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Abstract
In this paper, we design, analyze, and numerically validate positive and energy-dissipating
schemes for solving the time-dependentmulti-dimensional systemofPoisson–Nernst–Planck
equations, which has found much use in the modeling of biological membrane channels and
semiconductor devices. The semi-implicit time discretization based on a reformulation of
the system gives a well-posed elliptic system, which is shown to preserve solution positivity
for arbitrary time steps. The first order (in time) fully-discrete scheme is shown to preserve
solution positivity and mass conservation unconditionally, and energy dissipation with only a
mildO(1) time step restriction.The scheme is also shown to preserve the steady-states. For the
fully second order (in both time and space) scheme with large time steps, solution positivity
is restored by a local scaling limiter, which is shown to maintain the spatial accuracy. These
schemes are easy to implement. Several three-dimensional numerical examples verify our
theoretical findings and demonstrate the accuracy, efficiency, and robustness of the proposed
schemes, as well as the fast approach to steady-states.

Keywords Poisson–Nernst–Planck equations · Semi-implicit discretization · Mass
conservation · Positivity · Energy decay · Steady-state

Mathematics Subject Classification 35Q92 · 35J57 · 65N08 · 65N12 · 82D37

1 Introduction

In this paper, we are concerned with efficient and structure-preserving numerical approx-
imations to a multi-dimensional time-dependent system of Poisson–Nernst–Planck (PNP)
equations. Such system has been widely used to describe charge transport in diverse appli-
cations such as biological membrane channels [5,7,42], electrochemical systems [1,32],
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and semiconductor devices [29,37]. In the semiconductor modeling, it is often called the
Poisson-drift-diffusion system.

PNP equations consist of Nernst–Planck (NP) equations that describe the drift and dif-
fusion of ion species, and the Poisson equation that describes the electrostatic interaction.
Such mean field approximation of diffusive ions admits several variants, and we consider the
following form

∂tρi + ∇ · Ji = 0, x ∈ � ⊂ R
d , t > 0, (1.1a)

− Ji = Di (x)

[
∇ρi + 1

kBT
ρi (qi∇φ + ∇μi )

]
, (1.1b)

− ∇ · (ε(x)∇φ) = 4π

(
f (x) +

m∑
i=1

qiρi

)
, (1.1c)

subject to initial data ρi (x, 0) = ρin
i (x) ≥ 0 (i = 1, . . . ,m) and appropriate boundary

conditions to be specified in Sect. 2.1. Here m is the number of species, ρi = ρi (x, t) is the
charge carrier density for the i-th species, and φ = φ(x, t) the electrostatic potential. The
charge carrier flux is Ji , with which Di (x) is the diffusion coefficient, kB is the Boltzmann
constant, T is the absolute temperature. The coupling parameter qi = zi e, where zi is the
valence (with sign), e is the unit charge. In the Poisson equation, ε(x) is the permittivity,
f (x) is the permanent (fixed) charge density of the system. The equations are valid in a
bounded domain � with boundary ∂� and for time t ≥ 0. For more accurate modeling of
collective interactions of charged particles, the chemical potential μi is often included and
can be modeled by other means (see Sect. 2.3 for more details).

Due to the wide variety of devices modeled by the PNP equations, computer simulation
for this system of differential equations is of great interest. However, the PNP system is a
strongly coupled system of nonlinear equations, also, the PNP system as a gradient flow can
take very long time evolution to reach steady states. Hence, designing efficient and stable
methods with comprehensive numerical analysis for the PNP system is highly desirable. This
is what we plan to do in this work.

1.1 RelatedWork

In the literature, there are different numerical solvers available for solving both steady and
time-dependent PNP problems; see, e.g., [11,12,17,28,30,39,40,46]. Many existing algo-
rithms were introduced to handle specific issues in complex applications, in which one may
encounter different numerical obstacles, such as discontinuous coefficients, singular charges,
geometric singularities, and nonlinear couplings to accommodate various phenomena exhib-
ited by biological ion channels. We refer the interested reader to [43] for some variational
multiscale models on charge transport and related algorithms.

Solutions to the PNP equations are known to satisfy some important physical properties. It
is desirable to maintain these properties at the discrete level, preferably without or with only
mild constraints on time step relative to spatial meshes. Under natural boundary conditions,
three main properties for the PNP equations are known as (i) Conservation of mass, (ii)
Density positivity, and (iii) Free energy dissipation law. The first property requires the scheme
to be conservative. The second property is point-wise and also important for the third property.
In general, it is rather challenging to obtain both unconditional positivity and discrete energy
decay simultaneously. This is evidenced by several recent efforts [8–10,14,25,26,31], in
which these properties have been partially addressed at the discrete level for PNP equations.
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With explicit time discretization, the finite difference scheme in [25] preserves solution
positivity under a CFL condition �t = O(�x2) and the energy decay was shown for the
semi-discrete scheme (time is continuous). An arbitrary high order DG scheme in [26] was
shown to dissipate the free energy, with solution positivity restored with the aid of a scaling
limiter. With implicit time discretization, the second order finite difference scheme in [8]
preserves positivity under a CFL condition�t = O(�x2) and a constraint on spatial meshes.
An energy-preserving version was further given in [9] with a proven second order energy
decay rate. The finite element method in [31] employs the fully implicit backward Euler
scheme to obtain solution positivity and the discrete energy decay. In some cases, electric
energy alone can be shown to decay (see [26]). Such decay has been verified for the finite
difference scheme in [14] and the finite element scheme in [10], both with semi-implicit time
discretization.

More recent attempts have focused on semi-implicit schemes based on a formulation of
the nonlogarithmic Landau type. As a result, all schemes obtained in [6,15,16,22] have been
shown to feature unconditional positivity ( see further discussion in Sect. 1.2).

Our goal here is to construct and analyze structure-preserving numerical schemes for
PNP equations in a more general setting: multi-dimension, multi-species, also subject to
other chemical forces.

1.2 Our Contributions

The scheme is induced by a discretization of the reformulation of (1.1a)–(1.1b) as

∂tρi = ∇ · (Di (x)e
−ψi ∇ (ρi eψi

))
, (1.2)

where

ψi (x, t) = qi
kBT

φ(x, t) + 1

kBT
μi .

Such reformulation, called the Slotboom transformation in the semiconductor literature, con-
verts a drift-diffusion operator into a self-adjoint elliptic operator. The novelty here is (i) that
the problem is a coupled parabolic system and (ii) that the coupling is a complex interaction
among the different species that is only captured in bulk by the dissipation functional (2.7).
Nevertheless, the resulting discrete system can be more efficiently solved, and in particular
more suitable for keeping the positivity-preserving property.

In the context of Fokker-Planck equations (1.2) is termed as the nonlogarithmic Landau
formulation (see, e.g., [2,24]). Using such reformulation in [24] Liu and Yu constructed an
implicit scheme for a singular Fokker-Planck equation and proved that all three solution
properties hold for arbitrary time steps, for which implicit time-discretization is essential.
Hence in [22] we adopted a semi-implicit time-discretization to construct a finite difference
scheme for a 1D PNP system reduced from a 3D PNP system using geometric symmetry. The
scheme in [22] is shown to feature unconditional positivity and a conditional discrete energy
dissipation law simultaneously. See also [23] for a fully second order scheme for solving a
class of nonlinear nonlocal Fokker-Planck type equations.

Different from [22,23], here we start with the time discretization of form

ρn+1
i − ρn

i

τ
= ∇ · (Di (x)e

−ψn
i ∇(eψn

i ρn+1
i )) =: R[ρn+1

i , ψn
i ], (1.3)

and show this is well-posed and positivity-preserving for time steps of arbitrary size and
independent of the Poisson solver. For the spatial discretization we use the 2nd order central
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difference approximation. We also construct a second order time-discretization scheme,

ρ∗
i − ρn

i

τ/2
= R[ρ∗

i ,
3

2
ψn
i − 1

2
ψn−1
i ], ρn+1

i = 2ρ∗
i − ρn

i . (1.4)

However, solution positivity is shown only for small time steps. For large time steps we use
a positivity-preserving local limiter to recover the solution positivity wherever necessary.

Before stating the main results, let us mention some viable options in the use of reformu-
lation (1.2), i.e.,

∂tρi = R [ρi , ψi ] ,

which is linear in ρi if ψi is a priori given. With the second order central difference in spatial
discretization, there are several ways to define ψi on cell interfaces (see Sect. 3.3). For the
time discretization, solution positivity is readily available if we take

ρn+1
i − ρn−k+1

i

kτ
= R

[
ρn+1
i , ψ∗

i

]
, (1.5)

with a consistent choice for ψ∗
i and integer k ≥ 1. Different options are introduced in

[6,15,16] for obtaining their respective positive schemes.
It is natural and simple to take k = 1 and ψ∗ = ψn in (1.5), that is (1.3) (again with

further central difference in space). But it is subtle to establish a discrete energy dissipation
law. A fully discrete scheme using (1.3) was studied in [6], where no energy dissipation
law was established. Nonetheless, a discrete energy dissipation law can be verified with
other options. Indeed, (1.5) with k = 2 and ψ∗

i = ψn
i was considered in [15], where the

authors proved unconditional energy decay for a modified energy. In [16], (1.5) with k = 1
and ψ∗

i = (ψn+1
i + ψn

i )/2 was considered, and all three properties are shown to hold
simultaneously even for general boundary conditions for the Poisson equation. Obviously
these options can bring further computational overheads.

In this work, we formulate simple finite volume schemes for the multi-dimensional PNP
system (1.1) by integrating the central difference method for spatial discretization with the
semi-implicit time discretization of the reformulation (1.2). We have presented a series of
rigorous theoretical results. We summarize the main contributions as follows:

• We show that the first order time discretization gives a well-posed elliptic system (1.3)
at each time step, and features solution positivity independent of the time steps (The-
orem 3.1). Upper bound of numerical solutions for some cases is established as well
(Theorem 3.2).

• For the first order (in time) fully-discrete scheme, beyond the unconditional solution
positivity (Theorem 3.3), we further establish a discrete energy dissipation law for time
steps of size O(1) (Theorem 3.4). This result sharpens the previous estimates in [22]
for the reduced PNP system. We also prove that the scheme preserves steady-states, and
numerical solutions converge to a steady state as n → ∞ (Theorem 3.5).

• We design a fully second order (both in time and space) scheme, and solution positivity
is shown for small time steps (Theorem 4.1). While solution positivity for large time
steps is ensured by using a local limiter. We prove that such limiter does not destroy the
approximation accuracy (Theorem 4.2).

