label relation for the training data and generalizes to new 
unlabeled data. The forward operator is highly nonlinear, and the learning problem most often 
does not fulfill Hadamard’s postulate of well-posedness.

As we show below, the learning problem can be cast as a dynamic control problem, which pro-
vides new opportunities for applying theoretical and computational techniques from parameter 
estimation to deep learning problems.

We phrase learning as an optimization problem

minJ (Cpre,C) (2.10a)

such that ∂tf (y, t) = σ

⎛
⎝a(y, t) −

∫
Y

b(y, z, t)f (z, t)dz

⎞
⎠ , t ∈ (0, T ], (2.10b)

where J is a suitable choice of objective/loss function characterizing the difference between the 
synthetic data Cpre generated by the current (and inaccurate) model parameter m = (a, b, W, μ)

and the observable true label C. This is a data-fitting approach, similar to many other inverse 
problems that are formulated as PDE-constrained optimization.

The optimization problem in (2.10) is challenging for several reasons. Firstly, it is a high-
dimensional non-convex optimization problem, and therefore one has to be content with local 
minima. Secondly, the computational costs per example are high, and the number of examples 
is large. Thirdly, very deep architectures are prone to problems such as vanishing and exploding 
gradients that may occur when the discrete forward (or backward) propagation is unstable.

2.4. The choice of the objective function and regularization

Typically the loss function J is chosen to be convex in its first argument and measures the 
quality of the predicted class label probabilities. A typical choice is

J (Cpre,C) = 1

2

∫
Y

|Cpre(y) − C(y)|2dy.

For classification the cross entropy loss is often used to measure the model performance [55,43].
To control noise and other undesirable effects occurring in inverse problems, one often adds 

a regularization term so that

minJ (Cpre,C) + λR(m), (2.11a)

where the regularizer R is a convex penalty functional, and the parameter λ > 0 balances between 
minimizing the data fit and noise control. Choosing an “optimal” regularizer, R, and regulariza-
tion parameter λ is both crucial and nontrivial; see, e.g., [5,25].
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3. Wellposedness of the forward problem

In order to identify useful structures of the deep learning problem, we first make some as-
sumptions on the parameters with which stability of the forward problem can be studied.

3.1. A general existence result

Most of our results will be obtained under the following:

Assumption 1. Y is a domain in Rn and 0 < T < ∞. The propagation operator

σ(S[f ]) with S[f ] = a(y, t) −
∫

z∈Y

b(y, z, t)f (z, t)dz

satisfies:

• σ is globally Lipschitz continuous with σ(0) = 0 or |Y | < ∞.
• a ∈ L1((0, T ), L2(Y )).
• b ∈ L1((0, T ), L2(Y × Y))

Note that in the course of this paper we assume that the integral operator is bounded on L2(Y ) a.e. 
in t . This is clearly a restriction, but it represents the most common state of the art in network 
propagation applications. More general (differential or pseudo-differential) operators may be 
considered but this gives an entirely different flavor to the following analysis and is the topic of 
further work.

The above conditions are sufficient to prove the following theorem of existence and unique-
ness by iteration.

Theorem 3.1. We suppose that Assumption 1 holds. Then,
1. for any initial function fI ∈ L2(Y ) there exists a solution in C([0, T ]; L2(Y )) which solves 
(2.8) with f (0, ·) = fI . Furthermore,
2. for any two solutions f1, f2 of (2.8) in C((0, T ); L2(Y )), one has the following stability prop-
erty:

∀t ∈ [0, T ], ‖f1(t, ·) − f2(t, ·)‖L2(Y ) ≤ eLt‖f1(0, ·) − f2(0, ·)‖L2(Y ), (3.1)

for some L > 0. In particular, if f1(·, 0) = f2(·, 0), then f1(·, t) = f2(·, t) for all t > 0, so that 
uniqueness holds.

Proof. Existence follows from the recursive scheme

f 0(y, t) = fI (y),

∂tf
n+1 = σ(S[f n]), f n+1(0) = fI .

For f n ∈ C((0, T ); L2(Y )) := Q, f n+1 is well-defined in the same space by
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f n+1(t) = f0 +
t∫

0

σ(S[f n])(τ )dτ,

which in the Q norm is bounded by

‖fI‖L2 + sup |σ ′(·)|
⎛
⎝ T∫

0

(‖a(·, τ )‖L2(Y )dτ +
T∫

0

‖b(·, ·, τ )‖L2(Y×Y)dτ‖f n‖Q + C0T

⎞
⎠

≤ ‖fI‖L2 + C0T + C1 + C2(T )‖f n‖Q

where C0 = |σ(0)||Y | if σ(0) �= 0, C1 = sup |σ ′(·)|‖a‖L1((0,T ),L2(Y )), and

C2(T ) = sup |σ ′(·)|
T∫

0

‖b(·, ·, τ )‖L2(Y×Y)dτ.

Note that we used the well-known fact that the operator norm in L2 of the integral operator with 
the kernel b equals the norm of b in L2, that is ‖b‖L2(Y×Y). By using the fact that C2(s) → 0 if 
s → 0, we get an upper bound for {f n} uniformly in n:

‖f n‖Q ≤ ‖fI‖L2 + C0T + C1

1 − C2(T )

if T is suitably small such that C2(T ) < 1. Then, by studying f n+1 − f n via

f n+1 − f n = −
t∫

0

σ ′(·)
∫
Y

b(y, z, τ )(f n − f n−1)dzdτ,

we have

‖f n+1 − f n‖Q ≤ C2(T )‖f n − f n−1‖Q.

Thus one can conclude that {f n}n∈N is a Cauchy sequence in Q, which converges towards a 
solution f of the equation (2.8) for C2(T ) < 1. Global existence for any T then follows from a 
continuity argument by extending the local solution, proceeding as for the uniform estimate on 
{f n}n∈N . �
3.2. Large time asymptotics, stability of steady states

Clearly, it is important to study the forward dynamics of the residual neural network problem. 
Here we begin the discussion with the analysis of steady states and stability.

