UNCONDITIONALLY ENERGY STABLE DISCONTINUOUS GALERKIN
SCHEMES FOR THE CAHN-HILLIARD EQUATION

HAILIANG LIUT AND PEIMENG YIN®

ABSTRACT. In this paper, we introduce novel discontinuous Galerkin (DG) schemes for the Cahn-
Hilliard equation, which arises in many applications. The method is designed by integrating the
mixed DG method for the spatial discretization with the Invariant Energy Quadratization (IEQ)
approach for the time discretization. Coupled with a spatial projection, the resulting IEQ-DG
schemes are shown to be unconditionally energy dissipative, and can be efficiently solved without
resorting to any iteration method. Both one and two dimensional numerical examples are provided
to verify the theoretical results, and demonstrate the good performance of IEQ-DG in terms of

efficiency, accuracy, and preservation of the desired solution properties.

1. INTRODUCTION

The Cahn-Hilliard (CH) equation, originally introduced in [6] as a model of phase separation
in binary alloys, has become a fundamental equation as well as a building block in the phase field
methodology for moving interface problems arising from various applications (see, e.g., [28] for the
references therein).

This work is concerned with high order numerical approximations to the Cahn-Hilliard problem:
find {u(z,t),w(z,t)} for x € Q and ¢t > 0 such that

ur =V - (M(u)Vw),
w = —Au+ F'(u), (1.1)
u(z,0) = ug(x), =z €,

where Q C R%(d = 1,2, 3) is a bounded domain, € is a positive parameter, M (u) > 0 is the mobility
function, F'(u) is the nonlinear bulk potential, and ug(z) is the initial data.

The well-posedness study of the Cahn—Hilliard equation is very rich, and the existing results are
mainly for two types of models: one is the constant mobility with polynomial potentials ([13]), and
another is the degenerate mobility of form M (u) = w(1 —w) ([11]) with the potential of logarithmic
types (see, e.g., [6, 12, 43, 11, 10]). Here we numerically study model (1.1) with no restrictions
on the specific form of the mobility and free energy. For the degenerate CH model, we apply the
established scheme to regularized systems as discussed in Section 4. While we also refer the reader
to [30] for a new relaxation system to approximate the degenerate CH model.

We consider in this paper the following boundary conditions:
(i) u is periodic; or (ii) Oyu = M(u)0hw =0, x € 0S. (1.2)
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Here n stands for the unit outward normal to the boundary 9. With such boundary conditions,
equation (1.1) is endowed with a gradient flow structure w, = V - (M (u)2E), dictated by the
energy dissipation law

%g(u) = —/ﬂM(u)|Vw[2 <0, (1.3)

where the total free energy is defined by

S(u):/g<§]Vu]2—|—F(u)) dz. (1.4)

The CH model is nonlinear and its analytical solutions are intractable. Also, for a gradient flow such
as the CH equation steady states are of particular interest. Hence, designing accurate, efficient,
and energy stable algorithms to solve it becomes essential, in particular for the accuracy of long
time simulations. Keeping the energy dissipation (1.3) has been a major concern in the design of
various numerical schemes, see, e.g. [5, 14, 18, 33, 31, 17, 34, 41, 7].

In this paper, we aim to develop unconditionally energy stable discontinuous Galerkin (DG)
schemes for solving the CH model problem. To achieve this, we face two main challenges: (i) how
to handle fourth order derivatives in the DG discretization; and (ii) how to handle the nonlinear
term associated with the potential F' in time discretization.

For (i), several approaches have been adopted to deal with difficulties caused by the high order
solution derivatives. The first one is the local DG (LDG) methods [38, 21, 32|, with which the
original equation is rewritten into a first order system for further DG discretization. The second
one is the mixed symmetric interior penalty DG (SIPG) methods [36, 15, 16, 17], with which the
penalty terms are added as interface corrections upon the global solution formulation so that the
resulting scheme is stable. It is also possible to apply an ultra-weak DG discretization, such as the
DG scheme in [9] for the one-dimensional biharmonic equation. The spatial DG discretization we
adopt here takes advantages of both the SIPG method and the mixed DG method without interior
penalty in [25, 26] for another class of fourth order PDEs.

For (ii), there are several related time discretization techniques available in the literature, includ-
ing the so-called convex splitting approach [14, 37, 7| and the stabilization approach [31, 39, 44, 45].
The convex splitting approach, introduced in the pioneering work [14], treats the convex part of
the potential implicitly and the concave part explicitly. As a result such method is uncondition-
ally energy stable, however, it produces nonlinear schemes, thus the implementations are often
complicated with potentially high computational costs. The stabilization approach, introduced in
[39] for epitaxial growth models, treats the nonlinear term explicitly so that the resulting scheme
becomes stable after a stabilization term is added to avoid strict time step constraints. However,
a large stabilization constant is often needed to ensure energy stability.

A more feasible remedy would be to make a reasonable transform of the given potential. One
technique is the Invariant Energy Quadratization (IEQ) approach introduced in [40, 46], which
generalized the two types of linear energy stable schemes introduced in [19]. The IEQ method is
known to provide flexibilities to treat the nonlinear terms since it only requests that the nonlinear
potential be bounded from below. We note that recently a related approach, called the SAV
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method, has been introduced in [35, 34] with certain advantages over the TEQ. Yet efficiently
solving the resulting linear system when coupled with a DG spatial discretization is subtle, see
[27].

In order to design IEQ-DG schemes, our strategy is to start with the model satisfying two basic
assumptions:
(i) the mobility function M (u) satisfies

M(u) > Mmin > 0;
(ii) there exist a constant B > 0, such that
F(u) > —B,

for any u under consideration, and further discuss how to extend the established schemes to more
general cases.

The IEQ-DG method introduced in [26] for the Swift-Hohenberg equation has several advan-
tages, such as high order of accuracy, easy implementation, and efficiency. Unfortunately, the DG
discretization in [26] when applied to the CH equation (1.1) does not seem to yield the desired
energy stability. Therefore, in this paper, we exploit the direct DG (DDG) method [24] for both
u and w, which when taking a special choice of the flux parameters can be reformulated into a
mixed symmetric interior penalty DG (SIPG) scheme (see, e.g., [16]).

