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a b s t r a c t

The Euler–Poisson equations describe important physical phenomena in many applications such
as semiconductor modeling and plasma physics. This paper is to advance our understanding of
critical threshold phenomena in such systems in the presence of different forces. We identify critical
thresholds in two damped Euler–Poisson systems, with and without alignment, both with attractive
potential and spatially variable background state. For both systems, we give respective bounds for
subcritical and supercritical regions in the space of initial configuration, thereby proving the existence
of a critical threshold for each scenario. Key tools include comparison with auxiliary systems and the
phase space analysis of the transformed system.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

We are concerned with the critical threshold phenomenon in
uler–Poisson equations subject to local and nonlocal forces.

.1. Euler–Poisson equations

Euler–Poisson equations have been an area of intensive study
ue to their vast relevance in modeling physical phenomena
1–6]. The general system is composed of three sets of equa-
ions: the mass conservation equation, the momentum equa-
ions and the Poisson equation. The Euler–Poisson system in
ne-dimensional setting reads

t + (ρu)x = 0,

t + uux +
P(ρ)x
ρ

= −νu − kφx,

− φxx = ρ − c,

hich governs the unknown density ρ = ρ(t, x) and velocity
= u(t, x) for x ∈ R (or a bounded interval) and time t > 0,

ubject to initial conditions ρ(0, x) and u(0, x). P = P(ρ) is the
ressure and c = c(x) is the background state which varies with
he space variable. The parameter k signifies the property of the
nderlying force, repulsive k > 0 or attractive k < 0, governed
y the Poisson equation through the potential φ.

∗ Corresponding author.
E-mail addresses: manasb@iastate.edu (M. Bhatnagar), hliu@iastate.edu

(H. Liu).
ttps://doi.org/10.1016/j.physd.2020.132728
167-2789/© 2020 Elsevier B.V. All rights reserved.
Such systems are widely used in semiconductor modeling
where the charge density and current need to be modeled. φ then
represents the electric potential and hence, −φx is the electric
field, which is dominating over pressure. Here, c = c(x) is the so
called impurity (or doping) profile, and is often a function of the
position variable x; see [6]. Another widely known application of
this system is modeling plasma dynamics [3]. Here, the pressure
is typically adiabatic of form P(ρ) = Aργ , γ ≥ 1.

The addition of convolution terms to the right hand side of
the momentum equation gives rise to a different class of systems
with nonlocal forcing. Such systems have primarily been studied
without pressure. It is then called the Euler alignment/Euler–
Poisson alignment system for k = 0 and k ̸= 0 respectively. The
momentum equation reads

ut + uux = −kφx + ψ ∗ (ρu) − uψ ∗ ρ.

Euler alignment systems arise as macroscopic realization of
agent-based dynamics [7,8] which describes the collective motion
of finite agents, each of which adjusts its velocity to a weighted
average of velocities of its neighbors

ẋi = vi,

v̇i =
1
N

N∑
j=1

ψ(|xi − xj|)(vj − vi).

Here ψ is often called influence potential. See [9] for realization
of Euler alignment system as a mean field limit of the above
type finite agent model as N → ∞. It is known that global-
in-time strong solutions for the hydrodynamic alignment system
will flock in the sense that the velocity centers around an av-
erage quantity and density becomes compactly supported for

https://doi.org/10.1016/j.physd.2020.132728
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
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arge time [10]. Global regularity or critical thresholds for such
ystems have been analyzed extensively during the recent years,
ee [10,11]. Further relevant literature is discussed in Section 1.4.

.2. Critical threshold phenomena

It is well known that the finite-time breakdown of systems
f Euler equations for compressible flows is generic in the sense
hat finite-time shock formation occurs for all but a ‘‘small’’ set of
nitial data. Lax [12] showed that for pairs of conservation laws,
1-smoothness of solutions can be lost unless its two Riemann
nvariants are non decreasing. With the additional Poisson forcing
he system of Euler–Poisson equations admits a ‘‘large’’ set of
nitial configurations which yield global smooth solutions, see,
.g. [13–17]. Indeed, for a class of pressureless Euler–Poisson
quations, the question addressed in [13] is whether there is a
ritical threshold for the initial data such that the persistence of
he C1 solution regularity depends only on crossing such a critical
hreshold. For example, for system of Euler–Poisson equations
ith only electric force,

ρt + (ρu)x = 0,
ut + uux = −kφx,

− φxx = ρ − c, c = const > 0.

It was shown in [13, Theorem 3.2] that the system with k < 0
admits a global solution iff

u0x(x) ≥

√
−

k
c
(ρ0(x) − c) ∀x ∈ R,

and for k > 0, the critical threshold condition becomes

|u0x(x)| <
√
k(2ρ0(x) − c).

Clearly, the solution behavior for the attractive forcing case
k < 0) is quite different from that for the repulsive forcing case
k > 0). When the above mentioned cases are augmented with
amping forces in the momentum equation, an enlarged subcriti-
al region may be observed due the further balancing effect from
amping. A novel phase plane analysis method was introduced
n [18] to identify sharp critical thresholds in various scenarios.
or the variable background case, the tool used in [13] is no
onger applicable. We shall develop some comparison principle
o identify both upper and lower thresholds in the attractive
orcing case (k < 0). In the repulsive forcing case (k > 0),
he solution will be oscillatory in nature and consequently a
omparison lemma cannot be seemingly derived.
Even amidst the vast study of critical thresholds in Euler–

oisson systems, the variable background case has not been stud-
ed much. In fact, to our best knowledge, there is no known
ritical threshold result for Euler–Poisson equations with a back-
round state that varies in space. Compared to the constant
ackground, the critical threshold analysis of the Euler–Poisson
ystem with a variable background requires new tools. This paper
s devoted to the study of such scenario.

