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Abstract. We construct, analyze, and numerically validate a class of conservative discontinuous

Galerkin (DG) schemes for the Schrödinger-Poisson equation. The proposed schemes all shown to

conserve both mass and energy. For the semi-discrete DG scheme the optimal L2 error estimates are

provided. Efficient iterative algorithms are also constructed to solve the second order implicit time

discretization. The presented numerical tests demonstrate the method’s accuracy and robustness,

confirming that the conservation properties help to reproduce faithful solutions over long time

simulation.

1. Introduction

Considered here is the following problem for the Schrödinger–Poisson (SP) equation:

iut =−∆u+ Φu, t > 0, x ∈ Ω, (1.1a)

−∆Φ =µ(|u|2 − c), x ∈ Ω, (1.1b)

u(x, 0) =u0(x), in Ω, (1.1c)

where u = u(x, t) is a complex-valued function of time t > 0 and spatial variable x ∈ Ω, which

is a bounded domain in Rd, µ = ±1 is a rescaled physical constant, which signifies the property

of the underlying forcing, repulsive if µ > 0 and attractive if µ < 0. i =
√
−1 stands for the

imaginary unit, and c is a background charge. For the numerical purpose it is common to truncate

the unbounded spatial domain to a sufficiently large finite domain and impose simple boundary

conditions (see [1]). In this paper we consider both periodic and homogeneous Dirichlet boundary

conditions (see Section 2), although most of our derivations can be carried out for other types of

boundary conditions.

The Schrödinger–Poisson equation (also called Schrödinger-Newton equation or Schrödinger-

Maxwell equation) describes many physical phenomena in quantum mechanical systems and in

semiconductor modeling; we refer the readers to [14, 20, 23] and the references therein. It also

appears as an approximate mean-field equation derived from the first principle model in a system

of a large number of particles [7]. Mathematically, the Schrödinger–Poisson equation is a proto-

typical dispersive wave equation, its solution exhibits some intriguing properties. A great deal of

interesting research has been devoted to the mathematical analysis for the Schrödinger-Poisson

systems (see [10, 12, 19, 21, 34] and references therein). In particular, the equation preserves both

the mass and the energy under appropriate boundary conditions. The quality of the numerical
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approximation hence hinges on how well the conserved integrals can be preserved at the discrete

level. Numerical methods without this property may result in substantial phase and shape errors

after long time integration. Indeed for some wave equations the invariant preserving high order

numerical methods have been shown more accurate than non-conservative methods after long-time

numerical integration (see, e.g., [9, 28]).

The objective of this work is to develop and analyze conservative discontinuous Galerkin (DG

henceforth ) schemes for the Schrödinger–Poisson equation, with particular attention on preserva-

tion of both mass and energy at the discrete level. In addition, we obtain sharp L2 error estimates

for the semi-discrete DG method (continuous in time) at the full nonlinear setting.

The DG method is a class of finite element approximations using discontinuous, piecewise poly-

nomials as both the solution and test-function spaces (see [13] for a historical review). It combines

advantages of both finite element and finite volume methods, including high order accuracy, high

parallel efficiency, flexibility for hp-adaptivity and straightforward implementation on arbitrary

meshes in complex geometries. Particularly relevant for the present discussion is the fact that such

schemes do not demand continuity at the spatial grid-points, and this allows a flexibility in making

local refinements to an existing numerical grid not shared by continuous Galerkin methods. The

DG method is also known to enjoy mathematically provable high-order accuracy and stability, see

e.g., [17, 35, 36].

The DG method was originally introduced in the context of hyperbolic conservation laws. Later,

the method was extended to deal with derivatives of order higher than one. In recent years, the DG

schemes have been actively designed and applied for the Schrödinger equation and its variants, see,

e.g., [18, 22, 25, 29, 38, 39, 41, 42, 43] and references therein; see also works by spectral methods

[5, 6]. One main effort is to preserve the mass by high order spatial discretization. Within the DG-

framework, especially relevant to our development is the body of work [30, 25, 40] on approximating

solutions to Schrödinger type equations using the direct Discontinuous Galerkin method (DDG –

method) developed initially for the diffusion equation introduced by Liu and Yan [26, 27]. The

idea of DDG methods is to directly force the weak solution formulation of the PDE into the DG

function space for both the numerical solution and test functions. The main feature in the DDG

schemes proposed in [26, 27] lies in numerical flux choices for the solution gradient, which involve

higher order derivatives evaluated crossing cell interfaces. The parameter is often called method

parameter or flux parameter due to its appearing in the choice of the numerical flux, or even penalty

parameter when it is required to be large enough to ensure the scheme stability. In [30], a high-order

mass-preserving DG (MPDG) method was introduced for the nonlinear Schrödinger equation, with

the optimal L2 error estimate obtained in one dimensional setting. A key observation in [30] is

that the conservation property and the optimal accuracy remains valid independent of the size

of the flux parameter. An extension to multi-dimensional setting was further carried out in [25],

in which the authors presented two different approaches to handle structured and unstructured

meshes, respectively. For rectangular meshes, the error analysis is based-on tensor product of

polynomials and a super-convergence result, the obtained result is sharp and valid with or without

a flux parameter. For unstructured shape regular meshes, the optimal error analysis is based on a
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global projection and its approximation error [3, 24] when the flux parameter is large. This later

approach was further extended to solve the nonlinear magnetic Schrödinger equation in [40]. Both

mass and energy conservation are shown to hold for the semi-discrete DG scheme, with a proven

optimal L2 error estimate in nonlinear setting. For the time discretization a second order Strang

splitting is applied in [25, 30, 40].

In this paper, we extend the ideas in [25, 30, 40] to develop a mass- and energy-conserved

DG method for the Schrödinger–Poisson equation. Our focus will be on constructing a spatially

high-order conservative DG scheme with second order time discretization so that two conserved

quantities are preserved in the presence of a self-interaction electric field.

