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ABSTRACT. We present a data-driven optimal control approach which inte-
grates the reported partial data with the epidemic dynamics for COVID-19.
We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the
model parameters are time-varying and learned from the data. This approach
serves to forecast the evolution of the outbreak over a relatively short time
period and provide scheduled controls of the epidemic. We provide efficient
numerical algorithms based on a generalized Pontryagin’s Maximum Principle
associated with the optimal control theory. Numerical experiments demon-
strate the effective performance of the proposed model and its numerical ap-
proximations.

1. Introduction. The outbreak of COVID-19 epidemic has resulted in over mil-
lions of confirmed and death cases, evoking fear locally and internationally. It has
a huge impact on global economy as well as everyone’s daily life. Numerous math-
ematical models are being produced to forecast the spread of COVID-19 in the
US and worldwide [3, 22, 9, 43]. These predictions have far-reaching consequences
regarding how quickly and how strongly governments move to curb the epidemic.
We aim to exploit the abundance of available data and integrate existing data with
disease dynamics based on epidemiological knowledge.

Compartmental transmission models have become an invaluable tool to study
the dynamics of infectious diseases. One of the well-known such models in epidemi-
ology is the SIR model proposed by Kermack and McKendrick [36] in 1927. Here,
S, I, R represent the number of susceptible, infected and recovered people respec-
tively. They use an ODE system to describe the transmission dynamics of infectious
diseases among the population. In the current COVID-19 pandemic, actions such
as travel restrictions, physical distancing and self-quarantine are taken to slow down
the spread of the epidemic. Typically, there is a significant incubation period during
which individuals have been infected but are not yet infectious themselves. During
this period the individual is in compartment E (for exposed), the resulting models
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are of SEIR or SEIRS type, respectively, depending on whether the acquired im-
munity is permanent or otherwise. Also such models can show how different public
health interventions may affect the outcome of the epidemic, and can also predict
future growth patterns.

The SEIR model was shown to fit historical death record data from the 1918
Influenza epidemic [10], during which governments implemented extensive social
distancing measures, including bans on public events, school closures, and quaran-
tine and isolating measures. For the current pandemic, such model is well-suited to
isolating key features and to developing policy-relevant insights. The SEIR model
can certainly be further refined by including additional compartments [5].

Optimal control provides a perspective to study and understand the underlying
transmission dynamics. The classical theory of optimal control was originally devel-
oped to deal with systems of controlled ordinary differential equations [26, 11]. Com-
putational methods have been designed to solve related control problems [39, 17, 54].
There is a wide application to various fields, including those for epidemic models,
with major control measures on medicine (vaccination), see e.g., [32, 7], and for
Cancer immunotherapy control [14].

In this paper, we integrate the optimal control with a specific SEIR model, though
the developed methods can be readily adapted to other epidemic ODE models.
More precisely, we introduce a dynamic control model for monitoring the virus
propagation. Here the goal is to advance our understanding of virus propagation
by learning the model parameters so that the error between the reported cases and
the solution to the SEIR model is minimized. In short, we formulate the following
optimization problem

win J Z LU(t)) + g(U(T)),

st. U=F(U#0) te(0,T], UW0O)=U, 6co.

Here U = %U (), 6 is a time-varying vector of model parameters, © is the ad-
missible set for model parameters 6, and U = [S, E, I, R, D]T corresponds to the
susceptible, exposed, infected, recovered and deceased population. The loss function
J is composed of two parts: L measures the error between the candidate solution
to the SEIR system and the reported data at intermediate observation times, and g
measures the error between the candidate solution and the scheduled control data
at the end time.

For complicated dynamics such as the spreading of coronavirus, even the most
sophisticated ODE model may not capture the true dynamics perfectly. On the
other hand, if a learning algorithm is exploited to learn the parameters purely from
the data without the guidance of physics, then the performance will highly depend
on the reliability of the data. In contrast to conventional model predictions with
standard data fitting [3, 22, 9], our data-driven optimal control algorithm provides
an optimal fitting to both the data and the SEIR model.

1.1. Main contributions. In the present work we provide a fairly complete mod-
eling discussion on parameter learning, prediction and control of epidemics spread
based on the SEIR model. We begin with our discussion of basic properties of
the SEIR model. Then we show how the parameters can be updated recursively by
gradient-based methods for a short time period while parameters are near constants,
where the loss gradient can be obtained by using both state and co-state dynamics.
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For an extended time period with reported data available at intermediate observa-
tion times, the parameters are typically time-varying. In this general setting, we
derive necessary conditions to achieve optimal control in terms of the chosen ob-
jectives. The conditions are essentially the classical Pontryagin maximum principal
(PMP)[50]. The main differences are in the way we apply the principle in each
time interval, and connect them consistently by re-setting the co-state V' at the end
of each time interval. We thus named it the generalized PMP. We further present
an algorithm to find the numerical solution to the generalized PMP in the spirit
of the method of successive approximations (MSA)[17]. Our algorithm is mainly
fulfilled by three parts: (1) discretization of the forward problem in such a way that
solutions to U remain positive for an arbitrarily step size h; (2) discretization of
the co-state equation for V' is made unconditionally stable; (3) Minimiziation of the
Hamiltonian is given explicitly based on the structure of the SEIR model.