.3. Present investigation

In this work we focus on the pressureless case, in one di-
ensional periodic setting. Without loss of generality, we can set
:= [−1/2, 1/2] to be the domain of the spatial variable. More
recisely, we consider the following damped Euler–Poisson sys-
em with potential induced by a background which is a function
f the space variable,

ρt + (ρu)x = 0,
ut + uux = −νu − kφx, (1.1a)

− φxx = ρ − c(x),

2

on (0,∞) × T subject to periodic initial conditions,

ρ(0, x) = ρ0(x) ≥ 0, ρ0 ∈ C1(T),

u(0, x) = u0(x), u0 ∈ C1(T),
(1.1b)

here c(x) is the periodic background term which is Lipschitz
ontinuous and satisfies 0 < c1 ≤ c ≤ c2, ν ≥ 0 is the damping
coefficient, and parameter k < 0 signifies attractive forcing.

Furthermore, we add a nonlocal forcing to the momentum
quation. The resulting system is called an Euler–Poisson align-
ent system,

ρt + (ρu)x = 0,
ut + uux = −νu + ψ ∗ (ρu) − uψ ∗ ρ − kφx,

− φxx = ρ − c(x),
(1.2)

n (0,∞)×T, subject to periodic initial conditions (1.1b), where
: R → [0,∞) is assumed to have the following properties,

• ψ(x) = ψ(−x), ∀x > 0 (Symmetric),
• ψ(x + 1) = ψ(x), ∀x ∈ R (1-periodic),
• |ψ(x) − ψ(y)| ≤ K |x − y|, x, y ∈ R and some K > 0

(Lipschitz continuous).

et minψ = ψm and maxψ = ψM . Also, without loss of
enerality,

T
ρ0(x) dx =

∫
T
ρ(t, x) dx = 1 and

∫
T
c(x)dx = 1.

n this paper, we obtain bounds for supercritical as well as
ubcritical regions in the configuration of initial data for the
forementioned cases, thereby proving the existence of a critical
hreshold for each system.

.4. Related work

There is a considerable amount of literature available on
he solution behavior of Euler–Poisson equations. [19,20] gives
esults for nonexistence and singularity formation; [21,22] for
lobal existence of weak solutions with geometrical symme-
ry; [23] for isentropic case, and [24] for isothermal case. For 3-D
rrotational flow consult [25–27]. Smooth irrotational solutions
or the two dimensional Euler–Poisson system are constructed
ndependently in [28,29]. See also [30,31] for related results
n two dimensional case. In the one-dimensional Euler–Poisson
ystem with both adiabatic pressure and a nonzero background,
he authors in [32] showed the persistence of global solutions for
nitial data which is a small perturbation about the equilibrium.
et the existence of a critical threshold for such setting is still
pen.
For results on critical thresholds in restricted Euler–Poisson

ystems, we refer to [16] for sharp conditions on global regularity
s finite time breakdown for the 2-D restricted Euler–Poisson
ystem, and [15] for sufficient conditions on finite time break-
own for the general n-dimensional restricted Euler–Poisson
ystems. A relative complete analysis of critical thresholds in
ulti-dimensional restricted Euler–Poisson systems is given in

14] for both attractive and repulsive forcing. For multidimen-
ional Euler–Poisson with spherically symmetric solutions, see
13,33].

During recent years, Euler alignment systems have been stud-
ed by several researchers, see [10,34] for alignment forces dic-
ated by bounded kernels, [35,36] by singular kernels. The authors
n [10] give bounds on subcritical and supercritical regions for the
uler alignment system, i.e., k = 0, ν = 0 in (1.2) with bounded
ernel in one and two dimensions. The critical threshold con-
ition for one dimensional Euler alignment system was further
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ade precise in [34]. The authors also studied undamped Euler–
oisson alignment system, i.e. k ̸= 0, ν = 0, c = 0 in (1.2) where
hey showed that for such a system with k < 0, there is uncon-
itional breakdown. Our result stated in Theorem 2.6 shows the
xistence of a subcritical region in case of a positive background.
herefore, once again we see that presence of background with
ttractive forcing has a balancing effect. However, our comparison
ools do not seem to be applicable to the situation with repulsive
orcing (k > 0).

.5. Plan of the paper

Our work analyzes two classes of Euler–Poisson systems:

(1) Pressureless Euler–Poisson with background, and
(2) Pressureless Euler–Poisson alignment with background.

s a result all the further components of this paper are divided
nto two parts, each pertaining to a system. Section 2 contains
he main results along with some necessary preliminary anal-
sis. It has three subsections. The first one is devoted to the
reliminary calculations. The other two contain the main results
or each of the aforementioned systems. Section 3 contains the
nalysis/proofs of and tools for the theorems pertaining to the
irst system and Section 4 contains the same for Euler–Poisson
lignment system.

. Main results

.1. Preliminaries

The critical threshold analysis to be carried out is the a priori
stimate on smooth solutions as long as they exist. For the one-
imensional Euler–Poisson problem, local existence of smooth
olutions was long known, it can be justified by using the char-
cteristic method in the pressureless case.

heorem 2.1 (Local Existence). If ρ0 ∈ C1 and u0 ∈ C1, then
here exists T > 0, depending on the initial data, such that the
nitial value problem (1.1a), (1.1b) admits a unique solution (ρ, u) ∈
1([0, T ) × T). Moreover, if the maximum life span T ∗ < ∞, then

lim
↑T∗
∂xu(t, x∗) = −∞

or some x∗
∈ T.