The IEQ approach for time discretization relies on an auxiliary variable U = \/m , SO

that
1
Uy = §H(u)ut, H(u) := F'(u)/\/F(u) + B.
With this transformation we update U™ in two steps: the piecewise L? projection with U = TIU™,
and the update step with
gt —uro1 Tiam—r
Z Th T H(uM

The resulting IEQ-DG scheme follows from replacing the nonlinear function F'(u}*') by H (uy)Un*
in the DG discretization (see the scheme formulation in (3.4)). In addition, the resulting discrete
systems are linear. As a result, the methods are simple to implement and computationally efficient.

Finally, closest to our work is [22], where the authors, building on the TEQ formulation with the
LDG spatial discretization for phase field problems including the CH equation, proposed energy
stable linear schemes combining with the semi-implicit spectral deferred correction to gain higher
order time discretization, while the auxiliary variable is computed coupling with other unknowns.
In contrast, our algorithms enable an explicit update for the auxiliary variable, hence more efficient

in computation.

1.1. Our Contributions.

e We propose to solve (1.1) by simple IEQ-DG schemes, which integrate the mixed DG
method for spatial discretization with the IEQ approach for time discretization, coupled

with a crucial spatial projection.
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e We show that the semi-discrete DG scheme features a discrete energy dissipation law if the
penalty parameter is suitably large, and present both first and second order (in time) IEQ-
DG algorithms. We prove that the IEQ-DG schemes are indeed unconditionally energy
stable.

e We conduct extensive experiments to evaluate the performance of IEQ-DG. First, we
present numerical results to show the high order of spatial accuracy of the proposed schemes,
the energy dissipating and mass conservative properties of numerical solutions. Second, we
conduct experiments on some two-dimensional pattern formation problems, all of which

demonstrate the good performance of IEQ-DG.

1.2. Organization. In Section 2, we formulate a unified semi-discrete DG method for the CH
equation (1.1) subject to different boundary conditions. In Section 3, we present fully discrete
DG schemes and show the energy dissipation and mass conservation properties. In Section 4,
we discuss extensions to the case with degenerate mobility and the logarithmic Flory-Huggins
potential. In Section 5, we numerically verify the performance of IEQ-DG on different numerical

examples. Finally in Section 6 some concluding remarks are given.

2. SPATIAL DG DISCRETIZATION

Let the domain © be a union of rectangular meshes 7, = {K} := Uﬁle K,, with a =
(ag, - ,aq), N = (M, -, Ny) and K, = .1'0141 X oo x I where 1L = [al, 5,2l ] for
a; =1,--- , N;. Denote by h; = maxj<q,<n; IZM], with h = max;<;<q h;. We denote the set of the
interior interfaces by I'?, the set of all boundary faces by I'?, and I';, = I'° U T'?.

The discontinuous Galerkin finite element space can be formulated as

Vi ={ve L*Q): v|lg € P*(K), VK € Tp},

where P*(K) denotes the set of polynomials of degree no more than k on element K. Let K; and
K5 be two neighboring cells. If the unit normal vector v on element interfaces e € 0K N OK5 is
oriented from K; to Ks, then the average {-} and the jump [-] operator are defined by

1
{v} = 5 (Wlor, +vlor), V] = vlor, — vlox,

for any function v € Vj,, where v|gg, (i = 1,2) is the trace of v on e evaluated from element K.
The direct DG discretization of (1.1) is to find (un(+,t), wp(-,t)) € Vi x Vj, such that for all
¢, v eVy,and K € T,

/ uprpdr = — / M (up,)Vuwy, - Vodx + M (uy) (@gﬁ + (wp, — @)ébgb) ds, (2.1a)
K K oK

/ wppdr =€ (/ Vuy, - Vipda — Byunth + (up, — ﬂ;)a,,z/}d(s) +/ F'(up)dex, (2.1b)
K K oK K

where v stands for the outward normal direction to K. On each cell interface e € 9K (TY, the

numerical flux is taken as

Do = 52—[:’] + {00}, 7= {v}, (2.2)
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for v = wy,, uy, where 5y > 0 is a parameter to be determined. Here h. is the characteristic
length of interface e. In case of the uniform meshes, we take h, = h; at each interface z° it 1/2 for
a; =0,1,--- , N;. The numerical fluxes on e € K [ I'? depend on the boundary conditions. For
periodic boundary conditions, the numerical fluxes can take the same formula as those in (2.2). For
homogeneous Neumann boundary conditions, the numerical fluxes on the boundary e € 9K (\T"?
are defined as

@:O,@:wh,%:&@:uh. (2.3)

Summation of (2.1) over all elements K € T, leads to a global DG formulation

(uht, ¢) = — A(M(uh), Wp,, ¢), (24&)
(wn, ) =A(;un, ) + (F'(un), ), (2.4b)

where the bilinear functional is given by

Aa Z / x)Vq - Vudr + Z/ [q]{@,,v}) ds

KeTy, ecl®
+ = Z / + g8, v}) ds,
eel“@
where 7 = 1 for (i) in (1.2) and 7 = 0 for (ii) in (1.2). Here a(z) = M(uy) in K but M (uy) for
x € e. Note that the factor 7 in (2.5) is used to indicate that for periodic boundary conditions only
one end in each direction should be counted. Here each respective type of boundary conditions
specified in (1.2) has been taken into account. The initial data for u, is taken from V}, so that

/Q(UO(JC) —up(x,0))pdx =0, Vo € V.

As usual we denote uy(x,0) = Hug(z), where II is the piecewise L? projection.

We introduce the discrete energy

Buy) = %A(EQ;uh,uh)+ / Fluy)dz, (2.6)

Q
and the notation

v HDG Z / |VU| dr + (Z-i— ) 50 2 ds, Yv eV, (2.7)
ecI® €

KeTy, eel
We can show that if [y is suitably large, the semi-discrete DG scheme (2.4) features a discrete

energy dissipation law.

