A MASS- AND ENERGY-CONSERVED DG METHOD FOR THE
SCHRODINGER-POISSON EQUATION

NIANYU YI' AND HAILIANG LIU#*

ABSTRACT. We construct, analyze, and numerically validate a class of conservative discontinuous
Galerkin (DG) schemes for the Schrodinger-Poisson equation. The proposed schemes all shown to
conserve both mass and energy. For the semi-discrete DG scheme the optimal L? error estimates are
provided. Efficient iterative algorithms are also constructed to solve the second order implicit time
discretization. The presented numerical tests demonstrate the method’s accuracy and robustness,
confirming that the conservation properties help to reproduce faithful solutions over long time

simulation.

1. INTRODUCTION

Considered here is the following problem for the Schrédinger—Poisson (SP) equation:

iy =—Au+Pu, t>0, €, (1.1a)
—A® =p(ju> —¢), z€Q, (1.1b)
u(z,0) =up(x), inQ, (1.1c)

where v = u(z,t) is a complex-valued function of time ¢ > 0 and spatial variable x € €, which
is a bounded domain in R?, 4 = +1 is a rescaled physical constant, which signifies the property
of the underlying forcing, repulsive if © > 0 and attractive if 4 < 0. i = /—1 stands for the
imaginary unit, and c is a background charge. For the numerical purpose it is common to truncate
the unbounded spatial domain to a sufficiently large finite domain and impose simple boundary
conditions (see [1]). In this paper we consider both periodic and homogeneous Dirichlet boundary
conditions (see Section 2), although most of our derivations can be carried out for other types of
boundary conditions.

The Schrédinger—Poisson equation (also called Schrodinger-Newton equation or Schrodinger-
Maxwell equation) describes many physical phenomena in quantum mechanical systems and in
semiconductor modeling; we refer the readers to [14, 20, 23] and the references therein. It also
appears as an approximate mean-field equation derived from the first principle model in a system
of a large number of particles [7]. Mathematically, the Schrédinger—Poisson equation is a proto-
typical dispersive wave equation, its solution exhibits some intriguing properties. A great deal of
interesting research has been devoted to the mathematical analysis for the Schrodinger-Poisson
systems (see [10, 12, 19, 21, 34] and references therein). In particular, the equation preserves both
the mass and the energy under appropriate boundary conditions. The quality of the numerical
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approximation hence hinges on how well the conserved integrals can be preserved at the discrete
level. Numerical methods without this property may result in substantial phase and shape errors
after long time integration. Indeed for some wave equations the invariant preserving high order
numerical methods have been shown more accurate than non-conservative methods after long-time
numerical integration (see, e.g., [9, 28]).

The objective of this work is to develop and analyze conservative discontinuous Galerkin (DG
henceforth ) schemes for the Schrodinger—Poisson equation, with particular attention on preserva-
tion of both mass and energy at the discrete level. In addition, we obtain sharp L? error estimates
for the semi-discrete DG method (continuous in time) at the full nonlinear setting,.

The DG method is a class of finite element approximations using discontinuous, piecewise poly-
nomials as both the solution and test-function spaces (see [13] for a historical review). It combines
advantages of both finite element and finite volume methods, including high order accuracy, high
parallel efficiency, flexibility for hp-adaptivity and straightforward implementation on arbitrary
meshes in complex geometries. Particularly relevant for the present discussion is the fact that such
schemes do not demand continuity at the spatial grid-points, and this allows a flexibility in making
local refinements to an existing numerical grid not shared by continuous Galerkin methods. The
DG method is also known to enjoy mathematically provable high-order accuracy and stability, see
e.g., [17, 35, 36].

The DG method was originally introduced in the context of hyperbolic conservation laws. Later,
the method was extended to deal with derivatives of order higher than one. In recent years, the DG
schemes have been actively designed and applied for the Schrédinger equation and its variants, see,
e.g., [18, 22, 25, 29, 38, 39, 41, 42, 43] and references therein; see also works by spectral methods
[5, 6]. One main effort is to preserve the mass by high order spatial discretization. Within the DG-
framework, especially relevant to our development is the body of work [30, 25, 40] on approximating
solutions to Schrédinger type equations using the direct Discontinuous Galerkin method (DDG —
method) developed initially for the diffusion equation introduced by Liu and Yan [26, 27]. The
idea of DDG methods is to directly force the weak solution formulation of the PDE into the DG
function space for both the numerical solution and test functions. The main feature in the DDG
schemes proposed in [26, 27| lies in numerical flux choices for the solution gradient, which involve
higher order derivatives evaluated crossing cell interfaces. The parameter is often called method
parameter or flux parameter due to its appearing in the choice of the numerical flux, or even penalty
parameter when it is required to be large enough to ensure the scheme stability. In [30], a high-order
mass-preserving DG (MPDG) method was introduced for the nonlinear Schrodinger equation, with
the optimal L? error estimate obtained in one dimensional setting. A key observation in [30] is
that the conservation property and the optimal accuracy remains valid independent of the size
of the flux parameter. An extension to multi-dimensional setting was further carried out in [25],
in which the authors presented two different approaches to handle structured and unstructured
meshes, respectively. For rectangular meshes, the error analysis is based-on tensor product of
polynomials and a super-convergence result, the obtained result is sharp and valid with or without

a flux parameter. For unstructured shape regular meshes, the optimal error analysis is based on a
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global projection and its approximation error [3, 24] when the flux parameter is large. This later
approach was further extended to solve the nonlinear magnetic Schrédinger equation in [40]. Both
mass and energy conservation are shown to hold for the semi-discrete DG scheme, with a proven
optimal L? error estimate in nonlinear setting. For the time discretization a second order Strang
splitting is applied in [25, 30, 40].

