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ABSTRACT
Comparing the spatial characteristics of spatiotemporal random fields is often at demand. However, the
comparison can be challenging due to the high-dimensional feature and dependency in the data. We
develop a new multiple testing approach to detect local differences in the spatial characteristics of two
spatiotemporal random fields by taking the spatial information into account. Our method adopts a two-
component mixture model for location wise p-values and then derives a new false discovery rate (FDR)
control, called mirror procedure, to determine the optimal rejection region. This procedure is robust to
model misspecification and allows for weak dependency among hypotheses. To integrate the spatial
heterogeneity, we model the mixture probability as well as study the benefit if any of allowing the
alternative distribution to be spatially varying. An EM-algorithm is developed to estimate the mixture model
and implement the FDR procedure. We study the FDR control and the power of our new approach both
theoretically and numerically, and apply the approach to compare the mean and teleconnection pattern
between two synthetic climate fields. Supplementary materials for this article are available online.
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1. Introduction

Comparing spatiotemporal random fields and identifying the
locations where the difference occurs are often at demand. For
example, climate scientists are interested in learning the dif-
ference between synthetic climate fields generated by different
general circulation models, for the purpose of studying the
mechanism of climate models. In the study of paleoclimate, a
key step is to compare the reconstructed climate field to its
target to evaluate the reconstruction method. In those examples,
the characteristics of climate fields to be compared typically
include the spatial mean and the spatial covariance structure.
Furthermore, it will be more appealing if we can identify where
the difference is if any. These questions can be answered by
comparing the two random fields at the location level. However,
hypothesis testing at each location will lead to multiplicity issue
due to the large number of spatial locations. In addition to the
high-dimensional feature, the dependency in the climate fields
makes this multiple testing problem more challenging.

Various approaches have been proposed to compare two
spatiotemporal random fields. Enlightened by Lund and Li
(2009), Li and Smerdon (2012) proposed to compare climate
field reconstructions by integrating the difference in both
the mean and covariance structure based on the two-sample
Kolmogorov–Smirnov test of whitened random fields. By
treating the spatiotemporal random fields as replicates of two-
dimensional functional data, Zhang and Shao (2015) and
Li, Zhang, and Smerdon (2016) developed test statistics for
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evaluating the difference of several properties between two
random fields. Another related work is the comparison of two
spatial random fields in terms of user-chosen loss functions
(Hering and Genton 2011). Note all these papers provided only
global tests for the entire random field but not the comparison
at local level.

False discovery rate (FDR) has become a popular criterion for
large-scale hypothesis testing, for its ability to attain high power
while controlling the FDR or the number of incorrect rejections
at a prespecified level. Classical multiple testing procedure was
first introduced by Benjamini and Hochberg (1995) (hereafter
BH) which has been widely used in many disciplines. Later, Ben-
jamini and Hochberg (2000) and Benjamini and Yekutieli (2001)
presented an adaptive p-value procedure as an alternative to the
BH method and Genovese and Wasserman (2002) presented a
test procedure that controls FDR and false nondiscovery rate
(FNR) simultaneously. Storey (2002) (hereafter JH) developed
a method to improve the power of BH by estimating the pro-
portion of null hypotheses. A number of other alternatives to
BH method adopted the Bayesian viewpoint by formulating
the multiple testing through a mixture model, xi|θi ∼ θif0 +
(1 − θi)f1, where xi’s are the observations, θi is a Bernoulli
random variable indicating the state, and f0 and f1 are the null
and alternative distributions, respectively. Based on the mixture
model, Storey (2003) controlled the positive FDR (pFDR) and
Efron et al. (2001) and Efron (2004) introduced the Bayesian
framework for parameter estimation and multiple testing.
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The majority of the multiple testing methods assume inde-
pendence among the hypotheses. Efforts have been made to
apply the FDR to correlated data. Shen, Huang, and Cressie
(2002) developed a nonparametric enhanced FDR (EFDR) pro-
cedure to test the difference between the mean function of two
spatial random fields. Their method first performed a wavelet
transformation to the gridded data, and then applied the EFDR
procedure to test whether the independent wavelet coefficients
are simultaneously zero. Later, Pavlicová, Santner, and Cressie
(2008) developed an FDR procedure also in wavelet space but
enhanced by a p-value adaptive thresholding approach, moti-
vated by a brain image data. Benjamini and Heller (2007) con-
trolled the FDR of spatial signals by proposing a two-stage hier-
archical procedure that first identifies clusters of pixels where
the signal might be present and then removes pixels where the
signal is absent.

In presence of dependence among hypotheses, Sun and Cai
(2009) introduced a new test statistic, the local index of sig-
nificance (LIS), which takes into account the dependency in
adjacent observations through hidden Markov models (HMM).
However, since the optimality of LIS requires the estimates of the
unknown model parameters to be consistent, LIS in general may
not be the optimal multiple test for dependence structures other
than HMM. Sun et al. (2015) tackled more general dependency
structure in identifying spatial signals from a random field that
is contaminated by correlated errors. Their method is developed
based on an oracle statistic that represents the posterior prob-
ability of whether the signal occurs. This posterior probability
is computed using Bayesian models that take the spatial corre-
lation into account. Although Sun et al. (2015) accounted for
dependence in hypotheses, it involves the posterior probability
that conditions on the hyperparameters. Thus, the optimality
of their procedure is model-specific and appears to be sensi-
tive to model misspecification. Very recently, by adopting the
decision rules in Müller, Sansó, and De Iorio (2004) and Muller,
Parmigiani, and Rice (2006), Risser, Paciorek, and Stone (2019)
developed a robust Bayesian decision theoretical approach to
control FDR for dependent multiple testing via constructing
a nonparametric hierarchical statistical model for estimating
the dependence in the mixture probability of hypotheses. For
multiple testing problems that exhibit spatial patterns, Tansey
et al. (2018) (hereafter FDRS) introduced a FDR smoothing
method which automatically finds the spatially localized regions
of significant test statistics and then relaxes the thresholds of
significance within these regions.

We develop a multiple testing approach to compare charac-
teristics of two spatiotemporal random processes at a local level.
Our approach models the mixture probability of hypotheses as a
smooth function over space to account for spatial variability, and
models the alternative density of p-values either as an invariant
nonparametric function or a spatially varying semiparametric
function. To control FDR, we propose a new multiple testing
procedure (called the mirror procedure) that is not only robust
to model misspecification but also allows for weak dependence
among hypotheses while boosting power compared to tradi-
tional FDR methods. An EM-algorithm is developed to estimate
the mixture model.

The article is organized as follows. Section 2 derives the mir-
ror FDR procedure based on a mixture model of p-values and

shows the asymptotic property of this new procedure. Section 3
develops an EM-algorithm to estimate the mixture model with
either a nonparametric or a semiparametric alternative density
function in the mixture model. The Monte Carlo experiments in
Section 4 demonstrate our methods in comparing the mean and
covariance structure of two spatiotemporal random fields. In
Section 5, we apply our method to paleoclimate reconstruction
to detect the deviation of the reconstruction from its target
in terms of the mean and teleconnection pattern. Section 6
concludes with a brief discussion.

2. FDR Control Procedure

Let X(s, t) and Y(s, t) be two spatiotemporal random fields
observed over spatial locations, s ∈ D, and time points, t ∈ Z.
At each location s, we assume that the sequences {X(s, t)}t and
{Y(s, t)}t are both stationary over time. Our goal is to compare
the spatial characteristics of the two spatiotemporal random
fields at each location while adjusting the multiplicity due to
multiple comparison. Denote by θX(s) (θY(s)) certain spatial
characteristics of the distribution of {X(s, t)}t ({Y(s, t)}t), that is,
θX(s) = T(FX(s,t)), where T denotes a functional on the distri-
bution of X(s, t). For instance, θX(s) can be the mean of X(s, t).
More generally, θX(s) (θY(s)) can denote some characteristics
of the joint distribution of {X(s, t), X(s0, t)}t ({Y(s, t), Y(s0, t)}t)
for a fixed location s0, for example, the covariance between
X(s, t) and X(s0, t). Denote by H0,s and Ha,s the null and alter-
native hypotheses associated with location s. We are interested
in testing:

H0,s : θX(s) = θY(s) versus Ha,s : θX(s) �= θY(s)

simultaneously for all s ∈ D.
We will develop a FDR control method for this multiple

testing problem that is defined over spatial locations. To moti-
vate the FDR control procedure, we assume a two-component
mixture model for location wise p-values. The rest of this section
first presents the mixture model for spatially varying p-values,
and then derives the optimal rejection region followed by the
theoretical derivation of the cutoff value.

