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ABSTRACT. We propose and study a one-dimensional 2 X 2 hyperbolic Eulerian
system with local relaxation from critical threshold phenomena perspective.
The system features dynamic transition between strictly and weakly hyper-
bolic. For different classes of relaxation we identify intrinsic critical thresh-
olds for initial data that distinguish global regularity and finite time blowup.
For relaxation independent of density, we estimate bounds on density in terms
of velocity where the system is strictly hyperbolic.

1. Introduction. It is a generic phenomena that homogeneous systems of quasi-
linear hyperbolic systems break down, i.e., the derivative of solutions become un-
bounded in finite time. The presence of source terms can lead to a delicate balance
and persistence of global-in-time solutions for a large set of initial data. The ex-
istence of a threshold manifold on the initial phase space so that initial data on
one side of the curve results in global-in-time solutions while the other side leads to
solutions having shocks/concentration in finite time, is precisely the critical thresh-
old phenomena. For Euler-Poisson equations, it was studied for the first time in
[7] , followed by threshold analysis on various hyperbolic balance laws, see, e.g.,
[1,4, 12, 13, 14, 16, 17, 18, 19, 21].

In this work we are concerned with the critical threshold phenomena for the
following Eulerian balance laws,

pt+ (pv)e =0, z€R, t >0,
up + uuy, = p(v — u),
subject to initial density and velocity,
(p(0,2),u(0,2)) = (po(x) = 0,uo()). (1b)
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The Burgers’ equation in (1a) with a source term can be interpreted as a relaxation
of the velocity against the density. Such choice incorporates a kind of direct pro-
portionality of relaxation to the density, i.e., the more the particles at a point the
faster they are pulled to a local equilibrium.

The system (1a) is closed only when v is related to p and u. The key motivation
behind (1), as argued in [2], is to extend the usual mass-transport equation

pi+ (pv)e =0, (2)

into a class of balance laws. Here, v € R represents a mean velocity field. If v is
given in terms of the density variable p, then (2) becomes closed. In this case, the
system is considered to be in local equilibrium. However, very often v depends on
some extra variables in addition to the conserved density. The extra variable may
be used to characterize non-equilibrium features of the system under consideration.
Choosing a suitable non-equilibrium variable and determining its evolution equation
are the fundamental tasks of irreversible thermodynamics [8, 22].
In [2], the authors analyzed the system endowed with

v=0Q *u,

where @ is a symmetric, nonnegative kernel of integral one. Their main result states
that there is a global-in-time C* solution if and only if

Uoz (z) + po(z) >0 Vo eR.

This sharp threshold is remarkable for a system of nonlocal hyperbolic equations.
A natural question arises that if the relaxation term v is local, i.e., v = f(p,u), a
smooth function, then whether the system

pe + (pf(p,u)z =0, (3a)
up 4 uug = p(f(p,u) —u) (3b)

admits a similar critical threshold phenomena. A more specific question would be:
under what conditions on f(p,u) does this system allow for a precise characteriza-
tion of critical threshold phenomena?

A unique feature of this system is that it may transition from being strictly
hyperbolic to weakly hyperbolic (see Remark 1). How to handle such a situation in
perspective of critical threshold phenomena for (3) is the main task in this work.
The structure of the system (3) allows us to obtain an inhomogeneous transport
equation for the quantity e := u, + p,

et +ue, = —e(e — p). (4)

Thanks to this relation, we can compare the regularity of e and p and obtain global-
in-time bounds on p and u, simultaneously. However, due to p and u having different
local propagation speeds, it is not sufficient to control e alone to extend the solution
globally. This is the main difference between (3) and the system with f = @Q *u in
[2], though equation (4) was also used in identifying the critical thresholds for the
case f = @ * u. In this paper, we discover that we can obtain critical thresholds
for (3) under a sufficient condition, f,, < 0. This condition primarily helps in two
ways:
e It ensures that the particles are pulled back towards the local equilibrium
state, thereby bounding the velocity. Although we can guarantee this by
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weaker assumptions. For example, if f = f(u) only and u* is a unique root of
f(u) —u =0, then

min{inf ug, u*} < u(t,-) < max{sup ug, u*}, (5)

if f.(u*) < 1. This is a result proved in Proposition 1.
e It ensures the bound on p in tandem with the bound on e.

We should also point out that equation (4) is similar to an equation derived
by the authors in [3] for the Euler alignment system which later lead to a string
of regularity results for nonlocal Cucker-Smale alignment dynamics, [6, 9, 10]. It
would be interesting to develop critical threshold theory in multiple dimensions, for
which the above control on e is lacking.

Our critical threshold analysis relies on local existence of classical solutions. How-
ever, the conventional local existence theorems seem to be inapplicable due to the
system changing type from strictly to weakly hyperbolic. For the local existence
including the weakly hyperbolic case, the key is to use the system augmented with
the equation for e = u, + p, which renders the coefficient matrix in the resulting
system diagonal. Conventional existence/uniqueness theorems can then be applied
to the augmented system, leading to a modified version of the local existence valid
for all cases.