Lemma 2.1. For piecewise continuous function a(z) > 0, there exists 8* > 0 such that if 5y > g*,
then
Ala(z);v,v) > ¢ inga(aj)HvHQDG Yu € V. (2.8)
e

for some ¢g > 0. As a result, we have

d
EE(U’Z) —A(M (up); wp,wp) <0, Vt>0. (2.9)
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Proof. (i) By Young’s inequality, we have

0,0) Z/ )| Vol2dz + (Z iz Z) /ea(a:)[v] (i—Z[U]—I—Q{&,U}) ds

KeTy, ero ecI®
>;;/ )| Vol2dz + <€€§F:O+2 ;) /ea(:c)i—z[vms
- (Z +g Z@) (hﬁ / a(x)[u]2d3+% / a(x){ayv}2d8>
: (Z:% ) (2 e
for 0 < a < fp.
Set
g = US;Z (Eeerogl(ie?r;) he |va|2dia U}st, (2.10)

where Vj, := {v € V4| v # const}. For given a(z) positive, this quantity 5* can be shown to be
uniformly bounded. In fact, it suffices to bound each local ratio by

he [o5 a(x)|0,v]?ds < MaXecox a(z) he [y |0,0]?ds
[ a(x)|Vol2de = mingega(z) [ [Vol2de

in which the ratio without weight a is known to be bounded by a constant depending only on k;
see [23, Lemma 3.1]. Thus we have

Ala(z); v,v) > (1—_)[(;/ )|Vl dx+( )<Z+ Z)/ (z )%[U]st.

ero €ro

Set av = v/By3* and ¢y = (1— \/;> we obtain

Ala(z);v,v) = ¢ inf a(x)l[v]pg
S

for By > [*.
(ii) Taking ¢ = wyp, ¥ = up in (2.4), then (2.9) follows immediately. O

Remark 2.1. Here * clearly depends on the choice of a(z) unless it is a constant, and the type
of boundary conditions through 7. The fact that §* is increasing in 7 implies that for Neumann
boundary conditions it suffices to take a smaller 5*.
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3. TIME DISCRETIZATION

3.1. The IEQ reformulation. The basic idea of the IEQ methodology [42, 41] is to rewrite the
energy functional into a quadratic form
1
E(up,U) = EA(E2;uh,uh) + / U?dx = E(uy) + B9, (3.1)
Q
where
U = vV F(uh) + B

is well-defined when B is chosen so that F(uy) + B > 0. With the IEQ approach U is updated by

solving
U= %H(uh)uht,
where
/
}{OU)::\/éiis?kff
For the semi-discrete DG scheme (2.4), we follow [26] where an ITEQ-DG method was developed

for the Swift-Hohenberg equation, to consider the following system: find (up,wy) € V;, x V}, and
U(z,t) such that

(3.2)

U, :%H(uh)uht, (3.32)
(unt, @) =A(M (un); wn, @), (3.3b)
(wn, ©) =A(; up, ) + (H (up)U, ), (3.3¢)

for all ¢,v € Vj, subject to initial data

U(z,0) = +/F(ug(x)) + B, wup(x,0) = ug(x).

Note that with the modified discrete energy (3.1) we still have the following

d
aE(uh, U) = —A(M(uh); Wp,, ’LUh) < 0.

We proceed to discretize (3.3) in time.

3.2. First order fully discrete IEQ-DG scheme. Find (u},w}!) € V}, x V3, and U™ = U"(x)
such that

Ur =110", (3.42)
W _%H(UZ)Wa (3.4b)
(uZJrlA—;uZ’ gb) = — A(M (u}); witt, @), (3.4c)
(wpth ) =A(ul ) + (Hup) U™ ), (3.4d)

for ¢, € V.

This scheme admits the following properties.
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Theorem 3.1. Suppose that My, < M(u) < Mpax for v under consideration, and set

M | (Seero +5 eero) e (00105

S
Mmin veV), ZKGTh fK |V’U‘2d.’l§'

If By > B, scheme (3.4) admits a unique solution (u},w}) for any At > 0, and the solution u}

/uZda::/ugdx, (3.6)
Q Q

for any n > 0. Moreover, for E" := E(u}, U}’) we have

En—i—l < E( n+1 Un-i—l) —FEm —AtA(M(u ) wz—i—l wﬁ“)

1
- 2A<6 u;zLJrl - UhaUZH - U;LL) - HUn+1 - U;I:L||27

Bo = (3.5)

satisfies the mass conservation, i.e.,

(3.7)

independent of the size of At.

Proof. Taking ¢ = 1 in (3.4c) implies (3.6). We next show the existence and uniqueness of (3.4)
at each time step. Substitution of (3.4b) into (3.4c) with (3.4d) gives the following linear system

(uZH/At, o) + A(M(up); wZH, @) =(up /At, ¢), (3.8a)
A up™ ) + (1/2H (up)*upy ™, ¢) — (witt ) = (1/2H (up)*up, ¢) — (H(up) Uy, ). (3.8b)

It suffices to prove the uniqueness for this linear system. Denoting (u,w) the difference of two
possible solutions of (3.8) for fixed (u},w)), so that

(a/At, ¢) + A(M (up,); w, ¢) =
A, 9) + (1/2H (up)*a, ¢) — (0, ) =

Setting ¢ = Atw, Y = u and adding the two equations, we have

(3.9a)
(3.9b)

AtA(M (up); , w) + A(e*; @, @) + (1/2H (up)*a, @) = 0.
Using (2.8) with a = M (u}}) so that g > %, we have
1
0 = AtMyldh + Sl + 5 [ HlPida,
Q

which ensures that @ = const and @ = const. Then it follows A(M (u}});w,p) = A(e?*; u,v) = 0.
Thus, (3.9a) is equivalent to

(ﬂ, ¢) = 07 v¢ € Vh-
We must have @ = 0. In a similar fashion, @ = 0 follows from (3.9b). Hence the uniqueness for
(3.8) follows.
We next prove (3.7). Taking ¢ = w, ™ in (3.4c), ¢ = Z in (3.4d) gives

_ n+l , n+l n+1 “ZH up,
A(M (upy); wy ™ wp ™) = A(e? up ™, et

n+1 n
ntl Yp T Up
A7 )+(H( i1 TR )
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By (3.4b) and bilinearity of A(e?;,-), the right hand side of the above equation gives
1 n+1 n+1 a1 it .