Note that the time horizon T is usually finite but often large in typical deep learning ap-
plications so that long time stability questions do become important, also for the design and 
implementation of appropriate space-time discretizations. Also it is important to realize that from 
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a standpoint of network architecture design mildly stable evolutions are highly desirable while 
strongly stable ones lead to the cancellation or overdamping of fine structures in the network, 
which is a highly undesirable feature. Thus qualitative and quantitative stability information is 
needed, which can be used to impose additional constraints in the deep learning step, see e.g., 
[29].

For simplicity, we first assume the forward propagation operator to be autonomous. That is,

a = a(y), b = b(y, z).

At the first glance this looks like an oversimplification because the output parameter functions a
and b of the deep learning optimization will – in realistic applications – be time-varying. How-
ever, it is clear that we cannot hope to understand the evolution dynamics of the non-autonomous 
problem without understanding the autonomous one. We shall show that even the latter gives rise 
to highly non-trivial and unexpected evolutive phenomena. Also, it is clear that long-time stabil-
ity considerations of the autonomous problem are highly relevant for long time stability issues 
of the non-autonomous case (and for time-local stability of its time-discretizations). This will be 
detailed later on, after we have reached an understanding of the autonomous dynamics.

We make two basic assumptions here:
(A1) σ is globally Lipschitz and non-decreasing on R, sσ (s) ≥ 0 on R, but σ ′(0) > 0 and σ(0) =
0,
(A2) a ∈ L2(Y ), b ∈ L2(Y × Y).

Then the forward problem becomes

ft = σ(a − Bf ), (3.2a)

f (y,0) = fI (y). (3.2b)

Here the operator defined by

(Bf )(y) =
∫
Y

b(y, z)f (z)dz

from L2(Y ) into L2(Y ) is Hilbert-Schmidt and consequently compact.
Let f∞ ∈ L2(Y ) be a steady state, i.e., Bf∞ = a. Note that steady states exist if and only if 

a ∈ R(B) (= Range of B), and they are non-unique if and only if N(B) (= Nullspace of B) is 
non-trivial. To study the stability of f∞, we first linearize (3.2) at f∞, so that its perturbation w
satisfies

wt = −σ ′(0)Bw,

w(t = 0) = wI .

We obtain

w(t) = e−σ ′(0)BtwI .

For an eigenvalue-eigenfunction pair (ω, φ) of B we obviously have e−σ ′(0)ωtφ as a solution of 
the linearized IVP. Therefore if the spectrum of B contains an eigenvalue with negative real part, 
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exponential instability holds for the linearized problem. If an eigenvalue of B with zero real part 
exists, asymptotic stability for the linearized problem does not hold.

To obtain stability for the linearized problem, we can impose

(Bv, v)L2(Y ) = (Bsv, v)L2(Y ) ≥ 0 ∀v ∈ L2(Y ),

where Bs = 1
2 (B + B�) is the symmetric part of B .

Assume now that B� = B and that all eigenvalues of B are positive (i.e., 0 is a spectral 
value but not an eigenvalue!). Then asymptotic stability can be concluded from the solution 
representation

w(t) =
∞∑
l=1

e−σ ′(0)ωl t (wI ,φl)L2(Y )φl,

where {φl} is the C.O.N.S (complete orthonormal system) of eigenfunctions.
If ω = 0 is an eigenvalue then stability (but not asymptotic stability) holds in the symmetric 

case.

Remark 3.1. Note that the above comments remain true in the non-autonomous case when a∞ :=
lima(t), b∞ := limb(t) exist (in an appropriate sense) and when a, b are replaced by a∞ and, 
respectively, b∞.

We now turn to discuss nonlinear stability for the forward propagation problem using Lya-
punov functionals.

Set

u := a − Bf,

so that u solves

ut = −Bσ(u),

u(t = 0) = uI := a − BfI .

In order to recover f from u we use the equation ft = σ(u) so that

f (y, t) = fI (y) +
t∫

0

σ(u(y, s))ds. (3.3)

Multiply the u-equation by σ(u) so that

d

dt

∫
Y

�(u)dy = −
∫
Y

(Bsσ (u), σ (u)) ≤ 0,

(again assuming that Bs ≥ 0). This gives after integration
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∫
Y

�(u(y, t))dy ≤
∫
Y

�(uI (y))dy,

where

�(s) =
s∫

0

σ(ξ)dξ.

In order to obtain estimates for f we distinguish two cases. Firstly, we assume that

σ(s)s ≥ 0 for s �= 0, (3.4)

and |σ(s)| ≥ C1|s| for |s| ≥ C2, such that

�(s) ≥ C3s
2

for |s| ≥ C4. This allows to estimate Bf the following way:

∫
Y

|Bf |2dy ≤ 2
∫
Y

|a|2dy + 2
∫
Y

|a − Bf |2dy ≤ C ∀t > 0.

Secondly, if only |σ(s)| ≥ C1 for |s| ≥ C2, then

∫
Y

|Bf (t)|dy ≤ C ∀t > 0

follows.
Similarly, from the equation ft = σ(u) with u = a − Bf we conclude

∫
Y

ftBf dy − d

dt

∫
Y

af dy = −
∫
Y

σ (u)udy ≤ 0,

because of (3.4). Assume now that B� = B and B non-negative, we then have

1

2

d

dt
‖B1/2f ‖2

L2(Y )
− d

dt
(a, f )L2(Y ) = −

∫
Y

σ (u)udy.

Thus

1

2
‖B1/2f (t)‖2

L2(Y )
− (a, f )L2(Y )

is monotonically decreasing and bounded from below, admitting a limit as t → ∞.
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Also

0 ≤
∞∫

0

∫
Y

σ (u(y, s))u(y, s)dyds < ∞

and assuming a ∈ R(B1/2),

‖B1/2f (t)‖2
L2(Y )

≤ K + 2(a, f (t))L2(Y )

≤ K + 2(B
−1/2
s a,B

1/2
s f (t))L2(Y ) ≤ K + C‖B1/2

s f (t)‖L2(Y ).