1.1. Related work. Critical thresholds of weakly hyperbolic balance laws (2 x 2
systems) are relatively easier to obtain due to the propagation along a single char-
acteristic field [1, 4, 7, 15]. Strongly hyperbolic 2 x 2 systems are relatively difficult
to analyze from critical threshold point of view due to the presence of dynamic cou-
pling between two different characteristic fields. One of the first works to analyze
the blow up of 2 x 2 hyperbolic conservation laws is by Lax [11], where sufficient
conditions for existence of smooth solutions for homogenous systems is derived.
Later works [13, 14, 20] leveraged these techniques to derive thresholds in 2 x 2
systems with source terms. See [20] for results on 1D Euler-Poisson systems with
pressure, [13, 14] for isentropic Euler systems with both pressure and relaxation,
while the system in [14] is in Lagrangian coordinate. The system (3) differs from
the relaxation systems of [13, 14] in two key aspects: (i) the implicit relaxation form
in (3) allows for rich equilibria f(p,#(p)) with ¢ € {u: f(p,u) = u}, instead of
the usual explicit relaxation form as in [13, 14]; (ii) (3) can transition from being
strongly hyperbolic to weakly hyperbolic (see Remark 1 and note thereafter), but
systems in [13, 14] are strictly hyperbolic. More importantly, in these works, due
to presence of two characteristic fields, one obtains in general only upper and lower
thresholds. For the class of systems (3) with f = f(u), we distinguish between
strictly and weakly hyperbolic cases, and for each case we obtain sharp critical
threshold results. For general f = f(p,u), we give sufficient conditions for global
solution as well as finite time breakdown.

The rest of the paper is organized as follows: Section 2 contains the main results.
It has two subsections. The first one is devoted to local existence theorems owing
to which the a priori analysis is carried out and the other contains the critical
threshold results. Section 3 contains the proofs of the main results for the case
where f depends on velocity only. Section 4 contains the same for general f. And
the appendix contains the proof to Theorem 2.2.

Notation: Cf(R) for k = 0,1,... is the set of bounded functions which are
k times continuously differentiable with all the derivatives upto k-th order being
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uniformly bounded. For a function g : R — R,

llglloc = sup |g(x)].
z€R

2. Main results.

2.1. Local existence results. We reformulate (3) as

A SR 4 W PV R

This is a hyperbolic system since the two eigenvalues of the coefficient matrix,
>\1:pf0+f and A2:u7

are real. Local existence of classical solutions of strictly hyperbolic systems is well
known in the literature, see [5, Theorem 7.7.1]. We state the relevant theorem for
our case here.

Theorem 2.1. Let f be smooth such that the system (3) is strictly hyperbolic. Let
0 < po(z) and ug(x) be functions in CL(R). Then, there exists T > 0 such that the
solution

p,u € CH(0,T) x R).

Moreover, the life span T can be extended as long as

max {10. (o, w)(t: oo, (2 1)(E, Yoo} < 00.

Remark 1. In the case f = f(u), it can be shown (see Lemma 3.1) that the set
S ={u: u= ()}

is invariant under the system (3). Hence, for initial data with ug(z) ¢ X for all
x € R, we have u(t,z) ¢ ¥ for x € R and ¢ > 0. That is, system (3) is strictly
hyperbolic for all ¢ > 0 for solutions under consideration if ug(x) ¢ X.

For general f, the set
Ly =A{(p,u) : A&r = Ao}
is not necessarily invariant. That is, even (pg,ug)(x) ¢ ¥q for all x € R, it is
likely that (p(t,x),u(t,z)) € ¥1 at some ¢t > 0. In other words, the system may
transition from being strictly hyperbolic to weakly hyperbolic at some ¢ > 0. A
modified version of the local existence for weakly hyperbolic case is thus stated in
the following theorem.

Theorem 2.2. Consider the system (3) with a smooth function f = f(p,u). Let
(po > 0,up) € CH(R) x CZ(R). Then, there exists T > 0 such that the solution

pyu € CH(0,T) x R).

In addition,
uy +p € CH(0,T) x R).

Moreover, the life span T can be extended as long as

max {10: (o, w)(t: oo, (2 1u)(E oo} < 00.
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Remark 2. A special case for such situation is when f(p,u) = w. Then the system
(3) reduces to the pressureless Euler system,

pr+ (pu)e =0, g+, =0,

which is a weakly hyperbolic system. The method of characteristics allows for a
precise solution of form

po(a) ugg (@)
ta)=———t— =
,0(,13) 1+U0$(Oé)t7 ur( ,:E) 1+UO1(Oé>t
along © = a + up(a)t for any @ € R. One can verify that when shock forms,
u; — —o0, and simultaneously p — oco. In addition, we observe that in order for p
to be in C!, we need uy € C? along with pg € C*.

Remark 3. We point out that for hyperbolic conservation laws, the time span T' can
be extended as long as the necessary and sufficient condition, |0, (p, u) (%, )]|c < 00,
holds. p,u in this case are inherently bounded for all time as a consequence of the
conservation law. This changes for hyperbolic balance laws, i.e., when source terms
are present. In such a case, p,u can blow up before the shock forms. Then we
also need to bound p, u along with the first order derivatives in order to extend the
smooth solution to further times.

Note that the difference between the two local existence theorems is essentially
in the smoothness required for ug. This change arises due to the assumption of
strict hyperbolicity in Theorem 2.1 which is absent in Theorem 2.2. For existence
of classical solutions to strictly hyperbolic systems such as the isentropic Euler
system, we require the same degree of smoothness (at least C') for py and wug.
p,u remain bounded for all times and breakdown of smooth solution occurs when
|pz| — 00 or |u,| — oo as stated in Theorem 2.1. However, for weakly hyperbolic
systems such as the pressureless Euler system (see Remark 2), —u, and p blow
up simultaneously in the event of breakdown of classical solution. This physical
property of weakly hyperbolic systems requires the assumption of an extra degree
of smoothness in ug compared to pg.