To our knowledge, there is as yet no rigorous convergence result in the literature for the DG

method for the nonlinear Schrödinger-Poisson equation. We mention, however, the work by Lubich

[33], where an error analysis was first given for a time-splitting method; and further works such

as [4, 11] using the splitting method. The main conclusion of this paper is that both semi-discrete

and fully discrete schemes can preserve both mass and energy independent of the size of the flux

parameter. For time discretization we follow the recent work [16] in adopting a Crank-Nicolson

type discretization, so that the resulting full-discrete scheme is second order in time. Furthermore,

we establish the optimal L2 error estimate for the semi-discrete scheme. Though the main analysis

tool for nonlinear terms follows the line as in [40], it requires a careful handling of the coupling

with the Poisson equation (see Lemma 3.2 and its proof).

This paper is organized as follows: In Section 2 we review some basic properties of the SP

equation, and present semi-discrete DG schemes, which are shown to preserve both mass and

energy for meshes of arbitrary size, for the nonlinear Schrödinger–Poisson equation. In Section 3

we carry out error estimates for the DG method, followed by an efficient iterative algorithm to solve

the resulting nonlinear equations. In Section 4 we present numerical experiments to validate the

theoretical results and to gauge the performance of the proposed schemes, especially the sharpness

of the convergence rates. The paper is completed with some concluding remarks and comments

given in Section 5.

Throughout this paper, we denote spatial variable x = (x1, · · · , xd) ∈ Rd and adopt standard

notations for Sobolev spaces such as Wm,p(D) on sub-domain D ⊂ Ω equipped with the norm

‖ · ‖m,p,D and semi-norm | · |m,p,D. When D = Ω, we omit the index D; and if p = 2, we set

Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D. When m = 0, we simply use ‖ · ‖
to denote the usual L2-norm. We also denote ∂Ω the boundary of Ω. We use the notation C . B

to indicate that C can be bounded by B multiplied by a constant independent of the mesh size h.

C ∼ B stands for C . B and B . C. Also we use (·)+ to denote max(·, 0), and (·)− = min(·, 0).

2. The conservative DG method

Details of the numerical approximations are now set forth. This begins with a discussion of two

conservation properties of the continuous problem, followed by the spatial discretization which

leads directly to a semi-discrete approximation.
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2.1. The Schrödinger-Poisson equation. For the model equation considered in this paper, we

impose the homogeneous Dirichlet boundary condition

(i) u = 0, (ii) Φ = 0, x ∈ ∂Ω, t > 0, (2.1)

with which the weak formulation of the problem reads: find u ∈ C0([0, T ), H1
0 (Ω)) and Φ ∈ H1

0 (Ω),

such that

i〈ut, v〉 =〈∇u,∇v〉+ 〈Φu, v〉, ∀v ∈ H1
0 (Ω), (2.2)

(∇Φ,∇w) =µ(|u|2 − c, w), ∀w ∈ H1
0 (Ω). (2.3)

Here, 〈·, ·〉 denotes the standard L2 product for complex valued functions, i.e, 〈u, v〉 =
∫

Ω
u(x) ·

v∗(x)dx with v∗ denoting the complex conjugate of v, and (·, ·) denotes the standard L2 product

for real valued functions, i.e, (u, v) =
∫

Ω
u(x) · v(x)dx.

One can verify that the problem (1.1) satisfies the conservation laws

mass conservation M(t) =

∫
Ω

|u|2dx = M(0), (2.4)

energy conservation E(t) =

∫
Ω

(
|∇u|2 +

1

2µ
|∇Φ|2

)
dx = E(0). (2.5)

In fact, take v = u in (2.2), one has

i〈ut, u〉 = 〈∇u,∇u〉+ 〈Φu, u〉.

This upon subtraction of its conjugate gives (2.4).

Furthermore, taking v = ut in (2.2) we have

i〈ut, ut〉 = 〈∇u,∇ut〉+ 〈Φu, ut〉,

and

−i〈ut, ut〉 = 〈∇ut,∇u〉+ 〈Φut, u〉.

Thus,

d

dt
‖∇u‖2 +

∫
Ω

Φ
d

dt
|u|2dx =

d

dt
‖∇u‖2 +

∫
Ω

Φ
d

dt
(|u|2 − c)dx = 0.

The second term when using (2.3) reduces to

1

µ

∫
∇Φt · ∇Φdx =

1

2µ

d

dt

∫
|∇Φ|2dx.

Hence d
dt
E(t) = 0, i.e., (2.5) holds. Note that these solution properties also hold true for periodic

boundary conditions, for which we also present corresponding schemes as a comparison.

We shall design high order DG schemes so that both mass and energy are also preserved at the

discrete level.
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2.2. Scheme formulation. Let the domain Ω be a Cartesian product

Ω = Πd
i=1I

i,

where I i = ∪Ni
αi=1I

i
αi

with I iαi
= [xiαi−1/2, x

i
αi+1/2]. We use rectangular meshes Th = {Kα}, with

Kα = I1
α1
×· · ·×Idαd

, where α = (α1, · · · , αd), N = (N1, · · · , Nd). Denote by hi = max1≤αi≤Ni
|I iαi
|,

with h = max1≤i≤d hi. In the following, we omit the subscript index α of Kα, for simplicity.

We define the discontinuous Galerkin (DG) space as as follows

Vh = {v : v ∈ Qk(K), ∀K ∈ Th},

where Qk is the space of tensor products of one-dimensional polynomials of degree up to k. We

also define another DG space V c
h as

V c
h = {v : v ∈ Qc

k(K), ∀K ∈ Th},

where Qc
k is the space of tensor products of one-dimensional complex polynomials of degree up

to k. Note that the traces of functions are double-valued on Γ0
h := Γh − ∂Ω and single-valued on

Γ∂h = ∂Ω, where Γh = Γ0
h ∪ Γ∂h is the union of interior faces and boundary faces.

