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ABSTRACT. In this paper we review the algorithm development in high order
methods for some conservation laws. The emphasis is on our recent contri-
bution in the study of two model classes: Fokker-Planck-type equations and
hyperbolic conservation law systems. For the former we will review free-energy-
satisfying and positivity-preserving schemes. For the later we will review the
general invariant-region-preserving (IRP) limiter, and its application to high
order methods for multi-dimensional hyperbolic systems of conservation laws.

1. Introduction. Systems of conservation laws for field quantities arise in diverse
applications. Their solutions may be visualized as evolving observables or propa-
gating waves. When the system is nonlinear, solution profiles can become steeper
as shocks or even concentrated as measures, propagation of these profiles cause
mathematical and numerical challenges in solving systems of conservation laws.

We are interested in building structure-preserving high order numerical methods
for time-dependent conservation laws through model refinement. In this paper we
restrict to two model classes: Fokker-Planck-type equations and hyperbolic conser-
vation law systems. By structure preserving algorithms we mean algorithms that
can preserve certain intrinsic solution properties at the discrete level.

For Fokker-Planck-type equations, the three main solution properties are mass
conservation, non-negativity, and the free energy/entropy dissipation law. We
present a second order explicit-implicit scheme that satisfies all three properties
at the discrete level, without a strict time step restriction [15], and discuss how
to incorporate these solution properties into a high order discontinuous Galerkin
(DG) method of arbitrary order [19]. For multi-dimensional hyperbolic conserva-
tion law systems endowed with a convex invariant region in the phase space, main
solution properties are also in three aspects: solution conservation, invariant region
preservation, and the entropy dissipation law. Here we only review the invariant-
region-preserving (IRP) limiter designed in [10], and has been tested in [9, 11] for
systems of Euler equations.

The organization of this paper is as follows. Section 2 is devoted to two models
and their main mathematical properties. Section 3 gives a short account of the
direct DG discretization techniques. Section 4 contains a review of the entropy
satisfying methods for Fokker-Planck type equations. In section 5 we address the
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invariant-region-preserving limiter and its applications to multi-D hyperbolic sys-
tems of conservation laws, and finally in section 6 we give some concluding remarks.

2. PDE models and solution properties. We begin with the fundamental
transport equation

Op(t,z) + Vg - (p(t, x)u) =0, (1)
for which the probability density space

P={p, p=0, /pzl}

is invariant. This transport equation alone is not closed, unless u can be related to
p or governed by further equations.

In dynamics driven by an entropy/ free energy functional E = E[p|, a direct
verification (assuming zero-flux boundary condition) shows that fast decay of F
along the transport dynamics (1) can be ensured if u = =V, (0,E), where 6,
denotes the usual L? variational derivative. We are led to the Fokker-Planck type
equation

Op =Va - (pVab,Elp]) . (2)

Dictated by different forms of FE, this class includes many equations such as the
heat equation, the Fokker-Planck equation [28], the aggregation equation [12, 33]
with

1
E= /{plogp +V(x)p+ §W * pp| dx,

as well as drift-diffusion models such as the Poisson-Nernst-Planck equation [7] and
the Keller-Segel system [26]. Equation (2) is a natural gradient flow generated by
functionals E[p] in Wasserstein distance, directly linked to the minimization prob-
lem min,ep E[p], and has received ample attention in multiple contexts. Solutions
to (2) are usually not sensitive to initial distributions, but often to the critical mass,
some patterns will emerge as time evolves leading to rich solution structures when
coupled with notrivial forces. In order for a numerical method to generate solutions
with satisfying long time behavior, it is crucial to preserve some intrinsic solution
properties. The main solution properties are

e nonnegativity principle, po > 0= p(t,z) >0 Vt>0.
e mass conservation [ p(t,z)dz = [ po(z)dz Vt>0.
e the entropy/energy dissipation inequality

d
—E=-— /p|Vw5pE|2dx <0.
dt

These properties are naturally desired for high order numerical schemes.