+ A—t (||U”+1||2 — ORI+ U™ = p)?) -

Hence
Blut!, U =B(uf, Up) — AtAXM () wi ™, wj)
(3.10)
- —A(€ uptt =y =) — UM = TR
Implied by the fact that II is a contraction mapping in L?, we have
E( n+1 Un—‘rl) < E( n+1 Un—H) (311)
hence (3.7) as desired.
0

Remark 3.1. Note that here §y > 3 serves only as a sufficient condition for stability. For M (u) =

const and rectangular meshes, 3 can be more precisely estimated as 85 = k?, see [23, Lemma 3.1].
maxgear M(u}!)

it M(]) which approaches

For general case, it suffices to add upon k? a factor of size maxy

to one as the mesh is sufficiently refined. In our numerical examples we take 85 = 3k

3.3. Second order fully discrete IEQ-DG scheme. We first obtain uj, w;, and U* from the first
order fully discrete IEQ-DG scheme (3.4). We further use the second order backward differentiation

formula (BDF2) for time discretization. In other words, for n > 1, the second order fully discrete

IEQ-DG scheme is to find (u] ™, wi*!) € Vj, x V}, such that for Ve, € V4,

Uy =1IU", (3.12a)

SUMT —AUR + URTY Ly ey 30T — A0+ ™ (3.12b)
Suptt — dup + uf ! .

( h 2A2€L ) ’(b) = — AM (uy");wi ™, ), (3.12¢)

(Wit ) =A( upth v) + (H(up ) U™, ), (3.124)

where u,* is obtained using v}~ and u}
Nk n—1
w,” =2uy — Uy (3.13)

n+1

Here instead of u) ™" we use u)"* to avoid iteration steps in updating the numerical solution, while

still maintaining second order accuracy in time.

To show the energy stability, we first present some useful identities.

Lemma 3.1. For any symmetric bilinear functional A(-, -), it follows

A1, 361 — 202 — ¢3) = A(dr, ¢1) + A(2¢1 — b2, 201 — ba) — A(d2, d2)
— A(¢s3, ¢3) + A(p1 — ¢3, d1 — 03).
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Proof. The first identity follows from a direct calculation using the symmetry of the bilinear func-
tional A(-,-). The second follows from a proper decomposition and using the first identity, that
goes as follows:

2A(01,3¢1 — 22 — d3) =A(¢1,6¢1 — 4¢2 — 2¢3)

(

A(¢1, 01+ 4(P1 — ¢2) + ¢1 — 2¢3)
(
(

A(p1, ¢1) + A(2h1, 201 — 2¢2) + A(dr, d1 — 2¢3)
A(p1, 01) + AQ2d1 — ¢2,2¢01 — ¢2) — A(P2, P2)
+ A(¢1 — @3, 01 — ¢3) — A(P3, P3).

¢
¢

For the scheme (3.12), we have

Theorem 3.2. Under the assumption in Theorem 3.1, we set 5 as defined in (3.5). If 5y > [,
the second order fully discrete DG scheme (3.12) admits a unique solution (u;*!, wj™), and the
solution uj satisfies the mass conservation (3.6) for any n > 0. Moreover, for any At > 0 it follows

EM— B" < —AtA(M (u)™); wi wptt) <0, (3.14)

where the modified energy is defined by
E(uhv Uh) + E(uz*v Ui?*)

E" = :
2

(3.15)
with
Ut =20y - Up .
Proof. We first prove (3.14). Taking ¢ = 2Atw!*" in (3.12c) gives
—2AtA(M (uy™); wit wp ™) =(wpt, 3up ™ — ) +up )
using (3.12d)  =A(*up ) + (H(upy U)o = 3up™ — dup +up ™!
using (3.120)  =A(e*up ™, 3up !t — dup +up ) + (UM —AUR 4+ UP 20
=A(e*up™ Buptt — 2u — ) + (U™ —20p — Uyt 20T
Both A(e?;-,-) and (-,-) are symmetric, by Lemma 3.1 we have

* 1 n+lx n *
Al up ™ 3uptt — 2ul — up) =5 [A(EQ wptt ) + A€ thrl ,uhﬂ’ ) — A(e%;ul, ul)
—A(€; up” up ) + A% uZH uz*,uzﬂ — uz*)} ,
(Ut —2up — U™, 20 =||U™H 12 + 20" = UR )P = UR |12 = U |12 + U™ = U2
Regrouping, we obtain
1
2

_ 1
= 28" — 28 A(M ()i wit) = SAWE U — = ) — U = U

[A up™ ™) + AP uy ™ uy ™ )] + U+ 20 - U2

<2E™ — 2AtA(M (up™); witt wpth.
(3.16)
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Further use of the fact that II is a contraction mapping in L?, we have
OGP < U012, 20 = UR|* < 20 = Up)*.

Then the left hand side of (3.16) is bounded below by 2E"L, thus (3.14) follows.
Similar to the proof of Theorem 3.1, the existence and uniqueness of the scheme (3.12) is
equivalent to showing the uniqueness of u} ™, w™ given u}, w}, U with i = n,n — 1.

Let (@, w, U) be the difference of two such solutions, then

U :%H(uZ’*)'&, (3.17a)
(3@, ¢) = — 20t A(M (uy,™); w0, @), (3.17b)
(@, ) =A(2; @, ) + (H(uZ’*)U,lp) . (3.17¢)

Setting ¢ = W, 1 = 34, and subtracting (3.17b) from (3.17¢), it follows
QALA(M (u}*); w, ) + 3A(e%; @, ) + 6| U))* =0,
where (3.17a) has been used to simplify the third term. By (2.8) with a = M (u}), we have
Bo > B5 > B*, hence
28t Muin |0 b + 3¢ ||| b + 6U]1* < 0,

which ensures that @ = const, @ = const and U = 0. Thus, using (3.17) again, we must have
@ = w = 0. Thus leads to the existence and uniqueness of the scheme (3.12).
Taking ¢ = 1 in (3.12¢), it follows

1
/ upttde = 3 / duf — u}da. (3.18)
0 Q
From Theorem 3.1, we have
/ updr = / ul) d, (3.19)
Q 0
which when combined with (3.18) gives the mass conservation (3.6). O