We also introduce some trace operators that will help us to define the interface terms. Let K1

and K2 be two neighboring cells with a common edge e ∈ Γ0
h, and wi = w|∂Ki i = 1, 2, we define

the average {w} and the jump [w] as follows:

{w} =
1

2
(w1 + w2), [w] = w2 − w1 on e = K̄1 ∩ K̄2,

where the jump is defined as a forward difference along the normal direction n, which is defined

to be oriented from K1 to K2. For e ∈ Γ∂h, w has a uniquely defined restriction on e, both average

and jump need to be carefully defined in virtue of the specified boundary conditions.

A direct discretization of (2.2) and (2.3) leads to the DG method: find (uh,Φh) ∈ V c
h × Vh, such

that

i〈uht, vh〉 =A0(uh, vh) + 〈Φhuh, vh〉, ∀vh ∈ V c
h , (2.6)

A1(Φh, wh) =µ(|uh|2 − c, wh), ∀wh ∈ Vh. (2.7)

Here, uht = ∂uh(x,t)
∂t

, the bilinear functional

A0(uh, vh) = A0
0(uh, vh) + Ab0(uh, vh)

A0
0(uh, vh) =

∑
K∈Th

〈∇uh,∇vh〉K +
∑
e∈Γ0

h

〈∂̂nuh, [vh]〉e + 〈[uh], {∂nvh}〉e, (2.8)

and
A1(Φh, wh) =A0

1(Φh, wh) + Ab1(Φh, wh)

A0
1(Φh, wh) =

∑
K∈Th

(∇Φh,∇wh)K +
∑
e∈Γ0

h

(∂̂nΦh, [wh])e + ([Φh], {∂nwh})e, (2.9)

where boundary terms Ab1(uh, vh) and Ab0(Φh, wh) are specified later accroding to the boundary

conditions, the numerical fluxes are taken as

∂̂nuh :=βh−1
e [uh] + {∂nuh}, ∀e ∈ Γ0

h, (2.10)



6 NIANYU YI† AND HAILIANG LIU‡∗

∂̂nΦh :=β0h
−1
e [Φh] + {∂nΦh}+ β1he[∂

2
nΦh], ∀e ∈ Γ0

h, (2.11)

where n is the unit normal vector on the interface, ∂2
n denotes the second order directional derivative

in n, and β, β0, β1 are method parameters to be chosen. Boundary fluxes depend on the boundary

conditions pre-specified, leading to the following formulations:

for periodic case Ab0(u, v) =
1

2

∫
Γ∂

({∂nuh}[v∗h] + [uh]{∂nv∗h}) ds, (2.12a)

for periodic case Ab1(Φ, wh) =
1

2

∫
Γ∂

({∂nΦh}[wh] + [Φh]{∂nwh}) ds, (2.12b)

for (i) in (2.1) Ab0(uh, vh) =

∫
Γ∂

((βh−1
e uh − ∂nuh)v∗h − uh∂nv∗h)ds, (2.12c)

for (ii) in (2.1) Ab1(Φh, wh) =

∫
Γ∂

((βh−1
e Φh − ∂nΦh)wh − Φh∂nwh)ds. (2.12d)

Remark 2.1. Several remarks are in order:

(i) For non-homogeneous boundary conditions, one needs only a slight change in boundary terms

Abi(i = 0, 1).

(ii) For periodic case the left boundary and the right boundary are considered as same, for which

we use the factor 1/2 to avoid recounting.

(iii) In the scheme formulation the choice of n on interior faces does not affect each product

involved. Hence ∂n is defined based on a fixed choice of n. However, on the boundary phase, n is

taken as the usual outside normal unit to the domain boundary ∂Ω.

(iv) Here on the interface with xi = xiαi+1/2,

he =
1

2
(|I iαi
|+ |I iαi+1

|).

Note that for uniform meshes he = hi.

The initial data for the semi-discrete DG scheme (2.6) can be defined by

uh(x, 0) = Πu0,

where Π is the standard piecewise L2 projection.

2.3. Conservation properties. In order to verify the conservation properties of the scheme

(2.6)-(2.7), we prepare the following lemma.

Lemma 2.1. Let a, b be complex polynomials in V c
h , then

A0(a, b) = A0(b, a). (2.13)

The proof of this identity requires only a direct verification. Then it is straightforward to show

that the semi-discrete DG scheme (2.6)-(2.7) conserves both mass and energy.

Theorem 2.1. The semi-discrete DG scheme (2.6)-(2.7) for any β ∈ R satisfies discrete conser-

vation laws for both mass and energy, respectively,

Mh(t) :=

∫
Ω

|uh|2dx = Mh(0), (2.14)
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Eh(t) := A0(uh, uh) +
1

2

∫
Ω

Φh

(
|uh|2 − c

)
dx = Eh(0) (2.15)

for all t ≥ 0 for which the solution exists.

Proof. Letting vh = uh in (2.6) leads to

i〈uht, uh〉 = A0(uh, uh) + 〈Φhuh, uh〉.

Then (2.14) follows at once from subtracting its conjugate.

Letting vh = uht in (2.6) leads to

i〈uht, uht〉 = A0(uh, uht) + 〈Φhuh, uht〉, (2.16)

Taking its conjugate using (2.13) we obtain

−i〈uht, uht〉 = A0(uht, uh) + 〈Φhuht, uh〉. (2.17)

Adding (2.16) and (2.17) gives

d

dt
A0(uh, uh) +

(
Φh, ∂t|uh|2

)
=

d

dt
A0(uh, uh) +

(
Φh, ∂t(|uh|2 − c)

)
= 0.

That is

d

dt

[
A0(uh, uh) +

(
Φh, |uh|2 − c

)]
=
(
Φht, |uh|2 − c

)
. (2.18)

Taking wh = Φht in (2.7), we have

(∇Φh,∇Φht) = µ(|uh|2 − c,Φht).

Take time derivative in (2.7) and choose wh = Φh so that

(∇Φht,∇Φh) = µ
(
∂t(|uh|2 − c),Φh

)
.

Then

(|uh|2 − c,Φht) =
(
∂t(|uh|2 − c),Φh

)
.