• Three-dimensional numerical tests are conducted to evaluate the scheme performance
and verify our theoretical findings. The computational cost of the second order scheme
is comparable to that of the first order semi-implicit schemes (see Sect. 5).

123



Journal of Scientific Computing (2021) 87 :92 Page 5 of 36 92

In particular, we show that there exists a discrete energy function which dissipates along
time iterations with an explicit O(1) bound for time step restrictions. The proofs given in
“Appendix B” involve detailed estimates on numerical solutions, including the control of the
ratio of high order perturbations relative to the energy dissipation, and the cell-wise bound
of the discrete potential (Lemma B.1). The reader familiar with the difficulty will recognize
the merit of these newly developed techniques in further applications.

The present limiter provides a reliable way of restoring solution positivity for high order
finite difference/volume schemes. This approach is quite robust and we expect that, once the
theory for the accuracy propagation is further developed, it will lead to theoretical results for
more complicated schemes.

1.3 Organization

Weorganize this paper as follows: In Sect. 2,we present primary problem settings and solution
properties, aswell asmodel variations. In Sect. 3, we formulate a unified finite volumemethod
for the PNP system subject to mixed boundary conditions and establish solution positivity,
energy dissipation, mass conservation, and steady-state preserving properties for the case
of natural boundary conditions. Extension to a second order scheme is given in Sect. 4. In
Sect. 5, we numerically verify good performance of the schemes. Finally in Sect. 6 some
concluding remarks are given.

Throughout this paper, we denote ρ as vector (ρ1, . . . , ρm), ∂� as the boundary of domain
� includes both the Dirichlet boundary ∂�D and the Neumann boundary ∂�N . |K | denotes
the volume of domain K . We use gα to denote gα = 1/|Kα| ∫Kα

g(x)dx , for an integral
average of function g(x) over a cell Kα . ‖ · ‖∞ denotes the L∞-norm over � or otherwise
as specified.

2 Models and RelatedWork

2.1 Boundary Conditions

Boundary conditions are a critical component of the PNP model and determine important
qualitative behavior of the solution. Here we consider the simplest form of boundary condi-
tions of Dirichlet and/or Neumann type [3].

Let� be a bounded domain with Lipschitz boundary ∂�. The external electrostatic poten-
tial φ is influenced by applied potential, which can be modeled by prescribing a Dirichlet
boundary condition

φ(x, t) = φb(x, t), x ∈ ∂�D . (2.1)

For the remaining part of the boundary ∂�N = ∂�̄ \ ∂�D, a no-flux boundary condition is
applied:

ε(x)∇φ · n = 0, x ∈ ∂�N . (2.2)

This boundary condition models surface charges, where n is the outward unit normal vector
on the boundary ∂�N . Same types of boundary conditions are imposed for ρi as

ρi (x, t) = ρb
i (x, t) ≥ 0, x ∈ ∂�D, (2.3)

Ji · n = 0, x ∈ ∂�N . (2.4)
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In this work we present our schemes by restricting to a rectangular computational domain
� = (0, L1) × · · · × (0, Ld), with ∂�D = {x ∈ �̄| x1 = 0, x1 = L1}.

We remark that the boundary conditions for the electrostatic potential are not unique
and greatly depend on the problem under investigation. For example, one may use a non-
homogeneous Neumann boundary condition (∇φ ·n = σ is used in [26]) or Robin boundary
conditions [8,16]. The existence and uniqueness of the solution for the nonlinear PNP
boundary value problems have been studied in [19,21,33] for the 1D case and in [3,18]
for multi-dimensions.

2.2 Positivity and Energy Dissipation Law

One important solution property is

ρi (x, t) ≥ 0, x ∈ �, t > 0. (2.5)

Integration of each density equation gives

d

dt

∫
�

ρi (x, t)dx =
∫

∂�

Ji · nds,

which with zero flux Ji · n = 0 on the whole boundary leads to the mass conservation:∫
�

ρi (x, t)dx =
∫

�

ρin
i (x)dx, t > 0, i = 1, . . . ,m. (2.6)

We consider the free energy functional E associated to (1.1) with μi = μi (x):

E =
∫

�

(
m∑
i=1

ρi (log ρi − 1) + 1

2kBT

(
f +

m∑
i=1

qiρi

)
φ + 1

kBT

m∑
i=1

ρiμi

)
dx . (2.7)

In virtue of the Poisson equation (1.1c), the free energy may be written as

E =
∫

�

(
m∑
i=1

ρi (log ρi − 1) + ε

8πkBT
|∇φ|2 + 1

kBT

m∑
i=1

ρiμi

)
dx .

Note that the unscaled free energy F = kBT E is also often used, see [27]. A formal calcu-
lation gives

dE

dt
= −

∫
�

m∑
i=1

Di (x)ρi |∇ψ∗
i |2dx +

∫
∂�

m∑
i=1

ψ∗
i Ji · nds

+ 1

8πkBT

∫
∂�

ε(x)
[
φ (∂nφ)t − ∂nφφt

]
ds,

where

ψ∗
i := log ρi + qi

kBT
φ + 1

kBT
μi .

Clearly, with ∂�D = ∅, we have the following energy dissipation law:

dE

dt
= −

∫
�

m∑
i=1

Di (x)ρi |∇ψ∗
i |2dx ≤ 0. (2.8)

Otherwise, the Dirichlet boundary condition needs to be carefully handled (see, e.g., [27]).
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For time dependent chemical potentials μi (x, t), the total free energy and its dissipation
law needs to be modified depending on how the chemical potential is determined.

2.3 Chemical Potential

In application, the chemical potentialμi often includes the ideal chemical potentialμid
i (x, t)

and the excess chemical potential μex
i (x, t) of the charged particles:

μi (x, t) = μid
i (x, t) + μex

i (x, t),

with

μid
i (x, t) = − log

[
γiρi (x, t)/ρ

bulk
i

]
,

where the activity coefficient γi described by the extended Debye-Hückel theory depends on
ρ in nonlinear manner. Meanwhile,

μex
i (x, t) = δFex (ρ(x, t))

δρi (x, t)

is the L2 variational derivative of the excess chemical functional Fex , which may include
hard-sphere components, short-range interactions, Coulomb interactions and electrostatic
correlations, where the expression of each component can be found in [30,41].

We remark that the steric interactions between ions of different species are important in
the modeling of ion channels [17,20]. Such effects can be described by choosing

Fex = 1

2

∫
�

ωi jρiρ j ,

where ωi j are the second-order virial coefficients for hard spheres, depending on the size of
i-th and j-th ion species [48]. With this addition alone, the flux becomes

−Ji = Di (x)

⎛
⎝∇ρi + 1

kBT
qiρi∇φ + ρi

m∑
j=1

ωi j∇ρ j

⎞
⎠ .

The PNP system with this modified flux has been studied numerically first in [38] without
cross steric interactions, and then in [6] with cross interactions.

Our schemes will be constructed so that numerical solutions are updated in an explicit-
implicit manner while μi needs only to be evaluated off-line. For simplicity, we shall present
our schemes assuming μi is given while keeping in mind that it can be applied to complex
chemical potentials without difficulty.

2.4 Steady-States

By the free energy dissipation law (2.8), the solution to (1.1) with zero-flux boundary con-
ditions is expected to converge to the steady-states as time becomes large. In such case the
steady-states formally satisfy (1.1) with ∂tρi = 0; i.e.,

∇ · (Di (x)ρi∇ψ∗
i

)) = ∇ · Ji = 0, Ji · n = 0, x ∈ ∂�.
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This yields
∫
�
Ji · ∇ψ∗

i dx = 0, which ensures that ψ∗
i must be a constant. This gives the

well-known Boltzmann distribution

ρi = ci e
− 1

kB T (qiφ+μi ), (2.9)

where ci is any constant. Such constant can be uniquely determined by the initial data in the
PNP system (1.1) if such steady-state is approached by the solution at large times. Indeed,
mass conservation simply gives

ci =
∫
�

ρin
i dx∫

�
e
− 1

kB T (qiφ+μi )dx
. (2.10)

This allows us to obtain a closed Poisson-Boltzmann equation (PBE) of form

− ∇ · (ε(x)∇φ) = 4π

(
f (x) +

m∑
i=1

qi ci e
− 1

kB T (qiφ+μi )

)
, ∂nφ|∂� = 0. (2.11)

We should point out that the numerical method presented in this paper may be used as an
iterative algorithm to numerically compute the nonlocal PBE (2.11); hence it serves as a
simpler alternative to the iterative DG methods recently developed in [44,45].

In practical applications, one may describe ions of less interest using the Boltzmann
distribution and still solve the NP equations for the target ions so to reduce the computational
cost, see [47] for further details on related models. Our numerical method thus provides an
alternative path to simulate such models.

3 Numerical Method

In this section we will construct positive and energy stable schemes.

3.1 Reformulation

By setting

ψi (x, t) = 1

kBT
(qiφ(x, t) + μi ) ,

we reformulate the density equation (1.1a)-(1.1b) as:

∂tρi = ∇ · (Di (x)e
−ψi ∇ (eψi ρi

))
. (3.1)

In spite of the aforementioned advantages of such reformulation, possible large variation of
the transformed diffusion coefficients could result in large condition number of the stiffness
matrix [28]. This issue has been recently investigated in [6,35].

3.2 Time Discretization

Let τ > 0 be a time step, and tn = τn, n = 0, 1 . . . , be the corresponding temporal grids.
We initialize by taking ρ0(x) = ρin(x), and obtain φ0 by solving the Poisson equation (1.1c)
using ρ0(x).
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Let ρn and φn be numerical approximations of ρ(x, tn) and φ(x, tn), respectively, we first
obtain ρn+1 by solving the following elliptic system:

ρn+1
i − ρn

i

τ
= ∇ ·

(
Di (x)e

−ψn
i ∇
(
eψn

i ρn+1
i

))
=: R

[
ρn+1
i , ψn

i

]
, (3.2a)

ρn+1
i = ρb

i (x, tn+1) , x ∈ ∂�D, (3.2b)

∇
(
eψn

i ρn+1
i

)
· n = 0, x ∈ ∂�N , (3.2c)

where

ψn
i = 1

kBT

(
qiφ

n + μi
)
.