To our knowledge, there seems no local existence theorems which give existence
of such mixed type (see Remark 1) and asymmetric systems, (6). Therefore, we
present a proof of Thoerem 2.2 in the Appendix.

2.2. Threshold results. We begin by stating results for a special form of f.

Theorem 2.3. Let f be a smooth function depending on u only, i.e., f, = 0.
Consider the system (3) with initial conditions (py > 0,ug) € CE(R) x C}(R) with
inf | f(up) — uo| > 0. If fu, <0 for solution u under consideration, then
1. Bounds on u and p: u(t,-) is uniformly bounded with bounds as in (5) and
satisfies | f(u(t,-)) —u(t,-)| >0 fort>0. And
sup pol f (uo) — uo|

= |f(u(t,z)) — u(t,z)]| .

p(t,z) < u(
efuoz

2. Global solution: If
uOJL(x) + po(x) > 07 Vr € R7

then there exists a global classical solution p,u € C((0,00) xR) to (3). More-
over, p,uy; are uniformly bounded with

0<p(t,x) <M, 0<u,(t,z)+pt,z) <M, vVt > 0,z € R,
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where M = max{sup po, sup(uoz + po)}-
3. Finite time breakdown: If 3x¢ € R such that

gz (o) + po(wg) <0,
then limy_¢, || = 00 or limy_y, |ugy| = oo for some t. > 0.

Theorem 2.4. Let f be a smooth function depending on uw only, i.e., f, = 0.
Consider the system (3) subject to initial conditions, (po > 0,up) € C}(R) x CZ(R).
If .. <0 for the solution u of consideration, then
1. Global Solution: If
uos () + po(z) 20, Vr€eR,
then there exists a global solution
p,u € C((0,00) x R)
to system (3). Moreover, u, p,u, are uniformly bounded with bounds on u as
in (5) and,
0<pt,x) <M, 0<ug(t,z)+plt,z)<M, vVt > 0,7 € R,
where M = max{sup pg, sup(uoz + po)}. And we have the following,
1Pz (t, )lloo < (L4 [[pozlloc + [|tozalloc + ||p0||00)612(”mcz+1)maX{M371}tv t>0.
2. Finite time breakdown: If dx¢ € R such that

oz (z0) + po(zo) < 0,

then limy_,;, uy = —oo for some t. > 0 at the rate of O (rlﬂ) or faster.

Remark 4. The condition inf |f(ug) — ug| in Theorem 2.3 makes the system (3)
strictly hyperbolic. The key difference between the two theorems is that for Theo-
rem 2.3, p,u are bounded for all times as long as they are so initially. This is not
the case with the weakly hyperbolic system (Theorem 2.4) where there might be
density concentration, i.e., p tends to oo in finite time along with —u,.

Next, we state results for more general f.

Theorem 2.5. Let f = f(p,u) be a smooth function of its variables. Consider the
system (3) with initial conditions (po > 0,ug) € C}(R) x CZ(R). If fu, <0 for the
solutions under consideration, then

1. Bounds on u: There exists a smooth function ¢ : RT — R such that,

min {i%fuo,min ¢(p)} < u(t, ) < max {s%p Uup, Max (;S(p)} ,
for as long as p > 0 is bounded.
2. Bounds on p,u: If
wou(z) + polz) >0, VzER,
then p,u, are uniformly bounded with
0<p(t,x) <M, 0<u,(t,z)+p(t,z) <M, vVt >0,z € R.

where M = max{sup po, sup(uoz + po)}-
3. Global solution: If in addition to up, + po > 0,
o (pf)pp =0, fuu <0 along with

poz(x) 20,  Uops(x) + pou(x) >0, Vo € R,
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OR
o (pf)pp <0, fuuw > 0 along with

poz(x) <0,  Uopx(x) + pou(x) <0, Vo € R,

then there exists a global solution p,u € C*((0,00) x R) to system (3). In
addition,

s+ p € C1((0,00) x R).
4. Finite time breakdown: If 9z € R such that

oz (7o) + po(zo) <0,

_1

\tft.|) or faster, for some t. > 0.

then limy_;, uy = —o0 at the rate of O (

Remark 5. It is worth noting that the additional conditions for global existence
in assertion (3) of Theorem 2.5 are not sharp, and we do not know if they are also
necessary for global existence.

Since the solutions persist for as long as one can place a priori bounds on the
solutions and their first order derivatives, our analysis is carried out on the already
existing classical local solutions.

For strictly hyperbolic systems, we have the technique of Riemann invariants
whereas weakly hyperbolic systems can be reduced to a system of ODEs along a
single characteristic path. Owing to the structure of (6), we will blend the two
techniques to obtain results on critical thresholds.

3. Proofs of results for f = f(u) case. In the case that f depends on velocity
only, the system (6) becomes

HE SR ™

with Ay = f(u) and Ay = u.

We first derive bounds on u under some structural conditions on f. We assume
that the set ¥ := {u : f(u) = u} is nonempty, finite and its two endpoints are
stable critical points, i.e., f,, < 1, then u can be shown uniformly bounded as long
as ug(x) is. More precisely, we state the following result.

