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Abstract. In this paper, we introduce novel discontinuous Galerkin (DG) schemes for the Cahn-

Hilliard equation, which arises in many applications. The method is designed by integrating the

mixed DG method for the spatial discretization with the Invariant Energy Quadratization (IEQ)

approach for the time discretization. Coupled with a spatial projection, the resulting IEQ-DG

schemes are shown to be unconditionally energy dissipative, and can be efficiently solved without

resorting to any iteration method. Both one and two dimensional numerical examples are provided

to verify the theoretical results, and demonstrate the good performance of IEQ-DG in terms of

efficiency, accuracy, and preservation of the desired solution properties.

1. Introduction

The Cahn-Hilliard (CH) equation, originally introduced in [6] as a model of phase separation

in binary alloys, has become a fundamental equation as well as a building block in the phase field

methodology for moving interface problems arising from various applications (see, e.g., [28] for the

references therein).

This work is concerned with high order numerical approximations to the Cahn-Hilliard problem:

find {u(x, t), w(x, t)} for x ∈ Ω and t > 0 such that

ut = ∇ · (M(u)∇w),

w = −ε2∆u+ F ′(u),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊆ Rd(d = 1, 2, 3) is a bounded domain, ε is a positive parameter, M(u) ≥ 0 is the mobility

function, F (u) is the nonlinear bulk potential, and u0(x) is the initial data.

The well-posedness study of the Cahn–Hilliard equation is very rich, and the existing results are

mainly for two types of models: one is the constant mobility with polynomial potentials ([13]), and

another is the degenerate mobility of form M(u) = u(1−u) ([11]) with the potential of logarithmic

types (see, e.g., [6, 12, 43, 11, 10]). Here we numerically study model (1.1) with no restrictions

on the specific form of the mobility and free energy. For the degenerate CH model, we apply the

established scheme to regularized systems as discussed in Section 4. While we also refer the reader

to [30] for a new relaxation system to approximate the degenerate CH model.

We consider in this paper the following boundary conditions:

(i) u is periodic; or (ii) ∂nu = M(u)∂nw = 0, x ∈ ∂Ω. (1.2)
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Here n stands for the unit outward normal to the boundary ∂Ω. With such boundary conditions,

equation (1.1) is endowed with a gradient flow structure ut = ∇ · (M(u) δ
δu
E), dictated by the

energy dissipation law

d

dt
E(u) = −

∫
Ω

M(u)|∇w|2 ≤ 0, (1.3)

where the total free energy is defined by

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx. (1.4)

The CH model is nonlinear and its analytical solutions are intractable. Also, for a gradient flow such

as the CH equation steady states are of particular interest. Hence, designing accurate, efficient,

and energy stable algorithms to solve it becomes essential, in particular for the accuracy of long

time simulations. Keeping the energy dissipation (1.3) has been a major concern in the design of

various numerical schemes, see, e.g. [5, 14, 18, 33, 31, 17, 34, 41, 7].

In this paper, we aim to develop unconditionally energy stable discontinuous Galerkin (DG)

schemes for solving the CH model problem. To achieve this, we face two main challenges: (i) how

to handle fourth order derivatives in the DG discretization; and (ii) how to handle the nonlinear

term associated with the potential F in time discretization.

For (i), several approaches have been adopted to deal with difficulties caused by the high order

solution derivatives. The first one is the local DG (LDG) methods [38, 21, 32], with which the

original equation is rewritten into a first order system for further DG discretization. The second

one is the mixed symmetric interior penalty DG (SIPG) methods [36, 15, 16, 17], with which the

penalty terms are added as interface corrections upon the global solution formulation so that the

resulting scheme is stable. It is also possible to apply an ultra-weak DG discretization, such as the

DG scheme in [9] for the one-dimensional biharmonic equation. The spatial DG discretization we

adopt here takes advantages of both the SIPG method and the mixed DG method without interior

penalty in [25, 26] for another class of fourth order PDEs.

For (ii), there are several related time discretization techniques available in the literature, includ-

ing the so-called convex splitting approach [14, 37, 7] and the stabilization approach [31, 39, 44, 45].

The convex splitting approach, introduced in the pioneering work [14], treats the convex part of

the potential implicitly and the concave part explicitly. As a result such method is uncondition-

ally energy stable, however, it produces nonlinear schemes, thus the implementations are often

complicated with potentially high computational costs. The stabilization approach, introduced in

[39] for epitaxial growth models, treats the nonlinear term explicitly so that the resulting scheme

becomes stable after a stabilization term is added to avoid strict time step constraints. However,

a large stabilization constant is often needed to ensure energy stability.

A more feasible remedy would be to make a reasonable transform of the given potential. One

technique is the Invariant Energy Quadratization (IEQ) approach introduced in [40, 46], which

generalized the two types of linear energy stable schemes introduced in [19]. The IEQ method is

known to provide flexibilities to treat the nonlinear terms since it only requests that the nonlinear

potential be bounded from below. We note that recently a related approach, called the SAV



IEQ-DG METHODS FOR THE CAHN-HILLIARD EQUATION 3

method, has been introduced in [35, 34] with certain advantages over the IEQ. Yet efficiently

solving the resulting linear system when coupled with a DG spatial discretization is subtle, see

[27].

In order to design IEQ-DG schemes, our strategy is to start with the model satisfying two basic

assumptions:

(i) the mobility function M(u) satisfies

M(u) ≥Mmin > 0;

(ii) there exist a constant B > 0, such that

F (u) > −B,

for any u under consideration, and further discuss how to extend the established schemes to more

general cases.

The IEQ-DG method introduced in [26] for the Swift–Hohenberg equation has several advan-

tages, such as high order of accuracy, easy implementation, and efficiency. Unfortunately, the DG

discretization in [26] when applied to the CH equation (1.1) does not seem to yield the desired

energy stability. Therefore, in this paper, we exploit the direct DG (DDG) method [24] for both

u and w, which when taking a special choice of the flux parameters can be reformulated into a

mixed symmetric interior penalty DG (SIPG) scheme (see, e.g., [16]).

The IEQ approach for time discretization relies on an auxiliary variable U =
√
F (u) + B, so

that

Ut =
1

2
H(u)ut, H(u) := F ′(u)/

√
F (u) + B.

With this transformation we update Un in two steps: the piecewise L2 projection with Un
h = ΠUn,

and the update step with

Un+1 − Un
h

∆t
=

1

2
H(unh)

un+1
h − unh

∆t
.

The resulting IEQ-DG scheme follows from replacing the nonlinear function F ′(un+1
h ) byH(unh)Un+1

in the DG discretization (see the scheme formulation in (3.4)). In addition, the resulting discrete

systems are linear. As a result, the methods are simple to implement and computationally efficient.

Finally, closest to our work is [22], where the authors, building on the IEQ formulation with the

LDG spatial discretization for phase field problems including the CH equation, proposed energy

stable linear schemes combining with the semi-implicit spectral deferred correction to gain higher

order time discretization, while the auxiliary variable is computed coupling with other unknowns.

