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1. Introduction

We are concerned with the critical threshold phenomenon in
Euler-Poisson equations subject to local and nonlocal forces.

1.1. Euler-Poisson equations

Euler-Poisson equations have been an area of intensive study
due to their vast relevance in modeling physical phenomena
[1-6]. The general system is composed of three sets of equa-
tions: the mass conservation equation, the momentum equa-
tions and the Poisson equation. The Euler-Poisson system in
one-dimensional setting reads

pe+ (pu) =0,
P
, -+ ity + (P _ U — ke,
— Qx=p—C,
which governs the unknown density p = p(t, x) and velocity

u = u(t,x) for x € R (or a bounded interval) and time t > 0,
subject to initial conditions p(0, x) and u(0, x). P = P(p) is the
pressure and ¢ = c(x) is the background state which varies with
the space variable. The parameter k signifies the property of the
underlying force, repulsive k > 0 or attractive k < 0, governed
by the Poisson equation through the potential ¢.
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Such systems are widely used in semiconductor modeling
where the charge density and current need to be modeled. ¢ then
represents the electric potential and hence, —¢y is the electric
field, which is dominating over pressure. Here, ¢ = c(x) is the so
called impurity (or doping) profile, and is often a function of the
position variable x; see [6]. Another widely known application of
this system is modeling plasma dynamics [3]. Here, the pressure
is typically adiabatic of form P(p) = Ap”, y > 1.

The addition of convolution terms to the right hand side of
the momentum equation gives rise to a different class of systems
with nonlocal forcing. Such systems have primarily been studied
without pressure. It is then called the Euler alignment/Euler-
Poisson alignment system for k = 0 and k # 0 respectively. The
momentum equation reads

Ur + uty = —kgy + ¥ x (pu) — uy * p.

Euler alignment systems arise as macroscopic realization of
agent-based dynamics [7,8] which describes the collective motion
of finite agents, each of which adjusts its velocity to a weighted
average of velocities of its neighbors

X = vj,
L
v = N 21: Yx; — x;)(vj — vi).
J:

Here v is often called influence potential. See [9] for realization
of Euler alignment system as a mean field limit of the above
type finite agent model as N — oo. It is known that global-
in-time strong solutions for the hydrodynamic alignment system
will flock in the sense that the velocity centers around an av-
erage quantity and density becomes compactly supported for
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large time [10]. Global regularity or critical thresholds for such
systems have been analyzed extensively during the recent years,
see [10,11]. Further relevant literature is discussed in Section 1.4.

1.2. Critical threshold phenomena

It is well known that the finite-time breakdown of systems
of Euler equations for compressible flows is generic in the sense
that finite-time shock formation occurs for all but a “small” set of
initial data. Lax [12] showed that for pairs of conservation laws,
C'-smoothness of solutions can be lost unless its two Riemann
invariants are non decreasing. With the additional Poisson forcing
the system of Euler-Poisson equations admits a “large” set of
initial configurations which yield global smooth solutions, see,
e.g. [13-17]. Indeed, for a class of pressureless Euler-Poisson
equations, the question addressed in [13] is whether there is a
critical threshold for the initial data such that the persistence of
the C! solution regularity depends only on crossing such a critical
threshold. For example, for system of Euler-Poisson equations
with only electric force,

pe + (pu) =0,
U + uuy = —k¢x,
_¢xx:p_C, ¢ = const > 0.

It was shown in [13, Theorem 3.2] that the system with k < 0
admits a global solution iff

Uox(x) = 4/ —é(po(X) —C)VXeR,

and for k > 0, the critical threshold condition becomes

[uox(X)] < v'k(2po(x) — ¢).

Clearly, the solution behavior for the attractive forcing case
(k < 0) is quite different from that for the repulsive forcing case
(k > 0). When the above mentioned cases are augmented with
damping forces in the momentum equation, an enlarged subcriti-
cal region may be observed due the further balancing effect from
damping. A novel phase plane analysis method was introduced
in [18] to identify sharp critical thresholds in various scenarios.
For the variable background case, the tool used in [13] is no
longer applicable. We shall develop some comparison principle
to identify both upper and lower thresholds in the attractive
forcing case (k < 0). In the repulsive forcing case (k > 0),
the solution will be oscillatory in nature and consequently a
comparison lemma cannot be seemingly derived.

Even amidst the vast study of critical thresholds in Euler-
Poisson systems, the variable background case has not been stud-
ied much. In fact, to our best knowledge, there is no known
critical threshold result for Euler-Poisson equations with a back-
ground state that varies in space. Compared to the constant
background, the critical threshold analysis of the Euler-Poisson
system with a variable background requires new tools. This paper
is devoted to the study of such scenario.