In Eulerian dynamics of ‘fluids‘, velocity field is governed by the moment equation
Ou+u-Vu=F.

Dictated by different forcing F', examples of such system include the Euler equation,
the Navier-Stokes equation, the Euler-Poisson equation, etc. For such Eulerian
balance laws the solution is often sensitive to the initial velocity field, leading to the
so called critical threshold (CT) phenomena! [16]. We note that gradient flows (2)
can be seen as describing the long-time response of an Euler equation with friction
[4, system (2.1)].



STRUCTURE-PRESERVING METHODS 205

The simplest hyperbolic balance laws is the system of compressible Euler equa-
tions, which belongs to the following model class:

d
8tw+28ijj(w):0, reRY t>0; w(0,z)=wo, (3)

=1

where w € R! with [ > 1, and the flux function Fj(w) € R'. It is known that
discontinuities can develop at finite time even for smooth initial data [13], hence
entropy inequalities should be used to single out the physically relevant solution
among many weak solutions. In application problems, the pointwise range of solu-
tions (invariant region) may be known from physical considerations.

The main solution properties, also desired at discrete level, are

o Invariant region wo e X = w(t,-)eX Vt>0.
e Conservation Jw(t,x)dz = [wo(z)dz Vt>0.
e Entropy inequality. om(w(t,z)) + V- ¥(w(t,z)) <0,a.e,
where (1, U) is an admissible entropy-pair.
In the construction of structure-preserving algorithms for the above two model
classes, we have adopted the following strategy:

e Direct DG (DDG) discretization of the PDE weak formulation, choosing
proper numerical fluxes to preserve solution conservation and certain en-
tropy dissipation law, together with Runge-Kutta methods [3] for time dis-
cretizaiton.

e Limiting numerical solutions to weakly enforce the point-wise solution bounds.

3. Discretization techniques. For solutions with either concentrations or discon-
tinuities, the finite volume method as a natural choice can lead to the conservation
form of a scheme which is a main ingredient of shock capturing methods for hy-
perbolic conservation laws. Its high order extension is the Discontinuous Galerkin
(DG) method, which is also a class of finite element methods, using a completely
discontinuous piecewise polynomial space for the numerical solution and the test
functions [8, 29, 30].

For DG methods to conservative PDEs, the key is to design suitable numerical
fluxes so that the resulting scheme satisfies the desired properties.

Taking d,u 4+ 0, - J = 0 as an example, a simple integration by parts over any
computational cell I gives

/8tuvdx—/vadx+Jv|aI =0.
I I

Here OI denotes the boundary of I. To complete the DG method, a single valued
numerical flux J is needed to replace .J, and values from inside I for the test function
v. For first order scalar conservation laws J = f(u), it is simple to take a monotone
flux

j = f(ui’ u+)7
including the celebrated Lax-Friedrichs flux and Godunov flux, see [30].

However, for high order PDEs, it is subtle to define J. For example, for J =
—0yu, there is a need to define a flux for d,u. The average of J,u from traces of
derivatives of two neighboring polynomials is known to give a wrong solution for
P! polynomials! Indeed, various ideas have appeared in the literature to overcome
such difficulty, see e.g. [29].
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The solution of the heat equation d;u = d>u with initial data g which has only
one discontinuity at x = 0 gives

uy(t,0) = \/%[9] + {029} + \/z[aig] e

where [-] denotes the jump and {-} the average. This led us to the flux formula in
23]

] k/2]
ity = o+ {us} + > Bml(Ax)* ™02 ).
m=1

Motivated by such formula, we design a refined DDG for diffusion in [24] as

/ Opuvdx + / Opudpvdr —uzv|  + ({u} —w)vg| =0,
I I oI, oI,
where

. u

Uy = 60% + {uz} + f1Az[ugs].

In [14], the DDG method is shown L? stable in the sense that

/uz(t,x)der{u} < /u2(0,x)dx,
with {---} > 0 if

Bo >T(B) = k? (1 — B (k* — 1)+ %%(1& - 1)2> .