2.1. Model for p-Values

Suppose we are given the samples {X(s, t) : s ∈ D, t =
1, 2 . . . , n1} and {Y(s, t) : s ∈ D, t = 1, 2 . . . , n2}. Let ps be the
p-value for testing H0,s against Ha,s obtained based on a suitable
testing procedure. We assume that ps follows a two-component
mixture model:

f (ps; s) = π(s)f0(ps) + (1 − π(s))f1(ps; s), (1)

where π(s) ∈ [0, 1] is the probability that the p-value is from
the null, and f0 and f1 are the null and alternative distributions,
respectively. Throughout, we shall assume that f0 is mirror
conservative (Lei and Fithian 2018), that is,∫ a2

a1

f0(p)dp ≤
∫ 1−a1

1−a2

f0(p)dp, 0 ≤ a1 ≤ a2 ≤ 0.5. (2)

This condition means the density f0 is at least as large at 1 − p
as at p for p ≤ 0.5. The varying null probability π(s) reflects
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the relative importance of each hypothesis, and the varying
alternative density f1(·; s) emphasizes the heterogeneity among
signals at different locations.

2.2. Optimal Rejection Region

We derive the optimal rejection region under model (1). Similar
results have been obtained in recent literature (see, e.g., Sun et
al. 2015; Basu et al. 2018; Lei and Fithian 2018). Following Sun
et al. (2015), we define the local FDR (LFDR) at location s and
p-value ps as

LFDRs(ps) = π(s)f0(ps)

π(s)f0(ps) + (1 − π(s))f1(ps; s)
.

Suppose we reject the hypothesis at s ∈ D when ps ≤ qs for
some cutoff value qs.

Let F0 and F1(·; s) be the null and alternative distribution
functions associated with f0 and f1(·, s), respectively. Write q =
{qs : s ∈ D}. Our goal is to control the average FDR (aFDR) over
m hypotheses defined as

aFDRm(q) :=
∑

s∈D π(s)F0(qs)∑
s∈D{π(s)F0(qs) + (1 − π(s))F1(qs; s)} , (3)

while maximizing the number of rejections. This can be formu-
lated into the following constraint optimization problem:

max
q

1
m
∑
s∈D

(1 − π(s))F1(qs; s) subject to aFDR(q) ≤ α.

(4)

We show that the optimal thresholds in this case are level
surfaces of the LFDRs, that is, LFDRs(·) evaluated at the optimal
threshold is independent of the location s. To see this, note that
the Lagrangian function of (4) is given by

L(q, λ) = 1
m
∑
s∈D

{ − λ(1 − α)π(s)F0(qs)

+ (1 + λα)(1 − π(s))F1(qs; s)
}

.

Thus under similar conditions as those in Theorem 2 of Lei
and Fithian (2018), the Karush–Kuhn–Tucker (KKT) condition
indicates that

−λ(1 − α)π(s)f0(qs) + (1 + λα)(1 − π(s))f1(qs; s) = 0,

which after some simple algebra shows that LFDRs(qs) is a
constant independent of s. This insight can be formally stated as
the following theorem, which motivates our choice of rejection
regions.

Theorem 1. Assume that f1(·; s) is continuously non-increasing
at each s, and f0 is continuously non-decreasing and uniformly
bounded from above. Further assume that

max
s∈D

(1 − π(s))f1(0; s)
π(s)f (0)

>
1 − α

α
. (5)

Then (4) has at least one solution and every solution {̃qs : s ∈ D}
satisfies that LFDRs(̃qs) is independent of the location s.

Here condition (5) is a modification of (ii) in Theorem 2 of
Lei and Fithian (2018), which suffices for their arguments to go
through in our case. Throughout the following discussions, we
assume a monotone likelihood ratio condition:

f1(ps; s)/f0(ps) is a monotonically decreasing function of ps,

for all s ∈ D. Such an assumption has been made in Storey
(2002), Genovese and Wasserman (2002), and Genovese and
Wasserman (2004), among others. Under the monotone likeli-
hood ratio condition, LFDRs(ps) is a monotonically increasing
function of ps. Thus, the rejection rule ps ≤ q̃s can be expressed
as

LFDRs(ps) ≤ LFDRs(̃qs).

According to Theorem 1, LFDRs(̃qs) is independent of s, which
leads to the following optimal rejection region,

LFDRs(ps) = π(s)f0(ps)

π(s)f0(ps) + (1 − π(s))f1(ps; s)
≤ q, (6)

with q to be determined in the next subsection.

2.3. The Mirror Procedure

The cutoff value q in (6) was previously determined by the
step-up procedure (see, e.g., Sun and Cai 2007), which typically
requires the estimated LFDR to converge to the truth. Here we
introduce a more robust procedure to determine the cutoff value
which enjoys both the robustness and flexibility over the step-
up procedure: the new procedure controls the asymptotic FDR
even when (1) the estimated LFDR converges to a limit that is
different from the true LFDR (see Assumption 1); and (2) the
p-values are weakly dependent (see Assumption 4). This pro-
cedure extends the method in Barber and Candes (2016) (also
see Lei and Fithian 2018) to incorporate spatial information
through the spatial varying functions π(s) and f1(·; s). As our
approach is developed by exploiting the mirror conservativeness
of f0, we shall call it the mirror procedure.

To introduce the proposed method, we note that the false
discovery proportion (FDP) based on the rejection rule (6) with
threshold q is given by

FDP(q) :=
∑

s∈S0 1{LFDRs(ps) ≤ q}
1 ∨ ∑

s∈D 1{LFDRs(ps) ≤ q} ,

where S0 denotes the set of locations under which the null
hypothesis is true, 1(A) denotes the indicator function associ-
ated with a set A, and a ∨ b = max{a, b}. We observe that

FDP(q) �
∑

s∈S0 1{LFDRs(1 − ps) ≤ q}
1 ∨ ∑

s∈D 1{LFDRs(ps) ≤ q}
≤
∑

s∈D 1
{

LFDRs(1 − ps) ≤ q
}

1 ∨ ∑
s∈D 1

{
LFDRs(ps) ≤ q

} := FDPup(q),

where “�” means “approximately smaller than” which is due to
the mirror conservativeness of f0. Set q∗ = max{q ∈ [0, 1] :
FDPup(q) ≤ α}. We then reject H0,s if

LFDRs(ps) ≤ q∗.
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In practice, f1(·, s) and π(s) are often unknown and are
replaced by their sample counterparts. Let L̂FDRs(·) be an esti-
mator of LFDRs(·) for s ∈ D, and define

q̂ = max

⎧⎨⎩q ∈ [0, 1] :

∑
s∈D 1

{
L̂FDRs(1 − ps) ≤ q

}
1 ∨ ∑

s∈D 1
{

L̂FDRs(ps) ≤ q
} ≤ α

⎫⎬⎭ .

The empirical decision rule is to reject H0,s if

L̂FDRs(ps) ≤ q̂.

Below we show that this empirical procedure provides asymp-
totic FDR control.

In the following asymptotic analysis, we assume that there
is an array of p-values {ps : s ∈ Dm ⊆ D ⊆ R2, m ∈ Z+}
with |Dm| → +∞ as m → +∞. Keep in mind that the set
of null locations S0 = S0,m is also changing with respect to m.
The limit below is taken by letting m → +∞. We assume that
|S0,m|/|Dm| → γ ∈ (0, 1] throughout the discussions.

Assumption 1. Assume that there exist nondecreasing and right
continuous functions �s(·) : [0, 1] → [0, 1] for s ∈ Dm such
that

1
|Dm|

∑
s∈Dm

|L̂FDRs(ps) − �s(ps)| →p 0.

Assumption 2. Let �s be defined in Assumption 1. Suppose

1
|Dm|

∑
s∈Dm

P(�s(ps) ≤ q) → G0(q),

1
|Dm|

∑
s∈S0

P(�s(ps) ≤ q) → G̃1(q),

1
|Dm|

∑
s∈Dm

P(�s(1 − ps) ≤ q) → G1(q),

for q ∈ [0, 1], where G0(q), G̃1(q), and G1(q) are all nondecreas-
ing and differentiable functions with the derivatives bounded
from above by some constants C0, C̃1, and C1 on the interval
[q0/2, 1] for some constant q0 > 0, respectively.