Proposition 1 (Bounds on u). Let uj and ul, be the smallest and largest elements
of ¥ respectively. Then as long as p in (7) is bounded, we have the following:
If fu(uy) <1 and f,(uy) <1, then

min{inf ug, ui } < u(t,-) < max{supug, u}y}.
In particular, if ¥ has ezactly one element, u* and f,(u*) <1 then
min{inf ug, u*} < u(t,-) < max{sup ug, u*}. (8)

Remark 6. The proposition states bounds on u if ¥ has finitely many elements.
However, if ¥ has infinitely many elements, then to bound u, we do not require the
assumption of stability of the endpoints. This fact will be evident in the proof of
the Proposition itself. For example, if f(u) = u+sinu then ¥ ={..., —7,0,7,...}.
In this case, u will be uniformly bounded and lie in between two distinct elements
of X for all time.
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For p > 0 bounded, the bound of u can be obtained by considering the velocity
equation (7) alone. By method of characteristics, along the path

dd—)t(:u(t,X)7 X(0) =0 €R, (9)
the resulting ODE
Dt X(1)) = ot X(0) (f(ult, X (1)) — u(t, X(1)) (10)

dt

will serve as the key to proving the Proposition. Hereafter, we will write X (¢;xq)
as X for the sake of simplicity.

Proof of Proposition 1: Firstly, note that elements of ¥ are critical points of
(10). Hence, by uniqueness of solution of ODEs, for any initial point zy with
uj < wup(wg) < wy then,

ul <u(t,X) <up, t>0. (11)

Now if the other condition holds, i.e., ug(zg) > u} (similar argument applies for
uo(zo) < uj to get the lower bound) then since u}, is the largest zero of f(u) —u
and fi,(ul) <1 so, f(uo(zo)) — uo(x) < 0. See Figure 1.

FIGURE 1. Terminal roots of f(u) —u = 0.

And since u}, is a critical point, we have
flu(t, X)) —u(t,X) <0, t >0.

Because if not, then f(u(t, X)) = u(t, X) = u}, for some ¢t > 0 which is a contra-
diction. And hence, for such xg, we have from (10) that

%u(t,X) = p(t, X)(f(u(t, X)) — u(t, X)) < 0.

Therefore, u(t, X) < ug(zo). Combining this with (11) and collecting all character-
istics, we obtain
u(t, ) < max{sup ug, uy }-
O
Next, we bound p. We motivate ourselves by the fact that p behaves differently
for strictly and weakly hyperbolic systems. In the former, there is generally no
density concentration, however, that is not the case for the latter. Therefore, the
bound on p we derive depends on whether u will cross a point in ¥. The following
Lemma demarcates the two cases of u crossing a point in X or not based on the
initial conditions.
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Lemma 3.1. If |f(uo(z)) — uo(x)| > 0 for all x € R, then
|f(u(t,-)) —u(t,-)| >0, t=0.
In particular,
sg(f(uo) — uo) = sgn(f(u(t,)) —u(t,)), t=0.

Proof. Without loss of generality assume f(ug(z)) — up(x) < 0 for all x € R. For a
fixed xg € R, set G(t) := f(u(t, X)) —u(t, X). Using (10), we have

dG d
= fulult, X)) = D —u(t, X)

= (fulu(t, X)) = Dp(t, X)G,
which in turn gives G(t) = G(O)efot P X (M) (fulu(m, X (1)) =1)dT - Therefore,

sgn(G(t)) = sgn(G(0)),
along the path (¢, X) with initial point (0,2). This argument applies for all 2o € R
which completes the proof. O

Owing to Lemma 3.1, we have that {u : f(u) = u} is an invariant set. Hence for
initial data satisfying |f(uo(z)) — uo(z)| > 0 for all z € R, the system (7) is strictly
hyperbolic for all £ > 0. We will obtain bounds on p in terms of v using Riemann
invariant. From (7), we have that the Riemann invariant corresponding to Az is u
trivially. Let the Riemann invariant corresponding to A; be R = R(p, u) such that

Rt + )\1Rz = pRu(f — u)
It suffices to find an appropriate integrating factor ¢ such that
(R, Ru]=0lf —u pful.
The right hand side being the left eigenvector of coefficient matrix in (7) corre-
sponding to A;. If we assume ¢ = ¢(u), then setting R,, = R,,, we obtain,
u(f —u) + ¢(fu —1) = o fu,

which results in
do du
¢ f-u
I}

u dg
By integrating, one obtains ¢(u) = e’ F®-¢ is a valid integrating factor. Here,
the requirement of strict hyperbolicity is used. It ensures that ¢, and in turn R, is
well defined. Consequently,

R = po(f — ) = pelio 76 (f — ). (12)

The complete invariant system is
Ri + fRy = p*¢fu(f — u) = pRfu, (13a)
up + uuy, = p(f —u). (13b)

For later use we set Ro(x) := R(po(x),uo(x)) as initial data for R.
We state bounds on p in the following proposition.

Proposition 2. Let |f(ug(z)) — ug(z)| > 0 for all z € R and f,, <0. Then
sup po|f(uo) — uo
p(t,x) < T e o) | '
eluo@) TO=E|f(u(t,x)) — u(t, )]
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Remark 7. Note that the right hand side blows up as u — u* for u* € ¥. This
shows that the region where p is bounded is asymptotic to the line v = w* for
u* € X. See Figure 2.