The use of By, 81 provides extra room for incorporating more desired solution prop-
erties. Sharp L? error estimates are obtained in [14] as

ltewaet (t:+) = ult, )z < CHEHD,

when using polynomial elements of degree k for d;u + V. - f(u) = Au. Moreover,
3rd order maximum-principle-preserving DG scheme (P, polynomials) is possible,
if
1 1
- - >1;
) < Bl < 4’ BO = 4
as shown for linear Fokker-Planck equations [21], and for a class of convection-
diffusion equations [34]. In addition, super-convergence rate of h?* at nodes has

been proved by Cao, Liu and Zhang [2] if

1 1
A1

“ g Mo =2

The results also include rate A**! for solution derivatives at Gauss points, h*+? at

Lobatto points, and h%?* at nodes.

4. Fokker-Planck-type equations. We begin with the aggregation model
Op=V-(Vp+pV(V(x)+ W xp)),

where V() is a given potential, and W is a symmetric, positive kernal with integral
1. Based on the reformulation of the form

Op=V- (MV (ﬁ))’ M = ¢V @-Weo
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we introduced in [15] an explicit-implicit scheme:

n+1 n n+1 n+1 n+1 n+1

pli TP n Piv1 _Pi | _;-1 n Pi — Pim1
i i+1/2 j— =172\ M M ’

J At J+1/2775+1/ Mgn+1 Mjn j—1/2""j-1/ ]n Jn_l

where p approximates p(t,z;) at time t = nAt. This scheme is easy to imple-
ment, and is shown to preserve all three desired properties without a strict time
step restriction. This has extended and improved upon our earlier works [20, 17].
Extensions to multi-dimensional settings and/or the case when W x p is replaced by
¥ solved by a Poisson equation are doable as shown in [15].

It is more challenging to design a high order scheme (3rd or higher order) while
three properties remain preserved at the discrete level. Next we show how this can
be achieved through a drift-diffusion system. A detailed account can be found in
[19], also earlier works [18, 22].

In a mean field approximation of diffusive molecules or ions, one finds the Poisson—
Nernst—Planck (PNP) system, i = 1,--- ,m,

0ici =V - (Vei+qieiVy) z€Q, t>0 (4a)

=V (e(z)Vy = i qici + po(z), T€Q, t>0, (4b)
i=1

ci(0,z) = d™(z), ze€Q, (4c)

g—ﬁ:a, gﬁ—&—qicig—ﬁzo, z eI, t>0. (4d)

Here ¢; = ¢;(t, z) denotes density of i-th charged particle with charge g;, at time ¢
and position x, and ¥ = ¥ (t, z) the electro-static potential. The PNP system has
been widely accepted in applications in electrical engineering and electrokinetics,
electrochemistry, and biophysics: for example in biological channels [7] or semi-
conductor devices [25].

Main mathematical features of the system include the conservation of ions, pos-
itivity of concentration, and dissipation of the free energy

d

iy -1 . . 200 <
pm zi:/gcz Ve, 4+ ¢;Vp|*de <0

where

“ 1
F= Jogeidr + = | |Va|*de.
/Q;c, 0ge; x+2/ﬂ| Y| dx

In order to construct a DG scheme to incorporate these solution properties, we refor-
mulate the PNP system (one dimensional case and e = 1, for notational simplicity)
as
8tci = az(czazpz)a 1= ]-7 e, M,
pi = @i +logci,
m
—% = qici + po(x).
i=1

Let V}, denote a DG solution space (piecewise polynomials), then the DDG spatial
discretization when coupled with the Euler forward time discretization gives us the



208 HAILIANG LIU

SCheme ﬁnd C’Lh7p7h? h € Vh7 V Uiy Ty 1] € Vh7 1= 1; e, MMy,

n+1 n
el e .
/ Zh ik " hyide = —/ CinOxPip Orvidz + {cjj, } (330.7?%”1‘ + (Pih — {P?h})azvi) ‘
I A ol

j I;

/ plyrid = / (@0 + log &y ruda,
I I

J

|, devkounie — (30 + 07— wihom)|, = [ e,

J

m
lz qiCin + po

=1

with flux @ = Fl(p;) and 3/93%1 = Fl(¢y,), and

Fl(w): = ﬁo[ﬂh] + {O,w} + B1h[Zw).