Thus

‖B1/2f (t)‖2
L2(Y )

≤ K1 ∀t > 0.

Again, the projection of f onto N(B) is not controlled by this estimate.
To collect facts, we have the following time-uniform estimates

Theorem 3.2. 1) If Bs ≥ 0, then for any t > 0, we have

(i)

∫
Y

�(a − Bf (t))(y))dy ≤
∫
Y

�(a − BfI )(y))dy,

where �′ = σ, and

(ii)

∞∫
0

‖B1/2
s σ (a − Bf (s))‖2

L2(Y )
ds < ∞,

which implies that B1/2
s ft := B

1/2
s σ (u) ∈ L2(Y × (0, ∞)).

2) If sσ (s) ≥ 0, B� = B, B ≥ 0 and a ∈ R(B1/2), then for all t > 0

(iii) ‖B1/2f (t)‖L2(Y ) + |(a, f (t))L2(Y )| ≤ K.

(iv)

∞∫
0

∫
Y

σ (a − Bf (s))(y)) · (a − Bf (s))(y))dyds < ∞.

3.3. Characterization of steady states

Note that the equation

ut = −Bσ(u)

may have other equilibria than ue = 0. In fact every ue such that σ(ue) ∈ N(B) is an equilibrium. 
But ue = 0 is the only one which may correspond to the equilibrium f = f∞ of the equation (3.2)
(it does if and only if a ∈ R(B)). Note that
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u(t) = uI − B

t∫
0

σ(u(s))ds ⇒ u(t) − uI ∈ R(B).

Since uI = a − BfI we have uI − a ∈ R(B) and u(t) − a ∈ R(B). Consider 0 �= ue ∈ L2(Y )

such that σ(ue) ∈ N(B). Then the corresponding solution of the f -equation is

f (y, t) = fI + tσ (ue), ue = a − BfI ,

if ue − a ∈ R(B). Clearly the linearly increasing component tσ (ue) ∈ N(B) is not seen by the 
time-uniform estimates of Theorem 3.2.

To consider an example pick φ ∈ L2(Y ), ‖φ‖L2 = 1. Define ue = φ, compute σe = σ(φ). 
Now choose ψ ∈ {σe}⊥ and define the rank one operator

(Bf )(y) :=
∫
Y

f (z)ψ(z)dzφ(y).

Clearly ue = φ is an equilibrium of ut = −Bσ(u). Also ue = φ ∈ R(B). Now let a = αφ ∈ R(B)

(α ∈ R given) and choose fI ∈ L2(Y ) such that

∫
Y

fIψdy = α − 1.

Then

f (t) = fI + tσ (φ)

solves (3.2).

Lemma 3.3. If B is symmetric, σ(s)s ≥ 0 for all s ∈ R then every equilibrium ue in R(B)

satisfies ueσ (ue) = 0.

Proof. Since ue is an equilibrium, σ(ue) ∈ N(B). The conclusion follows from R(B) = N(B)⊥, 
i.e.,

∫
Y

ueσ (ue)dy = 0.

Hence ueσ (ue) ≡ 0. �
We shall now analyze the stability of ue = 0 for the case of non-symmetric B . Therefore we 

consider the singular value decomposition of the operator B [58]:

(Bf )(y) =
∞∑

μl(ψl, f )L2(Y )φl(y),
l=1
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where the singular values μl ≥ 0 are the eigenvalues of |B|, {ψl} and {φl} are orthonomal sys-
tems, {ψl} is complete in L2(Y ) and φl = Uψl , where B = U |B| is the polar decomposition of 
B . Here U is a partial isometry so that N(U) = N(B). Set

f =
∞∑

k=1

fkψk, fk =
∫
Y

f ψkdy.

Thus

(Bf,f )L2(Y ) =
∞∑
l=1

∞∑
n=1

μlflfn(φl,ψn)

= f �DTf,

where f = (f1, f2, · · · )�, D = diag(μ1, μ2, · · · ) and T is the generalized Gram matrix:

T = ((φl,ψn)).

Note that (Bf, f )L2(Y ) ≥ 0 for all f ∈ L2(Y ) if and only if DT is non-negative definite (not 
necessarily symmetric).

Set

u(y, t) =
∞∑
l=1

ul(t)φl(y) + Z(y, t),

where Z ∈ R(B)⊥. Thus

Bσ(u(t)) =
∞∑
l=1

μl(σ (u(t)),ψl)φl ∈ R(B).

Assuming again a ∈ R(B) we have u(·, t) ∈ R(B) for all t ≥ 0. We conclude Z ≡ 0 and

u(y, t) =
∞∑
l=1

ul(t)φl(y).

Thus, we find

d

dt
ul = −μl

∫
Y

σ

( ∞∑
k=1

ukφk(y)

)
ψl(y)dy, (3.5a)

ul(t = 0) =
∫
Y

uIφldy. (3.5b)

Now let B have rank N < ∞ (for simplicity’s sake, in order to avoid the need to discuss the 
convergence of infinite series):
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(Bf )(y) =
N∑

l=1

μl(f,ψl)L2(Y )φl(y).

It is completely standard to show that u = 0 is an isolated equilibrium of (3.5) if the generalized 
N × N gram matrix T = ((φk, ψl)L2(Y )) is invertible. Also, it is easy to show that

L(u) =
∫
Y

�(u)dy

is a Lyapunov function for (3.5) if the N ×N matrix DT with D = diag(μ1, · · · , μN) is positive 
definite, i.e., L(u) > 0 and L(u) decreases along trajectories around the origin.

We conclude

Theorem 3.4. Let B have finite rank and let
(a) T be invertible;
(b) DT be positive-definite (not necessarily symmetric).
Then, the equilibrium u = 0 is locally asymptotically stable. The convergence of u(t) to zero is 
exponential.