In this paper, we extend the ideas in [25, 30, 40] to develop a mass- and energy-conserved
DG method for the Schrodinger—Poisson equation. Our focus will be on constructing a spatially
high-order conservative DG scheme with second order time discretization so that two conserved
quantities are preserved in the presence of a self-interaction electric field.

To our knowledge, there is as yet no rigorous convergence result in the literature for the DG
method for the nonlinear Schrédinger-Poisson equation. We mention, however, the work by Lubich
[33], where an error analysis was first given for a time-splitting method; and further works such
as [4, 11] using the splitting method. The main conclusion of this paper is that both semi-discrete
and fully discrete schemes can preserve both mass and energy independent of the size of the flux
parameter. For time discretization we follow the recent work [16] in adopting a Crank-Nicolson
type discretization, so that the resulting full-discrete scheme is second order in time. Furthermore,
we establish the optimal L? error estimate for the semi-discrete scheme. Though the main analysis
tool for nonlinear terms follows the line as in [40], it requires a careful handling of the coupling
with the Poisson equation (see Lemma 3.2 and its proof).

This paper is organized as follows: In Section 2 we review some basic properties of the SP
equation, and present semi-discrete DG schemes, which are shown to preserve both mass and
energy for meshes of arbitrary size, for the nonlinear Schrodinger—Poisson equation. In Section 3
we carry out error estimates for the DG method, followed by an efficient iterative algorithm to solve
the resulting nonlinear equations. In Section 4 we present numerical experiments to validate the
theoretical results and to gauge the performance of the proposed schemes, especially the sharpness
of the convergence rates. The paper is completed with some concluding remarks and comments
given in Section 5.

Throughout this paper, we denote spatial variable » = (2!, 29) € R? and adopt standard
notations for Sobolev spaces such as W™P(D) on sub-domain D C 2 equipped with the norm
| - lmpp and semi-norm | - |, p. When D = €, we omit the index D; and if p = 2, we set
WmP(D) = H™D), || - [lmpp = || [|m.p, and | - |;np.p = | - |m,p. When m = 0, we simply use || - ||
to denote the usual L*norm. We also denote 92 the boundary of Q. We use the notation C' < B
to indicate that C' can be bounded by B multiplied by a constant independent of the mesh size h.
C ~ B stands for C < B and B < C. Also we use (-)* to denote max(-,0), and (-)~ = min(+,0).

2. THE CONSERVATIVE DG METHOD

Details of the numerical approximations are now set forth. This begins with a discussion of two
conservation properties of the continuous problem, followed by the spatial discretization which

leads directly to a semi-discrete approximation.
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2.1. The Schrodinger-Poisson equation. For the model equation considered in this paper, we
impose the homogeneous Dirichlet boundary condition

(i) u=0, (i1) =0, x€0Q, t>0, (2.1)

with which the weak formulation of the problem reads: find u € C°([0,T"), Hj(2)) and ® € H}(Q),
such that

i(ug, vy =(Vu, Vu) + (Pu, v), Vv € Hy (), (2.2)
(VO, V) =p(|ul* — c,w), Yw € Hy (). (2.3)

Here, (-,-) denotes the standard L? product for complex valued functions, i.e, (u,v) = [, u(z)
v*(z)dz with v* denoting the complex conjugate of v, and (+,-) denotes the standard L* product
for real valued functions, i.e, (u,v) = [, u( r)dr.

One can verify that the problem (1.1) satlsﬁes the conservation laws

mass conservation M (t) :/ lu|*dz = M (0), (2.4)
0
1
energy conservation E(t) :/ (|Vu|2 + 2—|V<I>|2) dx = E(0). (2.5)
Q H

In fact, take v = u in (2.2), one has
i(ug, u) = (Vu, Vu) + (Pu, u).