__Jinvariant Region

0 01 02 03 04 05 06 07 08 09 1

FIGURE 2. Asymptotic invariant region.

Proof of Proposition 2: Without loss of generality we assume f(ug) —ug <0
for all x € R. Hence Ry(z) < 0 for all z € R. Fix an ¢ > 0 and set R(¢,z) :=
R(p(t,x),u(t,z)) + et. We will first show that if for some a > 0, Ry > —«, then

R> —a, fort>D0. (14)

By way of contradiction, we assume that for the first time, t., R(t., x.) = —a for
some z, € R. Therefore, ét (ts, x+) < 0. Also note that at this point Rw = 0 because
if not then there exists some z; in the neighborhood such that R(t,, 1) < —a, which
contradicts that this is the first time of violation. From (13a), we obtain

Re+ fRy = pRfu+e(1 = pfut).
At (ts, z4),
R = —plts, z)afululte, 2)) + € [1 = plte, 22) fululte, 2))t] >
This is a contradiction. This proves (14). Plugging back the expression for R in
(14), we have that if for some « > 0, Ry > —a, then
R>—-a—¢€, t>0.

Since ¢ is arbitrary, we have R > —a« is an invariant region in the p — u plane.
Consequently, we obtain

R > inf R,. (15)
Plugging (12) above finishes the proof. O

Remark 8. We point out that by making the assumption f, < 0, we impose
that ¥ has at most one element in the domain of consideration. From our earlier
assumption of nonemptiness, we implicitly impose that f(u) — u has exactly one
zero in the domain of consideration.

Proposition 2 assumes that the initial data does not cross {u : f(u) = u}. In
such a case, one could bound u, along with R, (derivatives of Riemann invariants).
For general initial data ug that might cross {u : f(u) = u}, the usual existing
technique of bounding derivatives of solutions (p,u) using Riemann invariants is
no longer applicable. We will now show that a bound on density and u, can be
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obtained together through an argument by taking advantage of the structure of (7).
Moreover, the bounds obtained are uniform.

We proceed to take derivative of second equation in (7) with respect to x to
obtain,

Uyt + Ulgy = _ui =+ (pf):v — UPg — UgP-
This when combined with the p equation in (7), i.e., (pf)z = —ps, results in
(g + p)t + (g + p)e = —uz(uz + p).
Set
e(t,x) := uy(t,x) + p(t, x)
with eg(z) = uo.(x) + po(x), we thus obtain the following coupled system,
pr+ [pa = fup(p —e), (16a)
et + ue, = —e(e — p). (16b)
This coupled system will enable us to prove the following result.
Proposition 3. Let f, < 0. If po(x),eo(x) > 0 for all x € R with M =
max{sup pg,supeg}, then p,e € [0, M] for all further times.

Moreover, if eg(x*) < 0 for some x*, then 3x.,t. > 0 such that lim, ,,- e(t,z.) =
—00.

Remark 9. Even though we allow more general initial data and obtain uniform
bounds on p, we pay a price by involving the derivative of uw. This is actually
expected due to the system losing its strict hyperbolicity.

Proof. Taking note of (16a), we define another characteristic path, (¢,Y(¢t)) with Y
as
dy
S =W Y), YO = a7)

We can rewrite equations in (16) as ODEs on the described characteristic paths
(t,Y) and (¢, X) defined by (9):

%p(t»Y) = fu(u(t,Y))pt,Y)(p(t,Y) —e(t,Y)), (18a)
%e(t,X) = —e(t, X)(e(t, X) — p(t, X)). (18b)

Note that 0 is a critical point to (18a). Therefore, if p(0,z) > 0, then p(¢,-) > 0 for
all time. Same holds for e(, -) since 0 is a critical point of (18b) as well.

Next, by definition of M, p(0,z) € [0, M] and e(0,z) € [0, M] for all x € R. We
will show that p(t,-) and e(¢, -) remains in [0, M]. From (18), we have that whenever
p(t,-),e(t,) € [0, M], then

%pu,m < fup(t, V) (p(t,Y) = M),

(1, X) < —elt, X)elt, X) — M)

These inequalities hold for all points at time ¢ on both characteristic paths. Conse-
quently, from comparison, p(t,-), e(t,-) € [0, M] for any future time.
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For the second part assume eg(z*) < 0 for some z*. In (18b), consider X with
X (0) = z*. To make the equation look simple, we abused the notation and denoted
e(t, X),p(t, X) as e(t), p(t) so that

d
d—(z = —e(e — p).
Since, e = 0 is an unstable equilibrium point, €(0) < 0 implies that e(¢) < 0 for all

t > 0. Consequently,
de

— < —e2
it = °
Hence,
e< O
~ 1+4te(0)
which implies that
lim e(t) = —o0,
t—to
for some t. < —(e(0))~. O

The tools developed uptil this point will enable us to bound u, p, u,. Observing
the second assertion of Theorem 2.2, to extend the local solutions to arbitrary time,
it remains to control p,. In view of this, taking the x derivative of system (16), and
denoting £ := p, and 7 := e,, we obtain the system,

&+ f& = fu(gp - 26)5 — fupn — fuup(p - 6)27 (193)
N+ ung = e + (2p — 3e)n. (19b)

Note that all the coefficients on the right hand side are bounded. We leverage this
fact in following Lemma which will enable us to prove boundedness of &.

