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Summary

The familywise error rate has been widely used in genome-wide association studies. With the
increasing availability of functional genomics data, it is possible to increase detection power by
leveraging these genomic functional annotations. Previous efforts to accommodate covariates
in multiple testing focused on false discovery rate control, while covariate-adaptive procedures
controlling the familywise error rate remain underdeveloped. Here, we propose a novel covariate-
adaptive procedure to control the familywise error rate that incorporates external covariates which
are potentially informative of either the statistical power or the prior null probability. An efficient
algorithm is developed to implement the proposed method. We prove its asymptotic validity
and obtain the rate of convergence through a perturbation-type argument. Our numerical studies
show that the new procedure is more powerful than competing methods and maintains robustness
across different settings. We apply the proposed approach to the UK Biobank data and analyse
27 traits with 9 million single-nucleotide polymorphisms tested for associations. Seventy-five
genomic annotations are used as covariates. Our approach detects more genome-wide significant
loci than other methods in 21 out of the 27 traits.

Some key words: EM algorithm; External covariate; Familywise error rate; Multiple testing.

1. Introduction

Multiple testing arises when we face a large number of hypotheses and aim to discover sig-
nals while controlling specific error measures. Table 1 lists the possible outcomes when testing
multiple hypotheses. The familywise error rate, FWER, and the false discovery rate, FDR, are
two commonly used error measures employed in a wide range of scientific studies. The FWER
is the probability of making one false discovery, while the FDR is the expected proportion of
false positives. The FWER provides stringent control of Type I errors, and is preferable if the
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2 H. Zhou, X. Zhang and J. Chen

Table 1. Possible outcomes when testing multiple hypotheses
Not rejected Rejected Total

True nulls U V m0

True alternatives T S m1

Total m − R R m

overall conclusion from various individual inferences is likely to be erroneous when at least one
of them is, or the existence of a single false claim would cause significant loss. In contrast, the
FDR control procedure provides less stringent control of Type I errors, and it generally delivers
higher power at the cost of an increased number of Type I errors.

Consider the problem of simultaneously testing m hypotheses. We reject the hypotheses whose
p-values are less than a cut-off t∗. For many FWER and FDR controlling procedures, the t∗ that
controls either one of them at level α is obtained by solving the constraint optimization problem

maximizet∈[0,1]R(t), M (t) � α, (1)

where R(t) denotes the total number of rejections given the threshold t, and M (t) is a conservative
estimate of the FWER or FDR. The most fundamental procedure for controlling the FWER is the
Bonferroni method. It corresponds to the choice of M (t) = mt, which is the union bound on the
FWER under the assumption that the null p-values are uniformly distributed, or superuniform,
on [0, 1]. The classical Benjamini–Hochberg procedure for controlling the FDR can also be
formulated using (1), with M (t) = mt/R(t) being a conservative estimate of the FDR (Benjamini
& Hochberg, 1995).

The formulation in (1) assumes that the hypotheses for different features are exchangeable.
However, in many scientific applications there are informative covariates for each hypothesis that
could reflect the group structure among the hypotheses or provide information on prior null prob-
abilities. For example, in genome-wide association studies, single-nucleotide polymorphisms,
SNPs, in active chromatin state are more likely to be significantly associated with the phenotype
(GTEx Consortium., 2017). In a meta-analysis where samples are pooled across studies, the loci-
specific sample sizes and population-level frequency can be informative for association analyses
(Boca & Leek, 2018). For a fixed sample size, the power to detect significant associations is
determined by the effect size, minor allele frequency, and levels of linkage disequilibrium at
causal and noncausal variants (Kichaev et al., 2019). It is thus promising to incorporate these
covariates to improve the detection power in genome-wide association studies.

Multiple testing procedures that leverage different types of covariates information have
received considerable attention in the literature, especially for false discovery rate control. Gen-
ovese et al. (2006) pioneered multiple testing procedures with prior information using weighted
p-values, and demonstrated that their weighted procedure controls the FWER and FDR while
improving power. Roeder & Wasserman (2009) further explored this p-value weighting proce-
dure by introducing an optimal weighting scheme for the FWER control. Inspired by the above
works, Hu et al. (2010) developed a group Benjamini–Hochberg procedure by estimating the
proportions of null hypotheses for each group separately. Bourgon et al. (2010) developed a par-
ticular weighting method called independent filtering, which first filters hypotheses by a criterion
independent of the p-values and only tests hypotheses passing the filter. Ignatiadis et al. (2016)
proposed independent hypothesis weighting for multiple testing with covariate information. The
idea is to bin the covariate into several groups and then apply the weighted Benjamini–Hochberg
procedure with piecewise constant weights. A similar idea has been used in the structure-adaptive
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Covariate adaptive FWER control 3