This upon subtraction of its conjugate gives (2.4).
Furthermore, taking v = u; in (2.2) we have

i(ug, u) = (Vu, Vug) + (Du, uy),
and

—i(ug, ug) = (Vug, Vu) + (duy, u).
Thus,

d ) d d d
— S—|ul’de = — 2 /CI)— 2 _¢)dr =0.
GIValP + [ @lufdr = IVl + [ 0L (lu = )iz =0

The second term when using (2.3) reduces to

1
—/V@t Vodr = —— / |V®|*dz.
1 2 dt
Hence %E (t) =0, i.e., (2.5) holds. Note that these solution properties also hold true for periodic
boundary conditions, for which we also present corresponding schemes as a comparison.
We shall design high order DG schemes so that both mass and energy are also preserved at the

discrete level.
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2.2. Scheme formulation. Let the domain €2 be a Cartesian product

Q=171
where I' = U)'_ Il with I = [0, 1 /2,4, 11/o]- We use rectangular meshes 7, = {K,}, with
Ko =1! x---xI¢ where a = (a1, -+ ,aq), N = (Ny, -+, Ng). Denote by h; = maxi<a,<n, |1, |,

with h = max;<;<4 h;. In the following, we omit the subscript index « of K, for simplicity.

We define the discontinuous Galerkin (DG) space as as follows
‘/h, — {U Tve le:(K)a VK € 771}'

where (), is the space of tensor products of one-dimensional polynomials of degree up to k. We

also define another DG space V)’ as
Vi={v: veQiK), VKeT,},

where ()5 is the space of tensor products of one-dimensional complex polynomials of degree up
to k. Note that the traces of functions are double-valued on I') :=T';, — 9Q and single-valued on
I'? = 09, where I';, = ') UT? is the union of interior faces and boundary faces.

We also introduce some trace operators that will help us to define the interface terms. Let K*!
and K? be two neighboring cells with a common edge ¢ € T, and w; = w|gx: i = 1,2, we define

the average {w} and the jump [w] as follows:
1 _ _
{W}:§<wl+w2), [w] =wy —w; on e=K;N K,

where the jump is defined as a forward difference along the normal direction n, which is defined
to be oriented from K to K2. For e € I'?, w has a uniquely defined restriction on e, both average
and jump need to be carefully defined in virtue of the specified boundary conditions.

A direct discretization of (2.2) and (2.3) leads to the DG method: find (us, ®5) € V¢ x V4, such
that

i<uht, Uh> :A()(uh, Uh) -+ (@huh, Uh>, Vvh € th, (26)
Al(q)h,wh) :,LL(|uh|2 — C, U)h), th € Vh. (27)
Here, u;; = a’”b(tw’t), the bilinear functional
Ao(uh, Uh) = Ag(uh, 'Uh) + Ag(uh, Uh)
Aunson) = > (Vun, Vo) + > Gt [on])e + {[un), {Dnvn} s (2:8)
KeTy, el
and
Al ((I)h, U)h) :A(l](q)h; wh) + Al{ ((I)h, wh)
AN @y wp) = Y (VO V)i + Y (8nns [wn])e + ([@4], {Bnwn}). (2.9)
KeTy, eel?

where boundary terms A8 (uy,vy,) and Aj(®y,wy,) are specified later accroding to the boundary

conditions, the numerical fluxes are taken as

Doty =Ph [up) + {Ohun}, Ve eT?, (2.10)
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0n®p, i =Boh [ ®1] + {0,®n} + Buihe[02®y], Ve e TY, (2.11)

where n is the unit normal vector on the interface, 9> denotes the second order directional derivative
inn, and 3, By, f1 are method parameters to be chosen. Boundary fluxes depend on the boundary
conditions pre-specified, leading to the following formulations:

for periodic case  Ab(u, v) = % /F (B} u3] + [unl {00} ds, (2.12a)
for periodic case  A%(®,wy) = % /F . ({0,@1}Hws)] + [®4]{0nwr}) ds, (2.12b)
for (i) in (2.1)  Ab(up,vs) = /Fa((ﬁheluh — Opup )V — up0,v3 ) ds, (2.12¢)
for (i) in (2.1)  Ab(®p, wy) = /F 8((6h;161>h — 0,®p)wy, — ©,0,wp)ds. (2.12d)

Remark 2.1. Several remarks are in order:

(1) For non-homogeneous boundary conditions, one needs only a slight change in boundary terms
Ab(i=0,1).

(i1) For periodic case the left boundary and the right boundary are considered as same, for which
we use the factor 1/2 to avoid recounting.

(111) In the scheme formulation the choice of n on interior faces does not affect each product
involved. Hence 0,, is defined based on a fized choice of n. However, on the boundary phase, n is
taken as the usual outside normal unit to the domain boundary OS.

(iv) Here on the interface with x* = xgi+1/2,

he = 51+ 113, )
Note that for uniform meshes h, = h;.
The initial data for the semi-discrete DG scheme (2.6) can be defined by
up(x,0) = Muy,
where II is the standard piecewise L? projection.

2.3. Conservation properties. In order to verify the conservation properties of the scheme
(2.6)-(2.7), we prepare the following lemma.

Lemma 2.1. Let a,b be complex polynomials in V', then

Ap(a,b) = Ap(b,a). (2.13)

The proof of this identity requires only a direct verification. Then it is straightforward to show
that the semi-discrete DG scheme (2.6)-(2.7) conserves both mass and energy.

