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We consider growth of local operators under Euclidean time evolution in lattice systems with local interactions.
We derive rigorous bounds on the operator norm growth and then proceed to establish an analog of the Lieb-
Robinson bound for the spatial growth. In contrast to the Minkowski case when ballistic spreading of operators
is universal, in the Euclidean case spatial growth is system-dependent and indicates if the system is integrable
or chaotic. In the integrable case, the Euclidean spatial growth is at most polynomial. In the chaotic case, it is
the fastest possible: exponential in 1D, while in higher dimensions and on Bethe lattices local operators can
reach spatial infinity in finite Euclidean time. We use bounds on the Euclidean growth to establish constraints
on individual matrix elements and operator power spectrum. We show that one-dimensional systems are special
with the power spectrum always being superexponentially suppressed at large frequencies. Finally, we relate the
bound on the Euclidean growth to the bound on the growth of Lanczos coefficients. To that end, we develop a
path integral formalism for the weighted Dyck paths and evaluate it using saddle point approximation. Using a
conjectural connection between the growth of the Lanczos coefficients and the Lyapunov exponent controlling
the growth of the out-of-time-ordered correlators (OTOCs), we propose an improved bound on chaos valid at all
temperatures.
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I. INTRODUCTION AND RESULTS

Operator spreading, or growth, in local systems is a ques-
tion of primary interest, which encodes transport properties,
emergence of chaos and other aspects of many-body quantum
dynamics [1–8]. A classic result of Lieb and Robinson [9]
(see also Refs. [10,11] for recent progress) establishes that
under time evolution the fastest possible spatial spreading of
local operators is ballistic. There is no norm growth in this
case since the time evolution is unitary. Ballistic spreading of
operators, and signals, has been established for many models
[3,12–18] and seems to be a universal feature of local sys-
tems in any dimensions. At the same time, evolution of local
operators in Euclidean time

A(−iβ ) = eβH A e−βH , (1)

which we study in this paper, is much more nuanced. Since
the Euclidean evolution is not unitary, the norm of A(−iβ )
quickly grows with β. Moreover, as we explain below, the
operator growth is not universal and reflects if the system in
question is integrable or chaotic.

We start in Sec. II by deriving a bound on |A(t )| valid
uniformly for |t | = β by expanding (1) in Taylor series
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and bounding corresponding nested commutators. For local
H , there is a combinatorial problem of counting contribut-
ing nested commutators, which we solve exactly for short
range systems defined on Bethe lattices, which includes lo-
cal systems in 1D. In higher dimensions, we conjecture an
asymptotically tight bound. Hence, we expect our bounds on
operator norm to be optimal in the class of Hamiltonians
we consider—lattice Hamiltonians with local interactions. We
find that maximal rate of growth is very different in 1D, where
it is at most double-exponential, and in higher dimensions or
Bethe lattices, where the norm can become infinite in finite
Euclidean time. We extend the analysis to include spatial
growth in Sec. III, where we find that in 1D, operators spread
at most exponentially, while in higher dimensions, includ-
ing Bethe lattices, they can reach spatial infinity in finite
Euclidean time. When the 1D system is finite, the minimal
time necessary for an operator to reach the boundary is log-
arithmic, which may explain logarithmic convergence of the
numerical Euclidean time algorithm proposed in Ref. [19]. We
further speculate in Sec. V that the timescale originating from
the Euclidean Lieb-Robinson bound might be related to the
Thouless energy of the corresponding quantum many-body
system [20].

In Sec. IV, the results on norm growth are used to constrain
individual matrix elements. We find that matrix elements in
energy eigenbasis 〈Ei|A|Ej〉 must decay at least exponentially
with ω = |Ei − Ej |, while in 1D the decay must be faster than
exponential, as provided by (48) and (51). We also establish
a number of bounds on the auto-correlation function at fi-
nite temperature CT (t ), and its Fourier transform—the power
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spectrum �T (ω),

CT (t ) ≡ Tr(ρ A(t )A) =
∞∫

−∞
�T (ω)eiωt dω,

ρ ∝ e−H/T , Tr(ρ) = 1. (2)

The bounds have integral form, see (60), (61) and (63).
At the physical level of rigor, they suggest that �T (ω) de-
creases exponentially with ω in D � 2, while in 1D the
decay at large frequencies is superexponential. This empha-
sizes that one-dimensional systems are indeed very special,
and many numerical results established for one dimensional
systems may not necessarily apply to higher-dimensional
systems.