Using this obtained ρn+1, we update to obtain φn+1 from solving

− ∇ · (ε(x)∇φn+1) = 4π

(
f (x) +

m∑
i=1

qiρ
n+1
i

)
, (3.3a)

φn+1(x) = φb (x, tn+1) , x ∈ ∂�D, (3.3b)

∇φn+1 · n = 0, x ∈ ∂�N . (3.3c)

In order to state our results on this scheme and the fully discrete schemes we need some
assumptions (though they can be partially relaxed for certain specific result):

ε, Di , f ∈ C(�̄), μi ∈ C1(�̄),

Dmax ≥ Di (x) ≥ Dmin > 0, x ∈ �̄,
εmax ≥ ε(x) ≥ εmin > 0, x ∈ �̄.

With these in mind, we establish that the above scheme is well-defined for any τ > 0 with
ρn ≥ 0 for all n ∈ N. More precisely, we have

Theorem 3.1 For given (ρn, φn) ∈ C(�̄) ∩ C2(�), there exists a unique solution
(ρn+1, φn+1) ∈ C(�̄) ∩ C2(�). If ρn ≥ 0 and ρb(x, t) ≥ 0, x ∈ ∂�D, then ρn+1 ≥ 0 for
x ∈ �.

The proof is deferred to the “Appendix A”.
In some cases density for the PNP problem is known to be uniformly bounded for all time.

We shall show this bound property also for the semi-discrete scheme (3.2).

Theorem 3.2 Let 0 ≤ ρin
i (x) ≤ Bi , 0 ≤ ρb

i (x, t) ≤ Bb
i , Di (x)/ε(x) = σi be constants, �

be C1 convex domain, all qi have the same sign, and μi is smooth with (∇μi ) · n ≥ 0 on
∂�N . If

τ <
1

Qi,max
,

then ρn obtained by scheme (3.2) is uniformly bounded, i.e.,

ρn
i (x) ≤ max

{
Bb
i , Bi ,

Qi,max

γi

}
, (3.4)

if Qi,max := maxx∈�̄ Qi (x) < ∞ with

Qi (x) = 1

kBT
[∇ · (Di (x)∇μi ) − 4πqiσi f (x)] , γi = 4πq2i σi

kBT
.
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Remark 3.1 In the case of qi with different sign, density ρi in (1.1) may not be bounded.

Proof We rewrite the semi-discrete scheme

ρn+1
i − ρn

i

τ
= ∇ ·

(
Di (x)e

−ψn
i ∇
(
ρn+1
i eψn

i

))

into

ρn+1
i − ρn

i

τ
= Di (x)�ρn+1

i + bi · ∇ρn+1
i + ciρ

n+1
i ,

where

bi = (∇Di (x) + Di (x)∇ψn
i

)
, ci = ∇ · (Di (x)∇ψn

i

)
.

In virtue of ψn
i = qi

kBT
φn + 1

kBT
μi and Di (x)/ε(x) = σi , the coefficient ci can be estimated

as

ci = 1

kBT

[∇ · (qi Di (x)∇φn)+ ∇ · (Di (x)∇μi )
)]

= 1

kBT

[
qiσi∇ · (ε(x)∇φn)+ ∇ · (Di (x)∇μi ))

]
(using (3.3a))

= 1

kBT

⎡
⎣−4πqiσi

⎛
⎝ f (x) +

m∑
j=1

q jρ
n
j

⎞
⎠+ ∇ · (Di (x)∇μi ))

⎤
⎦

(using qiq j > 0 and ρn
j ≥ 0)

≤ 1

kBT

[∇ · (Di (x)∇μi ) − 4πqiσi f (x) − 4πq2i σiρ
n
i

]
=Qi (x) − γiρ

n
i .

Hence
ρn+1
i − ρn

i

τ
≤ Di (x)�ρn+1

i + bi · ∇ρn+1
i + ρn+1

i

(
Qi,max − γiρ

n
i

)
. (3.5)

We proceed to distinct three cases, by letting x∗ = argmaxx∈�̄ρn+1
i (x):

(i) If x∗ ∈ ∂�D we have

ρn+1
i (x∗) = ρb

i (x∗, tn+1) ≤ Bb
i .

(ii) If x∗ ∈ �, then (3.5) can be reduced to

ρn+1
i (x∗) − ρn

i (x∗)
τ

≤ ρn+1
i

(
x∗) (Qi,max − γiρ

n
i

(
x∗)) .

This using notation ρn
i,max = maxx∈�̄ ρn

i yields

ρn+1
i (x) ≤ ρn+1

i

(
x∗) ≤ ρn

i,max

1 − τQi,max + τγiρ
n
i,max

=: P (ρn
i,max

)
, (3.6)

where we used the fact that P(·) : R+ → R
+ is non-decreasing.

(iii) If x∗ ∈ ∂�N , we must have ρn+1
i (x∗) ≤ P(ρn

i,max ). Otherwise assume ρn+1
i (x∗) >

P(ρn
i,max ). Set

U (x) = ρn+1
i (x) − ρn+1

i

(
x∗) ,
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and introduce the differential operator

Lξ := τDi (x)�ξ + τbi · ∇ξ − (1 − τQi,max + τγiρ
n
i

)
ξ.

From (3.5) we have

Lρn+1
i ≥ −ρn

i ,

and using (3.6) we obtain

LU (x) =Lρn+1
i (x) − Lρn+1

i

(
x∗)

≥ − ρn
i + (1 − τQi,max + τγiρ

n
i

)
ρn+1
i

(
x∗)

≥ − ρn
i + (1 − τQi,max + τγiρ

n
i

)
P
(
ρn
i,max

)
≥0.

Note that U (x) ≤ 0 on ∂� and U (x∗) = 0. Apply the maximum-principle [34, Theorem 8]
we have

(∇U
(
x∗)) · n =

(
∇ρn+1

i

(
x∗)) · n > 0.

On the other hand, from the no-flux boundary condition (3.2c) and using (3.3c), we have

0 =
(
∇
(
ρn+1
i eψn

i

))
· n

=
(
eψn

i ∇ρn+1
i + 1

kBT
eψn

i ρn+1
i

(
qi∇φn + ∇μi

)) · n

= eψn
i

(
∇ρn+1

i · n + 1

kBT
∇μi · n

))

>eψn
i

1

kBT
∇μi · n x ∈ ∂�N .

This is a contradiction to the assumption (∇μi ) ·n ≥ 0. Hence for x ∈ �∪∂�N ∪∂�D = �̄,
we have

ρn+1
i,max ≤ max

{
Bb
i , P

(
ρn
i,max

)}
.

Again by the monotonicity of P(·), we obtain

ρn+1
i,max ≤ max

{
Bb
i , max{ρn

i,max ,
Qi,max

γi
}
}

.

The stated result (3.4) thus follows by induction. ��

A discrete energy dissipation law can be established by precisely quantifying a sufficient
bound on the time step. In order to save space, we present a detailed analysis of the energy
dissipation property only for the fully discrete scheme in the next section.

3.3 Spatial Discretization

For given positive integers N j ( j = 1, . . . , d), let h j = L j/N j be the mesh size in j-th
direction, α ∈ Z

d be the index vector with α( j) ∈ {1, . . . , N j }, and e j ∈ Z
d be a vector
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with j-th entry equal to one and all other entries equal to zero. We partition the domain �

into computational cells

Kα = [(α(1) − 1/2)h1, (α(1) + 1/2)h1] × · · · × [(α(d) − 1/2) hd , (α(d) + 1/2) hd ]

with cell size |Kα| = ∏d
j=1 h j such that

⋃
α∈A Kα = �, where A denotes the set of all

indices α.

3.3.1 Density Update

A finite volume approximation of (3.2a) over each cell Kα with α ∈ A gives

ρn+1
i,α − ρn

i,α

τ
=

d∑
j=1

Ci,α+e j /2 − Ci,α−e j /2

h j
=: Rα

[
ρn+1
i , ψn

i

]
, (3.7a)

where ρ0
i,α := ρin

i,α.

Numerical fluxes on interfaces are defined by:
(i) on the interior interfaces,

Ci,α+e j /2 = Di
(
xα+e j /2

)
e
−ψn

i,α+e j /2

h j

(
ρn+1
i,α+e j

e
ψn
i,α+e j − ρn+1

i,α eψn
i,α

)
, for 1 < α( j) < N j ;

(3.7b)

(ii) on the boundary ∂�D ,

Ci,α−e1/2 = 2Di
(
xα−e1/2

)
e−ψb

i

(
xα−e1/2,tn

)

h1

(
ρn+1
i,α

e−ψn
i,α

− ρb
i

(
xα−e1/2, tn+1

)
e−ψb

i

(
xα−e1/2,tn

)
)

, α(1) = 1,

Ci,α+e1/2 = 2Di
(
xα+e1/2

)
e−ψb

i

(
xα+e1/2,tn

)

h1

(
ρb
i

(
xα+e1/2, tn+1

)
e−ψb

i

(
xα+e1/2,tn

) − ρn+1
i,α

e−ψn
i,α

)
, α(1) = N1;

(3.7c)
(iii) on the boundary ∂�N ,

Ci,α−e j /2 = 0, for α( j) = 1,

Ci,α+e j /2 = 0, for α( j) = N j .
(3.7d)

In (3.7b), e
−ψn

i,α+e j /2 needs to be evaluated using numerical solutions φn
α . There are three

choices, all are second order approximations:
(i) the harmonic mean

e
−ψn

i,α+ei /2 = 2e
−ψn

i,α+e j
−ψn

i,α

e
−ψn

i,α+e j + e−ψn
i,α

, (3.8)

(ii) the geometric mean

e
−ψn

i,α+ei /2 =
√
e
−ψn

i,α+e j
−ψn

i,α , (3.9)

(iii) the algebraic mean

e
−ψn

i,α+ei /2 = e
−ψn

i,α+e j + e−ψn
i,α

2
. (3.10)

It is reported in [35] that the harmonic mean results in a linear system with better condition
number than that of the geometric mean. We use the harmonic mean in our numerical tests.
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3.3.2 Solving Poisson’s Equation

In order to complete the scheme, we need to evaluate ψn
i,α by

ψn
i,α = 1

kBT

(
qiφ

n
α + μi,α

)
,

and φn
α is determined from ρn

α by using the following discretization of the equation (3.3a):

−
d∑
j=1

�n
α+e j /2

− �n
α−e j /2

h j
= 4π

(
fα +

m∑
i=1

qiρ
n
i,α

)
, (3.11a)

where numerical fluxes on cell interfaces are defined by:
(i) on the interior interfaces,

�n
α+e j /2 = ε

(
xα+e j /2

) φn
α+e j − φn

α

h j
, for 1 < α( j) < N j , (3.11b)

(ii) on the boundary ∂�D ,

�n
α−e1/2 = ε

(
xα−e1/2

) 2 (φn
α − φb

(
xα−e1/2, tn

))
h1

, for α(1) = 1,

�n
α+e1/2 = ε

(
xα+e1/2

) 2 (φb
(
xα+e1/2, tn

)− φn
α

)
h1

, for α(1) = N1,

(3.11c)

(iii) on the boundary ∂�N ,

�n
α−e j /2 = 0, for α( j) = 1,

�n
α+e j /2 = 0, for α( j) = N j .