From (2.18) we have

d

dt

[
A0(uh, uh) +

(
Φh, |uh|2 − c

)]
=
(
∂t(|uh|2 − c),Φh

)
=

1

2

d

dt

(
|uh|2 − c,Φh

)
.

Thus

d

dt
Eh(t) =

d

dt

[
A0(uh, uh) +

1

2

(
Φh, |uh|2 − c

)]
= 0.

This completes the proof. �
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2.4. Time discretization. Not just any time-stepping method employed in a fully discrete scheme

will preserve the conservation properties of the semi-discrete approximations. In this paper, we

consider the Crank-Nicolson method for the time discretization so that the fully-discrete DG

scheme also conserves both mass and energy. Let 0 = t0 < t1 < · · · < tK = T be a partition of

the interval [0, T ] with time step ∆t = tn+1 − tn. Here uniform time step ∆t is simply taken. The

fully discrete second-order in time approximations are constructed using the midpoint rule in the

following manner. We define

Dtu
n
h =

un+1
h − unh

∆t
, u

n+1/2
h =

un+1
h + unh

2
.

Φ
n+1/2
h is defined analogously to u

n+1/2
h . Then the fully-discrete DG method is to find

(un+1
h ,Φn+1

h ) ∈ V c
h × Vh

such that

i〈Dtu
n
h, vh〉 =A0(u

n+1/2
h , vh) + 〈Φn+1/2

h u
n+1/2
h , vh〉, ∀vh ∈ V c

h , (2.19a)

A1(Φn+1
h , wh) =µ(|un+1

h |2 − c, wh), ∀wh ∈ Vh, (2.19b)

with the initial data defined as follows:

u0
h = Πu0, A1(Φ0

h, wh) = µ(|u0
h|2 − c, wh), ∀wh ∈ Vh. (2.20)

Theorem 2.2. The fully-discrete DG scheme (2.19) for any β ∈ R and β1 = 0 satisfies discrete

conservation laws for both mass and energy, respectively,

Mn
h :=

∫
Ω

|unh|2dx = M0
h , (2.21)

En
h := A0(unh, u

n
h) +

1

2µ
A1(Φn

h,Φ
n
h) = E0

h, (2.22)

for any integer n > 0.

Proof. Letting vh = u
n+1/2
h in (2.19a) leads to

i

〈
Dtu

n
h,
un+1
h + unh

2

〉
= A0(u

n+1/2
h , u

n+1/2
h ) +

〈
Φ
n+1/2
h u

n+1/2
h , u

n+1/2
h

〉
. (2.23)

Subtracting this from its conjugate and using (2.13) we obtain

i

(〈
Dtu

n
h,
un+1
h + unh

2

〉
+

〈
un+1
h + unh

2
, Dtu

n
h

〉)
=

i

∆t

∫
Ω

|un+1
h |2 − |unh|2dx = 0.

Thus Mn+1
h = Mn

h .

Letting vh = Dtu
n
h in (2.19a) leads to

i 〈Dtu
n
h, Dtu

n
h〉 = A0

(
u
n+1/2
h , Dtu

n
h

)
+
〈

Φ
n+1/2
h u

n+1/2
h , Dtu

n
h

〉
.

Adding this upon its conjugate and using (2.13), after some algebraic manipulation, we obtain

A0

(
u
n+1/2
h , Dtu

n
h

)
+ A0

(
Dtu

n
h, u

n+1/2
h

)
+
〈

Φ
n+1/2
h u

n+1/2
h , Dtu

n
h

〉
+
〈

Φ
n+1/2
h Dtu

n
h, u

n+1/2
h

〉
= 0.
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Upon rewriting we obtain

A0

(
un+1
h , un+1

h

)
− A0 (unh, u

n
h) +

〈
Φ
n+1/2
h un+1

h , un+1
h

〉
−
〈

Φ
n+1/2
h unh, u

n
h

〉
= 0.

Note that A1(a, b) = A1(b, a) if β1 = 0, then〈
Φ
n+1/2
h un+1

h , un+1
h

〉
−
〈

Φ
n+1/2
h unh, u

n
h

〉
=
∑
K∈Th

∫
K

Φ
n+1/2
h

(
|un+1
h |2 − c−

(
|unh|2 − c

))
dx

=
1

µ
A1(Φn+1

h ,Φ
n+1/2
h )− 1

µ
A1(Φn

h,Φ
n+1/2
h )

=
1

2µ
(A1(Φn+1

h ,Φn+1
h )− A1(Φn

h,Φ
n
h)).

The energy conservation now follows from combining the above two relations. �

Finally, we introduce a simple iteration algorithm for solving the fully-discrete DG scheme (2.19).

From (unh,Φ
n
h), we obtain (un+1

h ,Φn+1
h ) as follows:

Set (u
n+1/2,m
h ,Φn+1,m

h ) = (unh,Φ
n
h) for m = 0, we find

(u
n+1/2,m+1
h ,Φn+1,m+1

h ) ∈ V c
h × Vh

by iteratively solving(
i− ∆t

4
(Φn+1,m

h + Φn
h)

)〈
u
n+1/2,m+1
h , vh

〉
−∆t

2
A0(u

n+1/2,m+1
h , vh) = i 〈unh, vh〉 , ∀vh ∈ V c

h ,

A1(Φn+1,m+1
h , wh) =µ

(
|2un+1/2,m+1

h − unh|2 − c, wh
)
, ∀wh ∈ Vh,

with m = 0, 1, 2, · · · , L, provided

‖un+1/2,L+1
h − un+1/2,L

h ‖ ≤ δ,

with some tolerance δ > 0 small, then let un+1
h = 2u

n+1/2,L+1
h − unh, and Φn+1

h = Φn+1,L+1
h .