To our knowledge, such local existence theorem has been
nown for a constant background case (c =const in (1.1a)).
owever, we will formally justify that the dependence of c on the
pace variable does not change the result of the theorem for (1.1a)
s well as (1.2) as long as c(x(t)) is well-defined and bounded. We
ill show this by analyzing a set of equations obtained along the
haracteristic curve.
We proceed to derive the characteristic system which is es-

ential to our critical threshold analysis. Differentiate the second
quation in (1.1a) with respect to x, and set d := ux to obtain:
′
+ ρd = 0, (2.1a)

′
+ d2 + νd = k(ρ − c(x(t))), (2.1b)

where we have used the Poisson equation in (1.1a) for φ, and

{}
′
=
∂

∂t
+ u

∂

∂x
denotes the differentiation along the particle path,

Γ = {(t, x)| x′(t) = u(t, x(t)), x(0) = α ∈ T}.

Here, we employ the method of characteristics to convert the PDE
system (1.1a) to ODE system (2.1) along the particle path which
3

s fixed for a fixed value of the parameter α. Consequently, the
nitial conditions to the above equations are ρ(0) = ρ0(α) and
(0) = d0(α) = u0x(α) for each α ∈ T. Note that this in itself is
ot a closed system. However, we can obtain a complete system
ith additional ODEs. Setting

:= −φx =

∫ x

−1/2
ρ(t, y) − c(y)dy −

∫ t

0
(ρu)(s,−1/2)ds,

e obtain,

x′
= u,

u′
+ νu = kE,

E ′
= −cu.

(2.2)

or E to be periodic, necessarily

T
ρ(t, y) − c(y)dy = 0

or any t > 0. This combined with the conservation of mass
equires

∫
T ρ0(y)−c(y)dy = 0. Note that this subsystem is a closed

ystem, which allows us to independently analyze (2.1) with c
btained from system (2.2). Since c(x) is Lipschitz continuous, the
ystem for (x, u, E) admits a unique solution for each given initial
ata. Moreover,
1
2
(x2 + u2

+ E2)′ = xu + kuE − νu2
− cuE

≤ (1 + |k| + 2ν + max c)(x2 + u2
+ E2).

n integrating we get
2
+ u2

+ E2
≤ (α2

+ u2
0 + E2(0, α))e2(1+|k|+2ν+max c)t

∀t > 0,

hich says that x, u, E remain bounded for all time. Hence, we
an solely analyze (2.1) to conclude the long time behavior of the
olution. The system with alignment (1.2) is no different. Indeed,
remains bounded because at any time, the alignment force is a
ere weighted average of the relative speed.
The above discussion shows that we still lie in the purview of

heorem 2.1. That is, if ux remains bounded for all the character-
stics then we ensure global-in-time solution from Theorem 2.1.
ikewise, if for any characteristic, |ux| → ∞ in finite time, there is
inite time breakdown. This allows us to analyze (2.1) as a system
for our purpose using the bounds of c(x).

We are now in a position to establish our critical threshold
theory which includes results on both the global-in-time solution
and finite time breakdown for (1.1a) and (1.2).

In order to conveniently present our main results and their
proofs, we hereby introduce two functions from R+

× R+
→ R,

Ω(γ , β) :=
β +

√
β2 − 4kγ
2

, (2.3a)

(γ , β) :=
−β +

√
β2 − 4kγ
2

, (2.3b)

where these two functions satisfy,

−Ω(γ , β) ≤ 0 ≤ Θ(γ , β).

2.2. Euler–Poisson with variable background

We first state our main results for (1.1a).

Theorem 2.2 (Global Solution). Consider the system (1.1a) with
nitial conditions (1.1b). Let k < 0, λ1 = Ω(c1, ν), 0 < c1 =

inx∈T c(x) and c2 = maxx∈T c(x). If

(ρ0(x), u0x(x)) ∈

{
(ρ, d) : d >

λ1 (ρ − c1)
}

∀x,

c1
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hen there exists a unique global-in-time solution, ρ, u ∈ C1((0,∞)
T). In particular,

ρ(t, ·)∥∞ ≤ ∥ρ0∥∞eλ1t , and
− λ1 ≤ ux(t, ·) ≤ max {max u0x,Θ(c2, ν)} .

Theorem 2.3 (Finite Time Breakdown). Consider the system (1.1a)
ith initial conditions (1.1b). Let k < 0 and c2 = maxx∈T c(x). If
x0 ∈ T such that

0x(x0) <
Ω(c2, ν)

c2
(ρ0(x0) − c2),

hen ∃(t∗, x∗) such that limt↑t∗ ux(t, x∗) = −∞.

Remark 2.4. We would like to point out that essentially the same
threshold results hold for the case when the domain is all of R.
We work on the periodic case to avoid a technical discussion at
far fields (x → ±∞), especially in the alignment with background
case (Section 4), where talking about far fields is physically less
meaningful as the total mass is infinite because of the following
imperative neutrality condition∫

∞

−∞

(ρ0(y) − c(y)) dy = 0.

Theorem 2.5. Consider the system (1.1a) with initial conditions
(1.1b) and assume c(x) ≡ c. Then there exists unique global solution
ρ, u ∈ C1((0,∞) × T) iff

(ρ0(x), u0x(x)) ∈

{
(ρ, d) : d ≥

Ω(c, ν)
c

(ρ − c)
}

∀x ∈ T.