Theorem 2.1. The semi-discrete DG scheme (2.6)-(2.7) for any € R satisfies discrete conser-
vation laws for both mass and energy, respectively,

My(t) = /Q lup 2z = M (0). (2.14)
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1
Eh(t) = Ao(uh,uh) + 5 / 7% (|Uh|2 — C) dx = Eh(O) (2.15)
Q
for all t > 0 for which the solution exists.

Proof. Letting vy, = uy, in (2.6) leads to

(upe, up) = Ao(un, up) + (Ppup, up).

Then (2.14) follows at once from subtracting its conjugate.
Letting vy, = up in (2.6) leads to

1(unt, une) = Ao(un, une) + (Prun, unt), (2.16)
Taking its conjugate using (2.13) we obtain
—i(unt, unt) = Ao(tng, un) + (Prting, up). (2.17)

Adding (2.16) and (2.17) gives

d d
%Ao(uh,uh) + ((I)h, 8t|uh|2) = aAo(uh, uh) + ((I)h, 8t(\uh\2 — C)) =0.
That is
d
7 [Ao(uh,uh) + (<I>h, lup|? — c)] = (<I>ht, lup |> — c) ) (2.18)

Taking wy, = ®y, in (2.7), we have
(V®y,, Vi) = pu(|un|® — ¢, Ppy).
Take time derivative in (2.7) and choose wy, = @, so that
(VPpu, V®;,) = 11 (0p|un|® — ¢), @) -

Then
(lunl? = ¢, Pre) = (Bi(funl® — ¢), @) .

From (2.18) we have

d 1d
o7 [Ao(un, un) + (P, |unl® = )] = (Fi(funl® = ¢), @p) = 2 (lunl® = ¢, @4) -
Thus
d d 1
%Eh(t) = E AO(Uh, uh) + § ((I)h, |uh|2 — C) = 0.

This completes the proof. O
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2.4. Time discretization. Not just any time-stepping method employed in a fully discrete scheme
will preserve the conservation properties of the semi-discrete approximations. In this paper, we
consider the Crank-Nicolson method for the time discretization so that the fully-discrete DG
scheme also conserves both mass and energy. Let 0 =ty < t; < --- < tx = T be a partition of
the interval [0, 7] with time step At = t¢,,.1 — t,. Here uniform time step At is simply taken. The
fully discrete second-order in time approximations are constructed using the midpoint rule in the

following manner. We define
uptt — up L2 up o+
At 2
@ZH/ % is defined analogously to UZH/ °. Then the fully-discrete DG method is to find

(u}”l @"H) eVeixV,

n
Dtuh =

such that
WDyl vy) =Ag(u) ™2 vp) + (@22 ) Yy, € VS (2.19a)
Ay (@0 wy) =p([uf P — e, wy), Ywy, € Vy, (2.19b)
with the initial data defined as follows:
uf) = TTu, AL (D) wy) = p(ul|* — ¢, wy), Ywy, € V. (2.20)

Theorem 2.2. The fully-discrete DG scheme (2.19) for any f € R and p; = 0 satisfies discrete

conservation laws for both mass and energy, respectively,

M ;_/ 2y = MO, (2.21)
Q

1
E}y = Ao(up, uy) + ﬂAl( noN) =B, (2.22)
for any integer n > 0.

Proof. Letting v, = ul "/ in (2.19a) leads to

n+1
i <D S > A% ™) o (T ). (2:23)

Subtracting this from its conjugate and using (2.13) we obtain

n+1 n+1
. +u +u n n
<<DT>+<T Do >) At/ ™ = i dw = 0.

Thus M = M}
Letting v, = Dyuf in (2.19a) leads to

i (D, Dul’) = AO( 2 Doy h) + <<I>’;“/2u2“/2,Dtug>.
Adding this upon its conjugate and using (2.13), after some algebraic manipulation, we obtain
o (577, Do) + o (P 5

+ <<1>Z+1/2u’;+1/ 2, DtuZ> + <<1>Z“/ *Douf, ) = 0.
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Upon rewriting we obtain
Ao (w1 utt) = Ao () + (05 Pup ) — (@32 ) = 0.
Note that A;(a,b) = Ai(b,a) if B, = 0, then
(2 ) = (O ) = 30 [ O (g = o= (i = ) da
KeTi
n 1 n
=A@, @)~ (af, By
fu fu

1 n n n n
- E(Alm)hﬂ"bhﬂ) - Al( hs (I)h))‘

The energy conservation now follows from combining the above two relations. 0

Finally, we introduce a simple iteration algorithm for solving the fully-discrete DG scheme (2.19).