1.3. Present investigation

In this work we focus on the pressureless case, in one di-
mensional periodic setting. Without loss of generality, we can set
T := [—1/2, 1/2] to be the domain of the spatial variable. More
precisely, we consider the following damped Euler-Poisson sys-
tem with potential induced by a background which is a function
of the space variable,

pe + (pu)y =0,
Ur + Uty = —vu — Koy,
— P = p — C(X),

(1.1a)
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on (0, o0) x T subject to periodic initial conditions,

po € C'(T),
up € CY(T),

where c(x) is the periodic background term which is Lipschitz
continuous and satisfies 0 < ¢; < ¢ < ¢y, v > 0 is the damping
coefficient, and parameter k < O signifies attractive forcing.

Furthermore, we add a nonlocal forcing to the momentum
equation. The resulting system is called an Euler-Poisson align-
ment system,

p(0,x) = po(x) > 0,

(1.1b)
u(0, x) = ug(x),

pe + (pu)y =0,
Ur + Uty = —vu+ ¥ *x (pu) — Uy x p — ko, (1.2)
— ¢ = p — c(x),

on (0, o) x T, subject to periodic initial conditions (1.1b), where
¥ : R — [0, 00) is assumed to have the following properties,

e Y(x) = ¥(—x), Vx > 0 (Symmetric),

o Y(x+1)=1(x), Vx € R (1-periodic),

o |[Y(x)—v() < Klx—y|, x,y € R and some K > 0
(Lipschitz continuous).

Let miny = v, and maxy =
generality,

fpo(x)dx:/p(t,x)dleand /c(x)dx: 1.
T T T

In this paper, we obtain bounds for supercritical as well as
subcritical regions in the configuration of initial data for the
aforementioned cases, thereby proving the existence of a critical
threshold for each system.

Yy Also, without loss of

1.4. Related work

There is a considerable amount of literature available on
the solution behavior of Euler-Poisson equations. [19,20] gives
results for nonexistence and singularity formation; [21,22] for
global existence of weak solutions with geometrical symme-
try; [23] for isentropic case, and [24] for isothermal case. For 3-D
irrotational flow consult [25-27]. Smooth irrotational solutions
for the two dimensional Euler-Poisson system are constructed
independently in [28,29]. See also [30,31] for related results
on two dimensional case. In the one-dimensional Euler-Poisson
system with both adiabatic pressure and a nonzero background,
the authors in [32] showed the persistence of global solutions for
initial data which is a small perturbation about the equilibrium.
Yet the existence of a critical threshold for such setting is still
open.

For results on critical thresholds in restricted Euler-Poisson
systems, we refer to [16] for sharp conditions on global regularity
vs finite time breakdown for the 2-D restricted Euler-Poisson
system, and [15] for sufficient conditions on finite time break-
down for the general n-dimensional restricted Euler-Poisson
systems. A relative complete analysis of critical thresholds in
multi-dimensional restricted Euler-Poisson systems is given in
[14] for both attractive and repulsive forcing. For multidimen-
sional Euler-Poisson with spherically symmetric solutions, see
[13,33].

During recent years, Euler alignment systems have been stud-
ied by several researchers, see [10,34] for alignment forces dic-
tated by bounded kernels, [35,36] by singular kernels. The authors
in [10] give bounds on subcritical and supercritical regions for the
Euler alignment system, i.e., k = 0, v = 0 in (1.2) with bounded
kernel in one and two dimensions. The critical threshold con-
dition for one dimensional Euler alignment system was further
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made precise in [34]. The authors also studied undamped Euler—
Poisson alignment system, i.e. k 2 0, v = 0, c = 0 in (1.2) where
they showed that for such a system with k < 0, there is uncon-
ditional breakdown. Our result stated in Theorem 2.6 shows the
existence of a subcritical region in case of a positive background.
Therefore, once again we see that presence of background with
attractive forcing has a balancing effect. However, our comparison
tools do not seem to be applicable to the situation with repulsive
forcing (k > 0).

1.5. Plan of the paper

Our work analyzes two classes of Euler-Poisson systems:

(1) Pressureless Euler-Poisson with background, and
(2) Pressureless Euler-Poisson alignment with background.

As a result all the further components of this paper are divided
into two parts, each pertaining to a system. Section 2 contains
the main results along with some necessary preliminary anal-
ysis. It has three subsections. The first one is devoted to the
preliminary calculations. The other two contain the main results
for each of the aforementioned systems. Section 3 contains the
analysis/proofs of and tools for the theorems pertaining to the
first system and Section 4 contains the same for Euler-Poisson
alignment system.

2. Main results
2.1. Preliminaries

The critical threshold analysis to be carried out is the a priori
estimate on smooth solutions as long as they exist. For the one-
dimensional Euler-Poisson problem, local existence of smooth
solutions was long known, it can be justified by using the char-
acteristic method in the pressureless case.