Remark 2.2. For the Schrödinger-Poisson equation of form

iut =−∆u+ Φu+ V (x)u+ |u|2u, t > 0, x ∈ Ω,

−∆Φ =µ(|u|2 − c), x ∈ Ω,

u(x, 0) =u0(x), x ∈ Ω,

(2.24)

both mass and energy of form

E(t) =

∫
Ω

(
|∇u|2 +

1

2µ
|∇Φ|2 + V |u|2 +

1

2
|u|4
)
dx (2.25)

are conserved. To deal with the additional nonlinear term |u|2u and still preserve total mass and

energy at the discrete level, we adopt the relaxation-type scheme developed in [8]. As a consequence,

the fully-discrete DG scheme for (2.24) is formulated as follows: find

(Ψ
n+1/2
h , un+1

h ,Φn+1
h ) ∈ Vh × V 2

h × Vh,
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such that(
Ψ
n+1/2
h + Ψ

n−1/2
h

2
, wh

)
= (|unh|2, wh), ∀wh ∈ Vh, (2.26a)

i 〈Dtu
n
h, vh〉 = A0

(
u
n+1/2
h , vh

)
+
〈(

Φ
n+1/2
h + V + Ψ

n+1/2
h

)
u
n+1/2
h , vh

〉
, ∀vh ∈ V c

h (2.26b)

A1(Φn+1
h , wh) = µ(|un+1

h |2 − c, wh), ∀wh ∈ Vh, (2.26c)

subject to initial data u0(x) = u0(x). With this time discretization, the discrete energy

En
h := A0(unh, u

n
h) +

1

2µ
A1(Φn

h,Φ
n
h) +

∫
Ω

(
V (x)|unh|2 +

1

2
Ψ
n+1/2
h Ψ

n−1/2
h

)
dx

is indeed conserved. At each time step the discrete system can be solved by an iteration algorithm

in the same manner. More precisely, set Ψ−1/2(x) = |u0(x)|2 we update Ψ
n+1/2
h by(

Ψ
n+1/2
h , wh

)
= (2|unh|2 −Ψ

n−1/2
h , wh), ∀wh ∈ Vh.

Then from (u
n+1/2,m
h ,Φn+1,m

h ) = (unh,Φ
n
h) with m = 0, we find (u

n+1/2,m+1
h ,Φn+1,m+1

h ) ∈ V c
h × Vh by

iteratively solving(
i− ∆t

4
(Φn+1,m

h + Φn
h)

)〈
u
n+1/2,m+1
h , vh

〉
− ∆t

2
A0(u

n+1/2,m+1
h , vh)

− ∆t

2

〈
(V + Ψn+1/2)u

n+1/2,m+1
h , vh

〉
= i 〈unh, vh〉 , ∀vh ∈ V c

h ,

A1(Φn+1,m+1
h , wh) = µ

(
|2un+1/2,m+1

h − unh|2 − c, wh
)
, ∀wh ∈ Vh,

with k = 0, 1, 2, · · · , L. Finally, let un+1
h = 2u

n+1/2,L+1
h − unh and Φn+1

h = Φn+1,L+1
h .

3. Optimal L2 error estimates for the semi-discrete scheme

In this section, we derive the optimal L2 error estimates for the semi-discrete DG method

proposed in Section 2.2. To be specific, we consider the periodic boundary condition for u and

the homogeneous Dirichlet condition for Φ. Boundary terms are given by (2.12a) and (2.12d),

respectively.

For v ∈ V c = V c
h +H2(Ω), we define the DG norm as

|||v|||2 =
∑
K∈Th

‖∇v‖2
K +

∑
K∈Th

h2
K |v|22,K +

∑
e∈Γ0

h

h−1
e |[v]|2e +

1

2

∑
e∈Γ∂

h

h−1
e |[v]|2e, (3.1)

where he is the characteristic length of the edge e. One can verify that

|A0(w, v)| ≤ Λ0|||w||| · |||v|||, ∀w, v ∈ V c, (3.2)

where Λ0 is called the continuous constant. Furthermore, for v ∈ V c
h , we have

‖v‖2
E ≤ |||v|||2 ≤ C0‖v‖2

E (3.3)
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for a constant C0 > 1. Here the energy norm is given by

‖v‖2
E :=

∑
K∈Th

‖∇v‖2
K +

∑
e∈Γ0

h

h−1
e |[v]|2e +

1

2

∑
e∈Γ∂

h

h−1
e |[v]|2e. (3.4)

Similarly, for w ∈ V = Vh +H2(Ω), we have

|A1(w, v)| ≤Λ1|||w||| · |||v|||, ∀w, v ∈ V, (3.5)

‖v‖2
E ≤|||v|||2 ≤ C1‖v‖2

E, ∀v ∈ Vh. (3.6)

By abuse of notation, |[vh]|2 is meant to be |vh|2 in case of the homogeneous Dirichlet data on Γ∂.

Now we show that the bilinear operators A0(·, ·) and A1(·, ·) are coercive on DG spaces V c
h and Vh,

respectively.

Lemma 3.1. For the bilinear forms A0(·, ·) and A1(·, ·) defined by (2.8) and (2.9), respectively,

there exists Γ1 > 0 and α ∈ (0, 1) such that if β > Γ1, then

A0(v, v) ≥ α‖v‖2
E, ∀v ∈ V c

h , (3.7)

and if the numerical flux (2.11) with (β0, β1) chosen so that β0 > Γ2(β1) is suitably large, there

exists γ > 0, such that

A1(w,w) ≥ γ‖w‖2
E, ∀w ∈ Vh. (3.8)

The inequality (3.7) can be derived as in [40, Theorem 2.1], and the inequality (3.8) can be

derived following [24, Lemma 3.1]. Details are hence omitted.

Remark 3.1. The conditions on the method parameters are only sufficient for the error estimate

later. In our numerical tests β can be chosen as a small fixed number or zero, and the choice of

(β0, β1) follows those known for the DDG method [24].

3.1. Projection and approximation properties. We first introduce a projection and then

present its approximation properties. The specific form of the DG scheme led us to define the

projection Π1 by

〈w − Π1w, v〉+ A0(w − Π1w, v) = 0, ∀v ∈ V c
h , (3.9)

where this projection maps a function w into space V c
h . This projection is uniquely defined; since

for w = 0 with v = −Π1w we have

0 = ‖v‖2 + A0(v, v) ≥ ‖v‖2 + α|||v|||2, ∀v ∈ V c
h ,

where we have used the coercivity (3.7), hence v ≡ 0. This says that such projection is well-defined.