Benjamini–Hochberg algorithm introduced in Li & Barber (2019), where the weight assigned for
each p-value is the reciprocal of the estimated null probability of the corresponding hypothesis.
The null probabilities were estimated by utilizing censored p-values and structural information
believed to be present among the hypotheses. Boca & Leek (2018) employed a similar approach
by using the censored p-values and a regression approach to estimate null probabilities based on
informative covariates. The above procedures can all be viewed to some extent as different variants
of the weighted Benjamini–Hochberg or Bonferroni procedure. On the other hand, there are FDR-
controlling procedures designed to find an optimal decision threshold by taking into account the
p-value distribution under the alternatives, mostly based on the local FDR framework. For exam-
ple, Sun et al. (2015) developed a local-FDR-based procedure to incorporate spatial information.
Scott et al. (2015) and Tansey et al. (2018) proposed expectation maximization type algorithms
to estimate the local FDR by taking into account covariate and spatial information, respectively.
Lei & Fithian (2018) proposed the AdaPT procedure, which iteratively estimates the p-value
thresholds based on a two-group mixture model using the partially masked p-values together
with the covariates. Zhang & Chen (2021) proposed a more computationally efficient procedure
to assign each p-value a covariate-adaptive threshold. Another related method, AdaFDR, used a
mixture of the generalized linear model and Gaussian mixture for a threshold function to capture
the covariate information and reflect the bump and slope structures (Zhang et al., 2019). Other
relevant works include Ferkingstad et al. (2008), Zablocki et al. (2014), Dobriban et al. (2015),
Wen (2016), Lei et al. (2021), Li & Barber (2017), Stephens (2017), and Xiao et al. (2017).

Recent developments on covariate-adaptive multiple testing focus on FDR control, while
methods for FWER control lag behind. Existing FWER-controlling methods can all be thought
to be variants of the weighted Bonferroni method, with the weights reflecting only the prior
null probabilities. It has been demonstrated clearly in the FDR literature that incorporating the
distribution of p-values under the alternative leads to the optimal rejection region in theory and
more power in practice; see, e.g., Efron (2010). Given the popularity of FWER control in genome-
wide association studies, we introduce a new covariate-adaptive FWER-controlling procedure,
which takes into account the prior null probabilities as well as the distribution of p-values under
the alternative, making it distinct from the existing FWER-controlling procedures. To illustrate
the idea, suppose we are given a set of p-values pi together with the external covariates xi. Our
method is motivated by the two-group mixture model

pi | xi ∼ π(xi)f0(·) + {1 − π(xi)}f1(·)
with π(xi) and f1(·) reflecting the heterogeneity of the probabilities of being null and the distri-
butional characteristics of signals. We construct an objective function to control a conservative
estimate of FWER while maximizing the expected number of true rejections. Specifically, we
formulate the following constrained optimization problem:

max
ti

m∑
i=1

{1 − π(xi)}F1(ti),
m∑

i=1

π(xi)F0(ti) � α,

where F0 and F1 are the cumulative distribution functions of f0 and f1, respectively. To establish
the asymptotic FWER control, and the rate of convergence, new theoretical developments are
needed. Existing theoretical analysis techniques developed for FDR-controlling procedures are
not applicable to the FWER-controlling procedure, since we aim to control a sum instead of a
proportion. The arguments based on the Rademacher complexity in Li & Barber (2019) do not
provide a meaningful bound on the FWER. Employing a perturbation-type argument, we develop
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4 H. Zhou, X. Zhang and J. Chen

a more delicate analysis for each of the summands, which leads to a useful bound on the sum
and thus the FWER.

The main contributions of the paper are twofold. First, we propose a powerful covariate-
adaptive FWER-controlling procedure that can incorporate multi-dimensional covariates, and
exploit the information from both the null probability and the alternative distribution. We prove
asymptotic FWER control of the proposed procedure when the pairs of covariates and p-values
across different hypotheses are independent, and derive the exact rate of convergence based
on a novel perturbation technique. We emphasize that our proofs do not rely on the correct
specification of the two-group mixture model. Second, we develop an efficient algorithm to
implement the proposed method and demonstrate its usefulness in handling big datasets arising
from genome-wide association studies. In the application to the genome-wide association study
of about 9 million SNPs and 75 covariates, we could complete the analysis in hours.

Numerical studies show that our procedure controls the FWER in the strong sense and is more
powerful than the competing methods. It maintains robustness across different settings, including
scenarios of model misspecification and correlated hypotheses. Even when the covariates are not
informative, our procedure is as powerful as the traditional methods.

2. Methodology

2.1. Set-up

Denote by ‖v‖ the Euclidean norm of a vector v. With some abuse of notation, let ‖A‖ be the
spectral norm of a matrix A. For two symmetric matrices A and B, A � B means that B − A is
positive semidefinite. For a, b ∈ R, write a ∨ b = max(a, b) and a ∧ b = min(a, b). Throughout
the paper, we use c to denote a positive constant which can be different from line to line.

We consider the problem of covariate-adaptive multiple testing to control the FWER. Suppose
we are given m hypotheses, among which m0 are true nulls. For each hypothesis, we observe a
p-value pi as well as a covariate xi lying in some space X ⊆ R

d , which encodes potentially useful
external information concerning the presence of a signal. Let Hi = 0 if the ith null hypothesis is
true and Hi = 1 otherwise. Denote by M0 the set of all true null hypotheses. We transform the ith
p-value based on a map Ti : [0, 1] → R+ that will be estimated from the covariates and p-values.
The larger Ti(pi) is, the more likely the ith hypothesis is over the alternative. The motivation for
such a transformation will be discussed in the next section. In a nutshell, the optimal Ti is the
likelihood ratio between the ith p-value distributions under the alternative and the null.