This data-driven optimal control approach can be applied to other epidemic mod-
els. In particular, the prediction and control can be combined into one framework.
To this end, the cost includes terms measuring the error between confirmed cases
(infection and death) and those predicted from the model during the evolution,
and terms measuring the error between the scheduled numbers as desired and those
predicted from the model during the control period.

1.2. Further related work. In the mathematical study of SIR models, there is an
interplay between the dynamics of the disease and that of the total population, see
[4, 48, 24, 56]. We refer the reader to [45, 23] for references on SEIRS models with
constant total population and to [42] for the proof of the global stability of a unique
endemic equilibrium of a SEIR model. Global stability of the endemic equilibrium
for the SEIR model with non-constant population is more subtle, see [41]. Apart
from the compartmental models (and their stochastic counterparts [2]), a wide
variety of methods exist for modeling infectious disease. These include diffusion
models [13], mean-field-type models [37], cellular automata [58], agent-based models
[30], network-based models [57, 34, 49], and game-theoretical modelling [6, 52, 15].
Some focus on the aggregate behaviour of the compartments of the population,
whereas others focus on individual behaviour.

For COVID-19, a data-driven model has been proposed and simulated in [47],
where both the SIR model and the feed-forward network are trained jointly. Com-
pared to this work, our data-driven model is to consider the optimal control for
SEIR with rigorous derivation of optimality conditions and stable numerical ap-
proximations. On the other hand, our data-driven optimal control algorithm may
be interpreted as training a deep neural network in which the SEIR model serves as
the neural network with parameters to be learned. This is in contrast to the study
of residual neural networks using neural ODEs (sec e.g., [21, 16]) or section dynam-
ics [44]. For other works on data-driven learning model parameters using neural
networks, see [5, 33]. SIR models with spatial effects have been studied [8, 40]. A
SIRT model was proposed in [8] to study the effects of the presence of a road on
the spatial propagation of the COVID-19. Introduced in [40] is a mean-field game
algorithm for a spatial SIR model in controlling propagation of epidemics.

Finally, we would like to mention that a variety of works have sought to en-
dow neural networks with physics-motivated equations, which can improve machine
learning. To incorporate the equations, parametric approaches have been studied
[25, 18, 46, 51], where certain terms in the equations are learned, while the equations
still govern the dynamics from input to output.
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1.3. Organization. In Section 2, we motivate and present the SEIR system for
modelling the time evolution of epidemics, and integrate it with data into an optimal
control system. Both algorithms and related numerical approximations are detailed
in Section 3. Section 4 provides experimental results to show the performance of
our data-driven optimal control algorithms. We end with concluding remarks in
Section 5.

2. The SEIR model and optimal control.

2.1. Model formulation. A population of size N (¢) is partitioned into subclasses
of individuals who are susceptible, exposed (infected but not yet infectious), infec-
tious, and recovered, with sizes denoted by S(t), E(t), I(t), R(t), respectively. The
sum F + I is the total infected population.

The dynamical transfer of the population is governed by an ODE system

S =A—BSI/N —dS,

E = BSI/N — ¢E — dE,
I =eFE —pul —~I—dl,
R =~I —dR,

D:,uI,

subject to initial conditions Sy, Fo, Iy, Ro, Do. Here D(t) denotes deaths at time
t, A denotes the recruitment rate of the population due to birth and immigration.
It is assumed that all newborns are susceptible and vertical transmission can be
neglected. d is the natural death rate, p is the rate for virus-related death. -y
is the rate for recovery with 1/+ being the mean infectious period, and € is the
rate at which the exposed individuals become infectious with 1/¢ being the mean
incubation period. The recovered individuals are assumed to acquire permanent
immunity (yet to be further confirmed for COVID-19); there is no transfer from the
R class back to the S class. § is the effective contact rate. Note that the involved
parameters do not correspond to the actual per day recovery and mortality rates
as the new cases of recovered and deaths come from infected cases several days
back in time. However, one can attempt to provide some coarse estimations of
the “effective/apparent” values of these epidemiological parameters based on the
reported confirmed cases.

2.2. Solution properties of the SEIR model. Classical disease transmission
models typically have at most one endemic equilibrium. If there is no endemic
equilibrium, diseases will disappear. Otherwise, the disease will be persistent irre-
spective of initial positions. Large outbreaks tend to the persistence of an endemic
state and small outbreaks tend to the extinction of the diseases.

To understand solution properties of the SEIR system, we simply take A = bN
with b the natural birth rate, and focus on the following sub-system

S =bN — BSI/N —dS,
E = BSI/N — ¢E — dE,

I =¢E —pl —~I —dI,
R=~I—dR
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with the total population size N = S + E 4+ I + R. By adding the equations above
we obtain
N =(b—d)N — ul.