In contrast, our algorithms enable an explicit update for the auxiliary variable, hence more efficient

in computation.

1.1. Our Contributions.

• We propose to solve (1.1) by simple IEQ-DG schemes, which integrate the mixed DG

method for spatial discretization with the IEQ approach for time discretization, coupled

with a crucial spatial projection.
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• We show that the semi-discrete DG scheme features a discrete energy dissipation law if the

penalty parameter is suitably large, and present both first and second order (in time) IEQ-

DG algorithms. We prove that the IEQ-DG schemes are indeed unconditionally energy

stable.

• We conduct extensive experiments to evaluate the performance of IEQ-DG. First, we

present numerical results to show the high order of spatial accuracy of the proposed schemes,

the energy dissipating and mass conservative properties of numerical solutions. Second, we

conduct experiments on some two-dimensional pattern formation problems, all of which

demonstrate the good performance of IEQ-DG.

1.2. Organization. In Section 2, we formulate a unified semi-discrete DG method for the CH

equation (1.1) subject to different boundary conditions. In Section 3, we present fully discrete

DG schemes and show the energy dissipation and mass conservation properties. In Section 4,

we discuss extensions to the case with degenerate mobility and the logarithmic Flory-Huggins

potential. In Section 5, we numerically verify the performance of IEQ-DG on different numerical

examples. Finally in Section 6 some concluding remarks are given.

2. Spatial DG discretization

Let the domain Ω be a union of rectangular meshes Th = {K} :=
⋃N
α=1 Kα, with α =

(α1, · · · , αd), N = (N1, · · · ,Nd) and Kα = I1
α1
× · · · × Idαd

, where I iαi
= [xiαi−1/2, x

i
αi+1/2] for

αi = 1, · · · ,Ni. Denote by hi = max1≤αi≤Ni
|I iαi
|, with h = max1≤i≤d hi. We denote the set of the

interior interfaces by Γ0, the set of all boundary faces by Γ∂, and Γh = Γ0 ∪ Γ∂.

The discontinuous Galerkin finite element space can be formulated as

Vh = {v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th},

where P k(K) denotes the set of polynomials of degree no more than k on element K. Let K1 and

K2 be two neighboring cells. If the unit normal vector ν on element interfaces e ∈ ∂K1 ∩ ∂K2 is

oriented from K1 to K2, then the average {·} and the jump [·] operator are defined by

{v} =
1

2
(v|∂K1 + v|∂K2), [v] = v|∂K2 − v|∂K1 ,

for any function v ∈ Vh, where v|∂Ki
(i = 1, 2) is the trace of v on e evaluated from element Ki.

The direct DG discretization of (1.1) is to find (uh(·, t), wh(·, t)) ∈ Vh × Vh such that for all

φ, ψ ∈ Vh and K ∈ Th∫
K

uhtφdx =−
∫
K

M(uh)∇wh · ∇φdx+

∫
∂K

M(ûh)
(
∂̂νwhφ+ (wh − ŵh)∂νφ

)
ds, (2.1a)∫

K

whψdx =ε2
(∫

K

∇uh · ∇ψdx−
∫
∂K

∂̂νuhψ + (uh − ûh)∂νψds
)

+

∫
K

F ′(uh)ψdx, (2.1b)

where ν stands for the outward normal direction to ∂K. On each cell interface e ∈ ∂K
⋂

Γ0, the

numerical flux is taken as

∂̂νv =
β0[v]

he
+ {∂νv}, v̂ = {v}, (2.2)
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for v = wh, uh, where β0 > 0 is a parameter to be determined. Here he is the characteristic

length of interface e. In case of the uniform meshes, we take he = hi at each interface xiαi+1/2 for

αi = 0, 1, · · · ,Ni. The numerical fluxes on e ∈ ∂K
⋂

Γ∂ depend on the boundary conditions. For

periodic boundary conditions, the numerical fluxes can take the same formula as those in (2.2). For

homogeneous Neumann boundary conditions, the numerical fluxes on the boundary e ∈ ∂K
⋂

Γ∂

are defined as

∂̂νwh = 0, ŵh = wh, ∂̂νuh = 0, ûh = uh. (2.3)

Summation of (2.1) over all elements K ∈ Th leads to a global DG formulation

(uht, φ) =− A(M(uh);wh, φ), (2.4a)

(wh, ψ) =A(ε2;uh, ψ) + (F ′(uh), ψ) , (2.4b)

where the bilinear functional is given by

A(a(x); q, v) =
∑
K∈Th

∫
K

a(x)∇q · ∇vdx+
∑
e∈Γ0

∫
e

a(x)
(
∂̂νq[v] + [q]{∂νv}

)
ds

+
τ

2

∑
e∈Γ∂

∫
e

a(x)
(
∂̂νq[v] + [q]{∂νv}

)
ds,

(2.5)

where τ = 1 for (i) in (1.2) and τ = 0 for (ii) in (1.2). Here a(x) = M(uh) in K but M(ûh) for

x ∈ e. Note that the factor τ
2

in (2.5) is used to indicate that for periodic boundary conditions only

one end in each direction should be counted. Here each respective type of boundary conditions

specified in (1.2) has been taken into account. The initial data for uh is taken from Vh so that∫
Ω

(u0(x)− uh(x, 0))φdx = 0, ∀φ ∈ Vh.

As usual we denote uh(x, 0) = Πu0(x), where Π is the piecewise L2 projection.

We introduce the discrete energy

E(uh) =
1

2
A(ε2;uh, uh) +

∫
Ω

F (uh)dx, (2.6)

and the notation

‖v‖2
DG :=

∑
K∈Th

∫
K

|∇v|2dx+

(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)∫
e

β0

he
[v]2ds, ∀v ∈ Vh. (2.7)

We can show that if β0 is suitably large, the semi-discrete DG scheme (2.4) features a discrete

energy dissipation law.

Lemma 2.1. For piecewise continuous function a(x) > 0, there exists β∗ > 0 such that if β0 > β∗,

then

A(a(x); v, v) ≥ c0 inf
x∈Ω

a(x)‖v‖2
DG ∀v ∈ Vh. (2.8)

for some c0 > 0. As a result, we have

d

dt
E(uh) = −A(M(uh);wh, wh) ≤ 0, ∀t > 0. (2.9)
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Proof. (i) By Young’s inequality, we have

A(a(x); v, v) =
∑
K∈Th

∫
K

a(x)|∇v|2dx+

(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)∫
e

a(x)[v]

(
β0

he
[v] + 2{∂νv}

)
ds

≥
∑
K∈Th

∫
K

a(x)|∇v|2dx+

(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)∫
e

a(x)
β0

he
[v]2ds

−

(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)(
α

he

∫
e

a(x)[v]2ds+
he
α

∫
e

a(x){∂νv}2ds

)

=
∑
K∈Th

∫
K

a(x)|∇v|2dx− 1

α

(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)
he

∫
e

a(x){∂νv}2ds

+

(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)(
β0 − α
he

)∫
e

a(x)[v]2ds

for 0 < α < β0.