(3.11d)

Note that in the case of ∂�D = ∅, the solution to (3.11) is unique only up to an additive
constant, in such case we take φn

(1,...,1) = 0 to obtain a unique solution φn
α .

3.3.3 Positivity

The following theorem states that the scheme (3.7) preserves positivity of numerical solutions
without any time step restriction.

Theorem 3.3 Let ρn+1
α be obtained from (3.7). If ρn

α ≥ 0 for all α ∈ A, and ρb(x, tn) ≥ 0,
x ∈ ∂�D, then

ρn+1
α ≥ 0 for all α ∈ A.

Proof This proof mimics that in [24] for the Fokker-Planck equation. Set λ j = τ

h2j
,

D̄i,α+e j /2 = Di (xα+e j /2)e
−ψn

i,α+e j /2 , gni,α = eψn
i,α and

Gi,α = ρn+1
i,α gni,α, α ∈ A.

Let β be such that

Gi,β = min
α∈AGi,α,

it suffices to prove Gi,β ≥ 0. We discuss in cases:
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(i) Kβ is an interior cell. On the cell Kβ we have

gni,βGi,β =
d∑
j=1

λ j
[
D̄i,β+e j /2

(
Gi,β+e j − Gi,β

)− D̄i,β−e j /2
(
Gi,β − Gi,β−e j

)]+ ρn
i,β

≥ ρn
i,β ,

where we used the fact Gi,β ≤ Gi,β±e j and D̄i,β±e j /2 > 0. Since gni,β > 0, so Gi,β ≥ 0.
(ii) Kβ is a boundary cell( Kβ ∩ ∂�D �= ∅). We only deal with the case β(1) = 1,

remaining cases are similar. In such case,

gni,βGi,β =
d∑
j=2

λ j
[
D̄i,β+e j /2

(
Gi,β+e j − Gi,β

)− D̄i,β−e j /2
(
Gi,β − Gi,β−e j

)]

+ λ1 D̄i,β+e1/2(Gi,β+e1 − Gi,β)

− 2λ1Di
(
xβ−e1/2

)
gbi
(
xβ−e1/2, tn

) (
Gi,β − ρb

i

(
xβ−e1/2, tn+1

)
gbi
(
xβ−e1/2, tn

)
)

+ ρn
i,β .

Due to Gi,β ≤ Gi,β±e j and D̄i,β±e j /2 ≥ 0, we have

(
gni,β + 2λ1Di

(
xβ−e1/2

)
gbi
(
xβ−e1/2, tn

))
Gi,β ≥ 2λ1Di

(
xβ−e1/2

)
ρbi
(
xβ−e1/2, tn+1

)+ ρni,β ≥ 0,

which with gni,β + 2λ1Di (xβ−e1/2)g
b
i (xβ−e1/2, tn) > 0 ensures Gi,β ≥ 0.

(iii)Kβ is a boundary cell (Kβ ∩ ∂�N �= ∅). Again we only deal with the case β(l) = 1.
In such case,

gni,βGi,β =
d∑

j=1, j �=l

λ j
[
D̄i,β+e j /2

(
Gi,β+e j − Gi,β

)− D̄i,β−e j /2
(
Gi,β − Gi,β−e j

)]

+ λl D̄i,β+1/2el

(
Gi,β+el − Gi,β

)+ ρn
i,β

≥ρn
i,β ≥ 0.

This also gives Gi,β ≥ 0. The proof is thus complete. ��

3.3.4 Energy Dissipation

If ∂�D = ∅ for density in (3.7) and φb(x, t) = 0 in (3.11), then solutions ρn+1
α obtained by

(3.7) are conservative and energy dissipating in addition to the non-negativity. Let a discrete
version of the free energy (2.7) be defined as

En
h =

∑
α∈A

|Kα |
[

m∑
i=1

ρn
i,α

(
log ρn

i,α − 1
)+ 1

2kBT

(
fα +

m∑
i=1

qiρ
n
i,α

)
φn

α + 1

kBT

m∑
i=1

ρn
i,αμi,α

]
,

(3.12)
we have the following result.

Theorem 3.4 Let ρn
α be obtained from (3.7) by using either (3.8), (3.9), or (3.10) for

e
−ψn

i,α+ei /2 . Let φn
α be obtained from (3.11) with φb(x, t) = 0. If ∂�D = ∅ for density

in (3.7), then we have:

123



Journal of Scientific Computing (2021) 87 :92 Page 15 of 36 92

(i) Mass conservation:∑
α∈A

|Kα|ρn+1
i,α =

∑
α∈A

|Kα|ρn
i,α for n ≥ 0, i = 1, . . . ,m;

(ii) Energy dissipation: for ε ∈ C1(�)and h1 sufficiently small, there exists τ ∗ > 0 depending
on M = maxi,α,n ρn

i,α and data as given in (B.20) such that if τ ≤ τ ∗, then

En+1
h − En

h ≤ −τ

2
I n, (3.13)

where

I n =
m∑
i=1

d∑
j=1

∑
α( j)�=N j

|Kα|Ci,α+e j /2

h j

(
log
(
ρn+1
i,α+e j

e
ψn

α+e j

)
− log

(
ρn+1
i,α eψn

α

))
≥ 0.

The proof is deferred to “Appendix B”.

Remark 3.2 We emphasize that τ ∗ as given in (B.20) is of size O(1), though it is only a
sufficient condition to ensure the energy dissipation (3.13). As n increases, the solution {ρn

α}
is expected to converge to the steady-state and therefore bounded from above, hence we
simply use the notation M = maxi,α,n ρn

i,α . The boundedness of ρn in n for some cases has
been established in Theorem 3.2 for the corresponding semi-discrete scheme.

3.3.5 Preservation of Steady-States

With no-flux boundary conditions, scheme (3.7) can be shown to be steady-state preserving.
Based on the discussion in Sect. 2.4, we say a discrete function ρα is at steady-state if

ρi,α = ci e
− 1

kB T (qiφα+μi,α), i = 1, . . . ,m, α ∈ A, (3.14)

where φα satisfies (3.11) with ρi,α replaced by the above relation, which is a nonlinear
algebraic equation for φα uniquely determined for each (c1, . . . cm). We have the following
theorem.

Theorem 3.5 Let the assumptions in Theorem 3.4 be met, then

(i) If ρ0
α is already at steady-state, then ρn

α = ρ0
α for n ≥ 1.

(ii) If En+1
h = En

h , then ρn
α must be at steady-state.

(iii) If ρn
i,α, φn

α converge as n → ∞, then their limits are determined by

ρ∞
i,α = c∞

i e
− 1

kB T (qiφ∞
α +μi,α), c∞

i =
∑

α∈A |Kα|ρ0
i,α∑

α∈A |Kα|e− 1
kB T (qiφ∞

α +μi,α)
,

where φ∞
α is obtained by solving (3.11) by using ρ∞

i,α .

Proof (i) We only need to prove ρ1
i,α = ρ0

i,α, for all i = 1, . . . ,m, α ∈ A. Summing (3.7)

with n = 0 against |Kα|ρ1
i,α/ρ0

i,α , using summation by parts, we obtain

∑
α∈A

|Kα| (ρ1
i,α − ρ0

i,α

) ρ1
i,α

ρ0
i,α

=τ

d∑
j=1

∑
α∈A

|Kα| 1
h j

(
Ci,α+e j /2 − Ci,α−e j /2

) ρ1
i,α

ρ0
i,α

= − τ

d∑
j=1

∑
α( j)�=N j

|Kα| 1
h j

Ci,α+e j /2

(
ρ1
i,α+e j

ρ0
i,α+e j

− ρ1
i,α

ρ0
i,α

)
.

(3.15)
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Substituting ρ0
i,α = ci e

−ψ0
i,α into Ci,α+e j /2, the right hand side of (3.15) becomes

RHS = − τci

d∑
j=1

∑
α( j)�=N j

|Kα|Di,α+e j /2e
−ψ0

i,α+e j /2

h2j

(
ρ1
i,α+e j

ρ0
i,α+e j

− ρ1
i,α

ρ0
i,α

)2
≤ 0.

Adding
∑

α∈A |Kα|(ρ0
i,α − ρ1

i,α) = 0 to the left hand side of (3.15) leads to

LHS =
∑
α∈A

|Kα|
[(

ρ1
i,α − ρ0

i,α

) ρ1
i,α

ρ0
i,α

+ (ρ0
i,α − ρ1

i,α

)]

=
∑
α∈A

|Kα|
(
ρ1
i,α − ρ0

i,α

)2
ρ0
i,α

≥ 0.

Hence LHS = RHS ≡ 0, we must have

ρ1
i,α = ρ0

i,α, i = 1, . . . ,m, α ∈ A.

(ii) The inequality (3.13) when combined with En+1
h = En

h leads to I n = 0. From the
proof of Theorem 3.4 in “Appendix B” it follows

ρn+1
i,α = ρn

i,α.

(iii) Since En
h is non-increasing in n, and we can verify that En

h is bounded from below,
hence

lim
n→∞ En

h = inf
{
En
h

}
.

Taking the limit in (3.13), we have limn→∞ I n = 0, which implies

ρ∞
i,α = c∞

i e−ψ∞
i,α .

Conservation of mass gives

c∞
i =

∑
α∈A |Kα|ρ0

i,α∑
α∈A |Kα|e−ψ∞

i,α
. i = 1, . . . ,m, α ∈ A,

where φ∞
α in ψ∞

i,α = 1
kBT

(qiφ∞
α + μi,α) is obtained by solving (3.11) using ρ∞

i,α . ��

4 Second Order in Time Discretization

The semi-discrete scheme (3.2a) is first order accurate, one can design higher order in time
schemes based on (3.1).

The following is a second order time discretization,

ρn+1
i − ρn

i

τ
= R

[(
ρn+1
i + ρn

i

)
/2,

3

2
ψn
i − 1

2
ψn−1
i

]
.