From (u}l, ®7), we obtain (u}*', ®}*") as follows:

Set (w3 @MY — (yn, 1) for m = 0, we find
(uz+1/2,m+17 ¢Z+1,m+1) € Ve x Vi,

by iteratively solving

G‘z%%“m+w0<%W*“mO——Am%Wl“ww=w%mw, Von €V,
A (@ ) = (|2u;;+1/2’m+1 W -, wh> . Y, € Vi,
with m =0,1,2,--- , L, provided

” n+1/2L+1 Z+1/2,LH S(S,

with some tolerance & > 0 small, then let uj+' = 2uf V/>5 ! — 2 and @+ = pHLEFL

Remark 2.2. For the Schrodinger-Poisson equation of form
iu, = — Au+ du+ V(z)u+ |ul*u, t>0, €,
—AD =p(|ul®* —c), z€Q, (2.24)
u(z,0) =ug(x), x€Q,

both mass and energy of form
1 1
E(t) = / <|Vu|2 + —|VO|* + V]ul> + |u|4> dx (2.25)
QO 2/L 2

are conserved. To deal with the additional nonlinear term |u|?u and still preserve total mass and
energy at the discrete level, we adopt the relazation-type scheme developed in [8]. As a consequence,
the fully-discrete DG scheme for (2.24) is formulated as follows: find

n+1/2  p4l gntl 2
(\Ijh ,Uz 7@2 )E‘/h,x‘/hx‘/ha
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such that

( \ijrhbﬂ/z 4 lI,Zfl/z

2 ’w'l> = (Jup|*,wn), Vwy € Vi, (2.26a)
i (D}, vp) = A (uzﬂ/z? Uh> + <<®Z+1/2 +V+ \I!ZH/Q) uz+1/2, vh> . Yo, €V (2.26b)
Ay (@) wy) = p(|up ™ P — e wy),  Ywy, € Vi, (2.26¢)

subject to initial data u®(x) = ug(x). With this time discretization, the discrete energy

1 1 n n—
Ey = Ao(up,up) + 2—MA1( n Pp) +/ (V(x) ul|? + §\Ifh+1/2\11h 1/2) dx
Q

18 indeed conserved. At each time step the discrete system can be solved by an iteration algorithm

in the same manner. More precisely, set W=/2(x) = [u®(z)|? we update \IJZH/Q by

(072, wn) = @l = 032w, V€ Vi

Then from (uZH/Z’m, O™ = (up, @) with m = 0, we find (uZJrl/z’mH7 S e A
iteratively solving
At n m At n m
(i B Z(q)ZJrl,m i (I)Z)) <uh+1/2, H,Uh> B 7140(%“/2’ +1,Uh)

At nt+1/2,m i
R (A A T B T A N TR 7

1m+1 +1/2,m+1
A (@) ) = <|2u,Z fZmtl up* — ¢, wh> , Ywy, € Vi,

with k= 0,1,2,--- , L. Finally, let u}™" = 202" _yn gnd op+! = rtitt,

3. OPTIMAL L? ERROR ESTIMATES FOR THE SEMI-DISCRETE SCHEME

In this section, we derive the optimal L? error estimates for the semi-discrete DG method
proposed in Section 2.2. To be specific, we consider the periodic boundary condition for v and
the homogeneous Dirichlet condition for ®. Boundary terms are given by (2.12a) and (2.12d),
respectively.

For v € V¢ = V¢ + H?(Q), we define the DG norm as

_ 1 _
Iol* = > IVoliic+ D2 ilolu + Y bWl + 5 Y I (3.1)

KeTy KeTy el e€T?

where h, is the characteristic length of the edge e. One can verify that
[Ao(w, v)| < Aoflw]l - floll,  Vw,v eV, (32)
where A is called the continuous constant. Furthermore, for v € V¢, we have

% < lvll* < CollvllE (3.3)
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for a constant Cjy > 1. Here the energy norm is given by
_ 1 _
p= ) IVl + D> hIE+ 5 ) kL2 (3.4)
ol = > '
KeTh e€T? e€l?
Similarly, for w € V =V}, + H?*(Q), we have
[Ar(w, o) <Aiflwl - floll, Vw,v eV, (3.5)
% <lvl* < Cillollz, Vo € Vi (3.6)
2

By abuse of notation, |[v;]|? is meant to be |vy,|? in case of the homogeneous Dirichlet data on I'?.

Now we show that the bilinear operators Ag(-, ) and A;(-, ) are coercive on DG spaces V,¢ and V},
respectively.

Lemma 3.1. For the bilinear forms Ao(-,-) and Ai(-,-) defined by (2.8) and (2.9), respectively,
there exists T'y > 0 and o € (0,1) such that if 5 > T, then

Ao(v,0) > allvllp, v €V, (3.7)

and if the numerical flux (2.11) with (By, 51) chosen so that By > T'y(51) is suitably large, there
exists v > 0, such that

Ay(w,w) > y||w||%, Yw € Vj,. (3.8)

The inequality (3.7) can be derived as in [40, Theorem 2.1], and the inequality (3.8) can be
derived following [24, Lemma 3.1]. Details are hence omitted.

Remark 3.1. The conditions on the method parameters are only sufficient for the error estimate
later. In our numerical tests § can be chosen as a small fized number or zero, and the choice of
(Bo, 1) follows those known for the DDG method [24].