Set

β∗ = sup
v∈Ṽh

(∑
e∈Γ0 + τ

2

∑
e∈Γ∂

)
he
∫
e
a(x){∂νv}2ds∑

K∈Th

∫
K
a(x)|∇v|2dx

, (2.10)

where Ṽh := {v ∈ Vh| v 6= const}. For given a(x) positive, this quantity β∗ can be shown to be

uniformly bounded. In fact, it suffices to bound each local ratio by

he
∫
∂K
a(x)|∂νv|2ds∫

K
a(x)|∇v|2dx

≤ maxx∈∂K a(x)

minx∈K a(x)

he
∫
∂K
|∂νv|2ds∫

K
|∇v|2dx

,

in which the ratio without weight a is known to be bounded by a constant depending only on k;

see [23, Lemma 3.1]. Thus we have

A(a(x); v, v) ≥
(

1− β∗

α

) ∑
K∈Th

∫
K

a(x)|∇v|2dx+

(
1− α

β0

)(∑
e∈Γ0

+
τ

2

∑
e∈Γ∂

)∫
e

a(x)
β0

he
[v]2ds.

Set α =
√
β0β∗ and c0 =

(
1−

√
β∗

β0

)
, we obtain

A(a(x); v, v) ≥ c0 inf
x∈Ω

a(x)‖v‖2
DG

for β0 > β∗.

(ii) Taking φ = wh, ψ = uht in (2.4), then (2.9) follows immediately. �

Remark 2.1. Here β∗ clearly depends on the choice of a(x) unless it is a constant, and the type

of boundary conditions through τ . The fact that β∗ is increasing in τ implies that for Neumann

boundary conditions it suffices to take a smaller β∗.
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3. Time discretization

3.1. The IEQ reformulation. The basic idea of the IEQ methodology [42, 41] is to rewrite the

energy functional into a quadratic form

E(uh, U) =
1

2
A(ε2;uh, uh) +

∫
Ω

U2dx = E(uh) + B|Ω|, (3.1)

where

U =
√
F (uh) + B

is well-defined when B is chosen so that F (uh) +B > 0. With the IEQ approach U is updated by

solving

Ut =
1

2
H(uh)uht,

where

H(w) =
F ′(w)√
F (w) + B

. (3.2)

For the semi-discrete DG scheme (2.4), we follow [26] where an IEQ-DG method was developed

for the Swift-Hohenberg equation, to consider the following system: find (uh, wh) ∈ Vh × Vh and

U(x, t) such that

Ut =
1

2
H(uh)uht, (3.3a)

(uht, φ) =A(M(uh);wh, φ), (3.3b)

(wh, ψ) =A(ε2;uh, ψ) + (H(uh)U, ψ) , (3.3c)

for all φ, ψ ∈ Vh, subject to initial data

U(x, 0) =
√
F (u0(x)) + B, uh(x, 0) = Πu0(x).

Note that with the modified discrete energy (3.1) we still have the following

d

dt
E(uh, U) = −A(M(uh);wh, wh) ≤ 0.

We proceed to discretize (3.3) in time.

3.2. First order fully discrete IEQ-DG scheme. Find (unh, w
n
h) ∈ Vh × Vh and Un = Un(x)

such that

Un
h =ΠUn, (3.4a)

Un+1 − Un
h

∆t
=

1

2
H(unh)

un+1
h − unh

∆t
, (3.4b)(

un+1
h − unh

∆t
, φ

)
=− A(M(unh);wn+1

h , φ), (3.4c)

(wn+1
h , ψ) =A(ε2;un+1

h , ψ) +
(
H(unh)Un+1, ψ

)
, (3.4d)

for φ, ψ ∈ Vh.
This scheme admits the following properties.
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Theorem 3.1. Suppose that Mmin ≤M(u) ≤Mmax for u under consideration, and set

β∗0 =
Mmax

Mmin

sup
v∈Ṽh

(∑
e∈Γ0 + τ

2

∑
e∈Γ∂

)
he
∫
e
{∂νv}2ds∑

K∈Th

∫
K
|∇v|2dx

. (3.5)

If β0 > β∗0 , scheme (3.4) admits a unique solution (unh, w
n
h) for any ∆t > 0, and the solution unh

satisfies the mass conservation, i.e., ∫
Ω

unhdx =

∫
Ω

u0
hdx, (3.6)

for any n > 0. Moreover, for En := E(unh, U
n
h ) we have

En+1 ≤ E(un+1
h , Un+1) =En −∆tA(M(unh);wn+1

h , wn+1
h )

− 1

2
A(ε2;un+1

h − unh, un+1
h − unh)− ‖Un+1 − Un

h ‖2,
(3.7)

independent of the size of ∆t.

Proof. Taking φ = 1 in (3.4c) implies (3.6). We next show the existence and uniqueness of (3.4)

at each time step. Substitution of (3.4b) into (3.4c) with (3.4d) gives the following linear system

(un+1
h /∆t, φ) + A(M(unh);wn+1

h , φ) =(unh/∆t, φ), (3.8a)

A(ε2;un+1
h , ψ) +

(
1/2H(unh)2un+1

h , φ
)
− (wn+1

h , ψ) =
(
1/2H(unh)2unh, φ

)
− (H(unh)Un

h , ψ). (3.8b)

It suffices to prove the uniqueness for this linear system. Denoting (ũ, w̃) the difference of two

possible solutions of (3.8) for fixed (unh, w
n
h), so that

(ũ/∆t, φ) + A(M(unh); w̃, φ) =0, (3.9a)

A(ε2; ũ, ψ) +
(
1/2H(unh)2ũ, φ

)
− (w̃, ψ) =0. (3.9b)

Setting φ = ∆tw̃, ψ = ũ and adding the two equations, we have

∆tA(M(unh); w̃, w̃) + A(ε2; ũ, ũ) +
(
1/2H(unh)2ũ, ũ

)
= 0.

Using (2.8) with a = M(unh) so that β∗0 > β∗, we have

0 ≥∆tMmin‖w̃‖2
DG + ε2‖ũ‖2

DG +
1

2

∫
Ω

H(unh)2ũ2dx,

which ensures that ũ = const and w̃ = const. Then it follows A(M(unh); w̃, φ) = A(ε2; ũ, ψ) = 0.

Thus, (3.9a) is equivalent to

(ũ, φ) = 0, ∀φ ∈ Vh.

We must have ũ = 0. In a similar fashion, w̃ = 0 follows from (3.9b). Hence the uniqueness for

(3.8) follows.

We next prove (3.7). Taking φ = wn+1
h in (3.4c), ψ =

un+1
h −unh

∆t
in (3.4d) gives

−A(M(unh);wn+1
h , wn+1

h ) = A(ε2;un+1
h ,

un+1
h − unh

∆t
) +

(
H(unh)Un+1,

un+1
h − unh

∆t

)
.
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By (3.4b) and bilinearity of A(ε2; ·, ·), the right hand side of the above equation gives

RHS =
1

2∆t

(
A(ε2;un+1

h , un+1
h )− A(ε2;unh, u

n
h) + A(ε2;un+1

h − unh, un+1
h − unh)

)
+

1

∆t

(
‖Un+1‖2 − ‖Un

h ‖2 + ‖Un+1 − Un
h ‖2
)
.