Theorem 2.1 (Local Existence). If pg € C' and uy € C!, then
there exists T > 0, depending on the initial data, such that the
initial value problem (1.1a), (1.1b) admits a unique solution (p, u) €
CY([0, T) x T). Moreover, if the maximum life span T* < oo, then

lim ou(t, x*) = —o00
AT*

for some x* € T.

To our knowledge, such local existence theorem has been
known for a constant background case (¢ =const in (1.1a)).
However, we will formally justify that the dependence of ¢ on the
space variable does not change the result of the theorem for (1.1a)
as well as (1.2) as long as c(x(t)) is well-defined and bounded. We
will show this by analyzing a set of equations obtained along the
characteristic curve.

We proceed to derive the characteristic system which is es-
sential to our critical threshold analysis. Differentiate the second
equation in (1.1a) with respect to x, and set d := u, to obtain:

o 4+ pd =0, (2.1a)
d +d? + vd = k(p — c(x(1))), (2.1b)

where we have used the Poisson equation in (1.1a) for ¢, and

denotes the differentiation along the particle path,
= {(t, x)] X(t) = u(t, x(t)), x(0) = « € T}.

Here, we employ the method of characteristics to convert the PDE
system (1.1a) to ODE system (2.1) along the particle path which
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is fixed for a fixed value of the parameter «. Consequently, the
initial conditions to the above equations are p(0) = po(e) and
d(0) = do(a) = ugx(r) for each @ € T. Note that this in itself is
not a closed system. However, we can obtain a complete system
with additional ODEs. Setting

X t
Eim o= [ pte)—ctity — [ (puxs. ~1/2s
0

-1/2
we obtain,
X =u,
u' + vu = kE, (2.2)
E' = —cu.

For E to be periodic, necessarily

fp(t,y) —c(y)dy =0
T

for any t > 0. This combined with the conservation of mass
requires fT po(y)—c(y)dy = 0. Note that this subsystem is a closed
system, which allows us to independently analyze (2.1) with ¢
obtained from system (2.2). Since c(x) is Lipschitz continuous, the
system for (x, u, E) admits a unique solution for each given initial
data. Moreover,

1
5()(2 +u? 4+ E*Y = xu + kuE — vu® — cuE

< (1+ |k| + 2v + maxc)(x* + u® + E?).
On integrating we get
X2 + u2 + EZ < (az + U(Z) +E2(0, a))e2(1+|k\+2U+maXC)t vVt > O,

which says that x, u, E remain bounded for all time. Hence, we
can solely analyze (2.1) to conclude the long time behavior of the
solution. The system with alignment (1.2) is no different. Indeed,
u remains bounded because at any time, the alignment force is a
mere weighted average of the relative speed.

The above discussion shows that we still lie in the purview of
Theorem 2.1. That is, if u, remains bounded for all the character-
istics then we ensure global-in-time solution from Theorem 2.1.
Likewise, if for any characteristic, |uy] — oo in finite time, there is
finite time breakdown. This allows us to analyze (2.1) as a system
for our purpose using the bounds of c(x).

We are now in a position to establish our critical threshold
theory which includes results on both the global-in-time solution
and finite time breakdown for (1.1a) and (1.2).

In order to conveniently present our main results and their
proofs, we hereby introduce two functions from Rt x RT — R,

_ B++/B*—4ky
BBty

B+ /B — 4
@Wﬂ%=—£i%?—:L

where these two functions satisfy,

—2(y.B)=0=0(y,B).

2(y,B): (2.3a)

(2.3b)

2.2. Euler-Poisson with variable background

We first state our main results for (1.1a).
Theorem 2.2 (Global Solution). Consider the system (1.1a) with
initial conditions (1.1b). Let k < 0, A; = $£2(c1,v), 0 < ¢; =

Minger €(X) and ¢; = maXyer ¢(X). If

(mmwwmm{mﬂrd>2w—qﬂ Vi,
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then there exists a unique global-in-time solution, p, u € C'((0, co)
x T). In particular,

lot, Moo < llpollce™*, and

— A1 S U(t, -) < max {max ugy, O(ca, v)}.

Theorem 2.3 (Finite Time Breakdown). Consider the system (1.1a)
with initial conditions (1.1b). Let k < 0 and ¢; = maxyer c(x). If
dxg € T such that

2(cy, v)
tio(x0) < === (pol(xo) = €2).
2
then 3(t*, x*) such that limeye uy(t, X*) = —o0.