Typically there are two time scales involved: the time of occurrence of the peak,
and the entire time-span of the epidemic. Both depend on the involved model
parameters. A distinct property featured by the above system is that it remains
unchanged under a same scaling for all involved sub-populations. To facilitate
analysis of this system, we may rewrite it in terms of population fractions. Let
s=S8/N,e=FE/N,i=1/N,r = R/N denote the fractions of the classes S, E,I, R
in the population, respectively, then one can verify that

$=1b—bs— fBis+ uis, (2.1a)
é = fBis — (e + b)e + pie, (2.1b)
i=ee— (47 +b)i+ pi®, (2.1¢)

where r can be obtained from r =1—s—e—1i or
7 =yt — br + pair.
From biological considerations, we study system (2.1) in a feasible region
Y ={(s,e,i) € RE}’HO <s+e+i<1}

It can be verified that ¥ is positively invariant with respect to the underlying
dynamic system. We denote % and X° the boundary and the interior of ¥ in R3,
respectively. A special solution of form P° = (1,0,0) on the boundary of ¥ is the
disease-free equilibrium of system (2.1) and it exists for all non-negative values of
its parameters. Any equilibrium in the interior X° of ¥ corresponds to the disease
being endemic and is named an endemic equilibrium.

The following theorem, a standard type in mathematical epidemiology, shows
that the basic number ¢ determines the long-term outcome of the epidemic outbreak
(more details can be found in the appendix).

Theorem 2.1. Let
o Be

(e D) (Y Hptb)
1. If 0 <1, then P° is the unique equilibrium and globally stable in 2.
2. If 0 > 1, then P° is unstable and the system is uniformly persistent in 3°.

By this theorem, the disease-free equilibrium P is globally stable in ¥ if and
only if ¢ < 1. Its epidemiological implication is that the infected fraction of the
population vanishes in time so the disease dies out. In addition, the number o
serves as a sharp threshold parameter; if o > 1, the disease remains endemic.

In the epidemic literature, another threshold quantity is the basic reproduction
number

Ro= D
Y+ u
which is the product of the contact rate S and the average infectious period ﬁ
It is a parameter well known for quantifying the epidemic spread [20, 19]. On the
other hand, the contact number ¢ is defined at all times. In general, we have

R()ZO'.

Note that for most models, ¢ = Ry, both quantities can be used interchangeably.
This is the case in our experiments when taking b = 0.
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Remark 1. Extensive evidence shows that the disease spread rate is sensitive to
at least three factors: (1) daily interactions, (2) probability of infection, and (3)
duration of illness. The above assertion shows that making efforts to decrease Ry
is essential for controlling propagation of epidemics. Hence measures such as social
distancing (self-quarantine, physical separation), washing hands and wearing face
coverings, as well as testing / timely-hospitalization can collectively decrease Ry.

Remark 2. The above model if further simplified will reduce to the SIR model or
SIS model, which is easier to analyze [27, 12, 31]. It can also be enriched by dividing
into different groups [38, 55|, or by considering the spatial movement effects [29, 35].
In this work, we use the SEIR model as a base for our analysis, prediction, and
control.

2.3. A simple control. In compact form, the SEIR system may be written as
U=FU;0), U(0)="U,,
where
U=[S,E,I,R,D]", 0=[B€~,pu"

are the column vectors of the state and parameters, respectively. Let g(-) be a loss
function (to be specified later) at the final time 7', then the problem of determining
the model parameters based on this final cost can be cast as a dynamic control
problem:

ming{g(U(T)) subject to U =F(U,0), 0<t<T; U(0)="Uy; 6¢cO}.

Here the dependence of g on 6 is through U(T'). The set of admissible parameters
© may be estimated from other sources.

For a short time period, the model parameters are near constant, then we can use
gradient-based methods to directly update 6, for which Vgg needs to be evaluated.
We define the Lagrangian functional

T
£6) = 9(U (@) - [ (@ - Fw.o) Vi,
0
where V' =V (¢) is the Lagrangian multiplier depending on time and can be chosen

freely, and U depends on 6 through the ODE. A formal calculation gives

Vgg = Vgﬁ

T . T
= (VoU(T))"Vyg + /0 ((VUF)(VGU(t)) + VgF — VgU(t)) V(t)dt

= (VoU(T))" (Vg — V(T)) + (VoU(0)) "V(0)
+ /T(VQU(t))T ((VUF)TV(t) + V(t)) + (VoF) TV (t)dt.
0

Thus Vyg can be determined in the following steps:
e Solve the forward problem for state U,
Ut) = F(U(t),6), U(0)=Up.
e Solve the backward problem for co-state V,

V(t)=—(VuF)"V(t), V(T)=Vug(U(T)).
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e Evaluate the gradient of g by

V@QZ/O (VoF) TV (t)dt.

Note that the optimality condition is that the gradient needs to vanish when the
minimizer is strictly within § € ©, while the (U, V) dynamical system models the
optimal strategies for S, F/, I, R populations.