Theorem 3.1. For w ∈ Hk+1(Ω) and h suitably small, we have the following projection error:

‖w − Π1w‖ ≤ Chk+1|w|k+1 and |||w − Π1w||| ≤ Chk|w|k+1, (3.10)

where C depends on k, d, 1/α, and Λ0.
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This is a special case of that proved in [40].

We proceed to collect some basic inequalities, in which the bounding coefficients are easy to

figure out in one dimension, yet often more involved in the case of several dimensions.

(1) Note that if w ∈ H3(K) and e is an edge of element K, we have [2, 2.4 & 2.5] the following

trace inequalities

‖v‖2
0,e ≤ C(h−1

e ‖v‖2
0,K + he|v|21,K), (3.11a)

‖∂nv‖2
0,e ≤ C(h−1

e |v|21,K + he|v|22,K), (3.11b)

‖∂2
nv‖2

0,e ≤ C(h−1
e |v|22,K + he|v|23,K), (3.11c)

where the constant C can depend on several geometric features of K, but it does not depend on

the size of K and e.

(2) Inverse inequality. For a finite dimensional space, all norms are equivalent. For every

polynomial of degree ≤ k, there exists C depending on k such that

|v|2s,K ≤ Ch
−2(s−m)
K |v|2m,K for s,m integers with s > m. (3.12)

Moreover, for any function v ∈ Vh, the following inverse inequalities hold

‖v‖Γh
≤ Ch−1/2‖v‖, (3.13a)

‖v‖∞ ≤ Ch−d/2‖v‖, (3.13b)

where d is the spatial dimension, and ‖v‖2
Γh

:=
∑

e∈Γh

∫
e
v2ds. For more details of these inverse

properties, we refer the reader to [15].

3.2. Error estimates. In order to obtain the error estimates for solutions to the semi-discrete

DG scheme, we first verify that the DG scheme (2.6)-(2.7) is consistent in the sense that the exact

solution (u,Φ) of (1.1) also satisfies (2.6)-(2.7), i.e.,

i〈ut, vh〉 =A0(u, vh) + 〈Φu, vh〉, ∀vh ∈ V c
h , (3.14)

A1(Φ, wh) =µ(|u|2 − c, wh), ∀wh ∈ Vh. (3.15)

Substracting (2.6)-(2.7) from (3.14)-(3.15), respectively, leads to the error equation

i 〈ut − uht, vh〉 =A0(u− uh, vh) +H(vh), ∀vh ∈ V c
h ,

A1(Φ− Φh, wh) =µ(|u|2 − |uh|2, wh), ∀wh ∈ Vh.
(3.16)

Here

H(vh) := 〈Φu− Φhuh, vh〉 .

To proceed we first prepare the following estimate.

Lemma 3.2. Given f ∈ L2(Ω). If

A1(a, wh) = (f, wh), ∀wh ∈ Vh, (3.17)

then there exists a constant C > 0 such that

‖a‖ ≤ C(‖f‖+ h min
ah∈Vh

|||ah − a|||). (3.18)
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Proof. This will be proved in two steps.

Step 1. Let ah ∈ Vh approximate a, then

A1(ah, wh) = A1(ah − a, wh) + (f, wh).

Taking wh = ah and using (3.8), then (3.6), we obtain

C−1
1 γ|||ah|||2 ≤ γ‖ah‖2

E ≤ Λ1|||ah − a||||||ah|||+ ‖f‖‖ah‖.

Note that ‖ah‖ ≤ C|||ah|||. Thus

|||ah||| ≤ C(|||ah − a|||+ ‖f‖).

This when combined the triangle inequality yields

|||a||| ≤ C( min
ah∈Vh

|||ah − a|||+ ‖f‖). (3.19)

Step 2. We proceed to obtain ‖a‖ by coupling with a duality argument. Define the auxiliary

function ψ as the solution of the elliptic problem{
−∆ψ =a in Ω,

ψ =0 on ∂Ω.
(3.20)

This problem has a unique solution and admits the following regularity estimate for ψ ∈ H2(Ω),

‖ψ‖2 ≤ ‖a‖. (3.21)

We then have

‖a‖2 =
∑
K∈Th

∫
K

a(−∆ψ)dx

=
∑
K∈Th

∫
K

(∇a · ∇ψ)dx+
∑
K∈Th

∫
∂K

(
−a∂ψ

∂n

)
ds

=
∑
K∈Th

(∇a,∇ψ)K +
∑
e∈Γ0

h

(∂̂na, [ψ])e + ([a], {∂nψ})e + Ab1(ψ, a)

=A1(ψ, a) = A1(a, ψ).

(3.22)

For k ≥ 1, we take ψh ∈ Vh to be a piecewise linear interpolant of ψ so that

‖∂mx (ψ − ψh)‖ ≤ Ch2−m|ψ|2, m = 0, 1, 2.

Using (3.17) with wh = ψh, we obtain

‖a‖2 =A1(a, ψ) = (f, ψh) + A1(a, ψ − ψh)

≤‖f‖(‖ψ‖+ ‖ψ − ψh‖) + Λ|||a||| · |||ψ − ψh|||

≤C(1 + h2)‖ψ‖2‖f‖+ Ch‖ψ‖2|||a|||

≤C(‖f‖+ h|||a|||)‖a‖,

(3.23)

where we used (3.21). Hence

‖a‖ ≤ C(‖f‖+ h|||a|||). (3.24)



14 NIANYU YI† AND HAILIANG LIU‡∗

For h small, (3.24) with (3.19) yields

‖a‖ ≤ C(‖f‖+ h min
ah∈Vh

|||ah − a|||).

This is (3.18) as claimed. �

The groundwork has been laid for stating and proving the main convergence result for the

semi-discrete approximation (2.6)-(2.7).