Lemma 3.2. Consider the following system of equations
Pt + pape = ap +bq +c,
Gt + p2qz = kp +lg+m,
with initial conditions po,qo- a,b,c, k,1,m,po,qo all belong to L>°(R). Then
[1p(t, Moo, a(t, oo < B,
where 8 =1+ ||polloc + l|q0l|oc and

7 = llalloo + [blloo + [lelloo + [[Elloo + [[Tl]oo + [[m]loo-

Before proving this Lemma, we state the following corollary which is a result of
a direct application of this Lemma to (19).

Corollary 1. p, is bounded for all times with
P2t Moo < (1+ [P0zl oo + [leqn||oo)e 20V llez D maxda 13t
Here, M 1is as in Proposition 3.

Proof. Comparing (19) to the equations in Lemma 3.2 with p = £ and ¢ = 7, we
obtain

a= fu(3p—2e), b=—fup, C:*fuup(p*e)a
k=e, [1=2p—3, m=0.
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Consequently,
7 = llallos +11blloc +llelloc + [Klloc + [loo + [Im[]o
<5M||fller + M| fller +4MP|| fllcz + M + 5M
< 12(||fllo» + 1) max{M*, 1}.
Hence, the result. O

Now we prove the Lemma.
Proof of Lemma 3.2: We will show

p(ta ) S ﬂe’ﬂ'
The other bounds can be shown in a very similar fashion. For this, define a function,
G(ta ‘T) =D Be&'yt’

with 6 > 1 arbitrary but fixed constant. Note that G(0,z) < 0 for all z € R. We
will show that G(t,-) < 0 for all times. By way of contradiction, let (to,xg) be
the first point such that G(tg,xo) = 0. Hence, G¢(to,z9) > 0 and G, (tp,zo) =
Pz (to, zo) = 0. Using the p equation,

Gil(ty.2g) = @B +bg + c — 573" (

to,xo)

Assuming without loss of generality that ||q(t,-)||sc < Be®"t. For otherwise, we can
carry out the same procedure on g. Consequently,

Gtl(to.a0) < llallocBe™ +[[bllsollglloo + B’ lclloc — 578”7
< Bet — yBete < 0,

to,xo

which is a contradiction. Hence, G(t, z) < 0 for all ¢, . Note that all the calculations

hold for all § > 1. Taking limit as § — 1, we prove the Lemma. O
Next, we prove Theorem 2.4 using the tools developed above.

Proof of Theorem 2.J: From Proposition 1, wu(t,-) is uniformly bounded. From

Proposition 3, the condition eg(x) := ug,(0, ) + po(0,2) > 0 for all z € R ensures

that both p(t,-) and e(t, ) = (us + p)(t,-) are uniformly bounded. Using this, we

have

U] < lus +p|l+p
< 2max{sup(ug, + po),sup po}.

Also, from Corollary 1, we have that p, is bounded for all times. Therefore, from
Theorem 2.2, we have the existence of global-in-time solutions.

To prove the converse, we let x* € R with ep(x*) < 0. Then from Proposition 3,
e = u; + p — —oo in finite time. Since p(t,-) > 0, we conclude u, — —oo in finite
time and u loses C'' smoothness. This concludes the proof to Theorem 2.4. O

Now we will show that assuming the strict hyperbolicity of (7), it can be more
conveniently shown that p,. is bounded. The key here is to use the Riemann invariant
technique which was not available to us in the ansatz of the hypothesis of Theorem
2.4. More precisely, we have the following Proposition,

Proposition 4. Let f, < 0 and |f(uo(z)) — uo(x)] > 0 for all x € R. Given

eo(x) > 0 for all x € R then p, is bounded for all time.
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Proof. Note that from Lemma 3.1, f(u(t,-) —u(t,) < 0 for all further times and R
in turn, is well defined for any ¢ > 0. Differentiating (12) wrt z, we have

u dg

fu dg S
Ry = po(f —w)eluo TO=FE 4 py, f,,elvo TOE
dg u dag

— palf — w)elio T 4 ple — p) fuelio T =i 1.
This leads to

_puo_de

re” o T — fp(e — p)

f—u '

Hence, we conclude that p, is bounded if and only if 7 is. In view of this, differen-
tiating (13a) w.r.t. x, we obtain

T+ frw + fuua:T = prfu + prfu + pruuua:-

Using u, = e — p and (20) for p,, we obtain

_fuw _dg
re~ % 7% — fu0(e — p)
f—u

Tt+me:_fur(e_2p)+Rfu +pruu(e_p)

2 (o
= _fur(e - 3p) - W + pruu(e - p)

2
=~ furle=39) = ple — ) (2~ fu ) (21)

We used (12) to obtain the second equation. Also, since f,(u) < 0 for all w in the
domain of consideration, and eg(-) > 0, by Proposition 3, we have uniform bounds
on e, p, and R. Putting these facts together, we conclude that (21) is linear with
coefficients bounded for any positive time. Therefore, r is bounded for all times.
Hence p, is bounded for all z € R, ¢t > 0. O

We can now prove the existence of classical solutions in the functional space as
stated in Theorem 2.3.