This can be expressed as a prediction-correction method,

ρ∗
i − ρn

i

τ/2
= R

[
ρ∗
i ,

3

2
ψn
i − 1

2
ψn−1
i

]
, ρn+1

i = 2ρ∗
i − ρn

i . (4.1)

As argued for the first order scheme, this scheme is well-defined.
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4.1 Second Order Fully-Discrete Scheme

With central spatial difference, our fully discrete second order (in both space and time)
scheme reads

ρ∗
i,α − ρn

i,α

τ/2
= Rα

[
ρ∗
i ,

3

2
ψn
i − 1

2
ψn−1
i

]
, (4.2a)

ρn+1
i,α = 2ρ∗

i,α − ρn
i,α. (4.2b)

Positivity of ρn+1
α can be ensured if time steps are sufficient small.

Theorem 4.1 Let ρn+1
α be obtained from (4.2). If ρn

α ≥ 0 for all α ∈ A, and ρb(x, t) ≥ 0 for
x ∈ ∂�D, then

ρn+1
α ≥ 0, α ∈ A

provided τ is sufficiently small.

Proof Inserting (4.2b) into (4.2a) leads to the following compact form of the scheme (4.2):

ρn+1
i,α − τ

2
Rα

[
ρn+1
i ,

3

2
ψn
i − 1

2
ψn−1
i

]
= ρn

i,α + τ

2
Rα

[
ρn
i ,

3

2
ψn
i − 1

2
ψn−1
i

]
, (4.3)

where we have used the linearity of Rα[·, ·] on the first entry.
Set

g∗
i,α = e

3
2ψn

i,α− 1
2ψn−1

i,α , D̄∗
i,α+e j /2 = Di,α+e j /2e

− 3
2ψn

i,α+e j /2
+ 1

2ψn−1
i,α+e j /2 , Gn

i,α = ρn
i,αg

∗
i,α,

then the scheme (4.3) can be rewritten as

g∗
i,αG

n+1
i,α −

d∑
j=1

τ

h2j

[
D̄∗
i,α+e j /2

(
Gn+1

i,α+e j
− Gn+1

i,α

)
− D̄∗

i,α−e j /2

(
Gn+1

i,α − Gn+1
i,α−e j

)]

= g∗
i,αG

n
i,α +

d∑
j=1

τ

h2j

[
D̄∗
i,α+e j /2

(
Gn

i,α+e j − Gn
i,α

)
− D̄∗

i,α−e j /2

(
Gn

i,α − Gn
i,α−e j

)]
.

(4.4)
Let β be such that

Gn+1
i,β = min

α∈AGn+1
i,α ,

it suffices to prove Gn+1
i,β ≥ 0. We prove the result when Kβ is an interior cell, the result for

boundary cells can be proved similarly.
Since Gn+1

i,β ≤ Gn+1
i,β±e j

and Gn
i,β± j ≥ 0, thus equation (4.4) on cell Kβ reduces to the

inequality:

g∗
i,βG

n+1
i,β ≥

⎛
⎝g∗

i,β − τ

d∑
j=1

1

h2j

(
D̄∗
i,β+e j /2 + D̄∗

i,β−e j /2

)⎞⎠Gn
i,β ,

we see that Gn+1
i,β ≥ 0 is insured if

τ ≤ min
α

⎧⎪⎨
⎪⎩

g∗
i,α∑d

j=1
1
h2j

(
D̄∗
i,α+e j /2

+ D̄∗
i,α−e j /2

)
⎫⎪⎬
⎪⎭ .
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The stated result thus follows. ��
We should point out that numerical density {ρn

α} obtained by the second order scheme
(4.2) may not be non-negative for large time step τ , though {ρ∗

α} stays positive. We shall
restore solution positivity by using a local limiter, which was first introduced in [23] for a
class of nonlinear nonlocal Fokker-Planck type equations.

4.2 Positivity-Preserving Limiter

We present a local limiter to restore positivity of ρ if
∑
α∈A

|Kα|ρα > 0,

but ρβ < 0 for some β ∈ A. The idea is to find a neighboring index set Sβ such that the local
average

ρ̄β = 1

|Sβ |
∑
γ∈Sβ

|Kγ |ργ > 0,

where |Sβ | denotes the minimum number of indices for which ργ �= 0 and ρ̄β > 0, then use
this local average as a reference to define the following scaling limiter

ρ̃α = θρα + (1 − θ)ρ̄β/|Kα|, α ∈ Sβ, (4.5)

where

θ = min

{
1,

ρ̄β

ρ̄β − ρmin

}
, ρmin = min

γ∈Sβ

|Kγ |ργ .

Recall the result stated in Lemma 5.1 in [23], such limiter restores solution positivity and
respects the local mass conservation. In addition, for any sequence gα with gα ≥ 0, we have

|ρ̃α − gα| ≤ (1 + |Sβ |�)max
γ∈Sβ

|ργ − gγ |, α ∈ Sβ, (4.6)

where � is the upper bound of mesh ratio |Kγ |/|Kα|. Let ρα be the approximation of
ρ(x) ≥ 0, we let gα = ρ(xα) or the average of ρ on Kα , so we can assert that the accuracy
is not destroyed by the limiter as long as |Sβ |� is uniformly bounded. Boundedness of |Sβ |
for shape-regular meshes was rigorously proved in [23] for the one-dimensional case. We
restate such result in the present setting in the following.

Theorem 4.2 Let {ρα} be an approximation of ρ(x) ≥ 0 over shape regular meshes, and
ρ ∈ Ck(�) (k ≥ 2). If ρβ < 0 (or only finite number of neighboring values are negative),
then there exists C∗ > 0 finite such that

|ρ̃α − ρ (xα) | ≤ C∗ max
α∈Sβ

|ρα − ρ (xα) |, ∀α ∈ Sβ,

where C∗ may depend on the local meshes associated with Sβ .

Remark 4.1 This limiter is of independent interest, and can be applied to other high order
finite volume or conservative finite difference schemes. For a particular scheme of choice, it
would be interesting to further study accuracy propagation when applying such limiter.

123



Journal of Scientific Computing (2021) 87 :92 Page 19 of 36 92

Proof For simplicity, we prove only for the case of uniform meshes (e.g. uniform in each
dimension). Let h = min1≤ j≤d h j ≤ 1 and h j ≤ �h for some � > 0. From (4.6) we
see that it suffices to show there exists A∗ > 0 finite such that |Sβ | ≤ A∗, with which
we will have C∗ = 1 + A∗�. Under the smoothness assumption of ρ we may assume
|ρα − ρ(xα)| ≤ Chk . Under the assumption ρβ < 0, ρ must touch zero near xβ . We discuss
the case where ρ(x∗) = 0 and ∇ρ(x∗) = �0 with ρ(x) > 0 for x( j) ≥ x∗( j), j = 1, . . . , d,

locally with x∗ ∈ Kβ . To be concrete, we consider β = (1, . . . , 1) and
∫
Kβ

ρ(x)dx > 0.
From the limiter construction we have Sβ such that

∑
α∈Sβ

|Kα|ρα > 0. (4.7)

The rest of the proof is devoted to bounding |Sβ |. The assumed error bound gives

ρα ≥ ρ(xα) − Chk . (4.8)

From ρ ∈ Ck(�)(k ≥ 2), we have

ρ (xα) ≥ ρ̄α − λ�2h2, (4.9)

with λ = d
24 max j=1,...,d |∂x j x j ρ| and the cell average ρ̄α = 1

|Kα |
∫
Kα

ρ(x)dx . From (4.8)
and (4.9), we see that the left hand side of (4.7) is bounded from below by

∑
α∈Sβ

|Kα|ρα ≥
∑
α∈Sβ

|Kα| (ρ̄α − (C + λ�2) h2)

=
∫

∪α∈Sβ Kα

ρ(x)dx − (C + λ�2) h2 ∑
α∈Sβ

|Kα|.
(4.10)

Without loss of generality we assume ∪α∈Sβ Kα is a rectangle inRd ; otherwise we could add
more cells to complete the rectangle. Let

| ∪α∈Sβ Kα| = �d
j=1η j , h j ≤ η j ≤ L j ,

and �η = (η1, . . . , ηd), �h = (h1, . . . , hd). Rewriting integral in (4.10) we have
∑
α∈Sβ

|Kα|ρα ≥ [g(η) − (C + λ�2) h2] ∑
α∈Sβ

|Kα|,

where

g(η) :=
∫ 1

0
· · ·
∫ 1

0
ρ

(
diag

(�θ) �η + xβ − 1

2
�h
)
dθ1 · · · dθd .

From the fact hd ≤ η1···ηd|Sβ | , we can see that the term in the bracket is bounded from below
by

g(η) − (C + λ�2)

(
η1 · · · ηd

|Sβ |
)2/d

,

which is positive if

|Sβ | >
(
C + λ�2)d/2

g(η)−d/2η1 · · · ηd .
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This can be insured if we take

|Sβ | = �A� + 1,

where

A = (C + λ�2)d/2
max

η j∈[h j ,L j ], j=1,...,d
g(η)−d/2η1 · · · ηd .

This is bounded and may depend on the local mesh of Kβ . ��
Note that our numerical solutions feature the following property: if ρn

i,α = 0, then

ρn+1
i,α = 2ρ∗

i,α − ρn
i,α ≥ 0

due to the fact ρ∗
i,α ≥ 0. This means that if ρin(x) = 0 on an interval, then ρ1

i,α cannot be
negative in most of nearby cells. Thus negative values appear only where the exact solution
turns from zero to a positive value, and the number of these values are finitely many. Our
result in Theorem 4.2 is thus applicable.

4.3 Algorithm

The following algorithm is only for the second order scheme with limiter.

(1) Initialization: From the initial data ρin
i (x), obtain

ρ0
i,α = 1

|Kα|
∫
Kα

ρin
i (x)dx, i = 1, . . . ,m, α ∈ A,

by using central point quadrature.
(2) Update to get {ρ1

i,α}: Compute {φ0
α} from (3.11), then obtain {ρ1

i,α} by the first order
scheme (3.7).

(3) Update from {ρn
i,α}: For n ≥ 1, compute {φn

α} from scheme (3.11) then get {ρn+1
i,α } from

(4.2).
(4) Reconstruction: if necessary, locally replace ρn+1

i,α by ρ̃n+1
i,α using the limiter defined in

(4.5).

The following algorithm can be called to find an admissible set Sα used in (4.5).

(i) Start with Sβ = {β}, p = 1.
(ii) For l j = max{1, α( j) − p} : min{α( j) + p, N j } with j = 1, . . . , d .

If α := (l1, . . . , ld) /∈ Sβ and ρn+1
i,α �= 0, then set Sβ = Sβ ∪ {α}.

If ρ̄β > 0, then stop, else go to (iii).
(iii) Set p = p + 1 and go to (ii).