Remark 2.4. We would like to point out that essentially the same
threshold results hold for the case when the domain is all of R.
We work on the periodic case to avoid a technical discussion at
far fields (x — 4o00), especially in the alignment with background
case (Section 4), where talking about far fields is physically less
meaningful as the total mass is infinite because of the following
imperative neutrality condition

/ (po(y) — c(¥))dy = 0.

Theorem 2.5. Consider the system (1.1a) with initial conditions
(1.1b) and assume c(x) = c. Then there exists unique global solution
p,u € CY((0, 00) x T) iff

(po(x), uox(x)) € {(p, d):d> 2(c,v)

(,o—c)} Vx € T.

This critical threshold result in the case of v = 0 is in agree-
ment with that obtained in [13]. Since £2 is an increasing function
in the second variable, the presence of damping increases the
slope of the critical threshold line in the (p, d) plane, hence
allowing for a different initial configuration leading to global
regularity or finite-time breakdown of solutions.

2.3. Euler-Poisson alignment with variable background
We now state the main results for (1.2).

Theorem 2.6. Consider the system (1.2) with initial conditions
(1.1b). Let k < 0, 0 < ¢; = minyer c(X), ¢ = MaXyer C(X),
Ym = MaXger Y(X), Ym = Minker ¥(x) and Ay = 2(cq, v + ¥u).

If

A X
o) > P e,y g~y o) Ve,

1

then there exists a unique global solution p,u € C'((0, co) x T).
Furthermore, we have the following bounds,
lo(t, oo < llpolloce™",
- }”M =< ux(tv ) =< max{max Uox, @(CL v+ lpM)} + ‘pM - wm-

Theorem 2.7. Consider the system (1.2) with initial conditions
(1.1b). Let k < 0, c; = maXyer c(x) and Y, = Mmingeg Y(x). If
dxg € T such that,
$2(c2, v + ¥m)po(Xo)
C2
then inflimgy, ux(t, -) = —oo for some finite t..

Ugx(Xo) < —O(c2, v+ Vm) — v — v * po(Xo),

Remark 2.8. We would like to point out that if + = 0 in the
above theorems then we recover Theorems 2.2 and 2.3, respec-
tively. In other words our analysis of the generalization to the
case with alignment is optimal. Also, if y/(x) = ¥ is a constant,
then we obtain the following two corollaries.
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Corollary 2.9. Consider the system (1.2), initial conditions (1.1b)
with {(x) = ¢ (constant). Let k < 0, 0 < ¢; = minger c(x),
C; = MaXyer c(x) and Ay = 2(cy, v + V). If

A
Uox(X) > C—l(po(x) —C)VXET,
1

then there exists a unique global-in-time solution p, u € C'((0, c0)
x T). Furthermore, we have the following bounds,

lo(t, Moo < lloolloce™™,
— A1 = U(t, -) < max{max gy, O(C2, v + ¥)},

Corollary 2.10. Consider the system (1.2), initial conditions (1.1b)
with y(x) = ¢ (constant). Let k < 0, c; = maxyer c(x). If 3xg € T
such that,

2(c, v+ W)
Uox(X0) < Ci(po(Xo) —G),
2
then there exist t. > 0 and X, € T such that lim¢y,, ux(t, X;) = —oo.

3. Euler-Poisson systems with variable background
3.1. Critical thresholds for an auxiliary system

The main tool in dealing with the variable background is the
use of comparison. To this end, we introduce an auxiliary ODE
system corresponding to (2.1),

(3.1a)
(3.1b)

n' = —né,
g =—& —vE+kn—ky.

where y > 0 is a parameter. Hence, n, & are functions of time
as well as the parameter y. However, we will omit the latter de-
pendence on the parameter whenever it is clear from context. We
will make use of the phase plane analysis technique introduced
in [18] to prove a proposition for this auxiliary problem which
will play a crucial role in proving the theorems stated.

Proposition 3.1. Consider the ODE system (3.1) with initial con-
ditions (n(0) > 0, &(0)), then 0 < n(t) and &£(t) < max{&(0),
O(y,v)} for all t > 0. The solution exists globally for all t > 0
with
n(t) < n(0)e", and — i < &(1),
if and only if

A
§(0) > ;(n(O) - 7).
Here A = 2(y, v). Moreover, if

£(0) < 2 (n(0) = y).
Y

then limHt; n(t)=— limHt; &(t) = oo for some t. > 0.