Proof of Theorem 2.3: Putting together Propositions 1, 3 and 4, we obtain that
if eg(x) > 0 for all z € R, then p(t,-), u(t,-), ug(t, ), pe(t,-) remain bounded for all
t > 0. For the only if part of Theorem 2.3, from (18b) we have that if ¢(0) < 0 then
e = uy + p — —oo in finite time. Therefore, u, — —oo in finite time and u ceases
to be in C!. O

Remark 10. From Proposition 2, we see that given the initial data does not cross
{u: f(u) = u}, then even if the initial data is such that eg(z*) < 0 for some z*,
there is no density concentration and solution breaks down through shock formation
only. This is generic to a strictly hyperbolic system. However, this case is different
from the usual strictly hyperbolic case. Unlike the usual situation where p,u are
both uniformly bounded, here, the particles may aggregate gradually. In other
words, lim;_,« p(t,z) = co when eg(z*) < 0 for some z*.

4. Proof of Theorem 2.5 (f = f(p,u)). Let 0 < po,up € C{(R). We begin by
obtaining bounds on u in terms of p. To do so, we show the existence of a curve
u = ¢(p) such that f(p,d(p)) = é(p) for p € [0, M], M > 0. The result is stated in
the following Lemma.
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Lemma 4.1. Ifsup fu(p,u) <1 for p € [0, M], then there exists a unique continu-
ous function, ¢ : [0, M] — R such that f(p, d(p)) = ¢(p) for p € [0, M].

Proof. Set h(p,u) := f(p,u) — u. Let €,a be constants such that € < f, < a < 1.
Define the mapping ® : C[0, M| — C0, M] as follows,
(Y)(p) = + ph(p,¥).

We claim that ® is a contraction mapping for a nonzero choice of p. Then by fixed
point theorem, we have the existence of a unique ¢ such that

hp;d(p)) =0 = f(p,d(p)) = d(p), p €0, M].
To prove the above claim, we evaluate
[ @1 — Do = (Y1 — ¥2) + p(h(p, Y1) — hip, ¥2))|
= [(1 + phy) (1 — P2)I.
Noting e — 1 < h,, < a—1 < 0. Choosing = 1/(1 — €), we have

[Py — Pyo| = <1 + 1h_u€> 1 — o

IN

a — €
1 |1 — o).
— €

Since € < a < 1, ® is a contraction.
O

Let (po > 0,up) € CY(R) x C1(R), be bounded. We proceed with obtaining
bounds on w in terms of p, with results stated in the following Proposition.

Proposition 5. Assume p = p(t,z) is bounded, and sup f,(p,u) < 1 for solutions
under consideration. Then

min{inf ug, min ¢(p)} < u(t, ) < max{sup ug, max @(p)}, (22)
for as long as p exists. ¢ is as given in Lemma j.1.

Proof. Along the characteristic path (¢, X) defined in (9), we have the following
ODE,

= 0t 20) (S0 20,00, ) - 0. X) ). (23)
This by Lemma 4.1 can be rewritten as
0 = €(0)(ult, X) — Blpt, X)),

where & := p(t, X)(fu(p(t, X),u(t, X)) — 1) with @ being a mean value between u
and ¢(p). By the assumption we have £ < 0, hence we have

E(0)ult, X) ~ ming(p)) < 0 < &(1)(u(t, X) — maxo(p)).

Therefore by comparison, we have on the path, (¢, X), with any fixed point, (0, zo),
both

u(t, X) < max{ug(xg), max ¢(p)},
and

u(t, X) > min{ug(zo), min ¢(p)},
as long as p exists. Combining all characteristics, we obtain the bounds as stated
in (22). O
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By using the technique as in Proposition 3, we will show uniform bounds on p
and u, by a coupling between p and e(t, x) := u,(t,z) + p(t, ). The result is stated
in the following Proposition.

Proposition 6. Let f,(p,u) < 0 for solutions under consideration. If eq(x), po(z) €
[0, M] for allx € R, thene(t,-), p(t,-) € [0, M] for allt > 0. Moreover, if eg(z*) <0
for some x*, then 3z, t. > 0 such that lim, - e(t,x.) = —o0.

Proof. We define the characteristic path, (¢,Y) corresponding to A; with Y satis-
fying the ODE,

% = p(t,Y)fp(p(t,Y),u(t,Y)) +f(p(t,Y),u(t,Y)), Y(O) = Yo, (24)

and recall the characteristic path (¢, X), we get the following system,
Lot Y) = ful(plt, V)00 V) )oY (0l Y) et Y)), (250)
o1, X) = —e(t, X)(elt, X) ~ plt, X). (25b)

Again we set eg(x) := ugz(x) + po(x) as initial data for e. With the condition
fu(p,u) <0, the proof of the claimed results is entirely similar to that in the proof
of Proposition 3. O

Next, we will show a sufficient condition to bound p,. In view of this, taking
derivative of transport equations for p, e and setting £ := p, and 1 := e,, we obtain,

&+ My = _<pf)pp£2 + (prpu(p - e) + fu(?’p - 26))5 (26&)
- pfun - fuup(p - 6)27
e+ un, = e€ + (2p — 3e)n. (26b)

We state a short Lemma which is the first step towards proving bounds on p,.

Lemma 4.2. Suppose e > 0. As long as £ exists:
1. ifn(0,z) > 0 and £(t,x) > 0 fort > 0,2 € R, thenn(t,z) >0 fort > 0,z € R,
2. ifn(0,2) <0 and&(t,z) <0 fort > 0,2 € R, thenn(t,x) <0 fort >0,z € R.
Proof. If € exists then (26b) can be reduced to ODE along the path (¢, X),
dn

o = e€(t, X) + (20 = 3e)n(t, X).