Remark 4.2 The second-order scheme (4.2) is only a slight modification of the first-order
scheme (3.7), hence computationally more efficient. This is critical in 3D simulations. In
addition, the energy dissipation was also observed numerically for the second order scheme,
see Fig. 4 (right).

Remark 4.3 The coefficientmatrices of the linear systems obtained by (3.7), (3.11), and (4.2a)
are sparse, diagonally dominant, and symmetric, hence more efficient linear system solvers,
such as the ILU preconditioner + FGMRES (see e.g., [36]), ILU preconditioner + Bicgstab
(see e.g., [4]), can be used.
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5 Numerical Tests

In this section, we implement the fully discrete schemes (3.7) and (4.2) to demonstrate their
orders of convergence and capacity to preserve solution properties. In both schemes the
numerical solution φn

α is computed by the scheme (3.11). Errors in the accuracy tests are
measured in the following discrete l1 norm:

error =
∑
α∈A

|Kα||g̃α − gα|.

Here gα denotes the numerical solution, say gα = ρn
i,α or φn

α at time t = nτ , and g̃α indicates
the cell average of the corresponding exact solutions.

In our numerical tests, the sparse linear systems obtained by (3.7), (3.11), and (4.2a) are
solved by ILU preconditioned FGMRES [36] algorithm using compressed row format of
the coefficient matrices. In the three-dimensional case, the coefficient matrices of the linear
systems are 7-diagonal matrices. It is worth to mention that the compressed row format
allows us to store a l × l 7-diagonal matrix by using at most 15l storage locations with
l = Nx × Ny × Nz . With 30 × 30 × 30 cells, we can save 99% of the storage space needed
for storing the resulting coefficient matrices.

In our three examples below we consider the computational domain

� = (0, 1) × (0, 1) × (0, 1).

Example 5.1 (Accuracy test) In this test we numerically verify the accuracy and order of
schemes (3.7) and (4.2) by using manufactured solutions. Consider⎧⎨

⎩
ρ1(x, t) = 4(x2(1 − x)2 + y(1 − y))e−t ,

ρ2(x, t) = (y(1 − y) + z2(1 − z)2)e−t ,

φ(x, t) = (x2(1 − x)2 + y(1 − y) + z2(1 − z)2)e−t
(5.1)

and

∂�D = {x ∈ �̄ : y = 0, 1
}
, ∂�N = ∂�̄ \ ∂�D,

then they are exact solutions to the following problem⎧⎨
⎩

∂tρ1 = ∇ · (∇ρ1 + ρ1∇φ) + f1(x, t), x ∈ �, t > 0,
∂tρ2 = ∇ · (∇ρ2 − ρ2∇φ) + f2(x, t), x ∈ �, t > 0,

−�ψ = ρ1 − ρ2 + f3(x, t), x ∈ �, t > 0,
(5.2)

where source terms f1(x, t), f2(x, t) and f3(x, t), and the initial and boundary conditions
are determined by the exact solutions.

We first test the accuracy of the semi-implicit scheme (3.7) by using various spatial step
size h, errors and orders at t = 1 are listed in Table 1 (with τ = h) and in Table 2 (with
τ = h2), respectively. We observe the first order accuracy in time and the second order
accuracy in space. We then test the accuracy of the scheme (4.2) with time step size τ = h.
From Table 3, we see the second order accuracy in both time and space.

Example 5.2 (Solution positivity) We consider the two-species PNP system with initial data
of form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ1 = ∇ · (∇ρ1 + ρ1∇φ) , x ∈ �, t > 0,
∂tρ2 = ∇ · (∇ρ2 − ρ2∇φ) , x ∈ �, t > 0,

−�ψ = ρ1 − ρ2 + 10χ[0.2,0.4]×[0.2,0.4]×[0.2,0.4] , x ∈ �, t > 0,
ρin
1 (x) = χ[0,0.25]×[0,0.25]×[0,0.25] ,

ρin
2 (x) = 2χ[0,0.25]×[0,0.25]×[0,0.25] .

(5.3)
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Table 1 Scheme (3.7) with τ = h

Nx × Ny × Nz ρ1 error Order ρ2 error Order φ error Order

8 × 8 × 8 4.7508E−02 – 1.3904E−02 – 5.7213E−03 –

16 × 16 × 16 2.1283E−02 1.1585 5.8701E−03 1.2440 2.0987E−03 1.4468

32 × 32 × 32 1.0060E−02 1.0811 2.6956E−03 1.1228 8.6460E−04 1.2794

64 × 64 × 64 4.8890E−03 1.0410 1.2915E−03 1.0616 3.8667E−04 1.1609

Table 2 Scheme (3.7) with τ = h2

Nx × Ny × Nz ρ1 error Order ρ2 error Order φ error Order

8 × 8 × 8 1.1252E−02 – 4.0301E−03 – 3.1194E−03 –

16 × 16 × 16 2.7824E−03 2.0158 9.8548E−04 2.0319 7.7117E−04 2.0161

32 × 32 × 32 6.9369E−04 2.0040 2.4502E−04 2.0079 1.9225E−04 2.0041

64 × 64 × 64 1.7330E−04 2.0010 6.1170E−05 2.0020 4.8028E−05 2.0010

Table 3 Scheme (4.2) with τ = h

Nx × Ny × Nz ρ1 error Order ρ2 error Order φ error Order

8 × 8 × 8 5.5476E−03 – 2.3247E−03 – 2.7378E−03 –

16 × 16 × 16 1.5073E−03 1.8799 6.0465E−04 1.9429 6.7758E−04 2.0146

32 × 32 × 32 3.9635E−04 1.9271 1.5851E−04 1.9315 1.6895E−04 2.0038

64 × 64 × 64 1.0182E−04 1.9608 4.0875E−05 1.9553 4.2206E−05 2.0011

This corresponds to (1.1) with D1 = D2 = 1, q1 = −q2 = 1, kBT = 1, ε(x) = 4π ,μi = 0,
and f (x) = 10χ[0.2,0.4]×[0.2,0.4]×[0.2,0.4] .

With ∂�D = {x ∈ �̄ : y = 0, 1}, and ∂�N = ∂�̄ \ ∂�D , we solve the problem subject
to mixed boundary conditions
⎧⎪⎪⎨
⎪⎪⎩

(∇φ) · n = 0, (∇ρ1 + ρ1∇φ) · n = 0, (∇ρ2 − ρ2∇φ) · n = 0, x ∈ ∂�N ,

φb (x, t) = (x2(1 − x)2 + z2(1 − z)2
)
e−t , x ∈ ∂�D,

ρb
1 (x, t) = 4x2(1 − x)2e−t , x ∈ ∂�D,

ρb
2 (x, t) = z2(1 − z)2e−t , x ∈ ∂�D .

(5.4)

We use 30×30×30 cells with τ = 0.5h to compute numerical solutions up to t = 2.Given
in Fig. 1 are the time evolution of numerical solutions (top three rows) and the minimum
of ρ1, ρ2 (bottom row) obtained by the scheme (3.7), showing non-negative approximations
for both ρ1 and ρ2. Results obtained by the scheme (4.2) are given in Fig. 2. Note that the
positivity preserving limiter keeps being invoked when we use the scheme (4.2). The CPU
time (average of 10 simulations) needed for running the schemes (3.7) and (4.2) are 207.27
seconds and 203.15 seconds, respectively, from which we see that the second-order scheme
is as efficient as the first order scheme.

Example 5.3 (Mass conservation and energy dissipation) In this numerical example we test
both mass conservation and energy dissipation properties of our schemes.
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Fig. 1 Example 5.2: ρ1, ρ2, φ computed by scheme (3.7)
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Fig. 2 Example 5.2: ρ1, ρ2, φ computed by scheme (4.2) ( with limiter)

123



Journal of Scientific Computing (2021) 87 :92 Page 25 of 36 92

Fig. 3 Example 5.3: ρ1, ρ2 computed by scheme (3.7)

Fig. 4 Example 5.3: Mass conservation and energy dissipation

We consider system (5.3) with zero flux boundary conditions:

(∇φ) · n = 0, (∇ρ1 + ρ1∇φ) · n = 0, (∇ρ2 − ρ2∇φ) · n = 0, x ∈ ∂�.

Numerical approximations of ρ1 and ρ2 at t = 2 obtained by the scheme (3.7) are given in
Fig. 3. We can see by comparing Figs. 3 and 1 that boundary conditions have strong effects
on the solution profiles. In Fig. 4 (left) are the time evolution of the total mass and free energy
obtained by the scheme (3.7), the results verify our theoretical findings in Theorem 3.4. In
Fig. 4 (right) are plots of the free energy and total mass obtained by (4.2). In this test the
second order scheme looks also energy dissipative and mass conservative.

6 Concluding Remarks

In this paper, we have developed unconditional structure-preserving schemes for PNP equa-
tions in more general settings. These schemes are shown to preserve several important
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physical laws at the fully discrete level including: mass conservation, solution positivity, and
free energy dissipation. The non-logarithmic Landau reformulation of the model is impor-
tant, enabling us to construct a simple, easy-to-implement fully discrete scheme (first order
in time, second order in space), which proved to satisfy all three desired properties of the
continuous model with only O(1) time step restriction. We further designed a second order
(in both time and space) scheme, which has the same computational complexity as the first
order scheme. For such second order scheme, we employed a local scaling limiter to restore
solution positivity where necessary. Moreover, we rigorously proved that the limiter does not
destroy the desired accuracy. Three-dimensional numerical tests are conducted to evaluate
the scheme performance and verify our theoretical findings. Our schemes presented with μi

given can be applied to complex chemical potentials without difficulty.

Acknowledgements This research was partially supported by the National Science Foundation under Grant
DMS1812666.

Appendix A. Proof of Theorem 3.1

Proof The elliptic problem (3.2) can be rewritten in w = ρn+1
i eψn

i as

e−ψn
i w − τ∇ ·

(
Di (x)e

−ψn
i ∇w

)
= ρn

i , (A.1a)

w = ρb
i (x, tn+1) e

ψb
i (x,tn), x ∈ ∂�D, (A.1b)

(∇w) · n = 0, x ∈ ∂�N . (A.1c)

Let γ0 be the trace operator on ∂�D . The above problem admits a variational formulation of
form

B[u, v] = Lv, u, v ∈ H , (A.2)

where for a Dirichlet lift G ∈ H2(�) with trace γ0(G) = ρb
i (x, tn+1)eψb

i (x,tn), we find

w = u + G.