3.1. Projection and approximation properties. We first introduce a projection and then
present its approximation properties. The specific form of the DG scheme led us to define the
projection II; by

(w — Thw,v) + Ag(w — Thiw,v) =0, Yo e Vy, (3.9)

where this projection maps a function w into space V°. This projection is uniquely defined; since
for w = 0 with v = —II;w we have

0= [[v]* + Ao(v,v) = [[0lI* +aflvll?,  VveVy,
where we have used the coercivity (3.7), hence v = 0. This says that such projection is well-defined.
Theorem 3.1. For w € H*™1(Q) and h suitably small, we have the following projection error:
|w — Thw|| < CA*" Mw|pr and |Jw — w|| < ChF w1, (3.10)

where C' depends on k, d, 1/a, and Ay.
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This is a special case of that proved in [40].

We proceed to collect some basic inequalities, in which the bounding coefficients are easy to
figure out in one dimension, yet often more involved in the case of several dimensions.

(1) Note that if w € H3(K) and e is an edge of element K, we have [2, 2.4 & 2.5] the following

trace inequalities

[ol3, < O ol + helof ). (3.11a)
[0u0, < OO ol s + helo ). (3.11b)
82013, < O 0B + helvl ). (3.110)

where the constant C' can depend on several geometric features of K, but it does not depend on
the size of K and e.

(2) Inverse inequality. For a finite dimensional space, all norms are equivalent. For every
polynomial of degree < k, there exists C' depending on k such that

v]? ¢ < ChI_(Q(S_m)|U|3n7K for s, m integers with s > m. (3.12)

Moreover, for any function v € V},, the following inverse inequalities hold

V]I, < CRY2o]], (3.13a)
[l < CR=2J0], (3.13b)
where d is the spatial dimension, and [[v[|f, := Y., [, v®ds. For more details of these inverse

properties, we refer the reader to [15].

3.2. Error estimates. In order to obtain the error estimates for solutions to the semi-discrete

DG scheme, we first verify that the DG scheme (2.6)-(2.7) is consistent in the sense that the exact
solution (u, ®) of (1.1) also satisfies (2.6)-(2.7), i.e.,

i(ug, vp) =Ag(u, vp) + (Pu, vp), Yy, € Vi, (3.14)

A (D, wy) =p(jul* — ¢, wy) Ywy, € V. (3.15)

Substracting (2.6)-(2.7) from (3.14)-(3.15), respectively, leads to the error equation
1wy — wpe, vp) =Ao(u — up,vp) + H(vy), Yo, € Vy,

) ) (3.16)
A (P — Pp,wy) =p(|ul® — Jupl®,wy), Yw, € V.
Here
H(vp) == (Pu — Ppup, vp) -
To proceed we first prepare the following estimate.
Lemma 3.2. Given f € L*(Q). If
Al(avwh) = (f7 wh)7 vU)h € Vha (317)

then there exists a constant C > 0 such that

lall < COLf[l 4 7 min [ja, — al]). (3.18)
ap €V
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Proof. This will be proved in two steps.
Step 1. Let a, € V}, approximate a, then

Ay (an, wn) = Ai(an — a,wp) + (f, wn).
Taking wy, = a5 and using (3.8), then (3.6), we obtain
Crillanll? < Allanlli < Adllan — allllanll + [ f[l{lax]-
Note that ||an|| < Cllap|l. Thus
lanll < C(llan — all + 11 £1)-
This when combined the triangle inequality yields

llall < € min flar, — all + |L71D- (3.19)

Step 2. We proceed to obtain ||a|| by coupling with a duality argument. Define the auxiliary
function ¢ as the solution of the elliptic problem

—Ay =a in €,
(3.20)
1 =0 on 0S.
This problem has a unique solution and admits the following regularity estimate for ¢ € H*(Q),
1912 < [lall. (3.21)
We then have
ol = Y [ a-s)ds
KeT;, VK
— Z /(Va-Vw)dx—l— Z / (—ag—w) ds
KeT, VK KeT, VK " (3.22)
= > (Va, V)i + Y (Ona,[0))e + ([a], {0} + AL, )
KeTy, eel)

=A1(¢,a) = Ai(a, ¥).
For k > 1, we take 1, € V}, to be a piecewise linear interpolant of 1 so that
107" (¢ — )| < CR* ™ [¢]s, m=0,1,2.
Using (3.17) with wy, = 9, we obtain
lall* =Ai(a,v) = (f,4n) + Ai(a, 9 —p)

<IANCLN + N1 = all) + Allall - 1 — ¥l

<C(L+h)I I fII + Chll Il al

<C([If1I+ AllalDlall,

(3.23)

where we used (3.21). Hence
lall < CUIfI + Rllall)- (3.24)
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For h small, (3.24) with (3.19) yields
lall < CUf|l +h min [lan — al]).
ap eV
This is (3.18) as claimed. O

The groundwork has been laid for stating and proving the main convergence result for the

semi-discrete approximation (2.6)-(2.7).

Theorem 3.2. Let u be the smooth solution of (1.1) subject to periodic boundary conditions for
u and the Dirichlet condition for ®. Let uy, be the solution to the semi-discrete DG scheme (2.6),
(2.7) with B > T'y and By > T's(B1), and boundary terms (2.12a) and (2.12d), respectively. If h is
sustably small, then we have the following error estimate

u(-,t) —un(- )| < CRMY, 0<t<T,
where C depends on |ulpy1, [U|ki1, [|@lloo, T'5 B, Bo, Bi, and |[ug||rs1, but is independent of h.