The bound on |A(t )| established in Sec. II depends only
on the absolute value |t |. Obviously, it is overly conserva-
tive for real t when the time evolution is unitary. We argue,
however, in Sec. V, that it does correctly capture the Eu-
clidean growth t = −iβ of chaotic systems. We also consider
system size dependence of |A(t )| and find it to be consis-
tent with the eigenstate thermalization hypothesis (ETH). For
the integrable systems, we find the growth of |A(t )| to be
much slower than maximal possible, and in particular spa-
tial growth of A(−iβ ) in this case is not exponential but
polynomial.

The bound on |A(−iβ )| can be translated into a bound on
the growth of Lanczos coefficients bn, appearing as a part
of the recursion method to numerically compute CT (t ). This
is provided we assume that asymptotically bn is a smooth
function of n. To perform this calculation, we introduce a
formalism of summing over weighted Dyck paths in Sec. VI
and evaluate the corresponding path integral via saddle point
approximation.

The obtained bound on Lanczos coefficients growth (79)
is valid at all temperatures. Translating it into a bound
on Lyapunov exponent of the out-of-time-ordered correlator
(OTOC), we find a new bound on chaos

λOTOC � 2πT

1 + 2T β̄(T )
, (3)

where β̄ is such that CT (t ) is analytic inside the strip |�(t )| �
β̄(T ). For local systems, we find β̄(T ) � 2β∗ with β∗ given
by (33) for all T . We illustrate this bound for SYK model
in Sec. VI, see Fig. 2. We conclude with a discussion in
Sec. VII.

II. BOUND ON OPERATOR NORM GROWTH
IN EUCLIDEAN TIME

Our goal in this section is to bound the infinity norm of a
local operator evolved in Euclidean time

A(−iβ ) = eβH A e−βH , |A(−iβ )| � |A| f (β ). (4)

Here, f (β ) is a bound which depends on the inverse tem-
perature β, the strength of local coupling J and geometrical
properties of the underline lattice model. We argue that our
bound (19) (for 1D systems) and (32) (for higher dimensions)
is optimal for the class of models characterized by the same
strength of the local coupling constant J and lattice geome-

A
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FIG. 1. One-dimensional lattice with short-range interactions
Hamiltonian H = ∑5

I=1 hI . Local operator A sits at a third site count-
ing from the left, between second and third bonds. Bonds highlited
in gray form a lattice animal I = 2, 3, 4.

try encoded in the Klarner’s constant λ and animal histories
constant ε which we introduce later in this work.

For simplicity, we first consider nearest-neighbor interac-
tion Hamiltonian in 1D

H =
L∑

I=1

hI , (5)

where each hI acts on sites I and I + 1 and for all |hI | � J
for some J 1. Any nearest-neighbor interaction spin chain
would be an example. The operator A will be an one-
site operator. An example with L + 1 = 6 sites is shown in
Fig. 1.

Euclidean time-evolved A(−iβ ) can be expanded in Taylor
series

A(−iβ ) = A + β[H, A] + β2

2
[H, [H, A]] + . . . (6)

Using decomposition (5) operator A(−iβ ) can be represented
as a sum of nested commutators of the form

A(−iβ ) = A +
∞∑

k=1

∑
{I1,...,Ik}

[hIk , [. . . , [hI1 , A]]]
βk

k!
. (7)

Here the sum is over all sets of indexes {I1, . . . , Ik} which sat-
isfy the following “adjacency” condition: first index I1 must be
adjacent to the site of A, I2 must be adjacent to the endpoints of
I1 (which include the site of A), I3 is adjacent to the endpoints
of the union of I1, I2, etc. In other words, any subset of bonds
I1, I2, . . . , I	 for 	 � k defines a connected cluster. Otherwise,
the commutator in (7) vanishes.

A connected cluster of bonds of any particular shape is
called a bond lattice animal. In 1D, all lattice animals con-
sisting of j bonds are easy to classify: they are strings of
consecutive bonds from some I to I + j − 1. In higher dimen-
sions, the number of different bond lattice animals consisting
of j bonds grows quickly with j.

Each set {I1, . . . , Ik} in (7) defines a lattice animal, but
the same animal may correspond to different sets. This is
because indexes can repeat and appear in different orders,
subject to the constraints outlined above. If we think of the
set {I1, . . . , Ik} as a “word” written in terms of “letters” I	,
then corresponding lattice animal defines the alphabet.