Theorem 3.2. Let u be the smooth solution of (1.1) subject to periodic boundary conditions for

u and the Dirichlet condition for Φ. Let uh be the solution to the semi-discrete DG scheme (2.6),

(2.7) with β > Γ1 and β0 > Γ2(β1), and boundary terms (2.12a) and (2.12d), respectively. If h is

suitably small, then we have the following error estimate

‖u(·, t)− uh(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T,

where C depends on |u|k+1, |ut|k+1, ‖Φ‖∞, T , β, β0, β1, and ‖u0‖k+1, but is independent of h.

Proof. Applying the estimate (3.18) to the second error equation in (3.16) with a = Φ − Φh and

f = µ(|u|2 − |uh|2), we obtain

‖Φ− Φh‖ .(‖f‖+ hk+1) . hk+1 + (‖u‖∞ + ‖uh‖∞)‖u− uh‖. (3.25)

We now return to the first error equation. Set ξ = Π1u− u, η = Π1u− uh, and vh = η, we have

i

∫
Ω

ηtη
∗dx = i

∫
Ω

ξtη
∗dx+ A0(η, η)− A0(ξ, η) +H(η).

Thus
d

dt
‖η‖2 = 2Re

(∫
Ω

ξtη
∗dx

)
− 2Im(A0(ξ, η))− 2ImH(η). (3.26)

Note that from (3.9) we have A0(ξ, η) = −
∫

Ω
ξη∗dx. Thus the first two terms on the right is

bounded from above by

2‖ξt‖ · ‖η‖+ 2‖ξ‖ · ‖η‖ ≤ (2‖ξt‖+ 2‖ξ‖)‖η‖ ≤ Chk+1‖η‖, (3.27)

where C depends on |u|k+1 and |ut|k+1. We proceed to estimate the nonlinear term as follows:

2|H(η)| =2 |〈(Φ− Φh)uh + Φ(u− uh), η〉|

≤2 (‖Φ− Φh‖‖uh‖∞ + ‖u− uh‖‖Φ‖∞) ‖η‖.

Using the Sobolev embedding result we have for k > d
2
− 1,

‖u‖∞ ≤ C‖u‖k+1.

By the approximation results (3.10), we have for small h,

‖u− uh‖ = ‖ξ − η‖ ≤‖ξ‖+ ‖η‖ . hk+1 + ‖η‖,

‖u− uh‖∞ = ‖ξ − η‖∞ ≤‖ξ‖∞ + ‖η‖∞ . hk + h−d/2‖η‖,

where we used the following fact:

‖ξ‖∞ ≤ ‖u− uI‖∞ + ‖uI − Πu‖∞
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. hk + h−1‖uI − Πu‖ ≤ Chk,

with uI is a local interpolation polynomial to approximate u.

Substitution of the above estimates into (3.25) gives

‖Φ− Φh‖ . hk+1 + ‖η‖+ h−d/2‖η‖2. (3.28)

Hence (3.26) reduces to

d

dt
‖η‖ .hk+1 + ‖Φ− Φh‖(‖u− uh‖∞ + ‖u‖∞) + ‖u− uh‖‖Φ‖∞

.hk+1 + ‖Φ− Φh‖(‖u‖k+1 + (hk + h−d/2)‖η‖) + (hk+1 + ‖η‖)‖Φ‖∞

.hk+1 + ‖η‖+ h−d/2‖η‖2 + h−d‖η‖3.

For h < 1, we have

ε = h(k+1−d/2) < 1.

Set B = ‖η‖
hk+1 , so that

d

dt
B ≤ C(1 + B + εB2 + ε2B3) ≤ C(εB2 + 1)(B + 1). (3.29)

Note that at t = 0 we have

η(x, 0) = Πu0(x)− uh(x, 0) = ξ(x; 0) + u0(x)− uh(x, 0),

hence ‖η(·, 0)‖2 ≤ C0h
2k+2 by (3.10) and the L2-projection error, with C0 depending on ‖u0‖k+1.

Thus B(0) = ‖η(·, 0)‖/hk+1 ≤ C0.

Integration of (3.29) gives

G(B(t)) ≤ G(B(0)) + CT, G(s) :=

∫ s

1

dz

(εz2 + 1)(z + 1)

for t ∈ [0, T ]. If B(t) ≤ 1, then the proof is done. Otherwise for B(t) > 1, we bound G from below

as follows:

G(B) ≥ 1

2

∫ B

1

dz

z(1 + εz2)

=
1

2

∫ B
√
ε

√
ε

dy

y(1 + y2)
(set εz2 = y2)

= −1

4
log

(
1 +

1

εB2

)
+

1

4
log

(
1 +

1

ε

)
.

Hence
1

4
log

(
1 +

1

ε

)
− 1

4
log

(
1 +

1

εB2

)
≤ G(B(0)) + CT,

from which we are able to derive

B(t) ≤
[

ea

1− ε(ea − 1)

] 1
2

, a = 4(G(B0) + CT ).

It suffices to choose h suitably small so that ε ≤ 1
2(ea−1)

, and as a result we have

B(t) ≤ [2ea]
1
2 =
√

2e2(G(B0)+CT ) = C∗.



16 NIANYU YI† AND HAILIANG LIU‡∗

We thus conclude B(t) ≤ max{1, C∗}. Hence ‖η(·, t)‖ ≤ max{1, C∗}hk+1, which when combined

with the triangle inequality ‖u(·, t)− uh(·, t)‖ ≤ ‖η‖+ ‖ξ‖ leads to the desired error estimate. �

Remark 3.2. A sharp L2 error estimate with homogeneous boundary condition also for u can be

obtained as well. In such case, instead of projection (3.9) one can simply define Π1 by

A0(w − Π1w, v) = 0, ∀v ∈ V c
h .

The approximation result stated in Theorem 3.1 remains valid, as is already known from [3] in the

non-complex setting.

Remark 3.3. Under some regularity assumptions on the exact solution, the convergence rates

max
0≤n≤K

‖u·, tn)− unh(·)‖ = O(hk+1 + (∆t)2),

are expected for the fully discrete approximation. The arguments in a proof of these estimates are

similar to those appearing already in [31, 32], yet more involved in handling nonlinear terms and

stability of the time discretization, and so we leave it for future work.