Assumption 3. Suppose there exists a q′ > q0 > 0 such that
U(q′) := G1(q′)/G0(q′) < α, where Gi’s and q0 are defined in
Assumption 2.

Next we introduce weak dependence assumption on the p-
values. Suppose ρ(a, b) = sup1≤i≤2 |ai − bi| for a = (a1, a2)
and b = (b1, b2). For U, V ⊆ D, define the distance between U
and V as ρ(U, V) = infa∈U,b∈V ρ(a, b). Let σ(U) = σ(ps, s ∈
U) be the sigma-field generated by ps for s ∈ U ⊆ D. The α-
mixing and ψ-mixing coefficients for {ps, s ∈ D} are defined,
respectively, as

α(u, v, r) = sup
m

sup
U,V⊆Dm

{α(U, V) : |U| ≤ u,

|V| ≤ v, ρ(U, V) ≥ r}, (7)
ψ(u, v, r) = sup

m
sup

U,V⊆Dm

{ψ(U, V) : |U| ≤ u,

|V| ≤ v, ρ(U, V) ≥ r}, (8)

where α(U, V) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ σ(U), B ∈
σ(V)} and ψ(U, V) = sup{|P(A|B) − P(A)| : A ∈ σ(U), B ∈
σ(V), P(B) > 0}.

Assumption 4. The set D is infinitely countable. All elements in
D are located at distances of at least ρ0 > 0 from each other
(that is ρ(a, b) ≥ ρ0 for all a, b ∈ D). The mixing coefficient
α(u, v, r) defined in (7) (or ψ(u, v, r) defined in (8)) satisfies that∑+∞

r=1 rα(1, 1, r) < ∞ (or
∑+∞

r=1 rψ(1, 1, r) < ∞).

We remark that �s does not have to be the same as LFDRs
for our procedure to achieve asymptotic FDR control. Thus, our
method is more robust than the classical LFDR-based procedure
which requires consistent estimation of LFDRs. Assumption 1
requires that the empirical L1 norm of the difference between
L̂FDRs and �s converges in probability to zero. Assumptions 2
and 3 are relatively mild and are similar to those in Theorem 4 of
Storey, Taylor, and Siegmund (2004). In Assumption 4, we allow
the random field formed by the p-values to be strong mixing.
In this sense, our procedure is asymptotically robust to weak
dependence.

Define

FDRm(q) = E

[ ∑
s∈S0 1{L̂FDRs(ps) ≤ q}

1 ∨ ∑
s∈Dm 1{L̂FDRs(ps) ≤ q}

]
. (9)

Theorem 2. Under Assumptions 1–4 and further assume that f0
is mirror conservative, then we have

lim
m→+∞ FDRm(̂q) ≤ α.

The proof for Theorem 2 is deferred to Appendix A.

3. Estimation

We assume f0(·) to be Uniform(0,1) which satisfies the mirror
conservative condition. Alternatively, f0 can also be estimated
from the data (see, e.g., Efron 2004). Then we shall estimate π(s)
and f1(·; s) in (1) to implement our FDR control procedures.
In the estimation, we assume both functions as nonparametric
functions to warrant flexibility, and then additionally consider
f1 also as a spatially varying semiparametric function. Let G be
an invertible map from R → [0, 1], for example, G can be the
distribution function of the logistic or normal distribution. We
model π(s) through G by

G−1(π(s)) =
d∑

j=1
βjBj(s), (10)

where B1(s), . . . , Bd(s) are basis functions defined over D, and d
can be determined via the BIC criteria, see Section 3.3 for more
details. In this article, we take G to be the logistic distribution
function and Bj(s) the B-spline basis for its popularity. Other
choices are possible as we find our methods are insensitive to
different choices of basis functions through unreported simula-
tions. If we let ηs = G−1(π(s)), then we can write π(s) into

π(s) = eηs

1 + eηs
.
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For nonparametric form of f1, we assume that f1 is spatially
invariant and belongs to a class of decreasing densities.

Although we only consider model (10) in our study, note that
we can extend the above nonparametric model to include exter-
nal covariates Zs ∈ Rd0 observed at each location s whenever
appropriate. Specifically, we can consider the model

ηs = γ ′Zs +
d∑

j=1
βjBj(s), γ ∈ Rd0

if some useful covariates Zs are available.
We propose an EM like algorithm to estimate π(s) and the

alternative distribution f1. We first consider the case where
f1 is nonparametric and spatially invariant, then we describe
in Section 3.4 how to adjust f1 to allow it to vary with s.
Algorithm 1 provides the details of our iterative algorithm. As
the EM algorithm is only guaranteed to converge to a local
optimum, we shall try multiple initial points in the estimation
and select the one that delivers the largest likelihood. Moreover,
the optimizations of (11) and (12) in Algorithm 1 are nontrivial
and will be elaborated in the following subsections.

Algorithm 1
0. Input the initial values (π(0), f (0)

1 ).
1. E-step: Given (π(t), f (t)

1 ), let

Q(t)(s) = π(t)(s)f0(ps)

π(t)(s)f0(ps) + (1 − π(t)(s))f (t)
1 (ps)

.

2. M-step: Given Q(t)(s), update (π , f1) through π(t+1)(s) =
G(
∑d

j=1 β
(t+1)
j Bj(s)) with

(β
(t+1)
1 , . . . , β(t+1)

d ) = argmax
β1,...,βd

∑
s∈D

{
Q(t)(s)log(π(s))

+ (1 − Q(t)(s))log(1 − π(s))
}

, (11)

and

f (t+1)
1 = argmax

f1∈H

∑
s∈D

(1 − Q(t)(s))logf1(ps). (12)

3. Repeat the above E-step and M-step until the algorithm converges.

3.1. The Optimization Problem in (11)

When G is the logistic distribution function,

log
(

π(s)
1 − π(s)

)
=

d∑
j=1

βjBj(s).

Problem (11) thus becomes

max
∑
s∈D

{
Q(t)(s)log

(
π(s)

1 − π(s)

)
+ log(1 − π(s))

}

= max
∑
s∈D

⎧⎨⎩Q(t)(s)
d∑

j=1
βjBj(s) + log

(
1

e
∑d

j=1 βjBj(s) + 1

)⎫⎬⎭ .

To solve this problem and problem (13), we use the Nelder–
Mead optimization, a numerical method that has been widely

used to find the maximum of an objective function in a mul-
tidimensional space. At each optimization step, it reshapes the
simplex, one vertex at a time toward an optimal region in the
search space. We refer to Singer and Singer (1999) for the details
about its computational complexity in different situations.

3.2. The Optimization Problem in (12)

Note that H in (12) denotes the space of density functions over
which we search for the optimal f1. When H is the class of
decreasing densities, the optimization in (12) could be accom-
plished by a series of steps.
Step 0: Order the p-values from the smallest to the largest and
denote the sorted p-values by z1 ≤ z2 ≤ · · · ≤ z|D|, where |D|
is the cardinality of the set D. If ps corresponds to zi, we denote
Q(t)

i = Q(t)(s).
Step 1: The objective function in (12) only looks at the values
of f1 at zi. The objective function increases if the values f1(zi)
increases, and the value of f1 at (zi−1, zi) has no impact on the
objective function (where z0 = 0). Therefore, if f maximizes the
objective function, it must be a constant on (zi−1, zi].
Step 2: Let yi = f1(zi). We only need to find yi which maximizes

|D|∑
i=1

(1 − Q(t)
i )log(yi),

subject to y1 ≥ y2 ≥ · · · ≥ y|D| ≥ 0 and
∑|D|

i=1 yi(zi −zi−1) = 1.
It can be formulated as a convex programming problem.
Step 3: Write Q(t) = ∑|D|

i=1(1 − Q(t)
i ). Consider the problem:

min
|D|∑
i=1

{
−(1 − Q(t)

i )log(yi) + Q(t)yi(zi − zi−1)
}

.