Proof. Note that from (3.1a), we have n(t) = 17(0)e‘f0t“’I and
hence, if n(0) > 0 then n(t) > 0 for all t > O as long as the
solution exists and n(0) = 0 = n(t) = 0. Hence, n maintains
sign. For a uniform upper bound on &, note that since n > 0, from
(3.1b),

£ < £ —vE—ky
= —(§ + )& — ).

with A = £2(y,v) and u = O(y,v) satisfying —A < 0 < pu.
Comparing the above inequality with (3.2), we obtain &(t) <
max{&(0), u} for all t > 0.
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We first consider the case when 1(0) = 0 = 5(t). Then from
(3.1b),
E'=—E —vE—ky = —(E+A)E — ).
Using phase line analysis, we have that £(t) exists for all time if
and only if £(0) > —A. In the case of global solution, we have
=1 < &(t) < max{§(0), u}.
If £(0) < —A, &(t) tends to —oo at a finite time t.. Such time may
be determined from the solution formula of form
%— — MK — g(o) - :ue()Hr/l.)[
E+A E0)+ A
we have

1 + X

te =

m+ — 1
As a result of the above discussion, we can now assume 7(0) > 0

which in turn implies n(t) > 0 for all t > 0. We proceed to
introduce the transformation

(3.2)

k]

m#am
PO

r==%&/n, s=1/n,

so that (3.1) is transformed to the following linear system,

= —vr+k — kys, (3.3a)
sS=r (3.3b)

with initial data r(0) := £(0)/n(0) and s(0) := 1/5(0) > 0. This is
a linear ODE system, its solution (r, s) will remain bounded for all
time. This fact when combined with the transformation says that
(&, n) exists globally if and only if s(t) > 0 for all time. Therefore,
the key here is to identify critical thresholds for initial data to
ensure s(t) > 0 for all positive times.

We move onto analyzing (3.3). It is a linear system with the
critical point (0, 1/y) being the saddle point. Written in matrix
form, the system is:

] =[]

The coefficient matrix has eigenvalues —A and u. Hence the
general solution to this system is,

L= a[F]eali]e

From the flow of solution trajectories we see that the separa-
trix with incoming trajectories serves to divide the upper half
plane(s > 0) into two invariant regions, one of which has the
property that if s(0) > 0, then s(t) > 0 for all t > 0.

Such separatrix corresponds to the special solutions with B =
0, ie.,

)

Consequently, this trajectory equation is,

(3.4)

yr =A(1—ys).
Thus the region mentioned in Fig. 1 can be characterized by
X, ={rs):yr=rM1-1ys), s>0}.

In order to see this is an invariant region, we only need to show
that on 3 ¥, N{s = 0} the trajectories go into the region. Note that
the r—intercept of the separatrix is (A/y) > 0, hence forr > A/y
and s = 0 we have s' = r > 0 and the trajectory travels upwards.

Moving back to the original variables (5, £), X, transforms to

= A
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———= Direction Field
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Fig. 1. Direction field for reduced linear system along with the invariant region.
(v=3k=-1,y=1)

Likewise, if (7(0), £(0)) € %, then n(t) < oo and &(t) > Z(n(6)—
y)> —xforallt > 0.

Now suppose (r(0), s(0) > 0) ¢ X, . Since, the linear ODE sys-
tem has only one critical point, we have that lim;_, o (|r(t)], s(t))
= (00, —o0). Hence, the solution crosses s = 0 line at some finite
time, t..

We will now derive an upper bound on t.. Using the general
solution (3.4) we can find the solution formula,

Py 1 r(0)\

Assuming the finite time breakdown condition, i.e., s(0) — % +
@ < 0, then

Ir(0)|> N ‘ 1 r(0)
— S O —_ 7
(A +w)

1 1
s(t) < —+ (s(O) +—+

Y Y
Consequently, s(t.) = 0 for some

1 (o SO+ 2+

t: < —1In
s0)— 1 + 12|

% A

And therefore, if (1(0), £(0)) ¢ E‘y, then limt_,tc— n(t) = oco. And
from (3.1a), we obtain limHt; &(t) = —oo. This completes the
proof to the proposition. O

For the case when c(x) = ¢ in (1.1a), we can apply
Proposition 3.1 with y = ¢ to (2.1) and immediately obtain
Theorem 2.5.

3.2. Comparison lemma
We are now in position to present the comparison result.

Lemma 3.2 (Comparison lemma). Let (p, d) be the solution to (2.1),
and (n, &) be solution of (3.1). Then as long as these solutions exist,

we have
(i) For y = ming c(x): If p(0) < n(0) and d(0) > £(0), then

p(E)(n(t),  d(t))&(t).
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(ii) For y = maxrt c(x): If p(0) > n(0) and d(0) < £(0), then
p(t) > n(t), d(t) <&(t).

Proof. We will show (i). Similar arguments follow for (ii). We will
argue by contradiction. To this end, let t; be the first time when
the result is violated. Integrate (2.1a) and (3.1a) respectively to

get p(t) = p(0)e~ 24 and n(t) = n(0)e~ 0% Since [i' ddr >
o1& dr and p(0) < 1(0), we obtain

p(t) = p(0)e™ ' 497 < o) ho' €4 = p(ry).