3.4. Algorithms. The details related to the schemes implementation are summarized in the fol-
lowing algorithms.

3.4.1. Algorithm for the first order fully discrete IEQ-DG scheme (3.4).

e Step 1 (Initialization) From the given initial data ug(x)

(1) Generate u) = Mug(x) € Vy;

(2) Generate U° = \/F(uo(z)) + B, where B is a priori chosen so that inf(F(v) + B) > 0.
e Step 2 (Evolution)

(1) Project U™ back into V}, namely compute U}' = I1IU™;

(2) Solve the linear system (3.8) for u} ™!, with;

(3) Update U™ using (3.4b), then return to (1) in Step 2.
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3.4.2. Algorithm for the second order fully discrete IEQ-DG scheme (5.12).

e Step 1 (Initialization) From the given initial data ug(x)
(1) Generate u) = ug(x) € Vy;
(2) Generate U° = \/F(uo(z)) + B, where B is a priori chosen so that inf(F(v) + B) > 0;
and
(3) Solve for u;,w; and U' for Vz € S through Algorithm 3.4.1 for the first order fully
discrete IEQ-DG scheme (3.4).
e Step 2 (Evolution)
(1) Project U™ back into V}, namely compute U}' = IIU™;

(2) Solve the linear system for u}, w*!,

n—1

Bup " oy, bl oy (AU = U

A5 )+ 5 ((H@R) 0™ 0) — (it ) =RHS,

4wp-up~!

shere RIS = — () S — 4 (1(07))* 255 )
(3) Update U"*! through (3.12b), i.e.,

1 aup —upt 1 dup — up!
Un+1:§H(uZ,*)uZ+1+( h . h —iH(uz*) Up — U >7

then return to (1) in Step 2.

Remark 3.2. Higher order (in time) IEQ discretization is possible. We omit the details here due
to space limitation. Interested readers are referred to [20] for some arbitrarily high-order linear
schemes for gradient flow models.

4. EXTENSIONS

It is known that solving the Cahn-Hilliard equation with degenerate mobility and/or logarithmic
potential is more difficult since it requires a point-wise control of the numerical solution. We discuss

how our schemes can be applied by a proper modification.

4.1. Mobility. Though the mobility is often taken as a constant for simplicity, a thermodynami-
cally reasonable choice is actually the degenerate mobility M (u) = u(1 —u) (see e.g., [11]). There
is hope that solutions which initially take values in the interval [0, 1] will do so for all positive
time (which is not true for fourth-order parabolic equations without degeneracy). We remark that
only values in the interval [0, 1] are physically meaningful. Such degeneracy leads to numerical
difficulties.

Here, we follow [11, 3] by considering the modified mobility

M(o) u<o,

M(u) = M(u) o<u<l-—o, (4.1)
M(1-0) u>1-o,
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It is obvious that for given o,
M(U) > Mmin > 0,

and it is well-defined for u € (—o00,00). Numerically, we apply our scheme using this modified

mobility with a small o.

4.2. Flory-Huggins potential. A practical choice for the potential is the Logarithmic Flory-
Huggins function [4, 6, §]

Fv) = g (vlnv+ (1 —v)In(1l —v)) + %v(l —v), wvelo,1], (4.2)

where 6, 0. > 0 are physical parameters. This function is non-convex with double wells for 6. > 26,
and it only has a single well and admits only a single phase for 6, < 26 [36].

The domain of the logarithmic potential (4.2) is (0, 1), which requires the numerical solution be
strictly inside (0,1). For some numerical schemes, such solution bounds can be established (see,
e.g., [10, 11, 29, 8, 7)).

For high order DG schemes it is rather difficult to preserve the numerical solution within (0, 1).
We choose to regularize the logarithmic Flory-Huggins potential (4.2) by extending its domain
from (0,1) to (—o0, 00). Such regularization technique is commonly used to remove the numerical
overflow; see, e.g., [8, 1, 11, 2, 41]. Specifically, it can be replaced by the twice continuously

differentiable function

g<v1nv+(1—v)lna+w— )—i—%(l—v), v>1-—o0,
F(v) = fvlnv+(1—v)In(l —v))+%Lv(l—v), o<v<l-—o,
g((l—v)l(1—v)+vln0+———>+%v(1—v), v <o,

and thus F(v) is well defined for v € (—oo,00). It was argued in [11] that the solution with
regularized M (u) and F(u) converges to the solution to the original problem as o — 0. This
treatment has been applied in numerical simulations, for example in [3]. In this paper, we apply
our TEQ-DG schemes to problems formulated with the modified mobility and the regularized
potential.

5. NUMERICAL EXAMPLES

In this section, we will carry out several numerical tests in both 1D and 2D to demonstrate both
temporal and spatial accuracy of the IEQ-DG schemes (3.4) and (3.12), the mass conservation
and energy dissipation properties. For the spatial accuracy, we will choose At sufficiently small
such that the spatial discretization error is dominant. Likewise, for the temporal accuracy, we will
set spatial meshes sufficiently refined such that temporal discretization error is dominant. In the
following numerical examples, the parameter 3y = k? + 0.5k for problems with constant mobility
and By = 3k? + 0.5k for other cases. The parameter B = 1 as default unless specified.

Example 5.1. (1D spatial accuracy test) Consider the Cahn-Hilliard equation (1.1) with M =1

and double-well potential F(u) = 1(u? — 1)? in Q = [0,2n] with periodic boundary conditions.
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Here, we follow Example 5.2 in [32] by adding a source term

s(z,t) = —e 'sinz (3% cos 2z + 3~ * cos® z + 1) (5.1)
to the Cahn-Hilliard equation (1.1), so that the exact solution is
u(z,t) = e 'sinz. (5.2)

We use the fully discrete IEQ-DG scheme (3.12) with a term (s(z, "), ) added to the right hand
side of (3.12c), and we test the DG scheme based on P* polynomials, with k = 1,2, 3. Both errors
and orders of accuracy at T" = 1 are reported in Table 1. These results show that (k + 1)th order

of accuracy in both L? and L> norms are obtained.