This critical threshold result in the case of ν = 0 is in agree-
ment with that obtained in [13]. SinceΩ is an increasing function
in the second variable, the presence of damping increases the
slope of the critical threshold line in the (ρ, d) plane, hence
allowing for a different initial configuration leading to global
regularity or finite-time breakdown of solutions.

2.3. Euler–Poisson alignment with variable background

We now state the main results for (1.2).

Theorem 2.6. Consider the system (1.2) with initial conditions
(1.1b). Let k < 0, 0 < c1 = minx∈T c(x), c2 = maxx∈T c(x),

M = maxx∈R ψ(x), ψm = minx∈R ψ(x) and λM = Ω(c1, ν + ψM ).
f

0x(x) >
λMρ0(x)

c1
−Θ(c1, ν + ψM ) − ν − ψ ∗ ρ0(x) ∀x ∈ T,

then there exists a unique global solution ρ, u ∈ C1((0,∞) × T).
Furthermore, we have the following bounds,

∥ρ(t, ·)∥∞ ≤ ∥ρ0∥∞eλM t ,

− λM ≤ ux(t, ·) ≤ max{max u0x,Θ(c2, ν + ψM )} + ψM − ψm.

Theorem 2.7. Consider the system (1.2) with initial conditions
(1.1b). Let k < 0, c2 = maxx∈T c(x) and ψm = minx∈R ψ(x). If
∃x0 ∈ T such that,

u0x(x0) <
Ω(c2, ν + ψm)ρ0(x0)

c2
−Θ(c2, ν+ψm)− ν−ψ ∗ ρ0(x0),

hen inf limt↑tc ux(t, ·) = −∞ for some finite tc .

Remark 2.8. We would like to point out that if ψ ≡ 0 in the
above theorems then we recover Theorems 2.2 and 2.3, respec-
tively. In other words our analysis of the generalization to the
case with alignment is optimal. Also, if ψ(x) ≡ ψ is a constant,
then we obtain the following two corollaries.
 m

4

Corollary 2.9. Consider the system (1.2), initial conditions (1.1b)
with ψ(x) ≡ ψ (constant). Let k < 0, 0 < c1 = minx∈T c(x),
c2 = maxx∈T c(x) and λ1 = Ω(c1, ν + ψ). If

u0x(x) >
λ1

c1
(ρ0(x) − c1) ∀x ∈ T,

then there exists a unique global-in-time solution ρ, u ∈ C1((0,∞)
T). Furthermore, we have the following bounds,

∥ρ(t, ·)∥∞ ≤ ∥ρ0∥∞eλ1t ,
− λ1 ≤ ux(t, ·) ≤ max{max u0x,Θ(c2, ν + ψ)},

orollary 2.10. Consider the system (1.2), initial conditions (1.1b)
ith ψ(x) ≡ ψ (constant). Let k < 0, c2 = maxx∈T c(x). If ∃x0 ∈ T
uch that,

0x(x0) <
Ω(c2, ν + ψ)

c2
(ρ0(x0) − c2),

then there exist tc > 0 and xc ∈ T such that limt↑tc ux(t, xc) = −∞.

. Euler–Poisson systems with variable background

.1. Critical thresholds for an auxiliary system

The main tool in dealing with the variable background is the
se of comparison. To this end, we introduce an auxiliary ODE
ystem corresponding to (2.1),
′
= −ηξ, (3.1a)

′
= −ξ 2 − νξ + kη − kγ . (3.1b)

here γ ≥ 0 is a parameter. Hence, η, ξ are functions of time
s well as the parameter γ . However, we will omit the latter de-
endence on the parameter whenever it is clear from context. We
ill make use of the phase plane analysis technique introduced

n [18] to prove a proposition for this auxiliary problem which
ill play a crucial role in proving the theorems stated.

roposition 3.1. Consider the ODE system (3.1) with initial con-
itions (η(0) ≥ 0, ξ (0)), then 0 ≤ η(t) and ξ (t) ≤ max{ξ (0),
(γ , ν)} for all t > 0. The solution exists globally for all t > 0
ith

(t) ≤ η(0)eλt , and − λ ≤ ξ (t),

f and only if

(0) ≥
λ

γ
(η(0) − γ ).

ere λ = Ω(γ , ν). Moreover, if

(0) <
λ

γ
(η(0) − γ ),

then limt→t−c
η(t) = − limt→t−c

ξ (t) = ∞ for some tc > 0.

roof. Note that from (3.1a), we have η(t) = η(0)e−
∫ t
0 ξ dτ and

ence, if η(0) > 0 then η(t) > 0 for all t > 0 as long as the
olution exists and η(0) = 0 H⇒ η(t) ≡ 0. Hence, η maintains
ign. For a uniform upper bound on ξ , note that since η ≥ 0, from
3.1b),
′
≤ −ξ 2 − νξ − kγ
= −(ξ + λ)(ξ − µ).

ith λ = Ω(γ , ν) and µ = Θ(γ , ν) satisfying −λ ≤ 0 ≤ µ.
omparing the above inequality with (3.2), we obtain ξ (t) ≤

ax{ξ (0), µ} for all t > 0.
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We first consider the case when η(0) = 0 ≡ η(t). Then from
(3.1b),

ξ ′
= −ξ 2 − νξ − kγ =: −(ξ + λ)(ξ − µ). (3.2)

Using phase line analysis, we have that ξ (t) exists for all time if
and only if ξ (0) ≥ −λ. In the case of global solution, we have

−λ ≤ ξ (t) ≤ max{ξ (0), µ}.