Here

H = {v ∈ H1(�) : γ0(v) = 0 on ∂�D
}
, (A.3a)

B[u, v] =
∫

�

(
τDi (x)e

−ψn
i ∇u · ∇v + e−ψn

i uv
)
dx, (A.3b)

Lv =
∫

�

(
ρn
i − e−ψn

i G
)

v − τDi (x)e
−ψn

i ∇G · ∇vdx . (A.3c)

Under the assumption (H), the celebrated Lax-Milgram theorem ( [13] Theorem 5.8) ensures
that the variational problem (A.2) admits a unique solution u ∈ H . We thus obtain

ρn+1
i = e−ψn

i (u + G).

Regularity for ρn+1
i follows from the classical elliptic regularity for u.

Similarly, the variational problem for (3.3) can also be written as (A.2) with

B[u, v] =
∫

�

ε(x)∇u · ∇vdx, (A.4a)
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Lv =
∫

�

4π

(
f (x) +

m∑
i=1

qiρ
n+1
i

)
v − ε(x)∇G · ∇vdx, (A.4b)

where the Dirichlet lift G ∈ H2(�) with γ0(G) = φb(x, tn+1) on x ∈ ∂�D .

Here one can use the Poincaré-Friedrichs’ inequality of form ‖u‖L2 ≤ CF‖∇u‖L2 , which
holds if u = 0 on a set of ∂� with non-vanishing measure, to regain coercivity of B on H .
Under the assumption (H), the variational problem is thus well-posed, and we obtain

φn+1 = u + G.

Regularity forφn+1 follows from the classical elliptic regularity for u and regularity for ρn+1.
Finally we prove positivity of ρn+1 if ρn ≥ 0. Since w = ρn+1

i eψn
i ∈ C(�̄) ∩C2(�), we

let x∗ = argminx∈�̄w(x), and distinct three cases:
(i) If x∗ ∈ ∂�D , then

w(x) ≥ w
(
x∗) = ρb

i

(
x∗, tn+1

)
eψb

i (x
∗,tn) ≥ 0, x ∈ �̄.

(ii) If x∗ ∈ �, then we can show that

w(x) ≥ w
(
x∗) ≥ ρn

i

(
x∗) eψn

i (x
∗) ≥ 0, x ∈ �̄.

In fact, from (A.1a) it follows

ρn
i (x) =e−ψn

i (x)w(x) − τ∇ ·
(
Di (x)e

−ψn
i (x)∇w(x)

)

=e−ψn
i (x)w(x) − τ∇

(
Di (x)e

−ψn
i (x)
)

· ∇w(x) − τDi (x)e
−ψn

i (x)�w(x).

This when evaluated at x∗, using ∇w(x∗) = 0 and �w(x∗) ≥ 0, gives

ρn
i

(
x∗) ≤ e−ψn

i (x
∗)w
(
x∗) .

(iii) For x∗ ∈ ∂�N . If w(x∗) ≥ 0, the proof is complete. We proceed with the case that

w(x∗) < 0, x∗ ∈ ∂�N .

This is possible by the Hopf strong minimum principle.
Define the differential operator

Lξ := τDi (x)e
−ψn

i (x)�ξ + τ∇
(
Di (x)e

−ψn
i (x)
)

· ∇ξ − e−ψn
i (x)ξ.

We then have Lw = −ρn
i (x) ≤ 0, and w(x) ≥ w(x∗) for all x ∈ �. These together with

w(x∗) < 0 allow us to apply Theorem 8 in [34] to conclude (∇w(x∗)) · n < 0. This is a
contradiction.
Collecting all three cases, we have w(x) ≥ 0 for all x ∈ �̄. ��

Appendix B. Proof of Theorem 3.4

We first present a useful estimate on φ = φn to the discrete Poisson equation (3.11), which
can be expressed by

(Lφ)α = Fα

with Fα := 4π
(
fα +∑m

i=1 qiρ
n
i,α

)
.
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Lemma B.1 (L∞ estimate of φα) For ε ∈ C1 and h1 sufficiently small, there exists a constant
C∗ > 0 independent of meshes such that

|φα| ≤ max
x∈∂�D

|φb(x)| + C∗ max
α

|Fα|. (B.1)

Proof Note that the linear operator can be written as

(Lw)α = −
d∑
j=1

1

h2j

[
ε
(
xα+e j /2

) (
wα+e j − wα

)− ε
(
xα−e j /2

) (
wα − wα−e j

)]
, (B.2)

subject to same type of boundary conditions as in (3.11). First we can show that if

(Lw)α < 0,

then wα cannot achieve maximum in cells away from ∂�D , hence

max
α

wα ≤ max
x∈∂�D

wb.

We next introduce an auxiliary function, using notation φb
max := maxx∈∂�D |φb(x)|, as

Hα = φb
max +

(
eβL1 − eβxα(1)

)
max

α
|Fα|

and Hb(x) = φb
max + (eβL1 − eβx1

)
maxα |Fα|, with β > 0 to be determined.

By a direct verification we have

(LH)α = K (h1)max
α

|Fα|eβxα(1) ,

where

K (h1) = 1

h21

[
ε
(
xα+e1/2

) (
eβh1 − 1

)
− ε
(
xα−e1/2

) (
1 − e−βh1

)]
.

Note that limh1↓0 K (h1) = β[βε(xα) + ∂x1ε(xα)], hence for h1 sufficiently small and β

large, we have

K (h1) ≥ 1

2
β[βε(xα) + ∂x1ε (xα)] ≥ 1

4
β2εmin > 1 (B.3)

for β > max{2/√εmin, 2max |∂x1ε|/εmin}.
Cells near ∂�D need to be handled separately:

(LH)α = K1 (h1)max
α

|Fα|eβxα(1) , α(1) = 1,

(LH)α = K2 (h1)max
α

|Fα|eβxα(1) , α(1) = N1.

Where

K1 (h1) = 1

h21

[
ε
(
xα+e1/2

) (
eβh1 − 1

)
− 2ε

(
xα−e1/2

) (
1 − e−βh1/2

)]
,

K2 (h1) = 1

h21

[
2ε
(
xα+e1/2

) (
eβh1/2 − 1

)
− ε
(
xα−e1/2

) (
1 − e−βh1

)]
,

and limh1↓0 K j (h1) = β[ 34βε(xα)+∂x1ε(xα)] for j = 1, 2, hence, similar to (B.3), we have
K j (h1) > 1 for β > max{2/√εmin, 4max |∂x1ε|/εmin} and for small h1.
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Therefore

(LH)α > max
α

|Fα|. (B.4)

We shall use (B.4) to show that

|φα| ≤ Hα, ∀α ∈ A, (B.5)

this implies the claimed bound with C∗ = eβL1 − 1.
To show (B.5), let wα = φα − Hα , then on ∂�D we have wb = φb − Hb ≤ 0 and

(Lw)α = (Lφ)α − (LH)α = Fα − (LH)α < 0,

hence wα ≤ 0 for all α ∈ A, which implies φα ≤ Hα . Similarly, for wα = φα + Hα we have
(Lw)α = (Lφ)α + (LH)α = Fα + (LH)α > 0, and wb = φb + Hb ≥ 0 on ∂�D . Hence
wα ≤ 0 for all α ∈ A, implying φα ≥ −Hα . These together have proved (B.5). ��
Proof of Theorem 3.4. (i) For fixed i we sum (3.7) over all cells to get

∑
α∈A

|Kα|
(
ρn+1
i,α − ρn

i,α

)
= τ

d∑
j=1

∑
α∈A

|Kα|
h j

(
Ci,α+e j /2 − Ci,α−e j /2

) = 0,

where we used summation by parts and Ci,α+e j /2 = 0 for xα+e j /2 ∈ ∂�.
(ii) Set

Snα = fα +
m∑
i=1

qiρ
n
i,α

and

ψ∗
i,α = log ρn+1

i,α + 1

kBT
qiφ

n
α + 1

kBT
μi,α.

Using (3.12) we find that

En+1
h − En

h =
∑
α∈A

m∑
i=1

|Kα|
((

ρn+1
i,α − ρn

i,α

)
ψ∗
i,α + ρn

i,α log
ρn+1
i,α

ρn
α

)

+ 1

kBT

∑
α∈A

|Kα|
(
1

2
Sn+1
α φn+1

α + 1

2
Snαφn

α − Sn+1
α φn

α

)
.

(B.6)

Using log X ≤ X − 1 for X > 0 and the mass conservation, we have

∑
α∈A

|Kα|ρn
i,α log

ρn+1
i,α

ρn
α

≤
∑
α∈A

|Kα|
(
ρn+1
i,α − ρn

α

)
= 0.

Also one can verify that ∑
α∈A

|Kα|Sn+1
α φn

α =
∑
α∈A

|Kα|Snαφn+1
α ,

with which we obtain
∑
α∈A

|Kα|
(
1

2
Sn+1
α φn+1

α + 1

2
Snαφn

α − Sn+1
α φn

α

)
= 1

2

∑
α∈A

|Kα| (Sn+1
α − Snα

) (
φn+1

α − φn
α

)
.
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Insertion of these into (B.6) gives

En+1
h − En

h ≤ −τ I n + τ 2 II n, (B.7)

where

I n = −
∑
α∈A

m∑
i=1

|Kα|
(

ρn+1
i,α − ρn

i,α

τ

)
ψ∗
i,α,

II n = 1

2kBT

∑
α∈A

|Kα|
(
Sn+1
α − Snα

τ

)(
φn+1

α − φn
α

τ

)
.

By using (3.7) and summation by parts, we have

I n = −
m∑
i=1

∑
α∈A

d∑
j=1

|Kα|
(
Ci,α+e j /2 − Ci,α−e j /2

h j

)
ψ∗
i,α

=
m∑
i=1

d∑
j=1

∑
α( j)�=N j

|Kα|
h j

(
ψ∗
i,α+e j − ψ∗

i,α

)
Ci,α+e j /2.