The numerical solution is shown to have following properties.

Theorem 4.1. [19]

1. The fully discrete scheme is conservative

N N

Z/ c?hdx:Z/ aflde, i=1,---,m, n € N.

j=1"1; j=1"1j
2. Assummg ey (x) > 0, there exists p* > 0 such that if the mesh ratio p =
Am2 € (0, u*), then the fully discrete free energy

N m 1 m
"= Z/I [Z ciplogery, + 3 (Z aicip + Po) (U
=171 Li= i=1

Fn+1 S F" — ZA pzh7pzh

1
dm—i—f/ oypds,
2 Joq

where Ac(+,+) is a weighted bilinear operator, which is coercive if By is suitably
large, and B1 =0 in Fl(yyp).

The free energy dissipation law is also proved for high order strong stability pre-
serving Runge-Kutta methods [3], which are convex combinations of several formal
forward Euler steps.

As a result, steady states can well be preserved: if initial data c?h is already at
steady states, i.e., logcd, + ¢;9%(z) = C;. By induction, it can be shown that the
following holds:

logely, + qivp () = C; ¥n e N
The scheme requires c¢;, be positive, which is difficult to achieve for high order
approximations. Inspired by the Zhang-Shu limiter [35] for scalar conservation laws,
we impose a limiter. For approximation wy, € P*(I;) with cell averages w; > §, we
reconstruct
(@) =0 DO (uy(a) ), i minw(a) <9
wy, () = W, @, — miny, wy (@) wp(z) —w;), i n};nwh x .

This reconstruction maintains same cell averages, satisfies ming, w’(z) > 6, and
does not destroy accuracy when § < h**1.
The algorithm in [19] can be summarized in following steps.

1. (Initialization) Project ci*(z) onto V}, to obtain ¢, (z).

J

)
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2. (Reconstruction) From ¢l (x), apply, if necessary, the reconstruction limiter
to update cj;, so that cJ}, > .
(Poisson solver) Solve the Poisson equation to obtain .
(Projection) Obtain pl}, € Vj, by projection of g9} + logcl,.
5. (Update) Solve the NP equations to obtain c?,j'l with some Runge-Kutta
solver.
Repeat steps 2-5 until final time 7.

.~ w0

5. IRP limiter for hyperbolic systems. An invariant region to (3) is an open
set in phase space R! such that if the initial data is in this set, then the solution
will remain in this set. It was proved by Hoff [6] that an invariant region for one
dimensional hyperbolic conservation laws must be convex. For 2 x 2 systems such as
the isentropic Euler system, an invariant region can be described by two Riemann
invariants [31]. For general hyperbolic conservation law systems, it is a challenging
task to identify a useful invariant region.

Shock capturing numerical methods have seen revolutionary developments over
the past 40 years, with both conservation and entropy stability as two main in-
gredients in each scheme construction. However, it remains a difficult task to pre-
serve an invariant region by a high order numerical method unless some nonlinear
limiter is frequently imposed (Refs [1, 5] for first order IRP schemes). Indeed,
recent efforts using limiting techniques have been made to construct high order
maximum-principle-preserving schemes for scalar conservation laws (see [35]) and
positivity-preserving schemes for hyperbolic systems including compressible Euler
equations (see e.g. [27, 36, 38]). The work by Zhang and Shu in [37] introduced
a limiter to preserve the minimum-entropy-principle [32] for high order schemes to
the compressible Euler equation.

We now discuss the general explicit limiter introduced in [10]. Assume the multi-
dimensional system of conservation laws admits an invariant region ¥, characterized

by
%= {w| U(w) <0},

where U is convex. Denote the interior of ¥ by Xy. A key fact we have used is that
for any bounded domain K, the averaging defined by

W= ‘—I;/I(W(x)dx

is a contraction operator.