If ξ (0) < −λ, ξ (t) tends to −∞ at a finite time tc . Such time may
be determined from the solution formula of form
ξ − µ

ξ + λ
=
ξ (0) − µ

ξ (0) + λ
e(λ+µ)t ,

we have

tc =
1

µ+ λ
log
⏐⏐⏐⏐ ξ (0) + λ

ξ (0) − µ

⏐⏐⏐⏐ .
s a result of the above discussion, we can now assume η(0) > 0
hich in turn implies η(t) > 0 for all t > 0. We proceed to

ntroduce the transformation

:= ξ/η, s := 1/η,

o that (3.1) is transformed to the following linear system,
′
= −νr + k − kγ s, (3.3a)

′
= r (3.3b)

with initial data r(0) := ξ (0)/η(0) and s(0) := 1/η(0) > 0. This is
a linear ODE system, its solution (r, s) will remain bounded for all
time. This fact when combined with the transformation says that
(ξ, η) exists globally if and only if s(t) > 0 for all time. Therefore,
the key here is to identify critical thresholds for initial data to
ensure s(t) > 0 for all positive times.

We move onto analyzing (3.3). It is a linear system with the
critical point (0, 1/γ ) being the saddle point. Written in matrix
form, the system is:[

r
s − 1/γ

]′

=

[
−ν −kγ
1 0

][
r

s − 1/γ

]
he coefficient matrix has eigenvalues −λ and µ. Hence the
eneral solution to this system is,[

r
s −

1
γ

]
= A

[
−λ

1

]
e−λt

+ B
[
µ

1

]
eµt . (3.4)

rom the flow of solution trajectories we see that the separa-
rix with incoming trajectories serves to divide the upper half
lane(s > 0) into two invariant regions, one of which has the
roperty that if s(0) > 0, then s(t) > 0 for all t > 0.
Such separatrix corresponds to the special solutions with B =

, i.e.,
r

s −
1
γ

]
= A

[
−λ

1

]
e−λt .

Consequently, this trajectory equation is,

γ r = λ(1 − γ s).

Thus the region mentioned in Fig. 1 can be characterized by

Σγ := {(r, s) : γ r ≥ λ(1 − γ s), s > 0} .

In order to see this is an invariant region, we only need to show
that on ∂Σγ ∩{s = 0} the trajectories go into the region. Note that
the r−intercept of the separatrix is (λ/γ ) > 0, hence for r ≥ λ/γ
and s = 0 we have s′ = r > 0 and the trajectory travels upwards.

Moving back to the original variables (η, ξ ), Σγ transforms to

Σ̃γ :=

{
(η, ξ ) : ξ ≥

λ
(η − γ ), η > 0

}
.

γ

5

Fig. 1. Direction field for reduced linear system along with the invariant region.
(ν = 3, k = −1, γ = 1.)

ikewise, if (η(0), ξ (0)) ∈ Σ̃γ , then η(t) < ∞ and ξ (t) ≥
λ
γ
(η(t)−

) ≥ −λ for all t > 0.
Now suppose (r(0), s(0) > 0) /∈ Σγ . Since, the linear ODE sys-

em has only one critical point, we have that limt→∞(|r(t)|, s(t))
(∞,−∞). Hence, the solution crosses s = 0 line at some finite

time, tc .
We will now derive an upper bound on tc . Using the general

solution (3.4) we can find the solution formula,

(t) =
1
γ

+
µ

(λ+ µ)

(
s(0) −

1
γ

−
r(0)
µ

)
e−λt

+
λ

(λ+ µ)

(
s(0) −

1
γ

+
r(0)
λ

)
eµt .

Assuming the finite time breakdown condition, i.e., s(0) −
1
γ

+

r(0)
λ
< 0, then

s(t) ≤
1
γ

+

(
s(0) +

1
γ

+
|r(0)|
µ

)
−

λ

(λ+ µ)

⏐⏐⏐⏐s(0) −
1
γ

+
r(0)
λ

⏐⏐⏐⏐ eµt .
Consequently, s(tc) = 0 for some

tc ≤
1
µ

ln

⎛⎝ (λ+ µ)
λ

⎛⎝ s(0) +
2
γ

+
|r(0)|
µ⏐⏐⏐s(0) −

1
γ

+
r(0)
λ

⏐⏐⏐
⎞⎠⎞⎠ .

And therefore, if (η(0), ξ (0)) /∈ Σ̃γ , then limt→t−c
η(t) = ∞. And

from (3.1a), we obtain limt→t−c
ξ (t) = −∞. This completes the

proof to the proposition. □

For the case when c(x) ≡ c in (1.1a), we can apply
roposition 3.1 with γ = c to (2.1) and immediately obtain
heorem 2.5.

.2. Comparison lemma

We are now in position to present the comparison result.

emma 3.2 (Comparison lemma). Let (ρ, d) be the solution to (2.1),
nd (η, ξ ) be solution of (3.1). Then as long as these solutions exist,
e have
i) For γ = minT c(x): If ρ(0) < η(0) and d(0) > ξ (0), then

(t)⟨η(t), d(t)⟩ξ (t).
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ii) For γ = maxT c(x): If ρ(0) > η(0) and d(0) < ξ (0), then

(t) > η(t), d(t) < ξ (t).

roof. We will show (i). Similar arguments follow for (ii). We will
rgue by contradiction. To this end, let t1 be the first time when

the result is violated. Integrate (2.1a) and (3.1a) respectively to
get ρ(t) = ρ(0)e−

∫ t
0 d dτ and η(t) = η(0)e−

∫ t
0 ξ dτ . Since

∫ t1
0 d dτ >∫ t1

0 ξ dτ and ρ(0) < η(0), we obtain

ρ(t1) = ρ(0)e−
∫ t1
0 d dτ < η(0)e−

∫ t1
0 ξ dτ

= η(t1).