The solution is given by ŷi = 1−Q(t)
i

Q(t)(zi−zi−1)
, which satisfies the

constraint
∑|D|

i=1 yi(zi − zi−1) = 1 in Step 2.
Step 4: We rewrite the problem in Step 3 as

min
|D|∑
i=1

(1 − Q(t)
i )

{
−log(yi) + Q(t)(zi − zi−1)

(1 − Q(t)
i )

yi

}
.

Let

(û1, . . . , û|D|) = argmin
|D|∑
i=1

(1 − Q(t)
i )

(
Q(t)(zi − zi−1)

(1 − Q(t)
i )

+ ui

)2

subject to u1 ≥ u2 ≥ · · · ≥ u|D|. The solution is given by

min
a≤i

max
b≥i

−Q(t) ∑b
j=a(zj − zj−1)∑b

j=a(1 − Q(t)
j )

,

which can be obtained using the Pool-Adjacent-Violators Algo-
rithm (PAVA). Finally, we obtain the solution to the original
problem (12),

ỹi = − 1
ûi

,

according to Theorem 3.1 of Barlow and Brunk (1972). It is
worth mentioning that PAVA has a computational complexity
that is linear in the sample size |D| if skillfully implemented.
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3.3. The Choice of d

The number of basis functions d in (10) can be chosen through
the BIC criteria. Specifically, the BIC is defined as −2logL+(d+
m)log(|D|), where L denotes the likelihood, m is the degrees of
freedom associated with the parameters (other than βj’s) in the
model, and |D| is the cardinality of the spatial domain. When f1
is estimated via the method in Section 3.2, the calculation of m
involves the degrees of freedom of the isotonic regression, which
turns out to be the number of joined pieces of {ûi}|D|

i=1 (Meyer and
Woodroofe 2000, Proposition 1).

3.4. Spatially Varying Alternative Distributions

The nonparametric form of f1 assumes f1 to be spatially invari-
ant. This assumption might be too restrictive in some situation
(e.g., when the strength of signals is varying across locations)
and needs to be relaxed.

Generally speaking, if the alternative distribution is allowed
to vary with s, model (1) will no longer be estimable unless some
extra structural assumption is imposed, because there is only
one observation to make inference for f1(·; s). However, if we
assume that f1(·; s) varies smoothly over s, then one can borrow
information from neighboring observations to estimate f1(·; s).
Below we propose a semiparametric model for f1(·; s) to address
this issue.

To capture the heterogeneity of signals, we consider the
exponential family of densities on [0, 1] given by

f1(p; s) = f̃1(p) exp

⎛⎝β0,s + T (p)

d′∑
j=1

γjBj(s)

⎞⎠ , p ∈ [0, 1],

where f̃1 is a carrier density function (Efron and Tibshirani
1996) on [0, 1] that is independent of s, T (p) : [0, 1] → R is
a prespecified function of p, and

β0,s = −log

⎧⎨⎩
∫ 1

0
f̃1(p) exp

⎛⎝T (p)

d′∑
j=1

γjBj(s)

⎞⎠ dp

⎫⎬⎭
to ensure that

∫ 1
0 f1(p; s)dp = 1. Note f1(·; s) is determined by

both f̃1 and γj, and it is spatially varying due to its dependence
on the basis functions {Bj(s)}. We let f̃1 be the solution from
Algorithm 1, that is, the nonparametric form of f1, and then
estimate γj by replacing (12) in the M-step of our proposed EM-
algorithm by

{γ (t+1)
j } = argmin

γ
(t+1)
j

−
∑
s∈D

(1 − Q(t)(s))

×
[

− log

⎧⎨⎩
∫ 1

0
f̃1(p) exp

⎛⎝T (p)

d′∑
j=1

γjBj(s)

⎞⎠ dp

⎫⎬⎭
+ T (ps)

d′∑
j=1

γjBj(s)
]

.

(13)
Unreported numerical studies show that our FDR procedure is
insensitive to the choice of T (p). Thus, we choose T (p) = p
for parsimony. Again the number of basis functions d′ can be
selected using the BIC criteria.

4. Monte Carlo Experiments

We conduct extensive simulations to evaluate the FDR control
as well as the power of our method under spatial dependency of
various types and strengths. Two examples of hypothesis testing
often highly demanded are considered, one for spatial mean
comparison and the other for covariance comparison. We also
present the results by implementing the classical methods in
Benjamini and Hochberg (1995) (BH) and Storey (2002) (JS),
and a recent method in Tansey et al. (2018) (FDRS) as references.
All tests target FDR at 0.1 and all results are based on 100
simulation runs. Also, all spatial or spatiotemporal processes in
the simulation are generated over a 42 × 42 equidistant grids
(N = 1764) over a spatial domain of [0, 1]×[0, 1]. Although our
proposed method is applicable to randomly generated locations
as readily as to grids, we only present the simulation results of
spatiotemporal processes over equidistant grids to match with
the climate data in Section 5. The simulation results of randomly
generated locations show very similar pattern as with the grid-
ded data and are deferred to the supplementary materials.

All location wise p-values in the simulation were derived
using the self-normalization test developed by Shao (2010).
The self-normalization approach has been shown to provide
more accurate null p-values for time series data compared to
traditional approaches, and thus generally leads to better FDR
control as observed in our unreported study. The details of the
implementation of the self-normalization test is described in the
supplementary materials.

4.1. Test for Spatial Mean

Consider two spatiotemporal fields X(s, t) and Y(s, t) with spa-
tial mean function μX(s) and μY(s). Our goal is to identify
the locations where the spatial mean of the two spatiotemporal
random fields are different after taking the spatial correlation
into account. This is equivalent to letting θX(s) = μX(s) and
θY(s) = μY(s), and testing

H0,s : μX(s) = μY(s) versus Ha,s : μX(s) �= μY(s). (14)
We consider three different types of spatial covariance structure
in our simulation experiments:
(M1) Spatially independent model

X(s, t) = DX(s, t) + eX(s, t),
Y(s, t) = μ(s)δ(s) + DY(s, t) + eY(s, t),

where DX(s, t) = ρDX(s, t −1)+√
1 − ρ2ε(s, t) are temporally

correlated errors with ρ = 0.3 and ε(s, t) ∼ iid N(0, 1),
eX(s, t) ∼ iid N(0, 1), and DY(s, t) and eY(s, t) are defined
likewise. The mean of X(s, t) is 0 while the mean of Y(s, t) is
μ(s)δ(s) where μ(s) = ∑d

j=1 ξjBj(s) and ξj = ξ for some
constant ξ , and δ(s) is an indicator function taking the value
0 under the null and 1 under the alternative hypothesis.

The indicator function δ(s) is generated from Bernoulli(1 −
π(s)) where π(s) is generated following Equation (10). All
notations defined for this setting will be extended to the next
two sets of models.
(M2) Spatially correlated model with exponential covariance
function

X(s, t) = UX(s, t) + DX(s, t),
Y(s, t) = μ(s)δ(s) + UY(s, t) + DY(s, t),
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where UX(s, t) at each time t is a Gaussian random process with
mean 0 and covariance matrix �U governed by an exponential
covariance function σ 2

u exp(−||h||/φ) for a spatial lag h, and
UY(s, t) is defined likewise. Here we fix σ 2

u = 0.2 and its range
parameter φ = 0.1.
(M3) Spatial low rank model

X(s, t) =
d∑

j=1
RX

j (t)Bj(s) + DX(s, t),

Y(s, t) = μ(s)δ(s) +
d∑

j=1
RY

j (t)Bj(s) + DY(s, t),

where RX
j (t) and RY

j (t) both follow N(0, σ 2
r ). Since B-spline will

be used in the estimation, here we choose a different set of basis
functions B(s) = {B1(s), . . . Bd(s)} in the data generation:

B(s) = {1, s1, s2, s1s2, s2
1, s2

2, s3
1, s3

2, s2
1s2, s1s2

2, s2
1s2

2},
s = (s1, s2) ∈ D.

Model (M3) defines a much slower decaying spatial covariance
structure compared to model (M2).