We remark that the local exponential stability of u induces local exponential stability of f . 
The proof follows standard arguments using Lyapunov functionals for ODE systems [31].

If B is symmetric, then φl = ψl , T = id and DT = D is positive definite if and only if B > 0.
Also note that it is a simple exercise in functional analysis to do away with the finite rank 

assumption. The result carries over to the general case without change.

3.4. On solutions for the ReLu activation

Note that for the arctan, sigmoid, and hyperbolic tangent activation functions, the asymptotic 
growth rate in time of the solution f is at most linear, no matter what the properties of the 
operator B are. In this respect, the ReLu and leaky ReLu activation functions behave worse than 
we shall show below.

We now consider the activation function σ(s) = s+, which is one of the most popular activa-
tions used in practical applications. In this case with T > 0 assuming a ∈ L1((0, T ); L1(Y )) and 
b ∈ L1((0, T ); L∞(Y × Y)), from the equation for f it follows by integration against sign(f )

d

dt

∫
Y

|f (y, t)|dy ≤
∫
Y

|a(y, t)|dy + sup
Y×Y

|b(t)|
∫
Y

|f (y, t)|dy.

Thus, from the Gronwall inequality we find

∫
Y

|f (y, t)|dy ≤
⎛
⎝∫

Y

|fI (y)|dy + ‖a‖L1((0,t);L1(Y ))

⎞
⎠ exp

(‖b‖L1((0,t);L∞(Y×Y))

)
.

for 0 ≤ t ≤ T . It is actually not difficult to construct an example of a rank 1 integral operator 
B such that the exponential upper bound is sharp. This tells us that for σ(s) = s+, exponential 
forward instability for f is possible.
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In the autonomous case and if Bs ≥ 0, we can actually prove that ‖f (·, t)‖L2(Y ) has at most 
linear growth in time.

Proposition 3.5. Let σ(s) = s+, a = a(y), b = b(y, z), and Bs = 1
2 (B + B�) ≥ 0. Then there 

exist C1, C2 > 0 such that

‖f (t)‖L2(Y ) ≤ C1 + C2t ∀t > 0.

Proof. From ft = u+ and u = a − Bf we have

ut = −Bu+.

Using the Lyapunov argument from §3.2 gives

1

2

d

dt

∫
Y

(u+(t))2(y)dy = −(Bsu
+, u+)L2(Y ) ≤ 0.

Thus ∫
Y

(u+(t))2(y)dy ≤ C ∀t > 0.

This together with ft = u+ yields

∫
Y

(ft )
2dy ≤ C ∀t > 0.

Using the relation f (t) = fI + ∫ t

0 ∂sf ds, we obtain the estimate as claimed. �
Note that the same result holds for the leaky ReLu activation.

3.5. Local conditioning of the forward problem

For numerical analysis and computational purpose it is beneficial to understand the condition-
ing of the forward propagation operator, which means that its linearization of the actual solution, 
not only the steady state must be looked at. Also, the output of the learning problem will be time-
dependent functions a = a(y, t) and b = b(y, z, t) such that the forward propagation and its 
linearization will be non-autonomous. Consider a solution u = uf (y, t) of the forward problem 
(3.2) and analyze the linearization in direction w = w(y, t), with u = a − Bf :

∂tw(y, t) = −σ ′(u(y, t))

∫
Y

b(y, z, t)w(z, t)dz. (3.6)

If the residual neural network problem is ‘very’ deep, and if u(t) is close to the stationary state 
u ≡ 0 (assuming that a and b stabilize sufficiently fast as t → ∞), then the dynamics for w will 
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be close to the autonomous case considered above and controlled by the linearized autonomous 
problem in the beginning of section 3.2, when b(y, z) is replaced by b(y, z, t = ∞). This can 
be shown by standard semi-group perturbation theory, just to get a more quantitative feeling, 
multiply by w

σ ′(u)
and integrate over Y :

1

2

d

dt

∫
Y

w2(y, t)

σ ′(u)
dy = −(B(t)w,w)L2(Y ) − 1

2

∫
Y

σ ′′(u)u(t)

(σ ′(u))2 w2(t)dy.

Here −σ ′′(u)ut (t)

(σ ′(u))2 measures the effect of the non-autonomous coefficients of the linearization at 
the local solution (instead of a stationary one). If f (t) is far away from the stationary state, then 
much less can be said about the operator −σ ′(w)B(t) in general, except that it is bounded by

sup
R

|σ ′|‖b(·, ·, t)‖L2(Y×Y)

as an operator from L2(Y ) into itself. It is generally non self-adjoint, even if B(t) is self-adjoint.
For the purpose of numerical discretization it is important to understand the time-local stabil-

ity properties of the linearization (3.6). As usually done in ODE theory we freeze the coefficients 
of (3.6) at a fixed time t0 > 0 and find the problem

∂t w̃(y, t) = −
∫
Y

σ ′((y, t0))b(y, z, t0)w̃(z, t)dz,

whose analysis is totally analogous to the first part of Section 3.2 when b(y, z) is replaced by 
σ(u(y, t0))b(y, z, t0) and σ ′(0) by 1. Globally growing/decaying modes w̃ represent local insta-
bility/stability of the nonlinear problem (3.2) at time t = t0 (see also [26]).

Strong stability properties can be obtained by considering other conditions of neural networks. 
Here we just mention only one example (see [53])

ft = B�σ(a − Bf ),

f (t = 0) = fI .

A simple energy method shows that the associated flow in L2(Y ) is contractive, if only σ ′ ≤ 0
on R, i.e., any two solutions f1, f2 satisfy

||f1(t) − f2(t)||L2(Y ) ≤ ||f1(t = 0) − f2(t = 0)||L2(Y ).

4. Back propagation and optimal control

4.1. Computing cost gradients

The main technical difficulty in training continuous-depth networks is performing reverse-
mode differentiation (also known as back propagation). We introduce the following notation:

a = a(y, t), b = b(y, z, t), ua,b := a − Bbf, f = fa,b,
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where fa,b solves (4.1) below and

(Bbv)(y) =
∫
Y

b(y, z, t)v(z)dz.