We can then conclude that d(t;) = &£(t;) along with p(t1) < n(ty).
Subtracting (3.1b) from (2.1b), we obtain,

(d—&)=—(d+&+v)d—§)+klp—n)—kic—y)

Plugging in t = t; and taking y = minc, we obtain

(d —&)(t1) = k(p(t1) — n(t1)) — k(c — minc)
> 0.

This is a contradiction because this implies that for all t < t;
sufficiently close, d(t) < &(t) and hence, t; cannot be the first
time of violation. O

3.3. Proofs of Theorems 2.2 and 2.3

Using the tools developed above, we are now ready to prove
our main results.

Proof of Theorem 2.2. Consider (2.1) along a fixed characteristic
and (3.1) for y = c;. From hypothesis of theorem, we see that
d(0) > Ll(,o(O) — ¢1). As a result we can choose 7(0) > p(0) and

C

£(0) < d{0) such that

d0) > £(0) = 1 (n(0) = ¢1) > 21(p(0) — c1).
C1 C1

Applying Lemma 3.2, we obtain
p(t){n(t), and d(t))(t),

for as long as these functions exist. Using Proposition 3.1, we
obtain that p(t) < n(0)e*!* and d(t) > —A; forall t > 0. However,
note that n(0) can be chosen to be greater than but arbitrarily
close to p(0) and all the above arguments still hold. Therefore, in
the limit, we have p(t) < p(0)e*t!. Also, a uniform upper bound
on d can be obtained in a similar fashion as in Proposition 3.1.
From (2.1Db),

d < —d?—vd — ke,
= —(d + 2(cz, v))d — O(c3, v)).

Hence, d(t) < max{d(0), ©(c;, v)}.
Collecting all the characteristics, we finally obtain,

lo(t, oo < llpolloce™ ",
— A1 = u(t, +) < max{|[uoxlloo, O(c2, V)}

This concludes the proof of Theorem 2.2. O

Proof of Theorem 2.3. Consider (2.1) with p(0) = po(X0), d(0) =
Uox(xg) for xp as in the statement of the theorem. In (3.1), let
y = ¢,. From the hypothesis of the theorem, we see that d(0) <
%(p(o) — ¢3). We can then choose n(0) < p(0) and £(0) > d(0)
such that,

A A
d(0) < £(0) < —(n(0) — ) < —(p(0) — c2).
Cy Cy

Applying Lemma 3.2, we obtain
p(t) > n(t), and d(t) < &(t).
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Using Proposition 3.1, we obtain that for some t. > 0, p(t) — o0
ast — t_. And from (2.1a), lim,_, ,- d(t) = —oo and the solution

t—t
ceases to be C1. O
4. EPA systems with variable background
4.1. Reformulations

Set G := uy + v + v * p. Taking derivative of G along
=9 + ul
at ax’
we have,

G = (ulx+ ¥ % pe +ulux + 9 % p

= (—utly — v+ ¥ * (ou) — U * p — kpy)x
— (¥ * (pu))x + u(ux + ¥ * p)y
—Guy + k(p —c)
=—GG—v—yYxp)+k(p—c)

We used (1.2) to obtain the second and third equations. Conse-
quently, along the particle path given by,

I = {(t,x)| X(t) = u(t, x(t)), x(0) = o € T},

we get the following ODE system,
(4.1a)
(4.1b)

p'=—=p(G—v—1*p),

G = —G(G—v — 1 p)+k(p — c(x(t))),
with initial condition,

p(0) = po(er), G(0) = uox(er) + v + Y * po(ct).

The roadmap to the proofs of the main theorems will be similar
to the previous section. However, due to the addition of the non
local term, here we first transform the ODE system (4.1) into a
simple system, and then introduce an auxiliary ODE system which
can be used for comparison. And eventually we use these tools to
prove our main results.

Note that the transformation will require p(t) > 0 as long as
the solution exists, this is ensured by assuming p(0) > 0. In fact,
from (4.1a), we have that p maintains sign, hence the zero case
can be handled separately.

Next, we use the following transformation of variables for the
case p > 0,

w = 9 s= l (4.2)
p p
to derive an ODE system for w and s. Differentiating w,

-5
o p* p
_(G—v—t/f*p)G_(G—v—l/f*p)GJrk(p—C)

B P o P
=k — kcs.

Likewise, we differentiate s,

(1)_Ac—v—w*m
o) P

=w — Vs —SY * p.
We then obtain the following ODE system,

w’ =k — kcs, (4.3a)

S=w—W+Y*xp)s, (4.3b)

with initial conditions
G(0 1
w(0) == Q and s(0) .= ——.
p(0) p(0)
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4.2. Threshold analysis for the auxiliary system

Corresponding to (4.3), we introduce the following auxiliary
system,
(4.4a)

(4.4b)

p'=k—kyq,
q =p-Bq,

where y > 0, B > v are parameters and initial conditions
(p(0), q(0) > 0). Hence, p, q are functions of time as well as the

parameters y, 8. However, we will omit the latter dependence
on the parameters whenever it is clear from context. We have

the following proposition.