TABLE 1. 1D L2, L errors and orders of accuracy at T = 1.

il Az N=10 N=20 N=40 N=80
error error order error order error order
1 Hes |u — upl| L2 |3.09646e-02(8.07876¢-03| 1.94 |2.03575e-03| 1.99 |5.10124¢-04 | 2.00
||u — up| L |1.68270e-02|4.58886e-03| 1.87 |1.16103e-03| 1.98 |2.91198e-04| 2.00
9104 |u — upl| L2 |3.56585e-04|4.17179¢-05| 3.10 |5.12149¢e-06| 3.03 [6.35139¢-07| 3.01
|l — upl| L [4.34261e-04|5.50274e-05| 2.98 |6.89646e-06| 3.00 |8.63616e-07| 3.00
3|10.5 |u — upl| 2 |2.57355e-05]1.66983e-06| 3.95 |1.05343e-07| 3.99 |6.62827¢-09| 3.99
||u — up|| Lo |1.86828e-05[1.27898e-06| 3.87 |8.12040e-08| 3.98 |5.31052¢-09| 3.93

Note that the test error in Table 1 is expected to be of order O(At? + h*1). In order to observe
the desired order in space, time step needs to be smaller so that At < O(h¥*1/2) when k gets
larger. This comment applies to other cases as well.

Example 5.2. (2D spatial accuracy test with constant mobility and double-well potential) For
the Cahn-Hilliard equation (1.1) with M (u) = 1 and double-well potential F(u) = L (u? —1)% in Q

4
with appropriate boundary conditions, we add a source term

w(x,y,t) | Ewlzyt) Bw(zy thv(ryt)
- + - +
4 4 2
to the right hand side of (1.1), where

w(z,y,t) =0.1e"*sin(x/2) sin(y/2),
v(x,y,t) = (0.16’”4 cos(x/2) .sin(y/2))2 + (O.le’t/4 sin(x/2) cos(y/2))2 :

so that the exact solution is

3w(z,y,t)>  w(z,y,t)
2 2

s(z,y,t) =

u(z,y,t) = w(x,y,t).
Here the parameter ¢ = 0.1. We test this example by DG scheme (3.4) with a term (s(x,y, "), ¢)
added to the right hand side of (3.4c), and the DG scheme is based on polynomials of degree k
with £ = 1,2, 3 on rectangular meshes.
Test case 1. (Periodic BC) In this test case, we take Q = [0, 47]? and consider periodic boundary
conditions. Both errors and orders of accuracy at T'= 0.01 are reported in Table 2. These results
show that (k + 1)th order of accuracy in both L? and L> are obtained.
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TABLE 2. 2D L2, L* errors at T = 0.01 with mesh N x N.
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b AL N=8 N=16 N=32 N=64
error error order error order error order
1103 |lu — upl| 2 |3.16822e-02(8.03463e-03| 1.98 [2.02336e-03| 1.99 |5.04024e-04| 2.01
||u — up| L |1.38669e-02|3.74776e-03| 1.89 [9.59555e-04| 1.97 |2.40239e-04| 2.00
ol 104 |u — upl| L2 |4.52729e-03|5.75115e-04 | 2.98 |7.33589¢-05| 2.97 [9.21578e-06| 2.99
||u — up| L |2.32640e-03|2.95229e-04| 2.98 |4.06866e-05| 2.86 |5.26926e-06| 2.95
al1e5 |lu — up|| 2 |4.46670e-04]2.97916e-05| 3.91 |1.89117e-06| 3.98 |1.18585e-07| 4.00
||u — up| L |3.20555e-04|1.80104€-05| 4.15 |1.02204e-06| 4.14 |6.16224e-08| 4.05
Test case 2. (Neumann BC) Considering 2 = [—m, 37|*> with homogenous Neumann boundary

conditions (1.2(ii)), both errors and orders of accuracy at 7' = 0.01 are reported in Table 3. These
results also show (k + 1)th order of accuracy in both L? and L*.

TABLE 3. 2D L2, L* errors at T = 0.01 with mesh N x N.

il Az N=8 N=16 N=32 N=64
error error order error order error order
1 Hes |u — upl| L2 |3.16822e-02|8.03463e-03| 1.98 |2.02336e-03| 1.99 |5.04024¢-04| 2.01
|l — upl L [1.38669e-02|3.74776e-03| 1.89 |9.59555e-04| 1.97 |2.40239e-04| 2.00
9104 |u — wpl| g2 |4.52729e-03|5.75115e-04 | 2.98 |7.33591e-05| 2.97 [9.18427e-06| 3.00
||u — up| L |2.32640e-03|2.95229e-04| 2.98 |4.06885e-05| 2.86 |5.08342e-06| 3.00
3l10.5 |u — upl| L2 |4.46670e-04|2.97916e-05| 3.91 |1.89102e-06| 3.98 |1.18133¢-07| 4.00
|lu — upl L= [3.20555e-04|1.80104e-05{ 4.15 |1.02406e-06| 4.14 |6.40520e-08| 4.00

Example 5.3. (2D spatial accuracy test with constant mobility and logarithmic potential) We
consider the Cahn-Hilliard equation (1.1) with constant mobility M (u) = 1, the logarithmic Flory-
Huggins potential (4.2) with 0 = 6. = 2, the parameters ¢ = 1 and B = 10. We add an appropriate
source term s(z,y,t) to the right hand side of (1.1) such that the exact solution is
1
e Y4sin(x/4) sin(y/4) + 5
We test this example by DG scheme (3.12) with a term (s(z, y, t"™'), ¢) added to the right hand
side of (3.12¢), and the DG scheme is also based on polynomials of degree k& with £ = 1,2,3 on

1
u(z,y,t) = 0

rectangular meshes.

Test case 1. (Periodic BC) In this test case, we take = [0, 87]? and consider periodic boundary
conditions. Both errors and orders of accuracy at T' = 0.01 are reported in Table 4. These results
show that (k + 1)th order of accuracy in both L? and L> are obtained.