We can then conclude that d(t1) = ξ (t1) along with ρ(t1) < η(t1).
Subtracting (3.1b) from (2.1b), we obtain,

(d − ξ )′ = −(d + ξ + ν)(d − ξ ) + k(ρ − η) − k(c − γ ).

Plugging in t = t1 and taking γ = min c , we obtain

(d − ξ )′(t1) = k(ρ(t1) − η(t1)) − k(c − min c)
> 0.

This is a contradiction because this implies that for all t < t1
sufficiently close, d(t) < ξ (t) and hence, t1 cannot be the first
time of violation. □

3.3. Proofs of Theorems 2.2 and 2.3

Using the tools developed above, we are now ready to prove
our main results.

Proof of Theorem 2.2. Consider (2.1) along a fixed characteristic
and (3.1) for γ = c1. From hypothesis of theorem, we see that
(0) > λ1

c1
(ρ(0) − c1). As a result we can choose η(0) > ρ(0) and

ξ (0) < d(0) such that

d(0) > ξ (0) ≥
λ1

c1
(η(0) − c1) >

λ1

c1
(ρ(0) − c1).

pplying Lemma 3.2, we obtain

(t)⟨η(t), and d(t)⟩ξ (t),

or as long as these functions exist. Using Proposition 3.1, we
btain that ρ(t) < η(0)eλ1t and d(t) > −λ1 for all t > 0. However,

note that η(0) can be chosen to be greater than but arbitrarily
close to ρ(0) and all the above arguments still hold. Therefore, in
the limit, we have ρ(t) ≤ ρ(0)eλ1t . Also, a uniform upper bound
on d can be obtained in a similar fashion as in Proposition 3.1.
From (2.1b),

d′
≤ −d2 − νd − kc2
= −(d +Ω(c2, ν))(d −Θ(c2, ν)).

Hence, d(t) ≤ max{d(0),Θ(c2, ν)}.
Collecting all the characteristics, we finally obtain,

∥ρ(t, ·)∥∞ ≤ ∥ρ0∥∞eλ1t ,
− λ1 ≤ ux(t, ·) ≤ max{∥u0x∥∞,Θ(c2, ν)}.

his concludes the proof of Theorem 2.2. □

roof of Theorem 2.3. Consider (2.1) with ρ(0) = ρ0(x0), d(0) =

u0x(x0) for x0 as in the statement of the theorem. In (3.1), let
γ = c2. From the hypothesis of the theorem, we see that d(0) <
λ2
c2
(ρ(0) − c2). We can then choose η(0) < ρ(0) and ξ (0) > d(0)

such that,

d(0) < ξ (0) <
λ2

c2
(η(0) − c2) <

λ2

c2
(ρ(0) − c2).

pplying Lemma 3.2, we obtain

(t) > η(t), and d(t) < ξ (t).
6

Using Proposition 3.1, we obtain that for some tc > 0, ρ(t) → ∞

as t → t−c . And from (2.1a), limt→t−c
d(t) = −∞ and the solution

ceases to be C1. □

4. EPA systems with variable background

4.1. Reformulations

Set G := ux + ν + ψ ∗ ρ. Taking derivative of G along

=
∂

∂t
+ u

∂

∂x
,

e have,
′
= (ut )x + ψ ∗ ρt + u(ux + ψ ∗ ρ)x
= (−uux − νu + ψ ∗ (ρu) − uψ ∗ ρ − kφx)x

− (ψ ∗ (ρu))x + u(ux + ψ ∗ ρ)x
= −Gux + k(ρ − c)
= −G(G − ν − ψ ∗ ρ) + k(ρ − c).

e used (1.2) to obtain the second and third equations. Conse-
uently, along the particle path given by,

= {(t, x)| x′(t) = u(t, x(t)), x(0) = α ∈ T},

e get the following ODE system,
′
= −ρ(G − ν − ψ ∗ ρ), (4.1a)

′
= −G(G − ν − ψ ∗ ρ) + k(ρ − c(x(t))), (4.1b)

ith initial condition,

(0) = ρ0(α), G(0) = u0x(α) + ν + ψ ∗ ρ0(α).

he roadmap to the proofs of the main theorems will be similar
o the previous section. However, due to the addition of the non
ocal term, here we first transform the ODE system (4.1) into a
imple system, and then introduce an auxiliary ODE system which
an be used for comparison. And eventually we use these tools to
rove our main results.
Note that the transformation will require ρ(t) > 0 as long as

he solution exists, this is ensured by assuming ρ(0) > 0. In fact,
rom (4.1a), we have that ρ maintains sign, hence the zero case
an be handled separately.
Next, we use the following transformation of variables for the

ase ρ > 0,

=
G
ρ
, s =

1
ρ
, (4.2)

o derive an ODE system for w and s. Differentiating w,

G
ρ

)′

= −
ρ ′

ρ2 +
G′

ρ

=
(G − ν − ψ ∗ ρ)G

ρ
−

(G − ν − ψ ∗ ρ)G
ρ

+ k
(ρ − c)
ρ

= k − kcs.

ikewise, we differentiate s,

1
ρ

)′

=
(G − ν − ψ ∗ ρ)

ρ

= w − νs − sψ ∗ ρ.

e then obtain the following ODE system,
′
= k − kcs, (4.3a)