For the sake of simplicity in the calculation, we consider first optimizing a simple terminal value 
loss functional

J (a, b) = 1

2

∫
Y

(fa,b(y, T ) − f̃ (y))2dy

subject to

∂tfa,b = σ(a − Bbfa,b), (4.1a)

fa,b(t = 0) = fI . (4.1b)

Here f̃ (y) is the target output function. Let the Gateaux differential of f in a along direction α
be

g = Dafa,b(α) = lim
ε→0

1

ε
(fa+εα,b − fa,b),

then

gt = σ ′(ua,b)(α − Bbg),

g(t = 0) = 0.

Let Ma,b(t, s) be the evolution system [48] generated by −σ ′(ua,b)Bb , i.e. z(t) := Ma,b(t, s)z0
solves

zt = −σ ′(ua,b(t))Bbz, t ≥ s,

z(s) = z0.

Then

g(t) =
t∫

0

Ma,b(t, s)(σ
′(ua,b(s)α(s))ds.

Similarly, h = Dbf (β) solves

ht = −σ ′(ua,b)(Bbh + Bβf ),

h(t = 0) = 0,

which gives
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h(t) = −
t∫

0

Ma,b(t, s)(σ
′(ua,b(s)Bβf (s))ds.

We proceed to compute the derivatives of J with respect to a and b as follows:

DaJ (a, b)(α) =
∫
Y

(fa,b(y, T ) − f̃ (y))g(y,T )dy

=
∫
Y

(fa,b(y, T ) − f̃ (y))

T∫
0

Ma,b(T , s)(σ ′(ua,b(s)α(s))(y)dsdy

=
T∫

0

∫
Y

α(y, s)σ ′(ua,b(y, s))Ma,b(T , s)∗(fa,b(y, T ) − f̃ (y))dyds.

Thus

DaJ (a, b)(y, s) = σ ′(ua,b(y, s))Ma,b(T , s)∗(fa,b(T ) − f̃ )(y).

Define

rT (y) := (fa,b(T ) − f̃ )(y).

Clearly, r(s) := Ma,b(T , s)∗rT solves the co-state terminal value problem,

rt = (σ ′(ua,b(s)Bb)
∗r = B∗

b (σ ′(ua,b)(s)r),

r(T ) = rT .

Note that B∗
b = Bb� with b�(y, z, t) = b(z, y, t). Thus, r(s) = ra,b , and ra,b solves

∂t ra,b = Bb�(σ ′(ua,b)(s)ra,b(s)), (4.2a)

ra,b(T ) = fa,b(T ) − f̃ . (4.2b)

We conclude

DaJ (a, b)(y, s) = σ ′(ua,b(y, s))ra,b(y, s). (4.3)

As for the gradient with respect to b we have

DbJ (a, b)(β)

=
∫

(fa,b(y, T ) − f̃ (y))h(y,T )dy
Y
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= −
∫
Y

(fa,b(y, T ) − f̃ (y))

T∫
0

Ma,b(T , s)(σ ′(ua,b)(s)Bβfa,b(s))(y)dsdy

= −
T∫

0

∫
Y

σ ′(ua,b(s))Bβfa,b(s)Ma,b(T , s)∗(fa,b(T ) − f̃ )(y)dyds

= −
T∫

0

∫
Y

∫
Y

β(y, z, s)fa,b(z, s)σ
′(ua,b(y, s))Ma,b(T , s)∗(fa,b(T ) − f̃ )(y)dydzds

= −
∫
Y

∫
Y

T∫
0

β(y, z, s)fa,b(z, s)σ
′(ua,b(y, s))ra,b(y, s)dsdydz.

This gives

DbJ (a, b)(y, z, s) = −fa,b(z, s)σ
′(ua,b(y, s))ra,b(y, s). (4.4)

We collect the results on the gradient of J in the following:

Proposition 4.1. We have

(i) DaJ (a, b)(y, s) = σ ′(ua,b(y, s))ra,b(y, s),

(ii) DbJ (a, b)(y, z, s) = −fa,b(z, s)σ
′(ua,b(y, s))ra,b(y, s).

Therefore, conditions (necessary and sufficient) for a stationary point

(a, b) ∈ L2(Y × (0, T )) × L2(Y × Y × (0, T ))

of the functional J (a, b) are:
(a) solve

ft = σ(a − Bbf ),0 < t ≤ T , f (t = 0) = fI

for f = fa,b = fa,b(y, t), ua,b := a − Bbfa,b;
(b) solve

rs = Bb�(σ ′(ua,b)(s)r(s)), 0 ≤ s < T ,

r(s = T ) = fa,b(T ) − f̃

for r = ra,b = ra,b(y, s). Then the stationarity condition is

σ ′(ua,b(y, s))ra,b(y, s) = 0, a.e. y ∈ Y, s ∈ (0, T ); (4.5)

while (ii) of Proposition 4.1 does not add any additional information.
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Remark 4.1. If σ ′ > 0 (this holds for arctan, hyperbolic tangent, and Sigmoid), the above con-
dition implies that the optimal (a∗, b∗) exists if and only if f̃ is reachable in the sense that the 
above two derivatives vanish if and only if there exist parameter functions a∗ and b∗ such that 
fa∗,b∗(y, T ) = f̃ (y) a.e. in Y . For the ReLu activation instead the situation is entirely different 
as any fa,b with a ≤ Bbfa,b ∈ Y × (0, T ) is a stationary point of I (a, b), which makes the search 
of a minimizer in general very difficult.

Remark 4.2. Note that the conclusion of Remark 4.1 does not hold if the cost functional is 
regularized by, say, the Tikhonov regularizer

R(a, b) =
∫
Y

T∫
0

|a(y, t)|2dtdy +
∫

Y×Y

T∫
0

|b(y, z, t)|2dtdydz

such that J (a, b) is replaced by

Jmod(a, b) := J (a, b) + λR(a, b). (4.6)

Then

DaJmod(a, b) = (σ ′(ua,b)ra,b)(y, s) + λa(y, s), (4.7a)

DbJmod(a, b) = −fa,b(z, s)(σ
′(ua,b)ra,b)(y, s) + λb(y, z, s) (4.7b)

This is commonly done in the deep learning applications.