2.2. Optimal rejection rule

Let f0(·) be the null p-value distribution and f1(·) denote the alternative p-value distribution.
Denote by F0(·) and F1(·) the corresponding cumulative distribution functions. Suppose we reject
the ith hypothesis if pi � ti for some cut-off ti. Before presenting the procedure that inspires
the choice of Ti, it is worth clarifying the definition of the FWER from both the frequentist and
Bayesian perspectives. The key difference between these two viewpoints lies in whether we treat
the indicators {Hi} as fixed or random quantities. From the frequentist perspective, the indicators
{Hi} are deterministic and we have, by the union bound,

FWERFreq =P(pi � ti for some i ∈ M0) �
m∑

i=1

I(Hi = 0)F0(ti).
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Covariate adaptive FWER control 5

From a Bayesian’s point of view, it is natural to posit the two-group mixture model

pi | xi ∼ π(xi)f0(·) + {1 − π(xi)}f1(·).

In this case, conditional on xi, Hi is assumed to be a Bernoulli random variable with success
probability 1 − π(xi). The Bayesian FWER can be bounded as

FWERBay = P(pi � ti for some i ∈ M0) �
m∑

i=1

P(pi � ti, Hi = 0) =
m∑

i=1

E {π(xi)} F0(ti).

(2)

To motivate our procedure, it is more convenient to adopt the Bayesian viewpoint. But we
emphasize that the proposed procedure indeed provides asymptotic FWER control in the usual
frequentist sense, as shown in § 3.

We aim to find {ti} to maximize the expected number of true rejections given by

E

{
m∑

i=1

I(Hi = 1, pi � ti)

}
=

m∑
i=1

E[{1 − π(xi)}]F1(ti)

while controlling the FWER at a desired level α. To achieve both goals, we formulate the following
constraint optimization problem:

max
ti

m∑
i=1

{1 − π(xi)}F1(ti) such that
m∑

i=1

π(xi)F0(ti) � α, (3)

where
∑m

i=1 π(xi)F0(ti) serves as a conservative estimate of the Bayesian FWER based on the
derivations in (2). The Lagrangian for problem (3) is

L(t1, . . . , tm; λ) =
m∑

i=1

{1 − π(xi)}F1(ti) − λ

{
m∑

i=1

π(xi)F0(ti) − α

}
,

with λ > 0. Differentiating the Lagrangian with respect to ti and setting the derivative to be zero,
at the optimal value t∗i , we obtain

{1 − π(xi)} f1(t∗i )

π(xi)f0(t∗i )
= λ.

Motivated by the above observation, we set

Ti(p) = {1 − π(xi)} f1(p)

π(xi)f0(p)
.

We note that Ti(p) is related to the local FDR as follows:

1

Ti(p) + 1
= π(xi)f0(p)

π(xi)f0(p) + {1 − π(xi)}f1(p)
= P(Hi = 0 | p, xi).
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6 H. Zhou, X. Zhang and J. Chen

In the following discussions, we suppose f0 is the uniform distribution on [0, 1] and f1 is
strictly decreasing, which is a common assumption in the literature, e.g., Sun & Cai (2007) and
Cao et al. (2013). As Ti is strictly decreasing in this case, we may reduce our attention to the
rejection rule pi � t∗i as Ti(pi) � Ti(t∗i ) := τ ∗. The cut-off can then be expressed as

t∗i = f −1
1

{
π(xi)τ

∗

1 − π(xi)

}
,

where f −1
1 denotes the inversion of f1. The expected number of true rejections and the conservative

estimate of the Bayesian FWER in (2) are both monotonically decreasing in τ . Therefore, the
solution to (3) satisfies

τ ∗ = min

[
τ > 0 :

m∑
i=1

π(xi)f
−1

1

{
π(xi)τ

1 − π(xi)

}
� α

]
. (4)

In practice, both π and f1 are unknown and need to be replaced by estimates from the data. We
provide detailed discussions about estimating the unknowns in the next subsection.

2.3. A feasible procedure

We describe a feasible procedure based on suitable estimates of π and f1. To avoid overfit-
ting and facilitate the theoretical analysis, we adopt the idea of censoring p-values as in Storey
(2002), Boca & Leek (2018) and Li & Barber (2019). Under the two-group mixture model, for
a prespecified 0 < γ < 1, we have

I(pi > γ ) | xi ∼ π(xi)Ber(1 − γ ) + {1 − π(xi)}Ber{1 − F1(γ )},

where Ber(1 − γ ) denotes the Bernoulli distribution with success probability 1 − γ . We model
f1 using the beta distribution f1(p) = kpk−1 for 0 < k < 1, as it provides reasonably good
approximation to a wide range of alternative distributions, as demonstrated in Zhang & Chen
(2021). Here we treat k as fixed and will discuss the choice of data-driven k in § 2.4.

Before presenting our method, it is worth clarifying the rationale behind our procedure. Notice
that π(xi) appears both inside and outside the function f −1

1 in (4). To achieve asymptotic FWER
control, we need a conservative estimate for π(xi) outside the function f −1

1 , while we require
the one inside f −1

1 to depend on the covariates to reflect the heterogeneity among signals while
retaining a certain form of stability; for more details see § 3. The reason will become clear by
inspecting the proof of Proposition 1. We first observe that

E

{
I(pi > γ )

1 − γ

∣∣∣∣xi

}
= π(xi) + {1 − π(xi)}1 − F1(γ )

1 − γ
� π(xi).