′
= w − (ν + ψ ∗ ρ)s, (4.3b)

ith initial conditions

(0) :=
G(0)
ρ(0)

and s(0) :=
1
ρ(0)

.
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.2. Threshold analysis for the auxiliary system

Corresponding to (4.3), we introduce the following auxiliary
ystem,
′
= k − kγ q, (4.4a)

′
= p − βq, (4.4b)

here γ ≥ 0, β ≥ ν are parameters and initial conditions
p(0), q(0) > 0). Hence, p, q are functions of time as well as the
arameters γ , β . However, we will omit the latter dependence
n the parameters whenever it is clear from context. We have
he following proposition.

roposition 4.1. For the system (4.4), with initial conditions
p(0), q(0) > 0), we have that q(t) > 0 for all t > 0 if and only
f

(0) ≥
λ

γ
− µq(0),

where λ = Ω(γ , β) and µ = Θ(γ , β). Additionally, if the above
nequality holds, then it holds for all times, i.e.,

(t) ≥
λ

γ
− µq(t), ∀t > 0.

We will once again make use of the phase plane analysis
technique developed in [18].

Proof. (4.4) is a linear system with critical point (β/γ , 1/γ ).
Written in matrix form, the system is:[
p −

β

γ

q −
1
γ

]′

=

[
0 −kγ
1 −β

][p −
β

γ

q −
1
γ

]
.

he eigenvalues of the coefficient matrix are −λ and µ and the
eneral solution to the system is,[
p −

β

γ

q −
1
γ

]
= A

[
kγ
λ

]
e−λt

+ B
[
−kγ
µ

]
eµt . (4.5)

rom the flow of solution trajectories we see that the separatrix
ith incoming trajectories serves to divide the upper half plane
q > 0) into two invariant regions, one of which has the property
hat if q(0) > 0, then q(t) > 0 for all t > 0.

Such separatrix corresponds to the special solutions with B =

0, i.e.,[
p −

β

γ

q −
1
γ

]
= A

[
kγ
λ

]
e−λt .

Consequently, this trajectory equation is,

λp =
λβ

γ
− k + kγ q.

Note that 1
λ

= −
µ

kγ and β + µ = λ, the above equation becomes

p =
λ

γ
− µq.

Thus the region mentioned in Fig. 2 can be characterized by

Σγ ,β :=

{
(p, q) : p ≥

λ

γ
− µq, q > 0

}
.

Now suppose (p(0), q(0) > 0) /∈ Σγ ,β . Since, the linear ODE sys-
tem has only one critical point, we have that limt→∞(|p(t)|, q(t))
= (∞,−∞). Hence, the solution crosses q = 0 line at some finite
7

Fig. 2. Direction field for linear system along with the invariant region. (β =

.5, k = −1, γ = 1.)

ime, tc . This by itself concludes the proof but we will, however,
erive an upper bound on tc using the general solution (4.5),

(t) =
1
γ

+

(
−p(0) + λq(0) −

µ

γ

λ+ µ

)
e−λt

+

(
p(0) + µq(0) −

λ
γ

λ+ µ

)
eµt .

ssuming (p(0), q(0)) /∈ Σγ ,β , we have

η(t) =
1
γ

+

(
−p(0) + λq(0) −

µ

γ

λ+ µ

)
e−λt

−

⏐⏐⏐p(0) + µq(0) −
λ
γ

⏐⏐⏐
λ+ µ

eµt

≤
1
γ

+
|p(0)|
λ+ µ

+ q(0) −

⏐⏐⏐p(0) + µq(0) −
λ
γ

⏐⏐⏐
λ+ µ

eµt .

Hence, q(tc) = 0 for some

tc ≤
1
µ

ln

(
(λ+ µ)(q(0) + γ−1) + |p(0)|⏐⏐p(0) + µq(0) − λγ−1

⏐⏐
)
. □

4.3. Comparison lemma

We will now derive the comparison lemma.

Lemma 4.2 (Comparison Lemma). Let (w, s) be solution to (4.3)
nd (p, q) be solution to (4.4). Then as long s ≥ 0, we have:
i) For c = c1, β = ν + ψM : If s(0) > q(0) and w(0) > p(0), then

(t) > q(t), w(t) > p(t).

ii) For c = c2, β = ν + ψm: If s(0) < q(0) and w(0) < p(0), then

(t) < q(t), w(t) < p(t).

roof. We only prove the first assertion. Second assertion can
e proved by similar arguments. We argue by contradiction: let
1 be the first time at which statement (i) is violated. Subtracting
4.3a) from (4.4a), and integrating we obtain,

(t) − p(t) = w(0) − p(0) − k
∫ t

0
(cs − γ q)dτ

= w(0) − p(0) − kγ
∫ t

0
(s − q) dτ − k

∫ t

0
s(c − γ ) dτ .
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aking γ = c1 = minT c(x) and plugging in t = t1 in the equation
obtained, we have that

w(t1) − p(t1) ≥ w(0) − p(0) − kγ
∫ t1

0
(s − q) dτ > 0.

Therefore, the only possibility left is that s(t1) = q(t1).
Subtracting (4.3b) from (4.4b), we obtain

s − q)′ = (w − p) + βη − s(ν + ψ ∗ ρ)
= (w − p) + β(q − s) + s(β − ν − ψ ∗ ρ).

ote that ψ ∗ ρ ∈ [minR ψ,maxR ψ] = [ψm, ψM ]. Taking β =

+ ψM and plugging in t = t1 in the above equation, we get

s − q)′(t1) ≥ w(t1) − p(t1) > 0.

his means that for t < t1 sufficiently close, we must have
(t) < q(t), which is a contradiction. □

.4. Proofs of Theorems 2.6 and 2.7

As usual, we will analyze the solution on a single characteristic
nd since the inequality in the statement of the theorem holds
or all x, we can then collect all the characteristics to conclude
he result.