Proof. Applying the estimate (3.18) to the second error equation in (3.16) with a = ® — ®;, and
f = p(|uf® — |up|?), we obtain

1© = @il SO+ 2 < B+ (lulloo + lunlloo) lu — ull- (3.25)

We now return to the first error equation. Set & = I1yu — u,n = Il;u — uy, and v, = 71, we have

i/sﬂ?m*d”j = ifgftn*dx + Ao(n,m) — Ao(&,m) + H(n).

Thus
d
£H77H2 = 2Re (/ §t77*d:1:) —2Im(Ay(&,m)) — 2ImH (n). (3.26)
Q
Note that from (3.9) we have Ag(&,n) = — [,&n*dx. Thus the first two terms on the right is
bounded from above by
201&0 - [l +20€0 - Inll < @II&N + 2lIEDnll < CREin]l, (3.27)

where C' depends on |ug1 and |ug|x41. We proceed to estimate the nonlinear term as follows:
2[H ()] =2 [{(® — ®n)un + D(u — up),n)]
<2([|[® — Pallllunlloo + [l = unll[[®llso) lI7]]-

Using the Sobolev embedding result we have for k£ > %l -1,

[ulloe < Cllullisr-
By the approximation results (3.10), we have for small h,

lu = wnll = 1€ = nll <IEN+ Il < 2+ Dnl,
Ju = unlloo = 1€ = Mlloo <lI€lloc + 1Mlloo < h* + h_d/2||77||v

where we used the following fact:

1€llo0 < flu = wrlloo + [lur — Tul|o
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< hF 4+ Y |up — Tu|| < ChE,

with u; is a local interpolation polynomial to approximate wu.

Substitution of the above estimates into (3.25) gives
1© — @ull < B+ Il + B2l (3.28)

Hence (3.26) reduces to

d

il SEEE (1@ = @yl ([l — unlloo + [fulloe) + [lu = unlll[ @l
SE (1@ = @l (lullier + (A" +R=2)nll) + (R + [0l ]l
SE Il + R Inl® + Rl

For h < 1, we have
€ = h(chrlfd/Z) < 1.

Set B = h”,ﬂh, so that

d
ZB< C(14+ B +eB*+ B3 < C(eB*> +1)(B +1). (3.29)

Note that at t = 0 we have
n(x,0) = Hug(x) — up(x,0) = £(2;0) + uo(x) — up(z,0),
hence ||n(-,0)> < Coh?*2 by (3.10) and the L%-projection error, with Cy depending on |[ug][x1-
Thus B(0) = (-, )]l /2! < Co.
Integration of (3.29) gives
dz
e22+1)(z+1)
for t € [0,7T]. If B(t) <1, then the proof is done. Otherwise for B(t) > 1, we bound G from below
as follows:

G(B(t)) < G(B(0)) +CT, G(s) := /1 (

1 [P dz
P -~
G(B)z 2/1 Z(1 4 €22)

1/Bﬁ dy 2 2
= - — set ez =y
2 ) y(1+9?) ( )

= 11 1+ ! +11 1+1
T eB? 18 €]’

1log (1 + %) — 1log (1 + L) < G(B(0)) + CT,

Hence

4 4 eB2
from which we are able to derive

B(t) < {ﬁ} = 4(G(By) +CT).

It suffices to choose h suitably small so that € < 57 L and as a result we have

e?r—1)7

B(t) < [26‘1]% = \/562(G(BO)+CT) — O*.



16 NIANYU YI' AND HAILIANG LIU**

We thus conclude B(t) < max{1,C*}. Hence ||n(-,t)| < max{1,C*}h*"! which when combined
with the triangle inequality [Ju(-,t) —up(-, t)|| < ||n]| + [|£]] leads to the desired error estimate. [J

Remark 3.2. A sharp L? error estimate with homogeneous boundary condition also for u can be
obtained as well. In such case, instead of projection (3.9) one can simply define T} by

Ap(w — Iyw,v) = 0, Yv e V.

The approximation result stated in Theorem 3.1 remains valid, as is already known from [3] in the

non-complex setting.

Remark 3.3. Under some reqularity assumptions on the exact solution, the convergence rates

max [|u- ) — u ()] = O + (A1)?),

0<n<K

are expected for the fully discrete approrimation. The arguments in a proof of these estimates are
similar to those appearing already in [31, 32|, yet more involved in handling nonlinear terms and

)

stability of the time discretization, and so we leave it for future work.

4. NUMERICAL EXAMPLES

In this section, we present several numerical tests designed to gauge the performance of our
conservative DG schemes. Interest is given particularly to validate our theoretical results, including
a study of the convergence rates.