Therefore, we suggest replacing the π(xi) outside f −1
1 with I(pi > γ )/(1−γ ). To estimate π(xi)

inside f −1
1 , we consider the logistic model

log
{

π(xi)

1 − π(xi)

}
= xT

i β.
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Covariate adaptive FWER control 7

The quasi-loglikelihood function is then

Lm(β) =
m∑

i=1

log
[
π(xi)(1 − γ )yiγ 1−yi + {1 − π(xi)}(1 − γ k)yiγ k(1−yi)

]
,

where π(xi) = (1 + e−xT
i β)−1 and yi = I(pi > γ ). Define the corresponding quasi maximum

likelihood estimator as

β̂ = arg max
β∈B

Lm(β), (5)

where B is some compact subset of R
d . Let π̂(xi) = {π̃(xi) ∨ ε1} ∧ ε2, where π̃(xi) = (1 +

e−xT
i β̂ )−1 and 0 < ε1 < ε2 < 1. We have used winsorization to prevent π̂(xi) being too close to

zero and one. Further denote

τ̂ = min

[
τ � ε :

m∑
i=1

I(pi > γ )

1 − γ
f −1
1

{
π̂(xi)τ

1 − π̂(xi)

}
� α

]

for some ε > 0. It is straightforward to show that τ̂ = τ̃ ∨ ε with

τ̃ = k

[
m∑

i=1

I(pi > γ )

α(1 − γ )

{
1 − π̂(xi)

π̂(xi)

}1/(1−k)
]1−k

.

Finally, we set

t̂i =
[{1 − π̂(xi)}k

π̂(xi)τ̂

]1/(1−k)

,

and reject the ith hypothesis if pi � t̂i ∧ γ .

Remark 1 (Connection to the weighted Bonferroni procedure). Suppose ε1 = ε = 0 and
ε2 = 1. Then we have

t̂i =
[{1 − π̃(xi)}k

π̃(xi)τ̃

]1/(1−k)

= αwi,

where

wi = exp

{
− xT

i β̂

1 − k

} [
m∑

i=1

I(pi > γ )

1 − γ
exp

{
− xT

i β̂

1 − k

}]−1

.

We reject the ith hypothesis if

pi � αwi ∧ γ .

In this sense, our procedure can be viewed as a particular type of weighted Bonferroni procedure.
However, different from existing methods, our weight incorporates the information regarding the
alternative p-value distribution, which often leads to more rejections and thus higher power, as
observed in our numerical studies.
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8 H. Zhou, X. Zhang and J. Chen

2.4. EM algorithm

Algorithm 1 provides the details of our iterative algorithm to solve problem (5).

Algorithm 1. EM algorithm for problem (5).

Input: {xi, yi}m
i=1, γ , k; initializer: β(0)

Output: β̂

Notation: b0i = (1 − γ )yiγ 1−yi ; b1i = (1 − γ k)yiγ k(1−yi); tol: tolerance level
Iteration:

E step:
Q(t)

i = E{I(Hi = 0) | yi, xi, β(t)} = π
(t)
i b0i/{π(t)

i b0i + (1 − π
(t)
i )b1i},

where π
(t)
i = (1 + e−xT

i β(t)
)−1

M step:
β(t+1) = arg maxβ∈B

∑m
i=1{Q(t)

i log(πi) + (1 − Q(t)
i ) log(1 − πi)},

where πi = (1 + e−xT
i β)−1

Until: |Lm(β(t+1)) − Lm(β(t))|/|Lm(β(t))| < tol
Return: β(t+1) after a sufficient number of iterations

The theory in § 3 shows that our procedure controls the FWER asymptotically for any fixed k .
However, a suitable choice of k that produces a beta-distribution closer to the true f1, especially
on the small-p-value region, will improve the statistical power. In practice, an EM algorithm can
be used to estimate the k and β jointly. To be precise, we define the quasi-loglikelihood function

Lm(β, k) =
m∑

i=1

log
[
π(xi)(1 − γ )yiγ 1−yi + {1 − π(xi)}(1 − γ k)yiγ k(1−yi)

]
.

Then we estimate (β, k) jointly by the quasi maximum likelihood estimator defined as

(β̂, k̂) = arg max
β∈B,k∈(0,1)

Lm(β, k). (6)

We summarize the algorithm for solving problem (6) in Algorithm 2.

Algorithm 2. EM algorithm for problem (6).

Input: {xi, yi}m
i=1, γ ; initializer: β(0), k(0)

Output: β̂, k̂
Notation: b0i = (1 − γ )yiγ 1−yi ; tol: tolerance level
Iteration:

E step:
Q(t)

i = E{I(Hi = 0) | yi, xi, β(t), k(t)} = π
(t)
i b0i/{π(t)

i b0i + (1 − π
(t)
i )b(t)

1i },
where π

(t)
i = (1 + e−xT

i β(t)
)−1, b(t)

1i = (1 − γ k(t)
)yiγ k(t)(1−yi)

M step:
β(t+1) = arg maxβ∈B

∑m
i=1{Q(t)

i log(πi) + (1 − Q(t)
i ) log(1 − πi)},

where πi = (1 + e−xT
i β)−1

k(t+1) = arg maxk∈(0,1)

∑m
i=1(1 − Q(t)

i ){yi log(1 − γ k) + k(1 − yi) log(γ )}
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Covariate adaptive FWER control 9

Until: |Lm(β(t+1), k(t+1)) − Lm(β(t), k(t))|/|Lm(β(t), k(t))| < tol
Return: β(t+1), k(t+1) after a sufficient number of iterations

3. Asymptotic familywise error rate control

In this section we prove asymptotic FWER control for the procedure proposed in § 2.3.
Throughout this section we shall adopt the frequentist viewpoint, i.e., we view the indicators
{Hi} as a deterministic sequence.