Remark 3. In the context of the optimal control theory, such V exists and is
called the co-state function. The above relations are essentially derivable from the
classical PMP optimality conditions [50].

2.4. Data-driven optimal control. Now we consider an extended time period
with reported data available at intermediate observation times. The data are taken
from the reported cumulative infection and death cases." In such general case
the parameters are typically time-varying, we need to derive a more refined data-
driven optimal control. Arranging the data in a vector U. = [I., D.]" at times
0=ty <ti <ty <..<t,=T, weaim to
e find optimal parameter 0(t) for 0 < ¢ < ¢,_; such that the solution to the
SEIR system fits the reported data at the grid points {t;}7=' as close as
possible, and
e find desired parameter 0(t) for ¢t,—1 < t < T that is able to control the
epidemic spreading at time 7T at desired values.

To achieve these goals, we first define a loss function by

= Z LUt:)) + g(U(T)),

where
L(U(t;)) = M|I(t:) — Lo(t)|* + Xo| D(t;) — Do(t)?, 1<i<n—1, (2.2)
g(U(T)) = MI(T) = La(T)[* + 22| D(T) — Da(T)|*.

Here A1, Ao are user-defined normalization factors. In our experiments, A1, Ao are
chosen such that the loss with respect to the infection cases is at the same level of
scales as the loss with respect to the death cases. This loss function is composed
of two parts: the running cost L which measures the error between the candidate
solution (I, D) to the SEIR system and the reported data (I, D.) at intermediate
times; and the final cost g, which measures the error between the candidate solution
(I, D) and the desired data (I4, D) at the end time.
We then formulate the task as the following optimal control problem

min J = ; L(U(t;)) + g(U(T)), 23)
st. U=F(U#0) te(0,T], UW0)=U, 6¢c®.

Motivated by the classical optimal control theory, we derive the necessary conditions
for the optimal solution to problem (2.3), stated in the following theorem.

IData used here is publicly available in the CSSEGISandData/COVID-19 GitHub repository,
which collects data from official sources and organizations.
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Theorem 2.2. Let 0* be the optimal solution to problem (2.3) and U* be the
corresponding state function, then there exists a piece-wise smooth function V* and
a Hamiltonian H defined by

HU,V,0)=VTF(U,6) (2.4)
such that
U = F(U*,6%), te(0,T], U*(0)= U, (2.5)
V= —(VyFU* 0"V, ti_1<t<t, i=n,..,1,
V*(T) = Vug(U*(T)), (2.6)

VEt;) = V() + Vo L(U*(t)), i=n—1,..1
are satisfied. Moreover, the Hamiltonian minimization condition
HU*,V*,0*) < HU*,V*,a) Ya€©O
holds for all time t € [0, T] but {t;}7='.

Proof. Recall the classical Bolza optimal control problem [11]

T
min {/0 L(U(t),@(t))dt—i—g(U(T))}
st. U=F(U#0), tel0,T], U®0)=Uy, 6(t)co.

The Pontryagin’s maximum principle states the necessary conditions for optimality:
assume 0* and U* are the optimal control function and corresponding state of the
system, then there exists a function V* and a Hamiltonian H defined for all ¢ € [0, T
by
H(U,V,0)=VTEU,0) + L(U,0)
such that
U = VyHU*,V*,0%), U 0)="U,, (2.7)

Ve =-VyHU*,V* 0%), V*(T)=Vyg(U*(T)), (2.8)
are satisfied. Moreover, the Hamiltonian minimization condition
HU*,V*,0*) < HU*,V* a)
holds for all time ¢ € [0,7] and for all permissible control function a € ©.
Notice that the loss function in (2.3) can be approximated by

Tn—1

Je= | D LUt — t:)dt + g(U(T)).

0 =1

Here 7. is a mollifier function defined by

e 1) = o (1)), (29)

€
where € < %minogign,l |t;+1 —ti] is kept fixed. This 7. is supported on [—1, 1] and
sufficient smooth with integral one. Now the corresponding Hamiltonian reads as

H(U,V,0)=VTF(U,0) + ni LU ®)ne(t — t;). (2.10)

=1
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Hence (2.7) can be expressed as (2.5), (2.8) has the form of
n—1
V== VLU0t —t;) = (VoF(U,0)TV, V(T)=VugU(T)). (2.11)
i=1

Integrate (2.11) from ¢; — € to t + €; with ¢; < e. Let € tend to 0, then for
i=n—1,...,1, we have

V({tf) = V(t;) = VuL(U(t)).
Thus in each interval, (2.11) reduces to
V= —(VoFU,0)'V, tii<t<t;, i=n,..1,

which is exactly (2.6). Correspondingly, the Hamiltonian (2.10) reduces to (2.4) for
all t € [0, 7] but {¢;}7=!. Finally, we can identify J as the limit of J.. In fact,

o] = \ | St = 0w - L
0 =1

< max |L(U(t)) — L(U(t;))] — 0
i1 (tife,tr%e)
as € — 0. Here we have used the fact that U(¢) is continuous and the definition of
L. This completes the proof. O

3. Numerical discretization and algorithms. In this section, we present im-
plementation details to solve problem (2.3) via solving the generalized PMP by
iteration. We proceed in the following manner. First we make an initial guess
0y € ©. From the control function 6;(¢) in the I-th iteration for I = 0,1,2,---, we
obtain 6;41(¢) in three steps:

Step 1: Solve the forward problem (2.5) to obtain Uj.