Lemma 5.1. Let w(z) be non-trivial piecewise continuous vector functions. If
w(z) € X for all z € K C R? and U is strictly convex, then W € Yo for any
bounded domain K.

This lemma sets the foundation for using the domain average as a reference
to limit the existing polynomials, through a linear convex combination as in [35,
37]. In the system case, the question of particular interest is whether the limited
approximation is still high order accurate.

Let wp(z) be a sequence of vector polynomials over K, a high order accurate
approximation to the function w(xz) € 3. Assume Wy € g, but wp(z) is not
entirely located in ¥. We construct

v~vh(x) = HWh(I) + (1 - Q)Wha
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where 6 € (0, 1] is defined by § = min{1,6;}, where

U(V_Vh)
Oy = ———M___ mex _pax U > 0.
YT UG — o Ch TR (wn(@))

M
If ¥ = N{w| Ui(w) <0}, then the limiter parameter needs to be modified as
i=1
0 = min{1,60y,--- ,0p}.

This reconstruction has been shown to satisfy three desired properties.

Theorem 5.2. [10] The reconstructed polynomial Wy, (x) satisfies the following three
properties:

(i) the average is preserved, i.e. Wi, = Wp,;
(i)  wp(x) lies entirely within invariant region ¥,V € K;
(ii)  order of accuracy is maintained, i.e., if |Wp — W||oo < 1, then
- C
Wh = Wloo < m——||[Wp — W
|| h HOO — |U(Wh)||| h ||007

where C' > 0 depends on w and X.

Let w}' be the numerical solution at n-th time step generated from a high order
finite-volume-type scheme of an abstract form

with = L(w}), wi=wj(z) € V.

Provided that the scheme has the following property: there exists A\g, and a test set
S such that if

Ai=— <X and wj(z) e X forzxzeS,

then
V_VZJrl € Yo;
the limiter can then be applied with K replaced by Sk : SN K, i.e.,

[max _ U
h S?GI%); (Wh (Jf) ) )

through the following algorithm:
Step 1. Initialization: take the piecewise L? projection of wq onto V}, such that

(W) —wo,0) =0, YoecV,.

Step 2. Limiting: Impose the modified limiter on wj for n = 0,1,--- to obtain
o}

Wi
Step 3. Update by the scheme:

Wit = L(w]).

Return to Step 2.

A limiter as such was first reported in [11] for one-dimensional Euler equations,
and in [9] for the isentropic gas dynamics. The limiter in [11] is explicit and si-
multaneously preserves the positivity of density and pressure and also a minimum
principle for the specific entropy [32].

For multi-dimensional systems of conservation laws, there is a need to check
whether the projected system shares the same invariant region as that for the full
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multi-D system. For 2D compressible Euler equations with w = (p,m,n, E)T,
F(w) = (Fi(w), Fa(w)), where

Fy(w) = (m, pu® + p, puw, (E +p)u) ",
Fy(w) = (n, puv, pv* + p, (E +p)v) "

1 1
m=pu, n=pv, E:fpu2+fpv2+L, v >1,
2 2 v —
this as been shown true with the invariant region expressed as
S={w| p>0,p>0, ¢<0},

po(z)
pg (@)
Hence, a corresponding IRP algorithm can be well established, and has been tested

in [10].

where s = log (p%) and sy = inf, log( ), and ¢ = (s9 — s)p is convex in w.

6. Conclusions and outlook. In this paper, we have reviewed some of our contri-
butions to the development of structure-preserving algorithms for two model classes.
It is clear from the works we have reviewed, and from related references in the
literature, that these techniques are not limited to these model equations, it is in-
teresting to check the algorithmic improvement with more complex systems. Inter-
esting directions worth further investigation include: (1) Design of explicit-implicit
structure-preserving algorithms for nonlinear Fokker-Planck-type equations so to
enhance computational efficiency; (2) Design of local IRP algorithms for multi-
dimensional systems of hyperbolic conservation laws, with more realistic applica-
tions.
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