Test case 2. (Neumann BC) In this test case, we take Q = [—2m,27]? and consider Neumann
boundary conditions. Both errors and orders of accuracy at T" = 0.01 are reported in Table 5.
These results show that (k + 1)th order of accuracy in both L? and L™ are obtained.
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TABLE 4. 2D L?, L* errors at T = 0.01 with mesh N x N.

il Az N=8 N=16 N=32 N=64
error error order error order error order
1 Hes |lu — upl| 2 |6.34010e-02]1.62047e-02| 1.97 |4.04183e-03| 2.00 |1.00777e-03| 2.00
||u — up| L |1.38744€-02|3.74858e-03| 1.89 |9.55245e-04| 1.97 |2.39967e-04| 1.99
9104 |u — upl| L2 |9.39224e-03|1.18059¢-03 | 2.99 |1.46853e-04| 3.01 |1.83323e-05| 3.00
||u — up| L |2.45698e-03 |3.14143e-04| 2.97 |3.74571e-05| 3.07 |4.54860e-06| 3.04
3150.6 |lu — upl| 2 {1.09183e-03]6.72768e-05| 4.02 [4.09870e-06| 4.04 |2.54225e-07| 4.01
||u — up| L= |2.30167e-04|1.58541e-05| 3.86 |1.02039e-06| 3.96 |6.42180e-08| 3.99

TABLE 5. 2D L%, L* errors at T = 0.01 with mesh N x N.

il A N=8 N=16 N=32 N=64
error error order error order error order
13 |u — wpl| g2 |1.27997e-01|3.55296e-02| 1.85 |9.55174e-03| 1.90 |2.13203e-03| 2.16
||u — up|| Lo |5.54685e-02(1.49970e-02| 1.89 {3.92808e-03| 1.93 |9.67492e-04| 2.02
9104 |lu — upl| 2 |1.87014€-02]2.35480e-03| 2.99 |2.94393e-04| 3.00 |3.69614e-05| 2.99
||u — up| L |1.05130e-02|1.30587e-03| 3.01 |1.62919e-04| 3.00 |2.04032e-05| 3.00
3l50.6 |u — upl|p2 |2.23974e-03|1.24902¢-04 | 4.16 |7.57937e-06| 4.04 [4.99051e-07| 3.92
||u — up|| L |1.47731e-03|8.22721e-05| 4.17 |4.36207e-06| 4.24 |3.29965e-07| 3.72

Example 5.4. (2D spatial accuracy test with degenerate mobility and logarithmic potential) We
consider the Cahn-Hilliard equation (1.1) with degenerate mobility M (u) = u(1 — u), the logarith-
mic Flory-Huggins potential (4.2) with § = 6, = 2, the parameters ¢ = 1 and B = 10. We add an
appropriate source term s(x,y,t) to the right hand side of (1.1) such that the exact solution is

2 1
u(ZL’a Y, t) = ge—t/4 sin(m/?) Sin(y/2) + 5

We test this example by DG scheme (3.4) with a term (s(x,y,t"™), ¢) added to the right hand
side of (3.4c), and the DG scheme is also based on polynomials of degree k with k¥ = 1,2,3 on
rectangular meshes.

Test case 1. (Periodic BC) In this test case, we take = [0, 47]* and consider periodic boundary
conditions. Both errors and orders of accuracy at T' = 0.01 are reported in Table 6. These results
show that (k + 1)th order of accuracy in both L? and L> are obtained.

Test case 2. (Neumann BC) In this test case, we take Q = [—m, 37]* and consider Neumann
boundary conditions. Both errors and orders of accuracy at T = 0.01 are reported in Table 7.
These results show that (k + 1)th order of accuracy in both L? and L* is obtained.

Example 5.5. (Temporal Accuracy Test) Following the test case 2 in Example 5.3, we produce
numerical solutions at 7' = 1 using DG schemes (3.4) and (3.12) based on P? polynomails with
time steps At = 27™ with 2 < m < 5 and appropriate meshes. The L?, L errors and orders of
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TABLE 6. 2D L2, L* errors at T = 0.01 with mesh N x N.
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il Az N=8 N=16 N=32 N=64
error error order error order error order
1 Hes |lu — upl| 2 |1.31235e-01]3.29574e-02| 1.99 |8.27934e-03| 1.99 |2.08160e-03| 1.99
||u — up| L |5.56010e-02|1.49372e-02| 1.90 |3.81584e-03| 1.97 |9.59510e-04| 1.99
9104 |u — upl| L2 |2.05688e-02|2.51806e-03| 3.03 |3.05650e-04| 3.04 |3.79714e-05| 3.01
||lu — up|| L |1.13806e-02|1.32194€-03| 3.11 |1.48147e-04| 3.16 |1.77820e-05| 3.06
3150.6 |lu — upl| 2 |2.82305e-03|1.48385¢e-04 | 4.25 |8.56909¢e-06| 4.11 |5.53886e-07| 3.95
||u — up| L |1.58906e-03(9.24779e-05| 4.10 |4.63277e-06| 4.32 |3.35743e-07| 3.79

TABLE 7. 2D L%, L* errors at T = 0.01 with mesh N x N.

il Az N=8 N=16 N=32 N=64
error error order error order error order
1 Hes |u — wpl| g2 |1.31235e-01|3.29574e-02| 1.99 |8.27934e-03| 1.99 |2.08160e-03| 1.99
||u — up| Lo |5.56010e-02|1.49372e-02| 1.90 |3.81584e-03| 1.97 |9.59510e-04| 1.99
9104 |lu — upl| 2 |2.05688e-02]2.51806e-03| 3.03 |3.05650e-04| 3.04 |3.79715e-05| 3.01
||u — up| L |1.13806e-02|1.32194€-03| 3.11 |1.48147e-04| 3.16 |1.77820e-05| 3.06
3|50.6 |u — upl| £z |2.82305e-03]1.48385e-04 | 4.25 |8.56909e-06| 4.11 [5.59243e-07| 3.94
|lu — upl L [1.58906e-03|9.24779¢-05| 4.10 |4.63278e-06| 4.32 |3.42344e-07| 3.76

convergence are shown in Table 8, and these results confirm that DG schemes (3.4) and (3.12) are

first order and second order in time, respectively.

TABLE 8. L% L* errors and EOC at T = 1 with time step At.