Step 2: Solve the sequence of backward problems (2.6) to obtain V.

Step 3: 6,41 = argming o H(U;, V;,0,t) for each t € [0, 7.

This is essentially the method of successive approximations (MSA) [17]. An
important feature of MSA is that the Hamiltonian minimization step is decoupled
for each t. However, in general MSA tends to diverge, especially if a bad initial
guess is taken [17].

Our strategy is to adopt a careful discretization at each step to control possible
divergent behavior, instead of simply calling an existing ODE solver for Steps 1-2,
and an optimization algorithm for Step 3.

Within each interval (t;_1,t;), we approximate both U and V at the same m
points with step size h = (t; — t;—1)/m, so that the value of U required in Step
2 are already calculated in Step 1. We use U*, Vi* g5F where i = 1,...,n and
k =0,...,m to denote solution values at k-th point in the ¢-th interval.

Note that population dynamics (births or deaths) may be neglected at a very
crude level on the grounds that epidemic dynamics often occur on a faster time
scale than host demography, or we can say heuristically that death of an infected
individual and subsequent replacement by a susceptible (in the absence of vertical
transmission) is equivalent to a recovery event. Hence, in the numerical study, both
b and d are taken to be zero.

Below we discuss the discretization of the three iteration steps for the case b =
d=0.
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3.1. Forward discretization. We focus on the time interval (¢;_1,¢;). For no-
tation simplicity, we use U”, V¥, 6F to represent corresponding values at the k-th
point. We discretize the forward problem (2.5) by an explicit-implicit method with
the Gauss-Seidel type update:

Sk+1 _ gk _ —BkSk'HIk/Nk
h b
EkJrl B Ek _ ﬂkSkJrlIk/Nk o 6kEkJrl
h )
Ik—‘rl _ Ik
, _ FERT (k4 Ry IR
RF+1 _ RF e
h b
Dk+1 _ Dk _ NkaJrl

The most important property of this update (see the explicit formula (B.1) in ap-
pendix) is its unconditional positivity-preserving property, i.e,

Uk>0=Ut>0 k=0,

irrespective of the size of the step size h. For the starting value in each interval, we

have _ _
ut’=u(0), U =U0""" i=2,-- ,n—1

3.2. Backward discretization. Let V = [Vs, Vg, V;, Vg, Vp]T, with the numeri-
cal solution {S*, E¥ I* RF DF}™ ' to the forward equation (2.5) known, the back-
ward equation (2.6) needs to be discretized correspondingly. In a similar fashion to
the update of U, we derive the update of V with an explicit-implicit discretization
by

Vet —VE P S kN2
YR kN SRV - VTV,
k
VE+1h_ Vg _ Ek(véc _ V'Ik?+1)’
VE+HL _
VIV ghsh (VF — 1(VE — V) [N

AV = V) (V= VET
VE =V v =VET
For the starting value in each interval, we have
Vit =Vyg(U(T)), VO™ =VH0 4 Ve LU(t), i=n—1,---,L
Note that the above discretization is well-defined for any h > 0 (see details and the
explicit formula (B.2) in appendix), hence unconditionally stable since the system
is linear in V.
3.3. Hamiltonian minimization. The Hamiltonian (2.4) is given by
H(U,V,0) = —VgBSI/N + Vg(BSI/N — €E)
+Vi(eE — (v+ w)I) + VryI + Vppul.

After plugging in U(t),V (t) that is obtained by solving the above forward and
backward problems with given 6(t), H may be seen as a functional only with respect
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to 6. We solve it by the proximal point algorithm (PPA) [53], that is for any fixed
time t € (tifl,ti), 1=1,2,..,n,

. 1
Ou42(0) = angming o { OO, V0. 000) + 51000~ 6O} (3.)
where [ is the index for iteration, 7 is the step size.

Remark 4. The use of PPA brings two benefits: (1) the objective function in (3.1)
is a convex function, which ensures the existence of the solution to the minimization
problem; (2) it is numerically stable: PPA has the advantage of being monotonically
decreasing, which is guaranteed for any step size 7 > 0. In this way, the convergence
of minimizing the original loss in (2.3) with a regularization term is ensured, hence
address the convergence issue that MSA generally has [1].

Given discretized U* and V* with o = {i, k}, we solve (3.1) on grid points, that
is to solve

« 3 [e3 « 1 «
051 = avguingeq {HQUPVie,0)+ o0 - 071 | (32)

Since H is smooth, the above formulation when the constraint is not imposed is
equivalent to the following

07 =07 — TV H(U®, Vi*, 07 ).
The special form of H allows us to obtain a closed form solution:
Bl = B + 7SI ((Vs)i' — (VE)T)/NT,
i1 =& +7EN (V)i — (VI)T),
Vi =+ (VDT = (VR)T),
i = pi + 7V = (Vp)T').