4. Numerical Examples

In this section, we present several numerical tests designed to gauge the performance of our

conservative DG schemes. Interest is given particularly to validate our theoretical results, including

a study of the convergence rates.

In all our numerical tests the L2 error is measured in discrete norm by

‖v − vh‖ :=

(
N∑
α=1

Q∑
i=1

ωi(v(xiα, t)− vh(xiα, t))2|Kα|

)1/2

,

where v = uR or uI , the real or imaginary part of u, and vh is the corresponding part of the

numerical solution. Here xαi is the i-th quadrature point associated with weight ωi so that
∑Q

i=1 ωi =

1. In our numerical tests, we take Q = 25 for all polynomial elements we tested. For the parameters

β, β0, β1 in numerical fluxes (2.10) and (2.11), we take β = β0 = 10 and β1 = 1
12

for Qk, k = 1, 2

approximations.

Example 4.1. We consider the two-dimensional Schrödinger-Poisson problem:

iut(x, y, t) =− 1

2
∆u(x, y, t) + Φ(x, y, t)u(x, y, t), (x, y) ∈ Ω = [0, 5]2,

∆Φ(x, y, t) =|u(x, y, t)|2, (x, y) ∈ Ω,

u(x, y, t) =0, (x, y) ∈ ∂Ω,

Φ(x, y, t) =0, (x, y) ∈ ∂Ω,

u(x, y, 0) =u0(x, y) = 10e−10((x−2.5)2+(y−2.5)2), (x, y) ∈ Ω.
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Table 1. Errors for Example 4.1 when using Qk, k = 1, 2, 3 polynomials on a uni-

form mesh. Final time is t = 0.1.

Qk ‖u50 − u100‖ order ‖u100 − u200‖ order ‖u200 − u400‖ order

k = 1 1.7534e-01 - 4.4228e-02 1.99 1.1066e-02 2.00

k = 2 3.1607e-03 - 3.4212e-04 3.21 3.9861e-05 3.10

This problem was tested numerically in [4] by a second-order Strang splitting time discretization

combined with a conforming finite element space discretization. We first test the accuracy and

convergence rate using the Qk polynomials with k = 1, 2 on a uniform mesh with N × N cells.

Without the exact solution, we calculate the error ‖uN−u2N‖ between the two level approximations

with uN denoting the numerical approximation on a mesh with N ×N cells. Table 1 reports the

L2 errors and orders of accuracy. We observe that the DG method achieves the optimal k+1 order

for k = 1, 2. We then test the conservation property of the scheme using Q2 polynomials. Figure

1 plots the history of the relative mass and energy, respectively; we also compare the energy

Eh(u
n
h) =

∫
Ω

(
|∇unh|2 +

1

2µ
|∇Φn

h|2
)
dx,

and the DG energy defined by

Ẽh(u
n
h) = A0(unh, u

n
h) +

1

2

∫
Ω

Φn
h

(
|unh|2

)
dx.

It shows that the mass is well preserved, and the energy is asymptotically preserved as the discrete

energy appears to evolve quite close to the initial energy. Figure 2 shows the wave function

|u(x, y, t)| at time t = 0.1, 0.2, 2, and t = 10; using a 100 × 100 mesh and polynomial basis

functions of degree 2.
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Figure 1. Example 4.1. Mass and energy history.
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Figure 2. Example 4.1. Wave function |u(x, y, t)| at t = 0.1, 0.2, 2, and t = 10.

Example 4.2. We consider the two-dimensional Schrödinger–Poisson equation in Ω = [−8, 8]2

with nonlinear interaction:

iut(x, y, t) =− 1

2
∆u(x, y, t) + Φ(x, y, t)u(x, y, t) + V (x, y)u(x, y, t) + |u|2u(x, y, t),

−∆Φ(x, y, t) =|u(x, y, t)|2 − 1, (x, y) ∈ Ω,

u(x, y, t) =0, (x, y) ∈ ∂Ω,

Φ(x, y, t) =0, (x, y) ∈ ∂Ω,

u(x, y, 0) =u0(x, y) =
1√
2π
e−

x2+y2

4 (x+ iy), (x, y) ∈ Ω.

This problem has been tested numerically in [37] with the potential V (x, y) = x2+y2

2
. We apply

the fully-discrete DG scheme (2.26a)-(2.26c) and the corresponding iteration algorithm for this

problem. We carry out numerical tests with the potential V (x, y) = x2−y2
2

and V (x, y) = −x2+y2

2

on a 80 × 80 mesh and polynomial basis functions of degree 2. In Figure 3 we plot the relative

mass and energy history. During the simulation up to t = 10, the mass is preserved well, and the

energy is asymptotically preserved. Figures 4-5 and Figures 6-7 show the wave function |u(x, y, t)|
at time t = 0, 1, 2 and t = 5, 7.5, 10, respectively. We can see clearly that the repulsive V enforces

the dispersion in x or y direction.
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Figure 3. Example 4.2. Mass and energy history. Left: V (x, y) = x2−y2
2

, Right:

V (x, y) = −x2+y2

2
.

5. Concluding remarks

In this paper, we have constructed, analyzed and tested high-order conservative DG schemes for

the nonlinear Schrödinger–Poisson equation. It is shown that both semi-discrete and fully discrete

schemes preserve both mass and energy. For the semi-discrete DG scheme we obtained optimal

L2 error estimates in the full nonlinear setting. We presented a number of numerical tests to

illustrate the performance of the proposed schemes and to validate the theoretical results of the

paper. The numerical results confirm that the method is both accurate and robust, both mass and

energy are well preserved over long time simulations. Therefore, the schemes can be considered

as a competitive algorithm in the solution of the nonlinear Schrödinger–Poisson equation. A very

interesting question is whether it is possible to improve these schemes into higher order (in time)

schemes while still conserving both mass and (a modified) energy.
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