Let pj→a = (p1, . . . , pj−1, a, pj+1, . . . , pm)T ∈ R
m for a = 0, 1. We define β̂(pj→a) and

t̂i(pj→a) by setting the jth p-value to be equal to a when estimating the corresponding quantities.
We make the following assumption.

Assumption 1. Denote by F0i the cumulative distribution function for pi with Hi = 0. Suppose
that {pi}i∈M0 are superuniform, i.e., F0i(t) � t for all t ∈ [0, 1] and i ∈ M0.

Assumption 1 is standard in the literature, see, e.g., Benjamini & Yekutieli (2001).

Proposition 1. If {pi} ∈ M0 are mutually independent and are independent with the nonnull
p-values, then under Assumption 1 we have

FWER � Jm + α � c(Jm,1 + Jm,2) + α,

where

Jm =
m∑

j=1

E
{∣∣t̂j(pj→0) − t̂j(pj→1)

∣∣},

Jm,1 =
m∑

j=1

E

⎡
⎣ |xT

j {β̂(pj→0) − β̂(pj→1)}|{
cα−1

∑
i=| j I(pi > γ )

}
∨ ε1/(1−k)

⎤
⎦,

Jm,2 =
m∑

j=1

E

⎛
⎜⎝α−1 ∑

i=| j I(pi > γ )|xT
i {β̂(pj→0) − β̂(pj→1)}| + α−1[{

cα−1
∑

i=| j I(pi > γ )
}

∨ ε1/(1−k)
]2

⎞
⎟⎠,

and ε is defined as in § 2.3.

The above proposition shows that the validity of the asymptotic FWER control relies on the
stability of t̂j, i.e., the smallness of |t̂j(pj→0) − t̂j(pj→1)|, which in turn depends on ‖β̂(pj→0) −
β̂(pj→1)‖. Set zi = (xi, yi), where yi = I{pi > γ }. Define

l(β; zi) = log

{
1

1 + e−xT
i β

(1 − γ )yiγ 1−yi + e−xT
i β

1 + e−xT
i β

(1 − γ k)yiγ k(1−yi)

}

and Pml(β) = m−1 ∑m
i=1 l(β; zi). To ensure ‖β̂(pj→0) − β̂(pj→1)‖ is small, we impose the

following assumptions.
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10 H. Zhou, X. Zhang and J. Chen

Assumption 2. Suppose zi ∈ R
d+1 are independent and possibly nonidentically distributed.

Assumption 2 is not uncommon in the multiple testing literature, see, e.g., Ignatiadis et al.
(2016). We suspect that the results still hold when zi is a sequence of weakly dependent variables,
although a rigorous proof is left for future investigation.

Assumption 3. There exists a continuous function of β, denoted by L(β), such that

lim
m→+∞ sup

β∈B
|E {Pml(β)} − L(β)| = 0.

Assumption 4. Suppose L(β) has a unique global maximizer β∗ over the compact space B.

Assumption 4 is needed in our perturbation argument. If the maximizer is not unique, there
seems to be no guarantee that the difference between β̂(pj→0) and β̂(pj→1) will be small.

Proposition 2. Suppose Assumptions 2–4 are satisfied, and further assume that
sup1�i�m E

(‖xi‖8
)

< ∞. Then we have

β̂(pj→0) − β̂(pj→1) = (S∗
j + 	j)

−1(U ∗
j + 
j),

where S∗
j and U ∗

j are the leading terms such that S∗
j = − ∑

i=| j ∇2l(β∗; zi) and sup1�j�m ‖U ∗
j ‖ =

OP(1), and 	j and 
j are the remainder terms satisfying

sup
1�j�m

‖	j‖ = oP(m) and sup
1�j�m

‖
j‖ = oP(1).

Given Propositions 1 and 2, we have the following theorem of asymptotic FWER control.

Theorem 1. Suppose the following conditions are satisfied:

(i) Assumptions 1–4 hold;
(ii) for some q � 2 and ε > 0, we have sup1�i�m E

(‖xi‖4q+ε
)

< ∞;
(iii) we have supβ∈B |E {Pml(β)} − L(β)| = O(m−1/2);
(iv) the function L(β) is twice continuously differentiable;
(v) the global maximizer β∗ is not on the boundary of B;

(vi) for some c > 0, we have ∇2L(β∗) � −cI , where I denotes the identity matrix;
(vii) for large enough m and some c > 0, we have E

{∇2
Pml(β∗)

} � −cI ; and
(viii) the number of true null hypotheses m0 satisfies lim inf m0/m > 0.

Then

FWER � Jm + α =
{

o(αm
1−q

4 ) + α, if 2 � q � 2 + √
5,

O(αm
−q
1+q ) + α, if q > 2 + √

5.