Upon integration, we obtain
t
) = (0. a)ed @347y [ i Coms0dn g g,
0

From this expression, one can conclude that if 1(0,29) > 0 and £(¢,z2) > 0 for
t >0,z € R, then n(t,x) > 0. The second assertion can be concluded similarly. [

Lemma 4.2 will help us to prove the following Proposition.

Proposition 7. (Bounds on &) Assume e(0,z) > 0 Vz € R.

1. Suppose 1(0,z),£(0,2) > 0 for all x € R. Also assume (pf),,
fuu < 0 for solutions under consideration. Then n(t,x) > 0, {(t,x)
t> 0,2 € R and for any t > 0, £(t,-) has a uniform upper bound.

and

>0
>0, for
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and

2. Suppose 1(0,x),£(0,z) < 0 for all x € R. Also assume (pf),p 0
0, for

fuu = 0 for solutions under consideration. Then n(t,x) <0, {(t,x)
t >0,z € R and for any t > 0, {(t,-) has a uniform lower bound.

<
<

Proof. We will prove the first assertion. The second can be proved similarly. Let
e > 0 be fixed. We add this barrier of € to £(0,z),7n(0,2) and take the resulting
sum to be the new initial profiles. Consequently, we have £(0,-) > € and 7(0,-) > e.
Note that if we are able to show £(¢t,-) > 0 for all further times along with £ being
upper bounded, then an application of Lemma 4.2 and then letting ¢ — 0" proves
the Proposition.

For this, we will use (26a). Note that (pf),, > 0 implies the coefficient of £2
in right hand side of (26a) is nonpositive and hence, £ is bounded from above as
long as the all the other terms on right hand side are bounded. Next, owing to the
assumptions, from (26a) we have,

&+ Mo = —(pF)pp® + (20000 = €) + Ju(3p — 20) )¢
= &(— (0ot + 20fpulp — ) + ful3p — 20)).

Therefore, £(t,-) > 0. Above calculations hold for all € > 0. Letting ¢ — 0T gives
the result. O

Using the tools developed in this section, we finally prove the main Theorem.

Proof of Theorem 2.5: From Proposition 5, we conclude that w is uniformly
bounded if p is. Based on the assumption on initial data we have eg(z) > 0 for all
z € R, then from Proposition 6, we have that p is uniformly bounded. Along with
that, we also obtain uniform bounds on u, since e and p are uniformly bounded.
This proves the first two assertions of the Theorem.

For the third assertion (global solution), assuming its hypothesis, we obtain that
from Proposition 7, p, is bounded for all times. Hence, from Theorem 2.2, we
obtain the global existence of solutions.

Assertion 4 (Finite time breakdown): If eg(z*) < 0 for some z*. From (25b),
along the characteristic path, (¢, X), with X (0) = 2*, we have that e(0) < 0. Then
from Proposition 6, e = u, + p — —o0 as t — t., a finite time. Since p(¢,-) > 0, we
conclude u; — —oo in finite time. O

Appendix A. Proof of Theorem 2.2. We begin with an auxiliary system of

form
Ui+ AU, = F(U), (27)
with f = f(n,v)
n fon(n —q)
U=| v |, A=dagnf,+ fv,v), F= n(f —v)
q q(n—q)

This is a symmetric hyperbolic system. Given U(0,-) € C}(R), [5, Theorem 7.7.1]
gives the local existence of classical solutions to (27), U in C1([0,T) x R) for some
T € (0,00]. The interval [0,T) is maximal in the sense that if 7' < oo, then as
t 1T, |0.U(t, )]l = o0 and the range of U becomes unbounded. We claim that
if ¢(0,2) = n(0,x) + v,(0, x), then

q(t,z) =n(t,z) + v (t,z) te€(0,T). (28)
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Substitution of this relation into the first two equations in the auxiliary system, we
obtain

ne+ (fn), =0, v+ v, =n(f—v).
This is the same system as (6). We thus take n(x,0) = po(x), v(z,0) = ug(x), and
obtain the local solution by setting

(p,u) = (n,v) € CY([0,T): R).
We now return to the proof of (28). Using the (n, g, v) system,
(Ve + 1 = @)t +v(vz + 1 = q)e = Vgp + VU + Ny + VNG — G — VG,
= v +no(f —v) +0(f —v)a + (v = f = nfa)na
+ fon(n —q) —q(n —q)
=~} +n(fo = Dve + fon(n —q) — q(n — q)
—z(vz + 1) + fon(ve +1—q) —q(n —q)
Vg (Ve + 1= q) + fon(ve + 1 —q)
—q(n+v; —q)
= —(vz —nfo +q)(vs +n —q).

Since (v +n — q)|,_, = 0, we have that ¢ = n + v, for any ¢ > 0.
Therefore, for (6), we also have p + u, in C1((0,T) x R).
Furthermore, using the 3rd equation and ¢ = n + v, we obtain the following,

Qut + VQzx = (271 - 3Q)Qx + qng.

This implies that for bounded (n,q), ¢, is bounded if n, is bounded. Returning
to the (p,u) variables, we see that the local solution can be extended beyond T if
0z (p,u) is bounded and (p, u) is bounded at time 7.
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