Figure 1 shows the spatial mean of Y(s, t) based on all three
models with ξ = 0.25 and the null proportion being 70%. The
black dots indicate the locations under the alternative hypoth-
esis (δ(s) = 1). Figures 2 and 3 report the FDR and power
of our method together with BH, JS, and FDRS under models
(M1), (M2) , (M3-1), and (M3-2) where (M3-1) and (M3-2) are
(M3) with σr = 0, 3 and σr = 0.5, respectively. To study the
effect of null proportion, the size of mean difference and the
spatial correlation strength on the FDR control and power, we
repeat simulations with a sequence of null proportions (70%,
80%, and 90%), ξ (0.15, 0.2, 0.25, 0.3) and σr values (0.3, 0.5).
The null proportion is controlled through varying βj in (10).
A larger ξ generally represents more significant mean differ-
ence, and a larger σr in model (M3) indicates stronger spatial
correlation.

Figure 2 shows that for both models (M1) and (M2) and for
two (M3) models with different σr values, our mirror procedures
control the FDR well at each ξ value, if the null proportion is
low. However, when the null proportion is high, our methods
tend to inflate FDR if meantime the ξ value is small. The
inflation is exacerbated at a larger σr . This implies that when
there is only a little data to estimate the alternative distribution
of p-values and meantime the signal is weak, it is challenging
for the mirror procedure to control the FDR. Furthermore,
the strong dependency in data makes the FDR control even
harder. The semiparametric mirror seems more vulnerable to
the above mentioned challenges because the spatially varying
semiparametric model requires more information to estimate
the model. Overall, the JS method controls the FDR well. BH
appears to be conservative by being below the nominal level in
most cases. In contrast, FDRS shows inflated FDR for low null
proportion combined with weak signal while conservative FDR
for high null proportion. The power comparison in Figure 3
shows that in general, all powers increase as ξ increases or the
null proportion decreases. This is not surprising as stronger
signals or more data available for estimating f1(·, s) will make
the identification of alternatives easier. However, an important

Figure 1. Spatial mean of Y(s, t). The black dots indicate the locations under the
alternative hypothesis.

message we obtain here is that across all values of ξ and null
proportions, our methods are uniformly more powerful than the
BH, JS, and FDRS methods. The improvement becomes more
significant when the signal is weaker (smaller ξ ) or the null
proportion is higher.

To investigate how the assumption of f1 being spatially invari-
ant in the nonparametric mirror procedure possibly affects the
performance of the multiple testing as opposed to the flex-
ible semiparametric procedure with spatially varying f1, we
consider a simulation experiment where the mean function
μ(s)δ(s) in Y exhibits more spatial heterogeneity. Unreported
results show that even in the scenario that obviously favors
the semiparametric method, modeling heterogeneity, that is,
allowing f1 to vary spatially, however, does not lead to more
discoveries. In most cases, the nonparametric method appears
to be as powerful as the semiparametric method if not more
powerful. The nonparametric method also shows a great advan-
tage over the semiparametric one in terms of computational
complexity.

The estimation algorithm for the semiparametric procedure
involves the Nelder–Mead optimization to estimate (γ1, . . . , γd′)
in addition to (β1, . . . , βd). The Nelder–Mead method opti-
mizes the objective function in multidimensional space by
reshaping the simplex toward the optimal region in a search
space. Both the number of searches for the simplex and the
time it takes for each single simplex search for γ̂ turn to be
much greater than those for β̂ , due to the intricate objective
function for estimating γ . It takes approximately 1 sec for the
nonparametric procedure versus 1.5 hr for the semiparametric
procedure to run one simulation based on an i7 core processor
with 8 Gb of RAM.

For the above mentioned two reasons, we recommend to per-
form the nonparametric mirror procedure for general purposes,
especially when comparing large datasets such as climate data.
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Figure 2. FDR for mean comparison between two spatiotemporal fields. P.70, P.80, and P.90 indicate the null proportions being 70%, 80%, and 90%, respectively.

4.2. Test for Spatial Covariance

Motivated by comparing the teleconnection pattern between
different climate fields in Section 5, we evaluate our methods
in comparing the spatial covariance structure between two spa-
tiotemporal random fields. The two random fields X(s, t) and
Y(s, t) are defined again with either an exponential covariance
function or a low rank model to reflect different dependence
structures. Since X(s, t) in this section are defined exactly the
same as their corresponding models in (M2) and (M3) in Sec-
tion 4.1, only the models for Y(s, t) are specified below:

(C1) Spatially correlated model with exponential covariance
function

Y(s, t) = K1(s)UY(s, t) + DY(s, t).

(C2) Spatial low rank model

Y(s, t) = K2(s)
d∑

j=1
RY

j (t)Bj(s) + DY(s, t).

In both models, the spatially varying process Ki(s) = vi(s)δ(s)+
(1 − δ(s)) where vi(s) = ξi

∑d
j=1 Bj(s) for constants ξi, i = 1, 2.

We set the parameters for UY(s, t) in (C1) as σ 2
u = 1.3 and φ =

0.25. Other notations in (C1) and (C2) are directly adopted from
Section 4.1.

Because the teleconnection is usually calculated as the
covariance between a regional averaged time series and local
time series of other locations, we conduct our simulation
in the following way to mimic the real situation. First, the
spatial dependency structure of interest is represented by the
covariance between observations at a fixed location s0 ∈ D
and every other location s ∈ D, s �= s0. Second, we define
X(s0, t) and Y(s0, t) as a denoised version of X(s, t) and Y(s, t)
by removing their respective DX(s, t) and DY(s, t) to mimic the
regional average in the teleconnection calculation. Then, we let
θX(s) = CX(s, s0) (θY(s) = CY(s, s0)) and consider the test:

H0,s : CX(s, s0) = CY(s, s0) versus
Ha,s : CX(s, s0) �= CY(s, s0), (15)

where CX(s, s0) is the covariance between X(s, t) and X(s0, t)
and CY(s, s0) is defined similarly. The alternative holds wherever
Ki(s) �= 1 given that Ki(s0) = 1. We set 0 < vi(s) ≤ 1 so
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Figure 3. Power for mean comparison between two spatiotemporal fields. P.70, P.80, and P.90 indicate the null proportions being 70%, 80%, and 90%, respectively.

a smaller ξi makes vi(s) further apart from 1 and thus creates
stronger alternatives (signal).

Under the exponential covariance (C1) structure, when the
distance between an alternative location and the anchored point
is beyond a certain value, the correlation and thus the covariance
of the observations at those two locations, even in Y , will decay
to almost zero, so the H0 actually holds at that alternative
location.

Therefore, we propose to use the practical range for expo-
nential covariance function as the threshold to differentiate
whether a selected alternative location should be considered
as alternative or null. The practical range is defined as the
distance above which the correlation decays to less than 0.05
and is practically nonexistent (Montero, Fernández-Avilés, and
Mateu 2015). Figure 4 illustrates this idea. It shows the empirical
CX(s, s0) and CY(s, s0) of one simulation run based on the (C1)
model with ρ = 0.3, ξ1 = 0.15, and the null proportion being
62%. The black dots indicate the actual alternative locations
after truncation by the practical range and the red dots are the
truncated locations.

Figures 5 and 6 evaluate the performance of covariance com-
parison between two spatiotemporal random fields governed
by either (C1) or (C2), using our nonparametric mirror proce-
dure, BH, and JS methods. Because the covariance comparison
essentially transforms to a mean comparison after conducting
pairwise product of the random field to empirically estimate the
covariance function, we omit the semiparametric method that
has shown no obvious advantages and the FDRS which shows
unsatisfactory FDR control in the mean comparison for our
simulated data. The null proportions are set to be 50%, 56%, and
62% for (C1) model, and 35%, 45%, and 50% for (C2) model.
The higher null proportion with (C1) model is due to the trun-
cation of alternative locations which elevates the originally set
null proportions. A sequence of ξ1 = 0.08, 0.10, 0.12, 0.15 and
ξ2 = 0.15, 0.2, 0.25, 0.3 are tried out to represent strong to weak
signals in the simulated data for (C1) and (C2), respectively.

The nonparametric method is superior over other methods
although its FDR appears to be slightly inflated at the combina-
tion of a weaker signal and a large null proportion. Moreover,
the nonparametric method exhibits greater power than BH and
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Figure 4. Comparison between CX (s, s0) and CY (s, s0). The black dots and red dots together represent locations with δ(s) = 1, but only the black dots are within the
practical range of the fixed point and considered as alternative locations. The red dots are considered as null locations. The pink triangle marks where s0 is located.