Proposition 4.1. For the system (4.4), with initial conditions
(p(0), g(0) > 0), we have that q(t) > O for all t > 0 if and only

if
p(0) >

where A = 2(y, 8) and u = O(y, B). Additionally, if the above
inequality holds, then it holds for all times, i.e.,

X | >

A
p(t) = — — uq(t), Vvt=>0.
Y
We will once again make use of the phase plane analysis

technique developed in [18].

Proof. (4.4) is a linear system with critical point (8/y, 1/y).
Written in matrix form, the system is:

p—ﬁ/_[o —ky] p-1
-2 b —elle-2)

The eigenvalues of the coefficient matrix are —A and w and the
general solution to the system is,

B
p—= k —k

y =A[ )/:| e“—i—B[ yi| ekt
a—y A H

From the flow of solution trajectories we see that the separatrix
with incoming trajectories serves to divide the upper half plane
(q > 0) into two invariant regions, one of which has the property
that if q(0) > 0, then q(t) > 0 for all t > 0.

Such separatrix corresponds to the special solutions with B =

0, ie,
p— _A ky .
q- A '

Consequently, this trajectory equation is,

A
kp:7ﬂ—k+kyq.

(4.5)

<= <>

Note that % = —% and B8 + u = 2, the above equation becomes
A

p=——nuq.
14

Thus the region mentioned in Fig. 2 can be characterized by

A
2y = (P,Q)ZPZ;—uq, q>0}.

Now suppose (p(0), g(0) > 0) ¢ X, . Since, the linear ODE sys-
tem has only one critical point, we have that lim,_, (|p(t)|, q(t))
= (o0, —00). Hence, the solution crosses g = 0 line at some finite
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Fig. 2. Direction field for linear system along with the invariant region. (8 =
15, k=-1,y=1.)

time, t.. This by itself concludes the proof but we will, however,
derive an upper bound on ¢, using the general solution (4.5),

1 (PO +rg0) =5\ (p(0)+pg0)— 2
‘I(t)_y+(x+u)e T )

Assuming (p(0), q(0)) ¢ X, g, we have

_ _n 0)+ nq(0) —
o6)— 1 . p(0) + 2q(0) — & e _ ’p( )+ 1q(0) — 3 -
y A+u A+
1 0 p(0) + uq(0) — 2
y At At
Hence, q(t;) = O for some

£ <lin G-+ mEO+y D+IpON
|p(0) + 1q(0) — Ay 1|

4.3. Comparison lemma

We will now derive the comparison lemma.

Lemma 4.2 (Comparison Lemma). Let (w,s) be solution to (4.3)
and (p, q) be solution to (4.4). Then as long s > 0, we have:

(i) For c = c¢1, B = v + ¥y: If s(0) > q(0) and w(0) > p(0), then
s(6) > q(t),  w(t) > p(t).

(ii) For c = c3, B = v + ¥ If s(0) < q(0) and w(0) < p(0), then

s(t) < q(t),  w(t) < p(t).

Proof. We only prove the first assertion. Second assertion can
be proved by similar arguments. We argue by contradiction: let
t1 be the first time at which statement (i) is violated. Subtracting
(4.3a) from (4.4a), and integrating we obtain,

t
wm—mn=mm—mm—qlm—WMr
0

t t
= w(0) — p(0) — ky/(s —q)dr — k/s(c —y)dr.
0

0
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Taking y = ¢; = ming c(x) and plugging in t = t; in the equation
obtained, we have that
51

w(tr) = p(ty) = w(0) — p(0) — ky[ (s — q)dr > 0.
0

Therefore, the only possibility left is that s(t;) = q(t;).
Subtracting (4.3b) from (4.4b), we obtain

(s—q) =(w—p)+ Bn—s(v+y=*p)
=(w-—p)+B(@—s)+s(B—v—1v=*p)

Note that ¥ % p € [ming ¥, maxg ¥] = [Ym, Yu]. Taking 8 =
v + ¥y and plugging in t = t; in the above equation, we get

(s — q)(t1) = w(tr) — p(ts) > 0.

This means that for t < t; sufficiently close, we must have
s(t) < q(t), which is a contradiction. O

4.4. Proofs of Theorems 2.6 and 2.7

As usual, we will analyze the solution on a single characteristic
and since the inequality in the statement of the theorem holds
for all x, we can then collect all the characteristics to conclude
the result.