The above analysis is well generalizable to the classification problem of section 2.3 and sec-
tion 2.4 for which only the final cost needs to be modified by

J (a, b) = 1

2

∫
Y

|Cpre(y) − C(y)|2dy

with

Cpre(y) = h(OT (y)), OT (y) =
∫
Y

W(y, z)f (z, T )dz + μ(y).

For the back propagation, we obtain the same equation

rs = Bb�(σ ′(ua,b)(s)r(s)), 0 ≤ s < T ,

but with a different terminal condition

r(z, T ) =
∫

(Cpre(y) − C(y))h′(OT (y))W(y, z)dy.
Y
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4.2. Pontryagin maximum principle

We now view the deep learning problem in the framework of the mathematical control theory 
using the Pontryagin maximum principle to obtain optimal controls for the network parameter 
functions a and b, see [22]. This is a standard application of control theory but is of particular 
interest, when optimizers (a, b) which vary in regions with boundaries, are sought, possibly as 
an alternative to the Tikhonov functional regularization (4.6).

In fact for the deep learning problem the maximum principle can be used to (rather) explic-
itly compute the optimal parameter function in terms of the optimal state and co-state variables 
obtaining bang-bang type controls.

Let a = a(y, t) and b = b(y, z, t) be in a measurable set A ⊂R2 pointwise a.e., now (looking 
for maximizers instead of minimizers, to keep in line with the usual convention in control theory). 
Define

I (a, b) = −1

2

∫
Y

(fa,b(y, T ) − f̃ (y))2dy.

Look for

max
(a,b)∈A

I (a, b) = I (a∗, b∗).

As usual in control theory we define the Hamiltonian

H(f, r, a, b) :=
∫
Y

σ (a − Bbf )rdy,

where r is the co-state variable. Let (a∗, b∗) be optimal for I . Define f ∗ = fa∗,b∗ , then

f ∗
t = σ(a∗ − Bb∗f ∗), 0 ≤ t ≤ T ,

f ∗(t = 0) = fI .

Also define the optimal co-state r∗ by

r∗
t = B(b∗)�(σ ′(a∗ − Bb∗f ∗)r∗), 0 ≤ t ≤ T ,

r∗(t = T ) = f̃ − f ∗(T ),

where (b∗)�(y, z, t) = b∗(z, y, t). Then (a∗, b∗) satisfies the Pontryagin maximum–principle.

H(f ∗, r∗, a∗, b∗) = max
(a,b)∈A

H(f ∗, r∗, a, b)

= max
(a,b)∈A

∫
Y

σ (a − Bbf
∗)r∗dy. (4.8)

It is a classical result of control theory and we refer the reader to [7]. Note that the Hamiltonian 
is constant along the coupled dynamics:
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d

dt
H(f ∗(t), r∗(t), a∗(t), b∗(t)) = 0.

As an example, take A = [a−, a+] × [b−, b+] ⊂ R2. Let σ be strictly increasing in R. Then one 
concludes immediately defining χ� as the indicator function on the set �,

a∗(y, t)χ{r∗ �=0} = a+χ{r∗>0}(y, t) + a−χ{r∗<0}(y, t),

and

b∗(y, z, t)χ{r∗ �=0}(y, t)χ{f ∗ �=0}(z, t)

= b− (
χ{r∗>0}(y, t)χ{f ∗≥0}(z, t) + χ{r∗<0}(y, t)χ{f ∗<0}(z, t)

)
+ b+ (

χ{r∗>0}(y, t)χ{f ∗<0}(z, t) + χ{r∗<0}(y, t)χ{f ∗>0}(z, t)
)
.

Note that this defines a∗ and b∗ completely iff the sets where r∗ and f ∗ equal 0 have both zero 
Lebesgue measure in Y × (0, T ). For a general control set A, compact in R2, set:

KA =
{
(a, b) ∈R× L2(Y )

∣∣∣ (a, b(z)) ∈ A a.e. in Y
}

.

KA is closed in R × L2(Y ). For f ∈ L2(Y ) define the affine linear functional

Tf (a, b) = a −
∫
Y

b(z)f (z)dz. (4.9)

Clearly, Tf : KA →R assumes its minimum at (a−
f , b−

f ) and maximum at (a+
f , b+

f ) in KA since 
Tf is bounded on KA, weakly continuous and minimizing and maximizing sequences in KA

have weakly converging subsequences in KA. Clearly, uniqueness of argmin ad argmax does not 
hold in general (for example if the Lebesgue measure of the set where f = 0 is positive). Again 
assuming that σ is strictly increasing, there are pairs in the set of argmin and argmax such that:

a∗(y, t)χ{r∗≥0} = a+
f ∗(t)χ{r∗>0}(y, t) + a−

f ∗(t)χ{r∗<0}(y, t), (4.10a)

b∗(y, z, t)χ{r∗≥0} = b+
f ∗(t)(z)χ{r∗>0}(y, t) + b−

f ∗(t)(z)χ{r∗<0}(y, t). (4.10b)

Similarly as above this does not define a∗ and b∗ in full generality.
Note that the forward evolution for f ∗ and the backward evolution for the co-state r∗ are 

now coupled in a highly nonlinear way through the optimal controls (a∗, b∗). Existence and 
uniqueness issues for this highly nonlinear initial-terminal value problem will be the subject of 
future work.

In particular we remark that the Pontryagin Maximum Principle does not give any information 
on optimality if the state f̃ is reachable by a control in KA. In this case r∗ = 0, maxI = 0 and 
the optimal control has to be computed as in Section 4.1.