Hence
E(un+1

h , Un+1) =E(unh, U
n
h )−∆tA(M(unh);wn+1

h , wn+1
h )

− 1

2
A(ε2;un+1

h − unh, un+1
h − unh)− ‖Un+1 − Un

h ‖2.
(3.10)

Implied by the fact that Π is a contraction mapping in L2, we have

E(un+1
h , Un+1

h ) ≤ E(un+1
h , Un+1), (3.11)

hence (3.7) as desired.

�

Remark 3.1. Note that here β0 > β∗0 serves only as a sufficient condition for stability. For M(u) =

const and rectangular meshes, β∗0 can be more precisely estimated as β∗0 = k2, see [23, Lemma 3.1].

For general case, it suffices to add upon k2 a factor of size maxK
maxx∈∂K M(unh)

minx∈K M(unh)
, which approaches

to one as the mesh is sufficiently refined. In our numerical examples we take β∗0 = 3k2.

3.3. Second order fully discrete IEQ-DG scheme. We first obtain u1
h, w

1
h and U1 from the first

order fully discrete IEQ-DG scheme (3.4). We further use the second order backward differentiation

formula (BDF2) for time discretization. In other words, for n ≥ 1, the second order fully discrete

IEQ-DG scheme is to find (un+1
h , wn+1

h ) ∈ Vh × Vh such that for ∀φ, ψ ∈ Vh,

Un
h =ΠUn, (3.12a)

3Un+1 − 4Un
h + Un−1

h

2∆t
=

1

2
H(un,∗h )

3un+1
h − 4unh + un−1

h

2∆t
, (3.12b)(

3un+1
h − 4unh + un−1

h

2∆t
, φ

)
=− A(M(un,∗h );wn+1

h , φ), (3.12c)

(wn+1
h , ψ) =A(ε2;un+1

h , ψ) +
(
H(un,∗h )Un+1, ψ

)
, (3.12d)

where un,∗h is obtained using un−1
h and unh

un,∗h =2unh − un−1
h . (3.13)

Here instead of un+1
h we use un,∗h to avoid iteration steps in updating the numerical solution, while

still maintaining second order accuracy in time.

To show the energy stability, we first present some useful identities.

Lemma 3.1. For any symmetric bilinear functional A(·, ·), it follows

A(φ+ ψ, φ− ψ) = A(φ, φ)−A(ψ, ψ),

2A(φ1, 3φ1 − 2φ2 − φ3) = A(φ1, φ1) +A(2φ1 − φ2, 2φ1 − φ2)−A(φ2, φ2)

−A(φ3, φ3) +A(φ1 − φ3, φ1 − φ3).
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Proof. The first identity follows from a direct calculation using the symmetry of the bilinear func-

tional A(·, ·). The second follows from a proper decomposition and using the first identity, that

goes as follows:

2A(φ1, 3φ1 − 2φ2 − φ3) =A(φ1, 6φ1 − 4φ2 − 2φ3)

=A(φ1, φ1 + 4(φ1 − φ2) + φ1 − 2φ3)

=A(φ1, φ1) +A(2φ1, 2φ1 − 2φ2) +A(φ1, φ1 − 2φ3)

=A(φ1, φ1) +A(2φ1 − φ2, 2φ1 − φ2)−A(φ2, φ2)

+A(φ1 − φ3, φ1 − φ3)−A(φ3, φ3).

�

For the scheme (3.12), we have

Theorem 3.2. Under the assumption in Theorem 3.1, we set β∗0 as defined in (3.5). If β0 > β∗0 ,

the second order fully discrete DG scheme (3.12) admits a unique solution (un+1
h , wn+1

h ), and the

solution unh satisfies the mass conservation (3.6) for any n > 0. Moreover, for any ∆t > 0 it follows

Ēn+1 − Ēn ≤ −∆tA(M(un,∗h );wn+1
h , wn+1

h ) ≤ 0, (3.14)

where the modified energy is defined by

Ēn =
E(unh, U

n
h ) + E(un,∗h , Un,∗

h )

2
, (3.15)

with

Un,∗
h = 2Un

h − Un−1
h .

Proof. We first prove (3.14). Taking φ = 2∆twn+1
h in (3.12c) gives

−2∆tA(M(un,∗h );wn+1
h , wn+1

h ) =(wn+1
h , 3un+1

h − 4unh + un−1
h )

using (3.12d) =A(ε2;un+1
h , ψ) +

(
H(un,∗h )Un+1, ψ

)
ψ := 3un+1

h − 4unh + un−1
h

using (3.12b) =A(ε2;un+1
h , 3un+1

h − 4unh + un−1
h ) +

(
3Un+1 − 4Un

h + Un−1
h , 2Un+1

)
=A(ε2;un+1

h , 3un+1
h − 2unh − u

n,∗
h ) +

(
3Un+1 − 2Un

h − U
n,∗
h , 2Un+1

)
.

Both A(ε2; ·, ·) and (·, ·) are symmetric, by Lemma 3.1 we have

A(ε2;un+1
h , 3un+1

h − 2unh − u
n,∗
h ) =

1

2

[
A(ε2;un+1

h , un+1
h ) + A(ε2;un+1,∗

h , un+1,∗
h )− A(ε2;unh, u

n
h)

−A(ε2;un,∗h , un,∗h ) + A(ε2;un+1
h − un,∗h , un+1

h − un,∗h )
]
,(

3Un+1 − 2Un
h − U

n,∗
h , 2Un+1

)
=‖Un+1‖2 + ‖2Un+1 − Un

h ‖2 − ‖Un
h ‖2 − ‖Un,∗

h ‖
2 + ‖Un+1 − Un,∗

h ‖
2.

Regrouping, we obtain

1

2

[
A(ε2;un+1

h , un+1
h ) + A(ε2;un+1,∗

h , un+1,∗
h )

]
+ ‖Un+1‖2 + ‖2Un+1 − Un

h ‖2

= 2Ēn − 2∆tA(M(un,∗h );wn+1
h , wn+1

h )− 1

2
A(ε2;un+1

h − un,∗h , un+1
h − un,∗h )− ‖Un+1 − Un,∗

h ‖
2

≤ 2Ēn − 2∆tA(M(un,∗h );wn+1
h , wn+1

h ).

(3.16)
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Further use of the fact that Π is a contraction mapping in L2, we have

‖Un+1
h ‖2 ≤ ‖Un+1‖2, ‖2Un+1

h − Un
h ‖2 ≤ ‖2Un+1 − Un

h ‖2.

Then the left hand side of (3.16) is bounded below by 2Ēn+1, thus (3.14) follows.