Figure 5. FDR of covariance comparison between two spatiotemporal random fields. P.50, P.56, and P.62 indicate the null proportions being 50%, 56%, and 62%,
respectively, for (C1) model; and P.35, P.45, and P.55 indicate the null proportions being 35%, 45%, and 55%, respectively, for (C2) model.

JS methods, especially when the signal is weaker (larger ξ ) in
both (C1) and (C2) models.

In principal, both the mean and covariance comparisons will
be affected by the spatial correlation, because the variability
associate with spatial correlation can likely be entangled with
the mean surface changing and thus makes it challenging to
estimate the spatial mean. This situation could get worse with
the low rank model that induces a stronger dependency than
the weakly dependent model such as the exponential covariance
model. As a consequence, we indeed observe a slight inflation of
FDR in the mean comparison when σr is large, but the inflation
seems very limited. In our simulations, the exponential covari-
ance function has range parameter φ = 0.25, which represents a
fairly strongly correlated random field given the spatial domain

is a unit length square. The low rank model generates even
stronger spatial correlation. The minimum spatial correlation
strength induced by the random effects is 0.32 if σr = 0.3 and
0.35 if σr = 0.5. Most real environmental data including the
climate data in Section 5 likely exhibit weaker spatial correlation
than our simulated data. Despite the more challenging context
we set in the simulation, our results seem to indicate that the
FDR and power are robust to the existence of spatial correlation
using the independent model as a baseline. This suggests that
our methods are valid within the realistic spatial correlation
strength.

Nevertheless, we still have tried several decorrelation
approaches including spectral decomposition of covariance
matrix, jointly estimating means and random effect coefficients
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Figure 6. Power of covariance comparison between two spatiotemporal random fields. P.50, P.56, and P.62 indicate the null proportions being 50%, 56%, and 62%,
respectively, for (C1) model; and P.35, P.45, and P.55 indicate the null proportions being 35%, 45%, and 55%, respectively, for (C2) model.

with lasso penalty, and Fan, Han, and Gu’s (2012) method to
filter out the signal in presence of random effect (see details in
Appendix A). However, we find all those attempts fail to improve
the FDR and power of the test, perhaps due to the fact that those
decorrelation approaches can introduce additional uncertainty
in the estimation procedures. Therefore, we decide to opt out of
the decorrelation.

5. Application With Climate Data

Paleoclimate reconstruction plays a central role in under-
standing the long term dynamics of climate system because
the observed temperatures at global scale are only available
since 1850. Several different methods for global temperature
reconstruction have been developed yet how to evaluate those
space-time reconstructions are still open questions. A widely
accepted platform for evaluating reconstructions is through
the pseudoproxy experiment (Smerdon 2012; Smerdon, Coats,
and Ault 2016) which reconstructs the past temperatures
based on the synthetic climate from climate models in the
calibration period. Attempts to better understand the spatial
reconstructions has been an emerging focus in the literatures
(Li and Smerdon 2012; Dannenberg and Wise 2013; Evans et al.
2014; Steiger et al. 2014; Wang et al. 2014; Smerdon, Coats, and
Ault 2016). However, most of the comparing methods focus on
the visual diagnostics of differences between the reconstruction
and modeled data. Li and Smerdon (2012) and Li, Zhang, and
Smerdon (2016) pioneered formal statistical comparisons in this
application, but their methods only compared the two climate
fields globally and could not detect where the differences occur.

We now illustrate how to use our proposed method to
identify the locations where the mean and teleconnection
are different between the reconstruction and the targeted
climate field. We choose a popular reconstruction method
developed by Mann et al. (2009) that combines the regularized

expectation maximization with truncated total least squares
(TTLH hereafter), and take synthetic climate from the National
Center for Atmospheric Research Community Climate System
version 4 model (CCSM). The TTLH reconstruction based
on this modeled climate is available at http://www.realclimate.
org/index.php/data-sources/#GCM_output. Both the climate
model data and the reconstruction are presented on annual
scale from 850 to 1850 CE and at each year on a five degree
latitude and longitude grid (1732 grids in total). Both modeled
and reconstructed climate shows an upward trend in time.
Following Li, Zhang, and Smerdon (2016), we remove the
temporal trend of both climate fields to attain an approximate
temporal stationarity.

In the data application, we again obtain location specific
p-values using the self-normalization test as in Shao (2010),
then apply our estimation procedure and the FDR decision rule
to identify the locations where the alternative hypothesis holds
at the nominal FDR level 0.1. Because we have demonstrated
that the nonparametric mirror procedure is a powerful and
robust method, we apply this multiple testing method to our
data.

5.1. Mean Comparison

We first evaluate TTLH reconstruction by identifying where its
spatial mean is different from that of CCSM climate data. If
we let X(s, t) denote the CCSM climate data and Y(s, t) denote
the TTLH reconstruction, our question can be answered by
performing the hypothesis test (14).

Figure 7 displays the mean surface of CCSM (left) and
TTLH reconstruction (right). The black dots label the locations
where the mean is different under the nonparametric mirror
procedure. Smerdon (2012) compared the reconstruction to
its targeted CCSM climate and reported the regions with
large reconstruction bias. Our results are consistent with

http://www.realclimate.org/index.php/data-sources/#GCM_output
http://www.realclimate.org/index.php/data-sources/#GCM_output
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Figure 7. Mean comparison between CCSM and its reconstruction using TTLH. The left plot shows the spatial mean of CCSM climate field and the right plot shows the
spatial mean of TTLH reconstruction together with the testing results of nonparametric mirror procedure. The black dots indicate where the mean is different.

Figure 8. ENSO teleconnection comparison between CCSM and its TTLH reconstruction. The plots show the correlation between the averaged temperature over Nino3
region and local temperatures at each other location with CCSM (left) and TTLH (right). The black dots indicate where the teleconnection strength is different.

Smerdon (2012) in that the locations with substantial bias are
largely identified as alternative locations.

5.2. Teleconnection Comparison

El Niño and the Southern Oscillation, also known as ENSO
teleconnection, represent a major mode of climate dynamics.
It is very important to study the ENSO teleconnection pat-
tern because the presence of El Niño can greatly affect the
normal weather conditions in many regions of the world and
lead to extreme temperature changes causing socio-economic
problems. ENSO occurs when there is a periodic fluctuation
in sea surface temperatures and this fluctuation exerts impact
on remote regions, affecting extreme weather events world-
wide. The ENSO teleconnection is usually measured by the
correlation between the averaged sea surface temperature over
the tropical region (Nino3, 5N-5S, 150W-90W) and the local
temperatures everywhere else. We now evaluate the TTLH by
comparing its ENSO teleconnection pattern to that of CCSM. If

we define X(s0, t) and Y(s0, t) as the averaged temperature over
the locations in tropical region in their own field, the compar-
ison of teleconnection pattern is equivalent to performing the
hypothesis (15).

Figure 8 presents the ENSO covariance structure of CCSM
(left) and TTLH (right).

The black dots indicate the locations where the null hypoth-
esis is rejected under our FDR level.

There has been little work to rigorously compare the ENSO
teleconnection pattern between the reconstruction and its tar-
geted climate. However, it has been discussed in many papers
(Yang and DelSole 2012; Coats et al. 2013) that the teleconnec-
tions to North America, Northern Atlantic sea surface, Southern
Africa, Indian subcontinent, and western Europe temperature
are often preserved well by reconstructions. Our Figure 8 also
shows that TTLH reconstruction seems to reproduce the tele-
connection to Northern Atlantic ocean and Northern Amer-
ica well, while missing the teleconnection to Southern Africa,
Indian subcontinent, and western Europe.
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6. Conclusion and Discussion

Motivated by comparing different climate fields, we develop
a multiple testing approach to detect the local difference in
the characteristics of two spatiotemporal random fields by tak-
ing the spatial information into account. A new FDR control
for multiple testing over dependent data, mirror procedure, is
derived based on a two-component mixture model of loca-
tion wise p-values with spatially varying mixture probability.
Although the mirror procedure is derived based on the mixture
model of p-values, it is robust to model misspecification. More-
over, this new procedure allows for weak dependency among
the hypotheses. An EM algorithm is developed to estimate the
mixture model that allows the alternative density of p-values to
be either a nonparametric or a flexible semiparametric func-
tion that varies over spatial locations. We study the asymptotic
behavior of our proposed multiple testing approach both the-
oretically and numerically. Our method appears to be more
powerful than the traditional FDR control methods.