Theorem 1 derives the bound and its exact order on the FWER. Interestingly, the order of
the bound depends crucially on the tail behaviour of the covariates, and it shows an interesting
phase transition depending on the value of q. We briefly explain this result: from Proposition 1,
we can see that the FWER is upper bounded by an expression of the form α + ∑m

i=1 ri with
ri � 0. Our argument optimizes the summation

∑m
i=1 ri in the upper bound. Depending on the
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Covariate adaptive FWER control 11

value of q, the dominant term in this summation will change, which eventually leads to different
convergence rates. When the covariates have exponential tails, the rate of convergence can be as
close to m−1 as possible. The details of the proof are provided in the Supplementary Material.
As we discussed earlier, Assumptions 1–4 enable us to show that the upper bound on the FWER
relies on the smallness of ‖β̂(pj→0)− β̂(pj→1)‖ and to get the expression for β̂(pj→0)− β̂(pj→1).
As our goal is to quantify the exact rate of convergence of the FWER upper bound to the nominal
level α, we further need to quantify the exact difference between β̂(pj→0) and β̂(pj→1). Through
conditions (iii)–(v) and the strong-concavity condition (vi), we obtain the concentration inequality
for ‖β̂(pj→a) − β∗‖. Conditions (ii) and (vii) are used for controlling the inverse (S∗

j + 	j)
−1 in

the expression of β̂(pj→0)−β̂(pj→1). Condition (viii) requires the number of true null hypotheses
to be at least some positive proportion of all hypotheses, which is fairly mild. We give one toy
example where all the conditions are satisfied.

Example 1. Suppose all hypotheses are true nulls and (xi, pi) are independent and identically
distributed with xi being one-dimensional, xi ⊥⊥ pi and pi ∼ Un([0, 1]), i.e., the uniform distri-
bution on [0, 1]. Then L(β) = E{Pml(β)} = E {l(β; z1)}. If xi follows a distribution symmetric
about zero and P(xi =| 0) > 0, it can be shown that L′(β) = 0 if β = 0, L′(β) > 0 if β < 0,
L′(β) < 0 if β > 0 and L′(β) = −L′(−β). Thus, β∗ = 0 is the unique maximizer. We can
further prove that L′′(0) � −c as long as E(x2

i ) > c′ for some c′ > 0. Other conditions are
naturally satisfied. When xi follows a nonsymmetric distribution, we also illustrate its obedience
to these conditions. One mandatory requirement for the distribution of xi is that P(xi > 0) > 0 and
P(xi < 0) > 0. In practice, we could always achieve this by shifting the covariate via subtracting
the median, or by standardizing the covariate. For more details see the Supplementary Material.

4. Numerical studies

4.1. Simulation set-ups

We conduct comprehensive simulations to evaluate the finite-sample performance of the pro-
posed method and compare it to competing methods. For genome-scale multiple testing, the
numbers of hypotheses could range from thousands to millions. For demonstration purposes,
we start with m = 10 000 hypotheses. To study the impact of signal density and strength, we
simulate three levels of signal density, sparse, medium and dense signals, and six levels of signal
strength, from very weak to very strong. To demonstrate the power improvement by using exter-
nal covariates, we simulate covariates of varying informativeness, noninformative, moderately
informative and strongly informative. For simplicity, we simulate one covariate xi ∼ N (0, 1) for
i = 1, . . . , m. Given xi, we denote π(xi) by πi and let

πi = exp(ηi)

1 + exp(ηi)
, ηi = η0 + kdxi,

where η0 and kd determine the baseline signal density and the informativeness of the covariate,
respectively. We set η0 = 3.5, 2.5 and 1.5, which achieves a signal density of around 3%, 8%
and 18%, respectively, at the baseline, i.e., no covariate effect, representing sparse, medium
and dense signals. Here, kd is set to be 0, 1 and 1.5, representing a noninformative, moderately
informative and strongly informative covariate. Based on πi, the underlying truth Hi is simulated
from Hi ∼ Ber(1 − πi). Finally, we simulate independent z-scores using zi ∼ N (ksHi, 1), where
ks controls the signal strength, the effect size, and we use six values equally spaced on [2, 2.8]
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and label them {1, 2, . . . , 6}. The one-sided formula 1 − 
(zi) converts z-scores into p-values.
The p-values together with xi are used as the input for the proposed method.

In addition to the basic setting, denoted S0, we investigate other settings to study the robustness
of the proposed method.

Set-up S1 (Additional f1 distribution). Instead of simulating normal z-scores under f1, we
simulate z-scores from a noncentral gamma distribution with the shape parameter 2. The
scale/noncentrality parameters of the noncentral gamma distribution are chosen to match the
variance and mean of the normal distribution under S0.

Set-up S2 (Correlated hypotheses). We further investigate the effect of dependency among
hypotheses by simulating correlated multivariate normal z-scores. Four correlation structures,
including two block correlation structures and two AR(1) correlation structures, are investigated.
For the block correlation structure we divide the 10 000 hypotheses into 500 equal-sized blocks.
Within each block, we simulate equal positive correlations (ρ = 0.5) (S2.1). On top of S2.1, we
divide the block into 2 × 2 sub-blocks, and simulate negative correlations, ρ = −0.5, between
the two sub-blocks (S2.2). For the AR(1) structure, we investigate both ρ = 0.75|i−j| (S2.3) and
ρ = (−0.75)|i−j| (S2.4).