Remark 4.3. For the network loss function of the classification problem

I (a, b) = −1

2

∫
|Cpre

a,b − C|2dy,
Y
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with

C
pre
a,b(y) = h

⎛
⎝∫

Y

fa,b(z, T )W(z, y)dz + μ(y)

⎞
⎠ = h(Oa,b,T (y)),

the only modification again is the terminal value of the co-state,

r∗(T ) = −
∫
Y

(C
pre
a∗,b∗(y) − C(y))h′(Oa∗,b∗,T (y))W(y, z)dy.

4.3. Functional Halmilton-Jacobi-Bellman PDE

We now present an alternative approach to the control problem based on the dynamic pro-
gramming principle. Consider

∂sf (y, s) = σ(a(y, s) − (Bbf )(y, s)), t < s ≤ T ,

f (y, t) = v(y)

for general v(·) ∈ L2(Y ). Let a general cost functional be defined by

Jv,t (a, b) =
T∫

t

∫
Y

L(f (y, s), a, b)dyds + 1

2

∫
Y

(f (y,T ) − f̃ )2dy,

where the first term denotes the running cost and the second term is a terminal cost. Define a 
value functional as

F(v, t) = inf
(a,b)∈A

Jv,t (a, b) = Jv,t (a
∗, b∗).

Note that F(v, T ) = 1
2

∫
Y
(v(y) − f̃ )2dy. By the dynamic programming principle (see e.g., [7]) 

we conclude

Theorem 4.2. Assume the value functional F is smooth in its arguments (v, t). Then F(v, t)
solves the functional Hamilton-Jacobi-Bellman (HJB) equation

∂tF (v, t) + min
(a,b)∈A

⎧⎨
⎩

∫
Y

DvF(v, t)σ (a − Bbv)dy +
∫
Y

L(v, a, b)dy

⎫⎬
⎭ = 0 (4.11)

with the terminal condition

F(v,T ) = 1

2

∫
(v(y) − f̃ (y))2dy. (4.12)
Y
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Remark 4.4. Note that DvF(v, t) is the L2 variational gradient of the functional F(t) : L2(Y ) →
R.
(i) We can express the HJB as

∂tF (v, t) + H(v,DvF(v, t)) = 0,

where we define the Hamiltonian as

H(v, r) = min
(a,b)∈A

⎧⎨
⎩

∫
Y

σ (a − Bbv)rdy +
∫
Y

L(v, a, b)dy

⎫⎬
⎭ .

It is easy to see that the characteristic system of this functional HJB equation in the case L = 0
is precisely the coupled optimal control system of the previous section.

Note that the HJB equation ‘lives’ in the space of functionals on the space L2(Y ).

Theorem 4.2 is an important statement that links smooth solutions of the HJB equation with 
solutions of the optimal control problem, and hence the minimization problem (2.10) in deep 
learning. By taking the min in (4.11), the HJB allows to identify the optimal control (a, b). In this 
sense, the HJB equation gives a necessary and sufficient condition for optimality of the learning 
problem (2.10). This demonstrates an essential observation from the optimal control viewpoint 
of deep learning: the minimization can be viewed as a variational problem, whose solution can be 
characterized by a suitably defined Hamilton-Jacobi-Bellman equation. This very much parallels 
classical calculus of variations. However, we should note there is a price to pay for obtaining 
such a feedback control: the HJB equation is general difficult to solve numerically.

Nevertheless, we present main steps for designing the optimal control (a∗, b∗) using the above 
dynamic programming approach.

Step 1. Solve the HJB equation

∂tF (v, t) + H(v,DvF(v, t)) = 0 0 ≤ t ≤ T ,

subject to the terminal condition (4.12) to find the value functional F(v, t).

Step 2. Use F(v, t) and the HJB equation to construct an optimal (a∗, b∗):
(i) for each v ∈ L2(Y ) and each time t ∈ [0, T ], define

(ã(v(t))(y), b̃(v(t))(y, z)) = argmin(a,b)∈A

⎧⎨
⎩

∫
Y

DvF(v, t)σ (a − Bbv)dy +
∫
Y

L(v, a, b)dy

⎫⎬
⎭ .

(ii) Next we find f̃ (y, s) by solving the following PDE

∂sf̃ = σ(ã(v)(y, t) − B
b̃(v)(y,z,t)

f̃ ), t ≤ s ≤ T ,

f̃ (t) = v.
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(iii) Finally define the feedback control

a∗(y, s) := ã(f̃ (s))(y), b∗(y, z, s) := b(f̃ (s))(y, z), t ≤ s ≤ T .

Theorem 4.3. The control (a∗, b∗) is optimal.

Proof. By standard arguments from dynamic programing, see [7]. �
It is worth noting that the HJB equation is a global characterization of the value function, in 

the sense that it must in principle be solved over the entire space of input-target distributions. Of 
course, one would not expect this to be the case in practice for any non-trivial machine learning 
problem; hence it would be desirable to solve the HJB locally by some Lagrangian approach 
in order to apply to nearby input-label samplings. Another limitation of the HJB formulation 
is that it assumes the value function is smooth, which is often not the case. A more flexible 
characterization of the value function is to relax the solution space in an appropriate sense, such 
as the viscosity sense [11].

5. Two iterative algorithms

Deep Neural Networks have drastically advanced the state-of-the-art performance in many 
computer science applications, yet in the face of such significant developments, the age-old 
stochastic gradient descent (SGD) algorithm [54] remains one of the most popular method for 
training DNNs. Finding new and simple hyper-parameter tuning routines that boost the perfor-
mance of state of the art algorithms remains one of the most pressing problems in machine 
learning (see, e.g., [8,25]). Based on the gradients obtained in Section 4.1, and the Pontryagin 
maximum principle presented in Section 4.2, we will allude briefly to two respective algorithms 
in this section.