Examples of using this new approach to compare the mean
and covariance between two spatiotemporal random fields are
particularly studied and illustrated. The simulation experiments
show that both the nonparametric and semiparametric mirror
procedures work well for the mean comparison, while the non-
parametric mirror seems more robust to different dependency
structures and it is computationally much more efficient. Our
method can be applied to a wide array of problems that require
to evaluate the difference between two correlated data. The
paleoclimate reconstruction in our data application is one such
example. The comparison between images in medical studies
can also benefit from this method.

Our FDR procedure was motivated by detecting local differ-
ences between two spatiotemporal random fields. However, our
procedure is established based on location wise p-values that are
obtained by comparing the characteristics of two time series.
Therefore, the procedure does not directly consider the tempo-
ral correlation in the data though it takes the spatial correlation
of p-values into account. On the other hand, this allows our FDR
method to be applicable in a more general situation wherever
location wise p-values are available regardless of how they are
obtained. The p-values can be derived by comparing two inde-
pendent samples, two multivariate samples or two stochastic
processes. The latter of which is often demanded by studies in
industrial engineering.

Finally, our test is established based on location wise but not
a continuous process of p-values, hence the decisions cannot
be made over unobserved locations. However, observations can
first be interpolated to locations of interest and then perform
the hypothesis testing using the interpolated values. The effect
of the interpolation to the multiple testing needs to be further
investigated.

Appendix A

A.1. Proof of Theorem 2

We introduce distances to quantify the discrepancy between two prob-
ability measures which will be useful in our proof. For two probability
measures μ and ν on [0, 1], we define the Kolmogorov–Smirnov dis-
tance (over the interval [t∗, 1] for 0 ≤ t∗ < 1) and the Wasserstein

distance, respectively, as

Kolmt∗(μ, ν) = sup
t∈[t∗,1]

|μ([0, t]) − ν([0, t])|, 0 ≤ t∗ < 1,

Wass(μ, ν) = sup
{∣∣∣∣∫ 1

0
fdμ −

∫ 1

0
fdν

∣∣∣∣ : f is 1-Lipschitz
}

.

Write Kolmt∗(μ, ν) = Kolm(μ, ν) for t∗ = 0. An alternative expres-
sion for the Wasserstein distance is given by

Wass(μ, ν) =
∫ 1

0
|μ([0, t]) − ν([0, t])|dt. (A.1)

We first state the following two lemmas that are of independent
interest.

Lemma 1. Let μ and ν be two probability measures. Suppose ν is
absolutely continuous with respect to the Lebesgue measure with the
density that is bounded from above by a constant C on the interval
[t∗/2, 1]. Then

Kolmt∗(μ, ν) ≤ 2
√

CWass(μ, ν) ≤ 2
√

CKolm(μ, ν).

Proof of Lemma 1. Consider a point t ∈ [t∗, 1) and fix an 0 < ε <

t∗/2. Let g1(x) = 1 on [0, t] and g1(x) = 0 on [t + ε, 1], and linear
interpolation in between. Let g2(x) = 1 on [0, t − ε] and g2(x) = 0 on
[t, 1], and linear interpolation in between. Then g1 and g2 form upper
and lower envelopes for 1{x ∈ [0, t]}. So

μ(t) − ν(t)

=
∫ t

0
dμ(x) −

∫ t

0
dν(x)

≤
∫ 1

0
g1(x)dμ(x) −

∫ 1

0
g1(x)dν(x) +

∫ 1

0
g1(x)dν(x)

−
∫ 1

0
1{x ∈ [0, t]}dν(x).

As g1 is 1/ε-Lipschitz,∫ 1

0
g1(x)dμ(x) −

∫ 1

0
g1(x)dν(x) ≤ 1

ε
Wass(μ, ν).

Moreover, let h(x) = dν(x)/dx be the Radon–Nikodym derivative of ν

with respect to the Lebesgue measure. Then∫ 1

0
g1(x)dν(x) −

∫ 1

0
1{x ∈ [0, t]}dν(x)

=
∫ t+ε

t
(g1(x) − 1{x ∈ [0, t]})dν(x)

≤
∫ t+ε

t
(g1(x) − 1{x ∈ [0, t]})h(x)dx ≤ Cε,

where we have used the fact that h(x) ≤ C for x ≥ t ≥ t∗/2. The
same bound holds for ν(t) − μ(t) using similar argument based on g2.
The first inequality follows by optimizing over ε. The second inequality
follows as Wass(μ, ν) ≤ Kolm(μ, ν) by (A.1) and the definition of
Kolm.

Lemma 2. Define the empirical distribution functions Fm(t) =
m−1 ∑m

i=1 1{xi ≤ t} and Gm(t) = m−1 ∑m
i=1 1{yi ≤ t} based on

{xi}m
i=1 and {yi}m

i=1, respectively, with xi, yi ∈ [0, 1].
Let F be a distribution on [0, 1] which has a density that is bounded

from above by a constant C on the interval [t∗/2, 1]. Then we have

Kolmt∗(Fm, Gm) ≤ 2
√

C

⎧⎨⎩2
√

Wass(Fm, F) +
√√√√m−1

m∑
i=1

|xi − yi|
⎫⎬⎭ .
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Proof of Lemma 2. By Lemma 1,

Kolmt∗(Fm, F) ≤ 2
√

CWass(Fm, F),

Kolmt∗(Gm, F) ≤ 2
√

CWass(Gm, F).

By the triangle inequality and the elementary inequality
√

a + b ≤√
a + √

b for a, b ≥ 0, we have

Kolmt∗(Fm, Gm)

≤ Kolmt∗(Fm, F) + Kolmt∗(F, Gm)

≤ 2
√

C
{√

Wass(Fm, F) + √
Wass(Gm, F)

}
≤ 2

√
C
{√

Wass(Fm, F) + √
Wass(Gm, Fm) + Wass(Fm, F)

}
≤ 2

√
C
{

2
√

Wass(Fm, F) + √
Wass(Gm, Fm)

}
.

Note that

Wass(Gm, Fm) = sup

{∣∣∣∣∣m−1
m∑

i=1
(f (xi) − f (yi))

∣∣∣∣∣ : f is 1-Lipschitz

}

≤m−1
m∑

i=1
|xi − yi|,

as |f (xi) − f (yi)| ≤ |xi − yi|. The result thus follows.

We now apply the above result to our problem. Let

Ĝm,0(q) = 1
|Dm|

∑
s∈Dm

1{̂LFDRs(ps) ≤ q},

̂̃Gm,1(q) = 1
|Dm|

∑
s∈S0

1{̂LFDRs(ps) ≤ q},

Ĝm,1(q) = 1
|Dm|

∑
s∈Dm

1{̂LFDRs(1 − ps) ≤ q}.

Similarly, we define Gm,0(q), G̃m,1(q), and Gm,1(q) by replacing ̂LFDRs
with �s in the above definitions.

Lemma 3. Under Assumptions 1 and 2, we have

sup
q≥q0

∣∣Ĝm,0(q) − G0(q)
∣∣ →p 0, (A.2)

sup
q≥q0

∣∣∣̂̃Gm,1(q) − G̃1(q)

∣∣∣ →p 0, (A.3)

sup
q≥q0

∣∣Ĝm,1(q) − G1(q)
∣∣ →p 0. (A.4)

Proof of Lemma 3. By Lemma 2, we have

Kolmt0(Gm,0, Ĝm,0) ≤2
√

C0

{
2
√

Wass(Gm,0, G0)

+
√

|Dm|−1
∑

s∈Dm

|̂LFDRs(ps) − �s(ps)|
}

.

(A.5)

Under Assumption 4, {1{�s(ps) ≤ q} : s ∈ Dm} for any q ∈ [0, 1]
is a bounded strong mixing spatial process. By the weak law of large
numbers for strong mixing process, see, for example, Theorem 3 of
Jenish and Prucha (2009), we have |Gm,0(q) − E[Gm,0(q)]| = op(1)

for any q ∈ [0, 1]. By Assumption 2, we obtain |Gm,0(q) − G0(q)| =
op(1) for q ∈ [0, 1]. Following the proof of the weak Glivenko-
Cantelli Theorem, we have Kolm(Gm,0, G0) →p 0, which implies
that Wass(Gm,0, G0) →p 0 in view of (A.1). Together with (A.5) and

Assumption 1, we get Kolmt0(Gm,0, Ĝm,0) →p 0. Finally by the triangle
inequality,

Kolmt0(Ĝm,0, G0) ≤ Kolmt0(Gm,0, Ĝm,0) + Kolmt0(Gm,0, G0) →p 0,

which implies (A.2). The proofs for (A.3) and (A.4) are similar and we
omit the details.