Similar to the proof of Theorem 3.1, the existence and uniqueness of the scheme (3.12) is

equivalent to showing the uniqueness of un+1
h , wn+1

h given uih, w
i
h, U

i with i = n, n− 1.

Let (ũ, w̃, Ũ) be the difference of two such solutions, then

Ũ =
1

2
H(un,∗h )ũ, (3.17a)

(3ũ, φ) =− 2∆tA(M(un,∗h ); w̃, φ), (3.17b)

(w̃, ψ) =A(ε2; ũ, ψ) +
(
H(un,∗h )Ũ , ψ

)
. (3.17c)

Setting φ = w̃, ψ = 3ũ, and subtracting (3.17b) from (3.17c), it follows

2∆tA(M(un,∗h ); w̃, w̃) + 3A(ε2; ũ, ũ) + 6‖Ũ‖2 = 0,

where (3.17a) has been used to simplify the third term. By (2.8) with a = M(unh), we have

β0 > β∗0 > β∗, hence

2∆tMmin‖w̃‖2
DG + 3ε2‖ũ‖2

DG + 6‖Ũ‖2 ≤ 0,

which ensures that ũ = const, w̃ = const and Ũ = 0. Thus, using (3.17) again, we must have

ũ = w̃ = 0. Thus leads to the existence and uniqueness of the scheme (3.12).

Taking φ = 1 in (3.12c), it follows∫
Ω

un+1
h dx =

1

3

∫
Ω

4unh − un−1
h dx. (3.18)

From Theorem 3.1, we have ∫
Ω

u1
hdx =

∫
Ω

u0
hdx, (3.19)

which when combined with (3.18) gives the mass conservation (3.6). �

3.4. Algorithms. The details related to the schemes implementation are summarized in the fol-

lowing algorithms.

3.4.1. Algorithm for the first order fully discrete IEQ-DG scheme (3.4).

• Step 1 (Initialization) From the given initial data u0(x)

(1) Generate u0
h = Πu0(x) ∈ Vh;

(2) Generate U0 =
√
F (u0(x)) + B, where B is a priori chosen so that inf(F (v) +B) > 0.

• Step 2 (Evolution)

(1) Project Un back into Vh, namely compute Un
h = ΠUn;

(2) Solve the linear system (3.8) for un+1
h , wn+1

h ;

(3) Update Un+1 using (3.4b), then return to (1) in Step 2.
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3.4.2. Algorithm for the second order fully discrete IEQ-DG scheme (3.12).

• Step 1 (Initialization) From the given initial data u0(x)

(1) Generate u0
h = Πu0(x) ∈ Vh;

(2) Generate U0 =
√
F (u0(x)) + B, where B is a priori chosen so that inf(F (v) +B) > 0;

and

(3) Solve for u1
h, w

1
h and U1 for ∀x ∈ S through Algorithm 3.4.1 for the first order fully

discrete IEQ-DG scheme (3.4).

• Step 2 (Evolution)

(1) Project Un back into Vh, namely compute Un
h = ΠUn;

(2) Solve the linear system for un+1
h , wn+1

h ,(
3un+1

h

2∆t
, φ

)
+ A(M(un,∗h );wn+1

h , φ) =

(
4unh − un−1

h

2∆t
, φ

)
,

A(ε2;un+1
h , ψ) +

1

2

(
(H(un,∗h ))

2
un+1
h , ψ

)
− (wn+1

h , ψ) =RHS,

where RHS = −
(
H(un,∗h )

4Un
h−U

n−1
h

3
− 1

2
(H(un,∗h ))

2 4unh−u
n−1
h

3
, ψ
)

(3) Update Un+1 through (3.12b), i.e.,

Un+1 =
1

2
H(un,∗h )un+1

h +

(
4Un

h − Un−1
h

3
− 1

2
H(un,∗h )

4unh − un−1
h

3

)
,

then return to (1) in Step 2.

Remark 3.2. Higher order (in time) IEQ discretization is possible. We omit the details here due

to space limitation. Interested readers are referred to [20] for some arbitrarily high-order linear

schemes for gradient flow models.

4. Extensions

It is known that solving the Cahn-Hilliard equation with degenerate mobility and/or logarithmic

potential is more difficult since it requires a point-wise control of the numerical solution. We discuss

how our schemes can be applied by a proper modification.

4.1. Mobility. Though the mobility is often taken as a constant for simplicity, a thermodynami-

cally reasonable choice is actually the degenerate mobility M(u) = u(1− u) (see e.g., [11]). There

is hope that solutions which initially take values in the interval [0, 1] will do so for all positive

time (which is not true for fourth-order parabolic equations without degeneracy). We remark that

only values in the interval [0, 1] are physically meaningful. Such degeneracy leads to numerical

difficulties.

Here, we follow [11, 3] by considering the modified mobility

M̃(u) =


M(σ) u ≤ σ,

M(u) σ < u < 1− σ,
M(1− σ) u ≥ 1− σ,

(4.1)
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It is obvious that for given σ,

M̃(u) ≥Mmin > 0,

and it is well-defined for u ∈ (−∞,∞). Numerically, we apply our scheme using this modified

mobility with a small σ.

4.2. Flory-Huggins potential. A practical choice for the potential is the Logarithmic Flory-

Huggins function [4, 6, 8]

F (v) =
θ

2
(v ln v + (1− v) ln(1− v)) +

θc
2
v(1− v), v ∈ [0, 1], (4.2)

where θ, θc > 0 are physical parameters. This function is non-convex with double wells for θc > 2θ,

and it only has a single well and admits only a single phase for θc ≤ 2θ [36].

The domain of the logarithmic potential (4.2) is (0, 1), which requires the numerical solution be

strictly inside (0, 1). For some numerical schemes, such solution bounds can be established (see,

e.g., [10, 11, 29, 8, 7]).

For high order DG schemes it is rather difficult to preserve the numerical solution within (0, 1).

We choose to regularize the logarithmic Flory-Huggins potential (4.2) by extending its domain

from (0, 1) to (−∞,∞). Such regularization technique is commonly used to remove the numerical

overflow; see, e.g., [8, 1, 11, 2, 41]. Specifically, it can be replaced by the twice continuously

differentiable function

F̃ (v) =


θ
2

(
v ln v + (1− v) ln σ + (1−v)2

2σ
− σ

2

)
+ θc

2
v(1− v), v ≥ 1− σ,

θ
2

(v ln v + (1− v) ln(1− v)) + θc
2
v(1− v), σ < v < 1− σ,

θ
2

(
(1− v) ln(1− v) + v lnσ + v2

2σ
− σ

2

)
+ θc

2
v(1− v), v ≤ σ,

and thus F̃ (v) is well defined for v ∈ (−∞,∞). It was argued in [11] that the solution with

regularized M̃(u) and F̃ (u) converges to the solution to the original problem as σ → 0. This

treatment has been applied in numerical simulations, for example in [3]. In this paper, we apply

our IEQ-DG schemes to problems formulated with the modified mobility and the regularized

potential.