(B.8)

Note that

Ci,α+e j /2 = Di (xα+e j /2)e
−ψn

i,α+e j /2

h j

(
e
ψ∗
i,α+e j − eψ∗

i,α

)
,

hence I n ≥ 0.
We pause to discuss the special case with I n = 0. In such case we must have ψ∗

i,α+e j
=

ψ∗
i,α for each i, j and α ∈ A, which implies Ci,α+e j /2 = 0 for each i , j and α ∈ A. Thus,

we have ρn+1
i,α = ρn

i,α , hence

Snα = fα +
m∑
i=1

qiρ
n
i,α = fα +

m∑
i=1

qiρ
n+1
i,α = Sn+1

α , ∀α ∈ A,

therefore II n = 0 and En+1
h − En

h ≤ 0, this is (3.13) with I n = 0.
From now on we only consider the case I n > 0. We proceed to estimate II n ,

II n = 1

2kBT

∑
α∈A

|Kα|
(
Sn+1
α − Snα

τ

)(
φn+1

α − φn
α

τ

)

= − 1

8πkBT

∑
α∈A

d∑
j=1

|Kα|
τ 2h j

(�n+1
α+e j /2

− �n+1
α−e j /2

− �n
α+e j /2 + �n

α−e j /2)
(
φn+1

α − φn
α

)

= 1

8πkBT

d∑
j=1

∑
α( j)�=N j

|Kα|
τ 2h j

(
�n+1

α+e j /2
− �n

α+e j /2

) (
φn+1

α+e j − φn
α+e j − φn+1

α + φn
α

)

+ 1

8πkBT

d∑
j=1

∑
α( j)=1

|Kα|
τ 2h j

(
�n+1

α−e j /2
− �n

α−e j /2

) (
φn+1

α − φn
α

)

− 1

8πkBT

d∑
j=1

∑
α( j)=N j

|Kα|
τ 2h j

(
�n+1

α+e j /2
− �n

α+e j /2

) (
φn+1

α − φn
α

)
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= 1

8πkBT

d∑
j=1

∑
α( j)�=N j

|Kα|εα+e j /2

τ 2h2j

(
φn+1

α+e j − φn
α+e j − φn+1

α + φn
α

)2

+ 1

8πkBT

d∑
j=1

∑
α( j)=1

|Kα|εα−e j /2

τ 2h2j

(
φn+1

α − φn
α

)2

+ 1

8πkBT

d∑
j=1

∑
α( j)=N j

|Kα|εα+e j /2

τ 2h2j

(
φn+1

α − φn
α

)2 ≥ 0. (B.9)

Here the second equality is obtained by using the equation (3.11), the third equation is
obtained by summation-by-parts, the last equality is obtained by using the definition (3.11b)-
(3.11c) of �n

α+e j /2
.

From (B.8) and (B.9), we see that the energy dissipation inequality (3.13) is satisfied if

τ ≤ τ ∗ ≤ I n

2II n
. (B.10)

In the remaining of the proof we will quantify τ ∗ from estimating the lower bound of I n
2II n .

Subtracting (3.11) at time level t = tn+1 and t = tn , one has

−
d∑
j=1

�n+1
α+e j /2

− �n+1
α−e j /2

− �n
α+e j /2

+ �n
α−e j /2

h j
= 4π

m∑
i=1

qi
(
ρn+1
i,α − ρn

i,α

)
,

multiplying by |Kα|(φn+1
α − φn

α) and summing over α ∈ A leads to

−
d∑
j=1

∑
α∈A

Kα

h j

(
�n+1

α+e j /2
− �n+1

α−e j /2
− �n

α+e j /2 + �n
α−e j /2

) (
φn+1

α − φn
α

)

= 4π
m∑
i=1

∑
α∈A

qi |Kα|
(
ρn+1
i,α − ρn

i,α

) (
φn+1

α − φn
α

)
.

(B.11)

We estimate the right hand side of (B.11) by using the equation (3.7):

RHS =4π
m∑
i=1

∑
α∈A

qi |Kα|
(
ρn+1
i,α − ρn

i,α

) (
φn+1

α − φn
α

)

=4πτ

m∑
i=1

∑
α∈A

d∑
j=1

qi |Kα| 1
h j

(
Ci,α+e j /2 − Ci,α−e j /2

) (
φn+1

α − φn
α

)

= − 4πτ

m∑
i=1

d∑
j=1

∑
α( j)�=N j

qi |Kα| 1
h j

Ci,α+e j /2

(
φn+1

α+e j − φn
α+e j − φn+1

α + φn
α

)
.
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Using the Cauchy-Schwarz inequality we see that

RHS ≤ 4πτ

m∑
i=1

|qi |
⎛
⎝ d∑

j=1

∑
α( j)�=N j

|Kα|Ci,α+e j /2

(
φn+1

α+e j − φn
α+e j − φn+1

α + φn
α

h j

)⎞
⎠

≤ 4πτ

m∑
i=1

|qi |
⎡
⎣ d∑

j=1

∑
α( j)�=N j

|Kα|C2
i,α+e j /2

⎤
⎦
1/2

×
⎡
⎣ d∑

j=1

∑
α( j)�=N j

|Kα|
(

φn+1
α+e j − φn

α+e j − φn+1
α + φn

α

h j

)2⎤
⎦
1/2

.

(B.12)

Similar to (B.9), the left hand side of (B.11) reduces to

LHS = −
d∑
j=1

∑
α∈A

Kα

h j

(
�n+1

α+e j /2
− �n+1

α−e j /2
− �n

α+e j /2 + �n
α−e j /2

) (
φn+1

α − φn
α

)

=
d∑
j=1

∑
α( j)�=N j

|Kα|εα+e j /2

h2j

(
φn+1

α+e j − φn
α+e j − φn+1

α + φn
α

)2

+
d∑
j=1

∑
α( j)=1

|Kα|εα−e j /2

h2j

(
φn+1

α − φn
α

)2 +
d∑
j=1

∑
α( j)=N j

|Kα|εα+e j /2

h2j

(
φn+1

α − φn
α

)2

≥εmin

d∑
j=1

∑
α( j)�=N j

|Kα| 1
h2j

(
φn+1

α+e j − φn
α+e j − φn+1

α + φn
α

)2

(B.13)

From (B.12) and (B.13), we obtain

d∑
j=1

∑
α( j)�=N j

|Kα|
(

φn+1
α+e j − φn

α+e j − φn+1
α + φn

α

h j

)2

≤ 16π2τ 2

ε2min

⎡
⎢⎣

m∑
i=1

|qi |
⎛
⎝ d∑

j=1

∑
α( j)�=N j

|Kα|C2
i,α+e j /2

⎞
⎠

1/2
⎤
⎥⎦
2

≤ 16π2τ 2

ε2min

(
m∑
i=1

q2i

)
m∑
i=1

d∑
j=1

∑
α( j)�=N j

|Kα|C2
i,α+e j /2.

(B.14)

Upon insertion of (B.14) into (B.12)

RHS ≤ 16π2τ 2
√
m

εmin

(
m∑
i=1

q2i

)
m∑
i=1

d∑
j=1

∑
α( j)�=N j

|Kα|C2
i,α+e j /2. (B.15)

We can estimate II n as:

II n = 1

8πτ 2kBT
RHS ≤ C

m∑
i=1

d∑
j=1

∑
α( j)�=N j

|Kα|C2
i,α+e j /2., (B.16)
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where C = 2π
√
m

εminkBT

(∑m
i=1 q

2
i

)
. We use (B.8) and (B.16) to obtain:

I n

2II n
≥
∑m

i=1
∑d

j=1
∑

α( j)�=N j

|Kα |
h j

Ci,α+e j /2

(
ψ∗
i,α+e j

− ψ∗
i,α

)

2C
∑m

i=1
∑d

j=1
∑

α( j)�=N j
|Kα|C2

i,α+e j /2

≥ 1

2C
min
i, j,α

{
ψ∗
i,α+e j

− ψ∗
i,α

h jCi,α+e j /2

}

= 1

2C
min
i, j,α

⎧⎪⎨
⎪⎩

ψ∗
i,α+e j

− ψ∗
i,α

Di,α+e j /2e
−ψn

i,α+e j /2
(
e
ψ∗
i,α+e j − eψ∗

i,α

)
⎫⎪⎬
⎪⎭ by the mean-value theorem

= 1

2C
min
i, j,α

⎧⎪⎨
⎪⎩

1

Di,α+e j /2e
−ψn

i,α+e j /2e

(
θψ∗

i,α+e j
+(1−θ)ψ∗

i,α

)

⎫⎪⎬
⎪⎭ ,

(B.17)

where θ ∈ (0, 1). By using the harmonic mean for e
−ψn

i,α+e j /2 , we have

1

e
−ψn

i,α+e j /2e

(
θψ∗

i,α+e j
+(1−θ)ψ∗

i,α

) = e

(
(θ−1)ψn

i,α−θψn
i,α+e j

)

(
ρn+1
i,α+e j

)θ (
ρn+1
i,α

)1−θ
· 2e

ψn
i,α+e j

+ψn
i,α

e
ψn
i,α+e j + eψn

i,α

= 1(
ρn+1
i,α+e j

)θ (
ρn+1
i,α

)1−θ
· 2e

(1−θ)ψn
i,α+e j

+θψn
i,α

e
ψn
i,α+e j + eψn

i,α

≥ 2e
min
{
ψn
i,α+e j

,ψn
i,α

}

2Me
max
{
ψn
i,α+e j

,ψn
i,α

}

=e
−|ψn

i,α+e j
−ψn

i,α |

M
,

where M = maxi,α,n ρn
i,α , thus

I n

2II n
≥ 1

2CDmaxM
e
−maxi, j,α |ψn

i,α+e j
−ψn

i,α |
. (B.18)

For geometric mean or algebraic mean when used for the evaluation of e
−ψn

i,α+e j /2 we can
verify either the same or bigger bound than the right hand side of in (B.18).

Finally we show that maxi, j,α |ψn
i,α+e j

− ψn
i,α| is upper bounded. Actually we have

max
i, j,α

|ψn
i,α+e j − ψn

i,α| ≤ 2

kBT

(
max
i

‖μi‖∞ + max
i

|qi |max
α

|φα|
)

.

LemmaB.1,when applied to the caseφb(x, t) = 0 forwhich the energy dissipation inequality
(3.13) holds, leads to

|φα| ≤ C∗ max
α

|Fα| ≤ 4πC∗

(
‖ f ‖∞ +

m∑
i=1

|qi |M
)

.
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Thus

max
i, j,α

|ψn
i,α+e j − ψn

i,α| ≤ 2

kBT

(
max
i

‖μi‖∞ + 4πC∗ max
i

|qi |
(

‖ f ‖∞ +
m∑
i=1

|qi |M
))

.

(B.19)

Estimate (B.18) together with (B.19) have proved part (ii) of Theorem 3.4, while τ ∗ is
explicitly given by

τ ∗ = εminkBT

4π
√
m
∑m

i=1 q
2
i Dmax M

e
− 2

KBT [maxi ‖μi‖∞+4πC∗ maxi |qi |(‖ f ‖∞+∑m
i=1 |qi |M)]

,(B.20)

where C∗ can be found in Lemma B.1. ��
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