Now taking the constraint § € © into consideration, we simply project the solution
(3.3) back into the feasible region after each iteration, that is

91a+1 = clip(@la_,_l,@, @)

(3.3)

where O, © are element-wise lower bound and upper bound of ©, respectively. That
guarantees the output is constrained to be in ©.

Remark 5. The step size for each parameter may be set differently according to
their magnitude scale, and this can indeed improve the training performance, as
observed in our experiments. The above clip(+) function is simply a projection on
the box constraints. For a general convex set ©, a more refined limiter is needed to
pull the parameters back to the feasible region.

3.4. Algorithms. The above computing process is wrapped up in Algorithm 1.
Since we can update {#*} simultaneously, we consider {#*} as a vector and still
denote it as 6 for notational simplicity. We use || - || to stand for the Ly norm.

Initialization: We now discuss how to initialize the control function 6. A simple
choice is to take 96’k to be a constant vector for all 1 <7 < n,1 < k < m, where the
value of each component relies on a priori epidemiological and clinical information
about the relative parameter magnitude. They vary with the area from where the
data were sampled.
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Algorithm 1

Require: {U.(t;)}",: data, t, = T: final time, Up: initial data at 0, 6p: initial
guess, T: step size for the minimization problem
1: while ||0; — 6;-1]|/]|6i-1]] > Tol do
: for i =1ton do

for k=0tom—1do
Uikt < Uk (solve the forward problem, refer to (B.1))

2

3

4:

5: U0 « Ui=tm (update the initial condition for ODE solver)

6 V™o« Oyg(U(T)) (set the initial data for the backward problem)
7 for i =nto1ldo

8
9

for k=m —1to 0do
Vik « Viktl (solve the backward problem, refer to (B.2))

10: Vim « Vithoy 9, L(U(t;)) (update the initial condition for ODE solver)
11: 0141 < 0; (solve the minimization problem, refer to (3.3))

12: 0141 < clip(0;41,0,0) (ensure 6 € O)

13: return 0,U

We can also use the data {D.(t;)}7q, {Ic(t:) }}_, to obtain a better initial guess
for . More precisely, from p = D/I we take

ik = De(tiv1) — De(ts)
0 (tiv1 —ti)le(tiv1)

The initial data for the forward problem is set as
Up = [N(0) — 1.(0),0,1.(0),0,D.(0)] T,

where N(0) is the initial population of the area analyzed, I.(0), D.(0) are the
confirmed infections and deaths on the day of the first confirmed cases, respectively.

The initial condition of the backward problem is given in (2.6). In the present
setup, the loss function g only depends on I and D, hence the initial condition is
given by

Vk=0,1,....,m.

V= (0,0,;9(U(T)), 0, 9pg(U(T))] T

Finally, we should point out that Algorithm 1 with a rough initial guess 6y can
be rather inefficient when T is large. In such case, we divide the whole interval as
0=tny <tn <..<tn, <tn,, =T witht,, € {t;}/ for 1 <j < s and apply
Algorithm 1 to each subinterval consecutively. This treatment is summarized in
Algorithm 2.

Algorithm 2

Require: {U.(t;)}",, Up: initial data, 7: step size for the minimization problem.
Require: {t,, ‘;ié, fo: initial guess of 6 on [ty,, tn,]
1: for j =0to s do
2: 0,U = Algorithm 1({Uc(t,;)}?i;;+l, [tn,;stn,; 1], Uo, Oo, T)
3: 90,U0 e@(tnﬁl),U(thl)
4: return 6,U
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Remark 6. (i) If parameters vary dramatically, 6(,;) may not be a good initial-
ization for 6 on [t,,,t,,,,]. When this happens we switch to the rough initial guess
and test by trial and error.

(ii) With Algorithm 2, we can easily fit the data in a large period of time by simply
dividing it into several subintervals, then applying Algorithm 1 in each subinterval.
They can even be trained simultaneously as long as we have initial data for each
subinterval. However, in the COVID-19 case, only partial data (infection cases
and death cases) are available. We don’t have access to the full initial data for
the SEIR model except in the very beginning. This is why we train the model
consecutively since the solution in the previous subinterval gives the initial data to
the next subinterval.
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FIGURE 1. (a) Reported and fitted cumulative infection and death
cases in the US (b) Estimated SEIR parameters and the basic re-
production number. B (u) corresponds to the left (right) vertical
axis, € = 0.2 and v = 0.1 are almost constant. The dashed line in
Ry is a zoomed-in version on the tail of the solid line.