5. Numerical examples

In this section, we will carry out several numerical tests in both 1D and 2D to demonstrate both

temporal and spatial accuracy of the IEQ-DG schemes (3.4) and (3.12), the mass conservation

and energy dissipation properties. For the spatial accuracy, we will choose ∆t sufficiently small

such that the spatial discretization error is dominant. Likewise, for the temporal accuracy, we will

set spatial meshes sufficiently refined such that temporal discretization error is dominant. In the

following numerical examples, the parameter β0 = k2 + 0.5k for problems with constant mobility

and β0 = 3k2 + 0.5k for other cases. The parameter B = 1 as default unless specified.

Example 5.1. (1D spatial accuracy test) Consider the Cahn-Hilliard equation (1.1) with M = 1

and double-well potential F (u) = 1
4
(u2 − 1)2 in Ω = [0, 2π] with periodic boundary conditions.
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Here, we follow Example 5.2 in [32] by adding a source term

s(x, t) = −e−t sin x
(
3e−2t cos 2x+ 3e−2t cos2 x+ 1

)
(5.1)

to the Cahn-Hilliard equation (1.1), so that the exact solution is

u(x, t) = e−t sin x. (5.2)

We use the fully discrete IEQ-DG scheme (3.12) with a term (s(x, tn+1), φ) added to the right hand

side of (3.12c), and we test the DG scheme based on P k polynomials, with k = 1, 2, 3. Both errors

and orders of accuracy at T = 1 are reported in Table 1. These results show that (k + 1)th order

of accuracy in both L2 and L∞ norms are obtained.

Table 1. 1D L2, L∞ errors and orders of accuracy at T = 1.

k ∆t
N=10 N=20 N=40 N=80

error error order error order error order

1 1e-3
‖u− uh‖L2 3.09646e-02 8.07876e-03 1.94 2.03575e-03 1.99 5.10124e-04 2.00

‖u− uh‖L∞ 1.68270e-02 4.58886e-03 1.87 1.16103e-03 1.98 2.91198e-04 2.00

2 1e-4
‖u− uh‖L2 3.56585e-04 4.17179e-05 3.10 5.12149e-06 3.03 6.35139e-07 3.01

‖u− uh‖L∞ 4.34261e-04 5.50274e-05 2.98 6.89646e-06 3.00 8.63616e-07 3.00

3 1e-5
‖u− uh‖L2 2.57355e-05 1.66983e-06 3.95 1.05343e-07 3.99 6.62827e-09 3.99

‖u− uh‖L∞ 1.86828e-05 1.27898e-06 3.87 8.12040e-08 3.98 5.31052e-09 3.93

Note that the test error in Table 1 is expected to be of order O(∆t2 +hk+1). In order to observe

the desired order in space, time step needs to be smaller so that ∆t ≤ O(hk+1/2) when k gets

larger. This comment applies to other cases as well.

Example 5.2. (2D spatial accuracy test with constant mobility and double-well potential) For

the Cahn-Hilliard equation (1.1) with M(u) = 1 and double-well potential F (u) = 1
4
(u2− 1)2 in Ω

with appropriate boundary conditions, we add a source term

s(x, y, t) = −w(x, y, t)

4
+
ε2w(x, y, t)

4
− 3w(x, y, t)v(x, y, t)

2
+

3w(x, y, t)3

2
− w(x, y, t)

2

to the right hand side of (1.1), where

w(x, y, t) =0.1e−t/4 sin(x/2) sin(y/2),

v(x, y, t) =
(
0.1e−t/4 cos(x/2) sin(y/2)

)2
+
(
0.1e−t/4 sin(x/2) cos(y/2)

)2
,

so that the exact solution is

u(x, y, t) = w(x, y, t).

Here the parameter ε = 0.1. We test this example by DG scheme (3.4) with a term (s(x, y, tn+1), φ)

added to the right hand side of (3.4c), and the DG scheme is based on polynomials of degree k

with k = 1, 2, 3 on rectangular meshes.

Test case 1. (Periodic BC) In this test case, we take Ω = [0, 4π]2 and consider periodic boundary

conditions. Both errors and orders of accuracy at T = 0.01 are reported in Table 2. These results

show that (k + 1)th order of accuracy in both L2 and L∞ are obtained.
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Table 2. 2D L2, L∞ errors at T = 0.01 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 3.16822e-02 8.03463e-03 1.98 2.02336e-03 1.99 5.04024e-04 2.01

‖u− uh‖L∞ 1.38669e-02 3.74776e-03 1.89 9.59555e-04 1.97 2.40239e-04 2.00

2 1e-4
‖u− uh‖L2 4.52729e-03 5.75115e-04 2.98 7.33589e-05 2.97 9.21578e-06 2.99

‖u− uh‖L∞ 2.32640e-03 2.95229e-04 2.98 4.06866e-05 2.86 5.26926e-06 2.95

3 1e-5
‖u− uh‖L2 4.46670e-04 2.97916e-05 3.91 1.89117e-06 3.98 1.18585e-07 4.00

‖u− uh‖L∞ 3.20555e-04 1.80104e-05 4.15 1.02204e-06 4.14 6.16224e-08 4.05

Test case 2. (Neumann BC) Considering Ω = [−π, 3π]2 with homogenous Neumann boundary

conditions (1.2(ii)), both errors and orders of accuracy at T = 0.01 are reported in Table 3. These

results also show (k + 1)th order of accuracy in both L2 and L∞.

Table 3. 2D L2, L∞ errors at T = 0.01 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 3.16822e-02 8.03463e-03 1.98 2.02336e-03 1.99 5.04024e-04 2.01

‖u− uh‖L∞ 1.38669e-02 3.74776e-03 1.89 9.59555e-04 1.97 2.40239e-04 2.00

2 1e-4
‖u− uh‖L2 4.52729e-03 5.75115e-04 2.98 7.33591e-05 2.97 9.18427e-06 3.00

‖u− uh‖L∞ 2.32640e-03 2.95229e-04 2.98 4.06885e-05 2.86 5.08342e-06 3.00

3 1e-5
‖u− uh‖L2 4.46670e-04 2.97916e-05 3.91 1.89102e-06 3.98 1.18133e-07 4.00

‖u− uh‖L∞ 3.20555e-04 1.80104e-05 4.15 1.02406e-06 4.14 6.40520e-08 4.00

Example 5.3. (2D spatial accuracy test with constant mobility and logarithmic potential) We

consider the Cahn-Hilliard equation (1.1) with constant mobility M(u) = 1, the logarithmic Flory-

Huggins potential (4.2) with θ = θc = 2, the parameters ε = 1 and B = 10. We add an appropriate

source term s(x, y, t) to the right hand side of (1.1) such that the exact solution is

u(x, y, t) =
1

10
e−t/4 sin(x/4) sin(y/4) +

1

2
.

We test this example by DG scheme (3.12) with a term (s(x, y, tn+1), φ) added to the right hand

side of (3.12c), and the DG scheme is also based on polynomials of degree k with k = 1, 2, 3 on

rectangular meshes.