Therefore, it suffices to obtain the thresholds results for (4.1)
using Proposition 4.1 and Lemma 4.2.

First we show that G is always bounded form above irre-
spective of the choice of the initial data. From (4.1b), we have

G <—-GG—v—1yx*p)—kc
= —(G* — (v + ¥ * p)G + kc) (4.6)
= —(G—G4)(G—G-),

where

G =Q(c,v+v¥xp), G.=-0(,v+¢x*p)

depend on ¢ and ¥ * p, therefore changing in time.
Note that

Gy < Q2(c2, v+ vYm)

and the fact that G is non-increasing in the regime where G > G,
hence

G < max{G(0), sup G, } < max {uy(0) + v + ¥m, 2(c2, v + ¥} -
Hence,

Uy <supG—v —miny x p
< max {u,(0), 2(c2, v+ ¥m) — v — ¥m} + ¥m — ¥m
= max {ux(0), ©(c2, v + ¥m)} + ¥m — Y.

Note that this upper bound holds irrespective of the hypothesis of
the theorem. u, being bounded above is a result of the dynamics
of the system (4.1).

We now handle the p(0) = 0 = p case before dealing with
the case p > 0 separately.

In such case we have p = 0. Consider (4.1) with p(0) = po(a),
G(0) = upx(a) + v + ¥ * po(a) with a fixed « € T. Hence along
the characteristics starting from o we have

G =-GG—v—vyx*p)—kc
=—(GC—G4 )G —G-),

where G are same as above. From the phase line analysis, we
have that

(4.7)

G(t) > supG_
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forall t > 0 if
G(O) > sup G_ = —(")(C], v+ IpM)

We will show that this indeed satisfies the threshold inequality
in the theorem.

ux(0) = G(0) — v — ¥ x p(0)
> —0(c,v+¥u)—v—1¥*p(0)
=supG_ —v — ¥ * p(0),

then
U(t) =G(t) —v =Y *p(t) = —=O(c1, v+ Pm) —v — ¥y = —Aym
forall t > 0.

On the other hand, consider (4.1) with &« = X as in the

statement of Theorem 2.7. Then from (4.1b),
G =—(G—G,)G—G.).
From phase line analysis, we have that G — —oo in finite time if
G(0) < infG_ = —O(cz, v + ¥m).
Hence, if
ux(0) = G(0) — v — ¢ * p(0)
< —0(c2, v+ Ym) —v — ¥ % p(0)

then lim,_, - G = lim,_, - ux = —oc for some time ¢, and this is
indeed the statement of Theorem 2.7.
Now we deal with the case when p > 0.

Proof of Theorem 2.6. Along the fixed characteristics from «, we
rewrite the initial threshold condition in the theorem as,

GO) _ M _ pu

> )
p(0) ¢ p(0)
and this when transformed by (4.2), reads

uym = 0O(c1, v+ ¥um),

w(0) > }L—M — ums(0).
C1

We can then choose p(0) < w(0) and q(0) < s(0) in (4.4) such
that the following holds,

w(0) > p(0) = M~ 1g(0) > M~ uys(0).
C1 C1

Applying Lemma 4.2 and Proposition 4.1 for y =c¢1, 8 = v+ ¥u,
we have that

Am Av
w(t) > p(t) = — — umq(t) > — — pms(t).
C1 Cq
for all t > 0 along with the positivity of s, i.e. s(t) > 0. Hence,

A
w(t) > L ums(t), VYt > 0.

C1
Transforming back to (p, G), we have
Amp(t)
C1
From this we can obtain a lower bound on u,.

G(t) >

= KM

Uy =C—v— Y *p>—fy—V— Yy = .
Integrating (4.1a),
p(t) = p(0)e™ o ™4 < p(0)en,

Collecting all the characteristics finishes the proof of the
theorem. O
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Proof of Theorem 2.7. Under the transformation (4.2), the initial
threshold condition from the theorem reads,

A
w(0) < =% — 1ms(0),
C
where A, = 2(c2, v + ¥) and pm = O(c2, v + ¥m). Conse-
quently, in (4.4), we can choose p(0) > w(0) and q(0) > s(0) such
that the following holds,

A A

w(0) < p(0) < == — mq(0) < == — pums(0).
Cy Cy

From Lemma 4.2, we have that

w(t) < p(t), s(t) < q(t)

as long as s > 0. Applying Proposition 4.1 with y = ¢, and
B = v + ¥, we have the existence of a finite time t* such that,

q(t*)=0.

Therefore s(t) must touch zero before t*, say at t. < t*. Conse-
quently, lirnHt; p(t) = oo and therefore, from (4.1a),

lim u,(t, x(t, X9)) = —o0.

t—>te

This concludes the proof. O
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