Schemel Mesh At =272 At =273 At =274 At =27
error CeIrror order CeIrror order error order
(3.4) | 322 |u — up || 2 [4.21032e-03|2.06620e-03| 1.03 |1.02380e-03| 1.01 |5.09705¢-04| 1.01
|l — up || poo | 7.48743e-04|3.67246e-04| 1.03 |1.81917e-04| 1.01 {9.05192¢-05| 1.01
(3.4) | 642 lu — unl| 2 [4.21016e-03|2.06606e-03| 1.03 |1.02364e-03| 1.01 |5.09522¢-04| 1.01
|t — up || poo | 7.48925¢-04|3.67359¢-04| 1.03 |1.82003e-04| 1.01 {9.05934e-05| 1.01
(3.12) | 642 lu — unl| 22 [1.32995e-03|3.18993e-04 | 2.06 |7.69932¢-05| 2.05 |1.88763e-05| 2.03
|l — up| oo |2.24427e-04]5.35331e-05| 2.07 [1.27796e-05| 2.07 |3.12208¢-06| 2.03
(3.12) | 1287 lu — up g2 [1.34130e-03[3.18230e-04| 2.08 | 7.69137e-05| 2.05 [1.88416e-05 2.03
|l — up |z~ |2.27726e-04]5.31968e-05| 2.10 [1.27386e-05| 2.06 |3.09279¢-06| 2.04

Exzample 5.6. Following [36], we consider the Cahn-Hilliard equation (1.1) with constant mobility

M (u) = 1, the logarithmic Flory-Huggins potential

F(u) =600 (ulnu+ (1 —u)In(1l —u)) + 1800u(1 — u),
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and the parameters € = 1 and B = 10%. The equation is subject to the initial condition

u (l’ ) - 0717 (xvy) € Qla
=N 069, (2,y) € O,

where the square domain
Q2 =1[-0.5,0.5] x [-0.5,0.5], €; =[-0.2,0.2] x [-0.2,0.2], o= Q\Q;.

The boundary conditions are taken as Neumann BCs, (ii) in (1.2).

Test case 1. We first solve this problem by the first order fully discrete IEQ-DG scheme (3.4)
based on P! and P? polynomials with time step At = 107 and meshes 40 x 40 and 80 x 80,
respectively. The contours at T = 8 x 107° are shown in Figure 1, and the corresponding energy
and mass evolutions are shown in Figure 2. From Figure 1, we find that the solution structure is
well resolved even on coarser mesh and lower order P! polynomials, and the scheme (3.4) using P?
polynomials gives a better resolution than that using P! polynomials on coarser meshes 40 x 40,
but there is no noticeable difference with solution on refined meshes 80 x 80 or higher order
polynomial P? as shown in Figure 1(b)-(d). The pattern structure is well consistent with that
obtained in [36]. Figure 2(a) shows that the numerical solution of the scheme (3.4) satisfies the
energy dissipation law, Figure 2(b) and 2(c¢) show that the numerical solution conserves the total
mass fﬂ updr = 0.6932 under an appropriate tolerance.

Test case 2. We solve this problem again by the second order fully discrete IEQ-DG scheme (3.12)
based on P! and P? polynomials. In Figure 3, we show the contours at 7" = 8 x 107° obtained
based on P! polynomials with mesh 40 x 40 and time steps At = 1077,8 x 1078,5 x 1078,2 x 1078,
respectively. From Figure 3, we find the pattern structure is comparable to that in Figure 1(b)-(d)
even with time step At = 10~ and lower order P! polynomials.

Figure 4 shows that the numerical solution of the scheme (3.12) satisfies the energy dissipation
law (3.14), but we do find that the modified energy (3.15) better approximate the original energy
with a smaller time step At, a smaller mesh size h or polynomials of a higher degree. Figure 5
implies the numerical solutions with different time steps At conserve the total mass fQ udr = 0.6932

under an appropriate tolerance.
Example 5.7. Following [36], we further consider the Cahn-Hilliard equation (1.1) with degenerate
mobility M (u) = u(1 — u), the logarithmic Flory-Huggins potential
F(u) =3000 (uInu+ (1 —u)In(1l — u)) + 9000u(1 — ),
and the parameters €e = 1 and B = 10%. The initial condition is

ug(z,y) = 0.63 4 0.05rand(x, y),

where rand(z,y) is the random perturbation function in [—1,1] and has zero mean. For the
boundary conditions, we take Neumann BCs (ii) in (1.2).

We solve this problem by the scheme (3.12) based on P? polynomials with meshes 64 x 64
and time step At = 107%. The evolution of the concentration field is shown in Figure 6. The

corresponding energy and mass evolutions are shown in Figure 7. Figure 6 clearly shows the two
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FIGURE 5. The total mass difference [, ujl — ujdx evolution for scheme (3.12).

phases of the concentration evolution. The first phase is governed by spinodal decomposition and
phase separation, which is roughly corresponding to the first three figures of Figure 6, this period is
basically terminated as soon as the local concentration is driven to either value of the two binodal
points. The second phase is governed by grain coarsening, approximately from ¢t = 8 x 107¢
onwards the generated patterns cluster and grains tend to coarsen, which is a very slow process.
Figure 6 shows statistically similar patterns in the numerical solution as those in [36]. Figure 7
further confirms the numerical solution of the scheme (3.12) satisfies the energy dissipation law

and conserves the total mass fQ udx = 0.63.

6. CONCLUSION

In this paper, we integrate the mixed DG method with the IEQ method to design both first and
second order fully discrete DG schemes that inherit the energy dissipation law and mass conserva-
tion of the continuous equation irrespectively of the mesh and time steps. The spatial discretization
is based on the mixed DG method, and the temporal discretization is based on the IEQ approach
introduced in [40] for treating nonlinear potentials. Coupled with a spatial projection, the resulting
IEQ-DG algorithms are easy to implement without resorting to any iteration method, and proven
to be unconditionally energy stable and mass conservative. We have presented numerical examples
to verify our theoretical results, and demonstrated the good performance of the scheme in terms
of efficiency, accuracy, and preservation of solution properties such as energy dissipation and mass

conservation.
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