5.1. Gradient descent

We recall that the gradient of the cost functional

J (a, b) = 1

2

∫
Y

(fa,b(y, T ) − f̃ (y))2dy

is given by

DaJ = σ(ua,b(y, s))ra,b(y, s), DbJ = −fa,b(z, s)σ (ua,b(y, s))ra,b(y, s),

where ua,b = a − Bbfa,b , and ra,b is obtained by solving

∂t ra,b = Bb�(σ ′(ua,b(y, s))ra,b(y, s), 0 ≤ s ≤ T ,

ra,b(·, T ) = fa,b(·, T ) − f̃ (·).
We remark that the conditioning of the backward problem for ra,b is identical to the conditioning 
of the forward problem. More precisely, with τ = T − s, 0 ≤ τ ≤ T , Ra,b(τ ) := ra,b(s) we obtain
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∂tRa,b(y, τ ) = −Bb�(T −τ)(σ
′(ua,b(y, T − τ)))Ra,b(y, τ ), 0 ≤ τ ≤ T .

Note that the generator of the evolution equation for Ra,b at τ is precisely the transposed of the 
generator of the linearized convolution equation for fa,b at time T − τ and we can estimate

‖Bb�(T −τ) ◦ σ ′(ua,b(T − τ))‖L2(Y )→L2(Y ) ≤ sup
R

|σ ′|‖b(·, ·, T − τ)‖L2(Y×Y).

(compare to section 3.5).
GD and SGD have advantages of easy implementation and being fast for well-conditioned 

and strongly convex objectives. However, they have convergence issues, especially when the 
problem is ill-conditioned; there is an extensive volume of research for designing algorithms to 
speed up the convergence (see, e.g., [18,32,47,60]). To achieve fast convergence with large time 
steps (learning rates) we present the following algorithm.

Algorithm 1.
Inputs: f̃ (y), fI (y), a0, b0 as initial guess, step size τ .
Outputs: a, b and J (a, b)

1. For k = 1, 2, · · · iterate until convergence.
2. Employ the Proximal Alternating Minimization (PAM) method [2] for a and b,

ak+1 = argmina

{
J (a, bk) + 1

2τ
‖a − ak‖2

}
. (5.1a)

bk+1 = argminb

{
J (ak+1, b) + 1

2τ
‖b − bk‖2

}
. (5.1b)

3. Update f as

f k+1 = fak+1,bk+1(y, s)

by solving

∂sf = σ(ak+1 − Bbk+1f ), f (t = 0) = fI .

Note that this algorithm needs to be modified when the cost functional is regularized. For the 
Tikhonov regularizer given in Remark 4.2, we replace J (a, b) by Jmod(a, b) defined in (4.6) and 
use (4.7) for the gradients.

For a class of objective functions, (5.1) is analyzed in [2], where it is called the Proximal 
Alternating Minimization (PAM) method. Here, at each step, the distance of the parameter update 
acts as a regularization to the original loss function. Compared to GD (or SGD), the PAM has 
the advantage of being monotonically decreasing, which is guaranteed for any step size τ > 0. 
Indeed, by the definition of (ak+1, bk+1) in (5.1),

J (ak+1, bk+1) ≤ J (ak, bk) − 1

2τ

(
‖ak+1 − ak‖2 + ‖bk+1 − bk‖2

)
.
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We remark that (5.1a) is the celebrated proximal point algorithm (PPA) [52]. PPA based implicit 
gradient descent algorithms have been explored in [63] for the classic k-means problem, and in 
[14] for accelerating the training of DNNS.

We should point out that training deep neural networks using gradient-based optimization fall 
into the noncovex nonsmooth optimization. Many researchers have been working on mathemati-
cally understanding the GD method and its ability to solve nonconvex nonsmooth problems (see, 
e.g., [3,30,44,59]). Accelerating the gradient method is also a subject of intensive studies (see, 
e.g., [56,65]).

5.2. Hamiltonian maximization

When training is recast as a control problem, necessary optimality conditions are formulated 
by the Pontryagin maximum principle (PMP). This formulation can lead to an alternative frame-
work for training algorithms. There are actually many methods for the numerical solution of 
the PMP (see the survey article [50]), here we follow the method of successive approximations 
(MSA) [17], which is an iterative method based on alternating propagation and optimization 
steps. For recent works using PMP based MSA algorithms to train neural networks, we refer to 
[33,38].

Recall the Hamiltonian of the form

H(v, r, a, b) =
∫
Y

σ (a − Bbv)rdy.

We thus present the following algorithm.

Algorithm 2.
Inputs: f̃ (y), fI (·), a0, b0 as initial guess.
Outputs: a, b and J (a, b)

1. For k = 1, 2, · · · iterate until convergence.
2. find f k = fak,bk by solving the forward problem

∂tf = σ(ak − Bbkf ), f (t = 0) = fI .

3. find rk = rak,bk by solving the backward problem

∂t r = Bb�(σ ′(ak − Bbkf
k), r(t = T ) = f̃ − f k(T ).

4. Update (a, b) by

(ak+1, bk+1) = argmax(a,b)∈AH(f k, rk, a, b).

Since σ is non-decreasing, the linear programing problem (4.9) (see Section 4.2) may be used 
to update (a, b).

As is the case with the maximum principle, the above algorithm consists of two major com-
ponents: the forward-backward Hamiltonian dynamics and the maximization for the optimal 
parameters at each step. An important feature of the algorithm is that the Hamiltonian maxi-
mization is decoupled for each step. In the language of deep learning, the optimization step is 
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decoupled for different network layers and only the Hamiltonian involves propagation through 
the layers. This allows the parallelization of the maximization step, which is typically most time-
consuming.

One advantage of this approach is that it does not rely on gradients with respect to the trainable 
parameters through back-propagation. An additional advantage is that one has a good control of 
the error through explicit estimates on the Hamiltonian (see [33]). Overall, the approach opens 
up new avenues to attack training problems associated with deep learning.

Finally, we point out that both the forward and backward PDE problems when discretized 
by numerical methods can lead to different network architectures (with respect to depth and 
width). Implementation and convergence analysis of the above two learning algorithms with 
proper discrete network architectures for specific application tasks are left to further work.
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