Lemma 4. Under Assumptions 1 and 2, we have

sup
q≥q′

∣∣∣∣ Ĝm,1(q)

|Dm|−1 ∨ Ĝm,0(q)
− G1(q)

G0(q)

∣∣∣∣ →p 0, (A.6)

sup
q≥q′

∣∣∣∣∣ ̂̃Gm,1(q)

|Dm|−1 ∨ Ĝm,0(q)
− G̃1(q)

G0(q)

∣∣∣∣∣ →p 0. (A.7)

Proof of Lemma 4. We only prove (A.6) as the arguments for the other
result is similar. By the monotonicity of G0, minq≥q′ G0(q) = G0(q′) >

0 as U(q′) = G1(q′)/G0(q′) < α. By Lemma 3, we have∣∣∣∣ Ĝm,1(q)

|Dm|−1 ∨ Ĝm,0(q)
− G1(q)

G0(q)

∣∣∣∣
=
∣∣∣∣∣ (Ĝm,1(q) − G1(q))G0(q) − G1(q)(|Dm|−1 ∨ Ĝm,0(q) − G0(q))

G0(q){|Dm|−1 ∨ Ĝm,0(q)}

∣∣∣∣∣
≤G0(1)|Ĝm,1(q) − G1(q)| + G1(1)||Dm|−1 ∨ Ĝm,0(q) − G0(q)|

G0(q′){G0(q) − supλ≥q′ ||Dm|−1 ∨ Ĝm,0(λ) − G0(λ)|}

≤
G0(1) supλ≥q′ |Ĝm,1(λ) − G1(λ)|

+G1(1) supλ≥q′ ||Dm|−1 ∨ Ĝm,0(λ) − G0(λ)|
G0(q′){G0(q′) − supλ≥q′ ||Dm|−1 ∨ Ĝm,0(λ) − G0(λ)|} →p 0

uniformly for any q ≥ q′.

Lemma 5. Suppose f0 is mirror conservative. Under Assumption 2, we
have G̃1(q) ≤ G1(q) for any q ∈ [0, 1].

Proof of Lemma 5. As �s is right continuous, denote by �−1
s (q) =

inf{u ∈ [0, 1] : �s(u) ≥ q}. Because f0 is mirror conservative (see
(2)), we have for s ∈ S0 and �−1

s (q) ≤ 0.5,

P(�s(ps) ≤ q)

=
∫ 1

0
1{p ≤ �−1

s (q)}f0(p)dp

≤
∫ 1

0
1{1 − p ≤ �−1

s (q)}f0(p)dp = P(�s(1 − ps) ≤ q).

For �−1
s (q) > 0.5, we see that

P(�s(ps) ≤ q)

=
∫ 1

0
1{p ≤ 1 − �−1

s (q)}f0(p)dp

+
∫ 1

0
1{1 − �−1

s (q) ≤ p ≤ �−1
s (q)}f0(p)dp

≤
∫ 1

0
1{1 − p ≤ 1 − �−1

s (q)}f0(p)dp

+
∫ 1

0
1{1 − �−1

s (q) ≤ p ≤ �−1
s (q)}f0(p)dp

=
∫ 1

0
1{1 − p ≤ �−1

s (q)}f0(p)dp = P(�s(1 − ps) ≤ q).
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It thus implies that

G̃1(q) = lim|Dm|→+∞
1

|Dm|
∑
s∈S0

P(�s(ps) ≤ q)

≤ lim|Dm|→+∞
1

|Dm|
∑

s∈Dm

P(�s(1 − ps) ≤ q) = G1(q). (A.8)

Proof of Theorem 2. Set τ = α − U(q′). By (A.6), we have

P
(

Ĝm,1(q′)
|Dm|−1 ∨ Ĝm,0(q′)

≤ U(q′) + τ/2 < α

)
→ 1.

On the above event, q̂ ≥ q′ and thus P(̂q ≥ q′) → 1. Now on the event
q̂ ≥ q′, we have

α −
∑

s∈S0 1{̂LFDRs(ps) ≤ q̂}
1 ∨ ∑

s∈Dm 1{̂LFDRs(ps) ≤ q̂}

≥
∑

s∈Dm 1
{

̂LFDRs(1 − ps) ≤ q̂
}

1 ∨ ∑
s∈Dm 1

{
̂LFDRs(ps) ≤ q̂

} −
∑

s∈S0 1{̂LFDRs(ps) ≤ q̂}
1 ∨ ∑

s∈Dm 1{̂LFDRs(ps) ≤ q̂}

≥ inf
q≥q′

{
Ĝm,1(q)

|Dm|−1 ∨ Ĝm,0(q)
− G1(q)

G0(q)
+ G1(q) − G̃1(q)

G0(q)
+ G̃1(q)

G0(q)

−
̂̃Gm,1(q)

|Dm|−1 ∨ Ĝm,0(q)

}

≥ inf
q≥q′

{
Ĝm,1(q)

|Dm|−1 ∨ Ĝm,0(q)
− G1(q)

G0(q)
+ G̃1(q)

G0(q)

−
̂̃Gm,1(q)

|Dm|−1 ∨ Ĝm,0(q)

}
= op(1),

where the first inequality follows from the definition of q̂, the third
inequality follows from (A.8), and the last equality is due to (A.6) and
(A.7). It thus implies that∑

s∈S0 1{̂LFDRs(ps) ≤ q̂}
1 ∨ ∑

s∈Dm 1{̂LFDRs(ps) ≤ q̂}
≤ α + op(1).

Finally applying Lemma 6, we obtain limm→+∞ FDRm (̂q) ≤ α which
completes the proof.

Lemma 6. Consider the random sequence {(Xm, Ym)}m. Suppose
Xm ≤ C0 and Xm ≤ α + Ym, where Ym = op(1) and C0 is some
constant. Then we have

lim sup
m

E[Xm] ≤ α.

Proof of Lemma 6. There exists a subsequence Xmk such that lim supm
E[Xm] = limk E[Xmk ]. Along this subsequence, we can pick a further
subsequence Ymkj

such that Ymkj
→a.s. 0. Thus with probability one,

lim sup
j

Xmkj
≤ lim sup

j
Ymkj

+ α = α.

As Xmkj
≤ C0, by Fatou’s lemma,

lim sup
m

E[Xm] = lim sup
j

E[Xmkj
] ≤ E[lim sup

j
Xmkj

] ≤ α.

A.2. Weakening Spatial Dependence

Our theoretical analysis shows that the mirror procedure is asymptot-
ically robust to weak dependence among the p-values. For low rank
dependence, we can use a random effect model to capture and remove
the spatial dependence. To illustrate the idea, we consider the case of
paired data (n1 = n2 = n) and let Z(s, t) = X(s, t) − Y(s, t) with
E[Z(s, t)] = μ(s). We are interested in testing

H0,s : μ(s) = 0 versus Ha,s : μ(s) �= 0.

Consider the random effect model,

Z(s, t) = μ(s) + W�
s γt + ε(s, t),

where Ws’s are the (prespecified) covariates capturing the spatial
dependence, γt ’s are the random effects, and ε(s, t) are the random
errors that are independent across s. To estimate γt and μ(s)
simultaneously, we use the l1 penalized regression,

min
μ(s),γt

1
2

n∑
t=1

∑
s∈D

(Z(s, t) − μ(s) − W�
s γt)2 + λ

∑
s∈D

|μ(s)|, (A.9)

where λ > 0 is a tuning parameter (e.g., chosen via cross-validation).
Denote by μ̂(s) and γ̂t the solutions to (A.9). Let Ẑ(s, t) = Z(s, t) −
W�

s γ̂t . We calculate the p-values for testing H0,s based on Ẑ(s, t) and
apply the FDR control procedure to the resulting p-values.

Supplementary Materials

Supplementary material consists of simulation results for randomly gener-
ated locations including plots of FDR and power for mean and covariance
comparisons, as well as implementation of the self-normalization test.
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