4.2. Competing methods

We compared the proposed covariate-adaptive FWER-controlling procedure, denoted by
CAMT.fwer, to IHW-Bonferroni, weighted Bonferroni and Holm’s step-down methods (Holm,
1979). The covariate-adaptive FWER-controlling procedure, implemented using the CAMT.fwer
function in the R package CAMT (R Development Core Team, 2021), used the model log[π(xi)/

{1 − π(xi)}] = xT
i β, set f1(p) = kpk−1, and estimated β and k jointly using Algorithm 2. The

weighted Bonferroni method rejected the ith hypothesis if pi < α/(mπi), where the πi were esti-
mated from CAMT.fwer. The IHW-Bonferroni method was implemented using the R package
IHW, and Holm’s step-down method using the holm function from the R package mutoss. We
also implemented an oracle procedure based on the proposed optimal rejection rule, where the
πi and f1 were the true null probabilities and alternative density that generated the data.

Storey et al. (2004) proposed the bootstrap method to estimate the overall null probability π ,
which is implemented in the R package qvalue. The method uses censored p-values I{pi > λ}
with λ = 0.05, 0.1, . . . , 0.95 to obtain the corresponding estimates of the null probability, πλ, and
returns the best π

λ̂
. We set γ = λ̂. We evaluated the performance based on the FWER control,

probability of making at least one false positive, and power, true positive rate, with a target FWER
level of 5%. Results were averaged over 1000 simulation runs. In addition, we investigated the
FWER control across different target levels, α = 0.01, 0.05, 0.1, 0.15, 0.2, for cases where there
are no signals and under Set-up S0 with moderate signal density, η0 = 2.5, signal strength,
ks = 2.4, and covariate informativeness, kd = 1.

4.3. Simulation results

We present the simulation results of Set-up S0 in Fig. 1, and Set-ups S1 and S2 in the
Supplementary Material along with the FWER control across different target levels. All methods
control the FWER around the 5% target level, see Fig. 1(a). We additionally draw the 95% con-
fidence intervals of the proposed method CAMT.fwer, and observe that almost all the intervals
cover the 5% target level, see the dashed line in Fig. 1(a), which suggests adequate FWER con-
trol of CAMT.fwer under finite samples. In terms of power, Fig. 1(b) shows that generally the
five competing methods from the best to the worst are oracle, CAMT.fwer, IHW-Bonferroni and
weighted Bonferroni, the performance of these two methods depends on the cases, and Holm’s

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asaa098/6007465 by Texas A&M

 U
niversity user on 02 August 2021

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa098#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa098#supplementary-data


Covariate adaptive FWER control 13

step-down methods. The oracle procedure represents the performance upper bound and dominates
other methods.

We now study the impact of the external prior information, signal density and strength; see
Fig. 1(b). First, the power increases with the signal strength for all methods as expected. Second,
as the prior informativeness increases, the performance difference between methods widens.
CAMT.fwer is close to the oracle procedure: it is as powerful as other methods when the prior
is not informative, and is substantially more powerful when the prior is highly informative. Both
the IHW-Bonferroni and weighted Bonferroni methods improve over Holm’s step-down method
when the prior is informative. Third, the proposed method maintains high power across different
signal densities. In contrast, the IHW-Bonferroni method performs better than the weighted
Bonferroni method when the signal is sparse, and performs worse when the signal is dense.

In the Supplementary Material figures show the weak and strong FWER control of the com-
peting methods across different target levels. All the methods including CAMT.fwer control the
FWER at the target level. We compare the power across different target levels at moderate signal
density, signal strength and prior informativeness. CAMT.fwer remains more powerful than other
methods. In fact, as the target level increases, the power difference becomes larger.

We next study the robustness of the proposed method under Set-ups S1 and S2. The general
trend remains similar to Set-up S0, indicating that CAMT.fwer is robust to different f1 distributions
and various correlation structures. Interestingly, as we generate z-scores from noncentral gamma
distributions for the alternative in Set-up S1, the power of CAMT.fwer is even closer to that
of the oracle procedure, indicating that the beta distribution can model the alternative p-value
distribution very accurately in this case.

5. Application to UK Biobank data

To demonstrate the use of the proposed procedure in real-world applications, we applied
CAMT.fwer to UK Biobank data (Kichaev et al., 2019). We downloaded the data, which includes
p-values and functional annotations, from https://data.broadinstitute.org/
alkesgroup/UKBB/ and https://data.broadinstitute.org/alkesgroup/
FINDOR/. The genome-wide association p-values for 9 million SNPs and 27 traits were calcu-
lated using BOLT-LMM (Loh et al., 2018) based on 459K samples. The annotation data consists
of 75 coding, conserved, regulatory and linkage-disequilibrium-related annotations that have pre-
viously been shown to be enriched for disease heritability (Kichaev et al., 2019). We compared
our method with IHW-Bonferroni, weighted Bonferroni and Holm’s step-down methods. For
the IHW-Bonferroni method, as it can only deal with one-dimensional covariates, we chose the
covariate that had the maximum Spearman correlation with the p-values out of the 75 covariates
for the 27 traits separately. For the weighted Bonferroni method, we rejected the ith hypothe-
sis if pi < α/(mπi), where the πi were estimated from CAMT.fwer. The details of the use of
CAMT.fwer are given below.