Test case 1. (Periodic BC) In this test case, we take Ω = [0, 8π]2 and consider periodic boundary

conditions. Both errors and orders of accuracy at T = 0.01 are reported in Table 4. These results

show that (k + 1)th order of accuracy in both L2 and L∞ are obtained.

Test case 2. (Neumann BC) In this test case, we take Ω = [−2π, 2π]2 and consider Neumann

boundary conditions. Both errors and orders of accuracy at T = 0.01 are reported in Table 5.

These results show that (k + 1)th order of accuracy in both L2 and L∞ are obtained.
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Table 4. 2D L2, L∞ errors at T = 0.01 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 6.34010e-02 1.62047e-02 1.97 4.04183e-03 2.00 1.00777e-03 2.00

‖u− uh‖L∞ 1.38744e-02 3.74858e-03 1.89 9.55245e-04 1.97 2.39967e-04 1.99

2 1e-4
‖u− uh‖L2 9.39224e-03 1.18059e-03 2.99 1.46853e-04 3.01 1.83323e-05 3.00

‖u− uh‖L∞ 2.45698e-03 3.14143e-04 2.97 3.74571e-05 3.07 4.54860e-06 3.04

3 5e-6
‖u− uh‖L2 1.09183e-03 6.72768e-05 4.02 4.09870e-06 4.04 2.54225e-07 4.01

‖u− uh‖L∞ 2.30167e-04 1.58541e-05 3.86 1.02039e-06 3.96 6.42180e-08 3.99

Table 5. 2D L2, L∞ errors at T = 0.01 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 1.27997e-01 3.55296e-02 1.85 9.55174e-03 1.90 2.13203e-03 2.16

‖u− uh‖L∞ 5.54685e-02 1.49970e-02 1.89 3.92808e-03 1.93 9.67492e-04 2.02

2 1e-4
‖u− uh‖L2 1.87014e-02 2.35480e-03 2.99 2.94393e-04 3.00 3.69614e-05 2.99

‖u− uh‖L∞ 1.05130e-02 1.30587e-03 3.01 1.62919e-04 3.00 2.04032e-05 3.00

3 5e-6
‖u− uh‖L2 2.23974e-03 1.24902e-04 4.16 7.57937e-06 4.04 4.99051e-07 3.92

‖u− uh‖L∞ 1.47731e-03 8.22721e-05 4.17 4.36207e-06 4.24 3.29965e-07 3.72

Example 5.4. (2D spatial accuracy test with degenerate mobility and logarithmic potential) We

consider the Cahn-Hilliard equation (1.1) with degenerate mobility M(u) = u(1−u), the logarith-

mic Flory-Huggins potential (4.2) with θ = θc = 2, the parameters ε = 1 and B = 10. We add an

appropriate source term s(x, y, t) to the right hand side of (1.1) such that the exact solution is

u(x, y, t) =
2

5
e−t/4 sin(x/2) sin(y/2) +

1

2
.

We test this example by DG scheme (3.4) with a term (s(x, y, tn+1), φ) added to the right hand

side of (3.4c), and the DG scheme is also based on polynomials of degree k with k = 1, 2, 3 on

rectangular meshes.

Test case 1. (Periodic BC) In this test case, we take Ω = [0, 4π]2 and consider periodic boundary

conditions. Both errors and orders of accuracy at T = 0.01 are reported in Table 6. These results

show that (k + 1)th order of accuracy in both L2 and L∞ are obtained.

Test case 2. (Neumann BC) In this test case, we take Ω = [−π, 3π]2 and consider Neumann

boundary conditions. Both errors and orders of accuracy at T = 0.01 are reported in Table 7.

These results show that (k + 1)th order of accuracy in both L2 and L∞ is obtained.

Example 5.5. (Temporal Accuracy Test) Following the test case 2 in Example 5.3, we produce

numerical solutions at T = 1 using DG schemes (3.4) and (3.12) based on P 2 polynomails with

time steps ∆t = 2−m with 2 ≤ m ≤ 5 and appropriate meshes. The L2, L∞ errors and orders of
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Table 6. 2D L2, L∞ errors at T = 0.01 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 1.31235e-01 3.29574e-02 1.99 8.27934e-03 1.99 2.08160e-03 1.99

‖u− uh‖L∞ 5.56010e-02 1.49372e-02 1.90 3.81584e-03 1.97 9.59510e-04 1.99

2 1e-4
‖u− uh‖L2 2.05688e-02 2.51806e-03 3.03 3.05650e-04 3.04 3.79714e-05 3.01

‖u− uh‖L∞ 1.13806e-02 1.32194e-03 3.11 1.48147e-04 3.16 1.77820e-05 3.06

3 5e-6
‖u− uh‖L2 2.82305e-03 1.48385e-04 4.25 8.56909e-06 4.11 5.53886e-07 3.95

‖u− uh‖L∞ 1.58906e-03 9.24779e-05 4.10 4.63277e-06 4.32 3.35743e-07 3.79

Table 7. 2D L2, L∞ errors at T = 0.01 with mesh N ×N .

k ∆t
N=8 N=16 N=32 N=64

error error order error order error order

1 1e-3
‖u− uh‖L2 1.31235e-01 3.29574e-02 1.99 8.27934e-03 1.99 2.08160e-03 1.99

‖u− uh‖L∞ 5.56010e-02 1.49372e-02 1.90 3.81584e-03 1.97 9.59510e-04 1.99

2 1e-4
‖u− uh‖L2 2.05688e-02 2.51806e-03 3.03 3.05650e-04 3.04 3.79715e-05 3.01

‖u− uh‖L∞ 1.13806e-02 1.32194e-03 3.11 1.48147e-04 3.16 1.77820e-05 3.06

3 5e-6
‖u− uh‖L2 2.82305e-03 1.48385e-04 4.25 8.56909e-06 4.11 5.59243e-07 3.94

‖u− uh‖L∞ 1.58906e-03 9.24779e-05 4.10 4.63278e-06 4.32 3.42344e-07 3.76

convergence are shown in Table 8, and these results confirm that DG schemes (3.4) and (3.12) are

first order and second order in time, respectively.

Table 8. L2, L∞ errors and EOC at T = 1 with time step ∆t.