Therefore, it suffices to obtain the thresholds results for (4.1)
sing Proposition 4.1 and Lemma 4.2.
First we show that G is always bounded form above irre-

spective of the choice of the initial data. From (4.1b), we have

G′
≤ −G(G − ν − ψ ∗ ρ) − kc

= −(G2
− (ν + ψ ∗ ρ)G + kc)

= −(G − G+)(G − G−),
(4.6)

where

G+ = Ω(c, ν + ψ ∗ ρ), G− = −Θ(c, ν + ψ ∗ ρ)

depend on c and ψ ∗ ρ, therefore changing in time.
Note that

G+ ≤ Ω(c2, ν + ψM )

and the fact that G is non-increasing in the regime where G ≥ G+,
hence

G ≤ max{G(0), supG+} ≤ max {ux(0) + ν + ψM ,Ω(c2, ν + ψM )} .

Hence,

ux ≤ supG − ν − minψ ∗ ρ

≤ max {ux(0),Ω(c2, ν + ψM ) − ν − ψM} + ψM − ψm

= max {ux(0),Θ(c2, ν + ψM )} + ψM − ψm.

Note that this upper bound holds irrespective of the hypothesis of
the theorem. ux being bounded above is a result of the dynamics
of the system (4.1).

We now handle the ρ(0) = 0 ≡ ρ case before dealing with
the case ρ > 0 separately.

In such case we have ρ ≡ 0. Consider (4.1) with ρ(0) = ρ0(α),
G(0) = u0x(α) + ν + ψ ∗ ρ0(α) with a fixed α ∈ T. Hence along
the characteristics starting from α we have

G′
= −G(G − ν − ψ ∗ ρ) − kc
= −(G − G+)(G − G−),

(4.7)

where G± are same as above. From the phase line analysis, we
have that

G(t) ≥ supG
−

8

for all t > 0 if

G(0) ≥ supG− = −Θ(c1, ν + ψM ).

We will show that this indeed satisfies the threshold inequality
in the theorem.

ux(0) = G(0) − ν − ψ ∗ ρ(0)
> −Θ(c1, ν + ψM ) − ν − ψ ∗ ρ(0)
= supG− − ν − ψ ∗ ρ(0),

hen

x(t) = G(t) − ν − ψ ∗ ρ(t) ≥ −Θ(c1, ν + ψM ) − ν − ψM = −λM

or all t > 0.
On the other hand, consider (4.1) with α = x0 as in the

tatement of Theorem 2.7. Then from (4.1b),
′
= −(G − G+)(G − G−).

rom phase line analysis, we have that G → −∞ in finite time if

(0) < infG− = −Θ(c2, ν + ψm).

ence, if

x(0) = G(0) − ν − ψ ∗ ρ(0)
< −Θ(c2, ν + ψm) − ν − ψ ∗ ρ(0)

hen limt→t−c
G = limt→t−c

ux = −∞ for some time tc and this is
ndeed the statement of Theorem 2.7.

Now we deal with the case when ρ > 0.

roof of Theorem 2.6. Along the fixed characteristics from α, we
ewrite the initial threshold condition in the theorem as,
G(0)
ρ(0)

>
λM

c1
−
µM

ρ(0)
, µM := Θ(c1, ν + ψM ),

nd this when transformed by (4.2), reads

(0) >
λM

c1
− µMs(0).

We can then choose p(0) < w(0) and q(0) < s(0) in (4.4) such
hat the following holds,

(0) > p(0) ≥
λM

c1
− µMq(0) >

λM

c1
− µMs(0).

Applying Lemma 4.2 and Proposition 4.1 for γ = c1, β = ν+ψM ,
we have that

w(t) > p(t) ≥
λM

c1
− µMq(t) >

λM

c1
− µMs(t).

for all t > 0 along with the positivity of s, i.e. s(t) > 0. Hence,

w(t) >
λM

c1
− µMs(t), ∀t > 0.

Transforming back to (ρ,G), we have

G(t) >
λMρ(t)

c1
− µM .

From this we can obtain a lower bound on ux.

ux = G − ν − ψ ∗ ρ > −µM − ν − ψM = −λM .

ntegrating (4.1a),

(t) = ρ(0)e−
∫ t
0 uxdτ < ρ(0)eλM t .

Collecting all the characteristics finishes the proof of the
heorem. □
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roof of Theorem 2.7. Under the transformation (4.2), the initial
hreshold condition from the theorem reads,

(0) <
λm

c2
− µms(0),

where λm := Ω(c2, ν + ψm) and µm := Θ(c2, ν + ψm). Conse-
uently, in (4.4), we can choose p(0) > w(0) and q(0) > s(0) such
hat the following holds,

(0) < p(0) <
λm

c2
− µmq(0) <

λm

c2
− µms(0).

rom Lemma 4.2, we have that

(t) < p(t), s(t) < q(t)

as long as s ≥ 0. Applying Proposition 4.1 with γ = c2 and
= ν + ψm, we have the existence of a finite time t∗ such that,

(t∗) = 0.

herefore s(t) must touch zero before t∗, say at tc < t∗. Conse-
uently, limt→t−c

ρ(t) = ∞ and therefore, from (4.1a),

lim
→t−c

ux(t, x(t, x0)) = −∞.

his concludes the proof. □
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