Appropriate initial values of (β, k) are important for the algorithm to reach convergence in
fewer iterations and reduce the computation time significantly. To achieve this end, we estimate
those initial values based on small p-values, so the initial beta distribution fits the small-p-value
region more accurately. Let π s be the estimate of the proportion of the true null hypotheses based
on Storey’s procedure. We define the small p-values as the first m(1 − π s) smallest p-values and
let u be the maximum value of those small p-values. We have that

f (p | p < u) = π + (1 − π)kpk−1

πu + (1 − π)uk
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Fig. 1. Performance comparison under Set-up S0. (a) Familywise error rates; and (b) true positive rates were averaged
over 1000 simulation runs. The dashed grey, solid red, dotted green, dot-dashed blue and long-dashed orange lines
represent the oracle, CAMT.fwer, IHW-Bonferroni, weighted Bonferroni and Holm’s step-down methods, respec-
tively. The error bars in (a) represent the 95% confidence intervals of the method CAMT.fwer, and the dashed

horizontal line indicates the target FWER level of 0.05.
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Table 2. Significant loci detected at the FWER level of 0.05. Improve = (CAMT.fwer −
Holm)/Holm × 100%. The numbers with subscript ∗ are the maximum numbers of rejections

among the four competing methods for the corresponding traits
Weighted

Holm IHW Bonferroni CAMT.fwer Improve

Balding Type I 836∗ 836∗ 836∗ 833 −0.4%
BMI 1287 1287 1347 1364∗ 6.0%
Heel T Score 2104 2104 2144 2146∗ 2.0%
Height 3463 3460 3555∗ 3550 2.5%
Waist-hip Ratio 909 909 937 952∗ 4.7%
Eosinophil Count 1750 1750 1817∗ 1797 2.7%
Mean Corpular Hemoglobin 1913 1913 1953∗ 1925 0.6%
Red Blood Cell Count 1570 1570 1609 1633∗ 4.0%
Red Blood Cell Distribution Width 1470 1470 1493∗ 1470 0.0%
White Blood Cell Count 1393 1393 1430 1462∗ 5.0%
Auto Immune Traits 179 179 180∗ 138 −22.9%
Cardiovascular Diseases 512 512 529 540∗ 5.5%
Eczema 423 423 426 431∗ 1.9%
Hypothyroidism 373 373 377 424∗ 13.7%
Respiratory and Ear-nose-throat Diseases 228 228 231 236∗ 3.5%
Type 2 Diabetes 156 156 158 160∗ 2.6%
Age at Menarche 634 634 648 652∗ 2.8%
Age at Menopause 200 200 201 203∗ 1.5%
FEV1-FVC Ratio 1537 1537 1575 1599∗ 4.0%
Forced Vital Capacity (FVC) 867 867 924 947∗ 9.2%
Hair Color 1606 1606 1616 1629∗ 1.4%
Morning Person 204 204 217 229∗ 12.3%
Neuroticism 176 115 189 198∗ 12.5%
Smoking Status 221 159 232 254∗ 14.9%
Sunburn Occasion 232 232 232 237∗ 2.2%
Systolic Blood Pressure 1108 1108 1148 1157∗ 4.4%
Years of Education 383 383 416 447∗ 16.7%

Holm, Holm’s procedure; IHW, independent hypothesis weighting; CAMT.fwer, our proposed method.

is the conditional density of the mixture model f (p) = π + (1 − π)kpk−1 given that the value is
less than u. We estimate π and k by maximizing the conditional loglikelihood function,

(π̃ , k̃) = arg max
π∈(0,1),k∈(0,1)

∑
i:pi<u

log
{
π + (1 − π)kpk−1

i

}
− n log{πu + (1 − π)uk},

where n is the number of p-values that are smaller than u. Let β̃ = (log{π̃/(1 − π̃)}, 0)T. Then
we set (β̃, k̃) as the initializer in Algorithm 2.

Due to the linkage disequilibrium between SNPs, after getting the rejected SNPs we used
PLINK’s linkage-disequilibrium-based clumping algorithm with a 5 Mb window and an r2

threshold of 0.01 to form clumps of SNPs. The British population in the 1000 genomes data
(1000 Genomes Project Consortium, 2015) was used to calculate the linkage disequilibrium. The
rejected SNPs belonging to the same clump count for only one significant locus. The numbers
of significant loci at the 5% FWER level detected by the four competing methods are presented
in Table 2. We present the numbers of rejections before clumping in the Supplementary Material.
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Our proposed method CAMT.fwer detected more loci than other methods in 21 out of the 27
traits. Averaged across traits, our approach attained a 4.20% increase in significant loci detected
compared with Holm’s method.

6. Discussion

To conclude, we point out a few future research directions. First, in the two-group mixture
model, we assume that the success probabilities π(xi) vary with xi while f1 is independent of xi.
This assumption is reasonable in some applications, but it can be restrictive when the covariates
also affect the effect sizes. It is thus of interest to develop a procedure by allowing f1 to be
dependent on xi in such scenarios. Second, modelling f1 and π using nonparametric procedures
would give us the flexibility to capture more complicated signal patterns. Finally, extending
the method to accommodate more general structural information, such as the phylogenetic tree
structure (Xiao et al., 2017), is an interesting direction.
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