4. Experiments. We now present experimental results to demonstrate the good
performance of our algorithms.? In all the experiments, the normalization factors
A1, A2 in (2.2) are chosen such that the loss with respect to the infection cases
is at the same scale as the loss with respect to the death cases. According to the
Centers for Disease Control and Prevention (CDC) in the US, the median incubation
period is 4-5 days from exposure to symptoms onset, persons with mild to moderate
COVID-19 remain infectious no longer than 10 days after symptom onset, therefore,
we set

O={0]0<B<5 02<e<025 01<~v<02, 0<p<0.01}.

2We make our code available at https://github.com/txping/op-seir
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For the step size, considering that 3, € and y are almost at the same scale, which is
100 times greater than p, and the permissible range of 5 is much large than e and
v, we set 7. =7, = 7, 73 = 1007 and 7, = 7/100.

4.1. Covid-19 epidemic in the US. As of today [November 17, 2020], it has
been about 300 days since the first infection case of COVID-19 was reported in the
US. We thus consider the time period [0, 300] and sample the data [I.., D.] at t; = 2i
for 0 <4 < 150. To apply Algorithm 2 we take {t,, }ji(l) as {0, 30, 60, 90, 150, 210,
270, 300}.

Data fitting via optimal control with SEIR model. Figure 1 (a) shows that
our data-driven optimal control algorithm learns the data very well. In Figure 1 (b),
there is a noticeable peak over the second month, where the value of reproduction
number Ry is very large due to a dramatic increase in infection rate 8. After that,
Ry goes down to a lower range, with a slight rise around the 6-th month. Over
the last two months we observed another increase in Ry. Overall, the value of
Ry stays above 1 and the pattern of Ry is consistent with the increasing trend of
the confirmed cases. For a short time period, one may expect the transmission
to continue the same way, then the learned model parameters could be used for
prediction over a short coming period.

Remark 7. We note that there are advanced machine learning methods such as the
long short-term memory model [28] to predict § in the forecasting window, which
could potentially boost the prediction accuracy.
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FIGURE 2. Scheduled control for the US in 270 — 300 days by SEIR
model

Scheduled control. From the above prediction result, we see that without
interventions, the amount of confirmed and death cases will increase rapidly. We
would like to see a slow down of the epidemic spreading as the outcome of various
public health interventions. With the present approach, this can be formulated as
a scheduled control. Specifically, with a target level of infection and death cases at
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the final time 7', we schedule a sequence of values at intermediate times, from which
we apply our algorithm to learn the optimal parameters (control function) such that
the state function reaches the desired value at T" along the scheduled path.

For instance, starting from the 270-th day, with the goal of controlling the cumu-
lative number of infection and death cases at 9,746,063 and 234, 390 on the 300-th
day, respectively, we set a pair of values for each day in the 30 days as shown in
Figure 2 (a), then learn the parameters from the scheduled data. The results are
presented in 2 (b). Figure 2 (a) shows that the goal can be achieved by setting the
parameters as what have been learned.

To compare the situations with or without a scheduled control, we also present
the reported data and corresponding training results in Figure 2. In fact, the
scheduled intermediate values are obtained by assuming the daily increases were
half of the reported daily increases. From Figure 2 (b), we see that the most
significant difference occurs in 8. This can be roughly interpreted as: if the contact
rate 8 could be reduced by 0.02, the number of confirmed cases over the last 30
days could have been reduced by 50%, though the corresponding Ry is still greater
than 1. For virus propagation to eventually stop, Ry needs to be less than 1, for
which 8 must be less than v + p.
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FIGURE 3. (a) Reported and fitted cumulative infection and death
cases in the UK (b) Estimated SEIR parameters and the basic
reproduction number. S (u) corresponds to the left (right) vertical
axis, € = 0.2 and v = 0.1 are almost constant. The dashed line in
Ry is a zoomed-in version on the tail of the solid line.

4.2. Experimental results for other countries. The coronavirus pandemic con-
tinues to affect every region of the world, but some countries are experiencing higher
rates of infection, while others appear to have mostly controlled the virus. In order
to see the virus dynamics in other regions, we also provide results for some other
selected countries such as the UK, France and China. For the UK, {t,, ;ié are

taken as {0, 30, 90, 120, 150, 180, 210, 240, 300}. For France, {t,, jié are taken
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as {0, 30, 60, 90, 180, 300}. For China, {t,, };ié are taken as {0, 30, 60, 90, 120,
150, 180, 210, 240, 270, 300}.

From Figure 3 and 4, we see that the confirmed cases in UK and France display
similar patterns. Figure 5 shows that China was hit hard early on, but the number
of new cases has largely been under control for months.

le7 1.0 r 0.020

6.5 1

0.8

5.51 F0.015

0 30 60 90 120 150 180 210 240 270 300 0.6
r0.010 =

1000000 04

r 0.005
[ 0.2
0 30 60 90 120 150 180 210 240 270 300

r 0.000

0.0

2000000 T france 0 30 60 90 120 150 180 210 240 270 300
Time [day]
I-sol
z ~
I

0 10
0 30 60 90 120 150 180 210 240 270 300 r'\

le7 8

1
— R-sol

Ro

04— U T T i T T T T T T }
[ 30 60 90 120 150 180 210 240 270 300 4 ’

R 2

x  D-France
D-sol

25000

¥ 7 T T T T T T T T T T T T T T T T T T T 1.0
0 30 60 90 120 150 180 210 240 270 300 0 30 60 90 120 150 180 210 240 270 300
Time [days] Time [days]

(a) (b)

FIGURE 4. (a) Reported and fitted cumulative infection and death
cases in France (b) Estimated SEIR parameters and the basic re-
production number. S (u) corresponds to the left (right) vertical
axis, € = 0.2 and v = 0.1 are almost constant. The dashed line in
Ry is a zoomed-in version on the tail of the solid line.