In all our numerical tests the L? error is measured in discrete norm by

N Q 1/2
lv —vnll = (Zzwi(v(xé,t) —vh(fviat))QlKal) :

a=1 =1

where v = uf or u!, the real or imaginary part of u, and vy is the corresponding part of the
numerical solution. Here ¢ is the i-th quadrature point associated with weight w; so that Z?:l w; =
1. In our numerical tests, we take () = 25 for all polynomial elements we tested. For the parameters
B, Bo, 1 in numerical fluxes (2.10) and (2.11), we take 8 = Jy = 10 and 5 = 1—12 for Q¥ k =1,2

approximations.

Example 4.1. We consider the two-dimensional Schrodinger-Poisson problem:

iug(z,y,t) = — %Au(w, y,t) + ®(z,y, Hu(z, y,t), (x,9) € Q=057
AQ(z,y,t) =[u(z,y, O, (z,y) €,

u(z,y,t) =0, (z,y) € 09,

O(x,y,t) =0, (x,y) € 09,

u(z,y,0) =ug(x,y) = 10e~10E=25)+(y=25)%) (z,y) € Q.
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TABLE 1. Errors for Example 4.1 when using Q*, k = 1,2, 3 polynomials on a uni-
form mesh. Final time is ¢t = 0.1.

QF | |luso — u100|| | order | [|Juioo — ua0o|| | order | ||uggo — w40o]| | order
k=1 1.7534e-01 - 4.4228e-02 1.99 1.1066e-02 2.00
k=21 3.1607e-03 - 3.4212e-04 3.21 3.9861e-05 3.10

This problem was tested numerically in [4] by a second-order Strang splitting time discretization
combined with a conforming finite element space discretization. We first test the accuracy and
convergence rate using the Q polynomials with & = 1,2 on a uniform mesh with N x N cells.
Without the exact solution, we calculate the error ||uy—uay || between the two level approximations
with uy denoting the numerical approximation on a mesh with NV x N cells. Table 1 reports the
L? errors and orders of accuracy. We observe that the DG method achieves the optimal k£ +1 order
for k = 1,2. We then test the conservation property of the scheme using Q2 polynomials. Figure
1 plots the history of the relative mass and energy, respectively; we also compare the energy

Butu) = [ (19 + oI ai ) de

and the DG energy defined by

1
Buuf) = A i) + 5 [ @7 (o3P da

It shows that the mass is well preserved, and the energy is asymptotically preserved as the discrete
energy appears to evolve quite close to the initial energy. Figure 2 shows the wave function
lu(z,y,t)| at time ¢ = 0.1,0.2,2, and ¢ = 10; using a 100 x 100 mesh and polynomial basis
functions of degree 2.

1.003

1.002 | ﬁiwﬁﬁ**fﬁ ‘***ML an*fw‘ ﬁwm% i

¢

VY

o

1.001

—=—Mass
Energy
—+— DG Energy|

0.999

Relative mass and energy

0.998 [

0.997
0

FiGURE 1. Example 4.1. Mass and energy history.
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FIGURE 2. Example 4.1. Wave function |u(zx,y,t)| at t = 0.1,0.2,2, and ¢ = 10.

Example 4.2. We consider the two-dimensional Schridinger—Poisson equation in € = [—8,8]?
with nonlinear interaction:

iug(x,y,t) = — %Au(m, y,t) + ®(z,y, u(z,y,t) + V(z, y)u(z,y, t) + |ul*u(z,y,1),
~A®(x,y,t) =|u(z,y, ) -1, (2,9) € Q,
=0, (z,y) € 09,
=0, (z,y) € 09,

1 _ 22 4y?

U(w,y,O)ZuO(I,y)Zme T(z+iy), (zy) e

(,y,t)
u(z,y,t)
®(z,y,1)

This problem has been tested numerically in [37] with the potential V(x,y) = # We apply
the fully-discrete DG scheme (2.26a)-(2.26¢) and the corresponding iteration algorithm for this
problem. We carry out numerical tests with the potential V' (z,y) = # and V(z,y) = #
on a 80 x 80 mesh and polynomial basis functions of degree 2. In Figure 3 we plot the relative
mass and energy history. During the simulation up to ¢t = 10, the mass is preserved well, and the
energy is asymptotically preserved. Figures 4-5 and Figures 6-7 show the wave function |u(zx,y,t)|
at time t = 0,1,2 and ¢t = 5, 7.5, 10, respectively. We can see clearly that the repulsive V' enforces
the dispersion in x or y direction.
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5. CONCLUDING REMARKS

In this paper, we have constructed, analyzed and tested high-order conservative DG schemes for
the nonlinear Schrodinger—Poisson equation. It is shown that both semi-discrete and fully discrete
schemes preserve both mass and energy. For the semi-discrete DG scheme we obtained optimal
L? error estimates in the full nonlinear setting. We presented a number of numerical tests to
illustrate the performance of the proposed schemes and to validate the theoretical results of the
paper. The numerical results confirm that the method is both accurate and robust, both mass and
energy are well preserved over long time simulations. Therefore, the schemes can be considered
as a competitive algorithm in the solution of the nonlinear Schrodinger—Poisson equation. A very
interesting question is whether it is possible to improve these schemes into higher order (in time)
schemes while still conserving both mass and (a modified) energy.
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