Scheme Mesh
∆t = 2−2 ∆t = 2−3 ∆t = 2−4 ∆t = 2−5

error error order error order error order

(3.4) 322
‖u− uh‖L2 4.21032e-03 2.06620e-03 1.03 1.02380e-03 1.01 5.09705e-04 1.01

‖u− uh‖L∞ 7.48743e-04 3.67246e-04 1.03 1.81917e-04 1.01 9.05192e-05 1.01

(3.4) 642
‖u− uh‖L2 4.21016e-03 2.06606e-03 1.03 1.02364e-03 1.01 5.09522e-04 1.01

‖u− uh‖L∞ 7.48925e-04 3.67359e-04 1.03 1.82003e-04 1.01 9.05934e-05 1.01

(3.12) 642
‖u− uh‖L2 1.32995e-03 3.18993e-04 2.06 7.69932e-05 2.05 1.88763e-05 2.03

‖u− uh‖L∞ 2.24427e-04 5.35331e-05 2.07 1.27796e-05 2.07 3.12208e-06 2.03

(3.12) 1282
‖u− uh‖L2 1.34130e-03 3.18230e-04 2.08 7.69137e-05 2.05 1.88416e-05 2.03

‖u− uh‖L∞ 2.27726e-04 5.31968e-05 2.10 1.27386e-05 2.06 3.09279e-06 2.04

Example 5.6. Following [36], we consider the Cahn-Hilliard equation (1.1) with constant mobility

M(u) = 1, the logarithmic Flory-Huggins potential

F (u) = 600 (u lnu+ (1− u) ln(1− u)) + 1800u(1− u),
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and the parameters ε = 1 and B = 102. The equation is subject to the initial condition

u0(x, y) =

{
0.71, (x, y) ∈ Ω1,

0.69, (x, y) ∈ Ω2,

where the square domain

Ω = [−0.5, 0.5]× [−0.5, 0.5], Ω1 = [−0.2, 0.2]× [−0.2, 0.2], Ω2 = Ω\Ω1.

The boundary conditions are taken as Neumann BCs, (ii) in (1.2).

Test case 1. We first solve this problem by the first order fully discrete IEQ-DG scheme (3.4)

based on P 1 and P 2 polynomials with time step ∆t = 10−7 and meshes 40 × 40 and 80 × 80,

respectively. The contours at T = 8 × 10−5 are shown in Figure 1, and the corresponding energy

and mass evolutions are shown in Figure 2. From Figure 1, we find that the solution structure is

well resolved even on coarser mesh and lower order P 1 polynomials, and the scheme (3.4) using P 2

polynomials gives a better resolution than that using P 1 polynomials on coarser meshes 40 × 40,

but there is no noticeable difference with solution on refined meshes 80 × 80 or higher order

polynomial P 2 as shown in Figure 1(b)-(d). The pattern structure is well consistent with that

obtained in [36]. Figure 2(a) shows that the numerical solution of the scheme (3.4) satisfies the

energy dissipation law, Figure 2(b) and 2(c) show that the numerical solution conserves the total

mass
∫

Ω
unhdx = 0.6932 under an appropriate tolerance.

Test case 2. We solve this problem again by the second order fully discrete IEQ-DG scheme (3.12)

based on P 1 and P 2 polynomials. In Figure 3, we show the contours at T = 8 × 10−5 obtained

based on P 1 polynomials with mesh 40×40 and time steps ∆t = 10−7, 8×10−8, 5×10−8, 2×10−8,

respectively. From Figure 3, we find the pattern structure is comparable to that in Figure 1(b)-(d)

even with time step ∆t = 10−7 and lower order P 1 polynomials.

Figure 4 shows that the numerical solution of the scheme (3.12) satisfies the energy dissipation

law (3.14), but we do find that the modified energy (3.15) better approximate the original energy

with a smaller time step ∆t, a smaller mesh size h or polynomials of a higher degree. Figure 5

implies the numerical solutions with different time steps ∆t conserve the total mass
∫

Ω
udx = 0.6932

under an appropriate tolerance.

Example 5.7. Following [36], we further consider the Cahn-Hilliard equation (1.1) with degenerate

mobility M(u) = u(1− u), the logarithmic Flory-Huggins potential

F (u) = 3000 (u lnu+ (1− u) ln(1− u)) + 9000u(1− u),

and the parameters ε = 1 and B = 103. The initial condition is

u0(x, y) = 0.63 + 0.05rand(x, y),

where rand(x, y) is the random perturbation function in [−1, 1] and has zero mean. For the

boundary conditions, we take Neumann BCs (ii) in (1.2).

We solve this problem by the scheme (3.12) based on P 2 polynomials with meshes 64 × 64

and time step ∆t = 10−8. The evolution of the concentration field is shown in Figure 6. The

corresponding energy and mass evolutions are shown in Figure 7. Figure 6 clearly shows the two
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(a) (b)

(c) (d)

Figure 1. The contours of numerical solution for the scheme (3.4).
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Figure 2. The energy and mass evolution of numerical solution for the scheme

(3.4). (a) The energy and mass evolution; (b) the total mass evolution ; (c) the

evolution of the total mass difference
∫

Ω
unh − u0

hdx.
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(a) (b)

(c) (d)

Figure 3. The contours of numerical solution for the scheme (3.12).
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Figure 4. The energy evolution of numerical solution for the scheme (3.12).



IEQ-DG METHODS FOR THE CAHN-HILLIARD EQUATION 21

0 1 2 3 4 5 6 7 8
t 10-5

-2

-1

0

1

2

3

4

To
ta

l m
as

s 
di

ffe
re

nc
e

10-13 Mass evolution based on P1 with 40 40 mesh

t=1.0 10-7

t=8.0 10-8

t=5.0 10-8

t=2.0 10-8

(a)

0 1 2 3 4 5 6 7 8
t 10-5

-2

-1

0

1

2

3

4

5

To
ta

l m
as

s 
di

ffe
re

nc
e

10-13 Mass evolution based on P1 with 80 80 mesh

t=1.0 10-7

t=8.0 10-8

t=5.0 10-8

t=2.0 10-8

(b)

0 1 2 3 4 5 6 7 8
t 10-5

-2

-1

0

1

2

3

4

5

To
ta

l m
as

s 
di

ffe
re

nc
e

10-13 Mass evolution based on P2 with 40 40 mesh

t=1.0 10-7

t=8.0 10-8

t=5.0 10-8

t=2.0 10-8

(c)

Figure 5. The total mass difference
∫

Ω
unh − u0

hdx evolution for scheme (3.12).

phases of the concentration evolution. The first phase is governed by spinodal decomposition and

phase separation, which is roughly corresponding to the first three figures of Figure 6, this period is

basically terminated as soon as the local concentration is driven to either value of the two binodal

points. The second phase is governed by grain coarsening, approximately from t = 8 × 10−6

onwards the generated patterns cluster and grains tend to coarsen, which is a very slow process.

Figure 6 shows statistically similar patterns in the numerical solution as those in [36]. Figure 7

further confirms the numerical solution of the scheme (3.12) satisfies the energy dissipation law

and conserves the total mass
∫

Ω
udx = 0.63.

6. Conclusion

In this paper, we integrate the mixed DG method with the IEQ method to design both first and

second order fully discrete DG schemes that inherit the energy dissipation law and mass conserva-

tion of the continuous equation irrespectively of the mesh and time steps. The spatial discretization

is based on the mixed DG method, and the temporal discretization is based on the IEQ approach

introduced in [40] for treating nonlinear potentials. Coupled with a spatial projection, the resulting

IEQ-DG algorithms are easy to implement without resorting to any iteration method, and proven

to be unconditionally energy stable and mass conservative. We have presented numerical examples

to verify our theoretical results, and demonstrated the good performance of the scheme in terms

of efficiency, accuracy, and preservation of solution properties such as energy dissipation and mass

conservation.
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