5. Discussion. In this paper, we introduced a data-driven optimal control model
for learning the time-varying parameters of the SEIR model, which reveals the
virus spreading process among several population groups. Here the state variables
represent the population status, such as S, F, I, R, D while the control variables are
rate parameters of transmission among population groups. The running cost is of
discrete form fitting the reported data of infection and death cases at the observation
times. The terminal cost serves to quantify the desired level of the total infection
and death cases at scheduled times. Numerical algorithms are derived to solve
the proposed model efficiently. Experimental results show that our approach can
effectively fit, predict and control the infected and deceased populations.

Our experimental results suggest that our model has the potential to quantify the
overall virus transmission process accurately, especially for capturing little spikes
and dips. This can be helpful when studying the effects of certain interventions or
events on the virus transmission. For example, it can be observed in Figure 1 (b)
that there is an obvious decrease of Ry at the end of March, which indicates that the
Stay-at-Home order is an effective measure to control the virus transmission. We
also see a little spike of Ry starting from the beginning of June [~ 135-th day]. This
implies that mass gathering does speed up the spreading of virus transmission, while
it has less effect on the death rate. In addition, our model allows to be incorporated
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FIGURE 5. (a) Reported and fitted cumulative infection and death
cases in China (b) Estimated SEIR parameters and the basic re-
production number. 8 (u) corresponds to the left (right) vertical
axis, € = 0.2 and v = 0.2 are almost constant. The dashed line in
Ry is a zoomed-in version on the tail of the solid line.

with a scheduled control strategy. This helps to reach a desired level of infection
and death cases at scheduled intermediate times. In this aspect, our simulation
tools can be particularly useful for policymakers to take steps to manage the public
health and economic risks associated with the outbreak.

The data-driven modeling approach presented in this work is applicable to more
refined models such as those including additional compartments to model vaccinated
and asymptomatic individuals, and different stages of disease progression. The
equations may also include multiple groups to model heterogeneity, age, spatial
structure or host species. On the computational side, our approach involves a non-
convex optimization problem, which comes from the multiplicative terms of the
SEIR model itself. In future work, we intend to extend our algorithm to more
refined models.

Appendix A. Solution properties of the SEIR model. To identify the critical
threshold for the parameters, we take ex(2.1b)+ (e + b)x(2.1c) to obtain
d
a[eeJr (e+b)i] =i[efs+eue+ pu(e+b)i — (e +b)(v+ p+b)]

< i [max{eB, ep, (e + )} — (e +b) (v + p+ b)) <0,
provided a key quantity o < 1, where

(e+b)(y+n+b)

is called the modified contact number [41]. The global stability of P® when o < 1
follows from LaSalle’s invariance principle.
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Appendix B. Numerical discretization. Here we provide some calculation de-
tails on the forward discretization and backward discretization.

B.1. Forward discretization. The update scheme for solving the forward equa-
tion is given by:

Sk+1 — Sk
1 + hBFI* /NF’
Ek-‘rl B Ek + hﬂksk+11k/Nk
1+ he* ’
Ik+1 _ Ik + hEkEk+1 (Bl)

1+ AR k)’
Rk+1 — Rk 4 h,yklk-‘rl
DR — Dk 4 kR
where k =0,1,...,m — 1, h = (t; — t;—1)/m is the step size.

B.2. Backward discretization. By calculation,

“BI(N—8)/N> 0 —BS(N—I)/N> 0 0
BI(N — 8)/N?> —e BS(N—I)/N> 0 0
VuF = 0 € —(u+7) 0 0f,
0 0 ~ 0 0
0 0 y 0 0

then (2.6) takes the following form
Vs = BI(N — S)(Vs — Vg)/N?,
VE = G(VE — V[),
Vi =BS(N = I)(Vs = Vg)/N® + (Vi = Vi) + u(Vi = Vp),
Vi =Vp =0.
After discretization by the explicit-implicit method, the backward equation can be
solved by the update scheme:
— VSI€+1(Nk)2 + hﬂkfk(Nk _ Sk)vg-l—l
s (N¥)2 + hBFIk(Nk — Sk) ’
v Vath + heb vt
E 1+ hek ’ (B.2)
VERL 4 h (Y VR + i Vp — BFSE(NF — IF)(VE — VE) /(NF)?)
L4 h(y* + )

VIk =

)

Vi =V Vh = Vit
where k =m —1,...,0, h = (¢; — t;—1)/m is the step size.
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