There is a more nuanced characteristics of index sets from
(7), the order in which new indexes appear. Namely, we take

1Time-evolved A(t ) will not change if any of the local Hamiltonians
hI is shifted by a constant. Therefore we define hI such that the
absolute value of its largest and smallest eigenvalues are the same
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a set {I1, . . . , Ik} and while going from left to right remove
indexes which have already appeared. In this way, we obtain a
new (shorter) set which also satisfies the adjacency condition.
A particular order is called “history.” For example, two sets
{2, 3, 2, 4, 3} and {3, 3, 4, 2, 4} define the same lattice animal
consisting of bonds I = 2, 3, 4 but different histories, {2, 3, 4}
and {3, 4, 2}, correspondingly, see Fig. 1.

Going back to the sum (7), to bound the infinity norm of
A(−iβ ), we can bound each nested commutator by (2J )k|A|.
Then

|A(−iβ )| � |A| f (β ), (8)

f (β ) =
(

1 +
∞∑

k=1

∑
{I1,...,Ik}

(2J|β|)k

k!

)
, (9)

and the nontrivial task is to calculate the number of sets
{I1, . . . , Ik} for any given k, which satisfy the adjacency con-
dition. Evaluating sum (9) can be split into two major steps.
First step is to calculate the total number φ( j) of animal
histories associated with all possible lattice animals consisting
of j bonds. Second step is to calculate the sum over sets
{I1, . . . , Ik} associated with any given history {J1, . . . , Jj}.

This last problem can be solved exactly in full generality.
Let’s assume we are given a history—a set {J} = {J1, . . . , Jj}
which satisfies the adjacency condition. We want to know the
number of different sets {I} = {I1, . . . , Ik} for k � j satisfying
the adjacency condition such that {J} is the history of {I}. We
denote this number by S(k, j). An important observation here
is that any given set {I} defines a partition of {1, 2, . . . , k}
into j groups labeled by elements from {J} by assigning
each number 1 � i � k to a group specified by Ii. And vice
verse, each partition of {1, 2, . . . , k} into j groups defines a
proper set {I} satisfying the adjacency condition. To see that
we need to assign each group a unique label from {J}. We
do it iteratively. The element 1 belongs to a group, which
will be assigned the label J1. Then we consider element 2.
If it belongs to the same group labeled by J1 we move on to
element 3, otherwise we assign the group it belongs label J2.
Then we consider elements 3, 4, and so on. In this way all j
groups will by labeled by the unique elements from {J} such
that the adjacency condition is satisfied.

In other words, we have established a one-to-one corre-
spondence between the space of proper sets {I} for the given
history {J} with the space of partitions of k elements into j
groups. The number S(k, j) of such partitions is the Stirling
numbers of the second kind which admits the following rep-
resentation [21]:

S(k, j) =
j∑

s=1

(−1) j−ssk−1

( j − s)!(s − 1)!
. (10)

If we introduce the number of proper sets {I1, . . . , Ik} in (9)
consisting of k bonds by N (k), such that

f (β ) = 1 +
∞∑

k=1

N (k)
(2J|β|)k

k!
, (11)

then N (k) and φ( j) are related by the Stirling transform,

N (k) =
k∑

j=1

S(k, j)φ( j). (12)

The inverse relation is φ( j) = ∑ j
k=1 s( j, k)N (k), where

s( j, k) are the Stirling numbers of the first kind. From here
in full generality follows [22]:

f (β ) = 1 +
∞∑
j=1

φ( j)
q j

j!
, (13)

where

q := (
e2|β|J − 1

)
. (14)

We will derive this identity below
The expansion in q (13) has an obvious advantage over

(11). Locality is implicit in (11), where the terms at the order
βk come from the lattice animals of all sizes. At the same
time (13) makes locality manifest, terms at the order q j come
only from the lattice animals which have at least j bonds. This
representation therefore can be used to establish Euclidean
version of Lieb-Robinson bound, see Sec. III.

To evaluate (13), we still need to know the number of lat-
tice animal histories φ( j) for a given j. In case of 1D systems,
those can be calculated exactly, while in higher dimensions we
propose an asymptotically tight bound. Hence, we consider
these cases separately.

A. 1D systems

In one dimension, all lattice animals consisting of j bonds
are simply the strings of j consecutive bonds. There are
N ( j) = j + 1 such animals which include the site of the op-
erator A. A convenient way to enumerate them is to count the
number of bonds j1 and j2, j1 + j2 = j, to the left and to the
right of A, respectively. For the given j1, j2 there is, obviously,
only one animal, N ( j1, j2) = 1.

For any given j1, j2 we denote by h( j1, j2) the number
of histories associated with this animal, i.e., the number of
different sets {J} = {J1, . . . , Jj} such that each Ji belongs
to the animal, all Ji in the set are unique and {J} satisfies
the adjacency condition. Each history {J} can be completely
parametrized by the order in which the cluster “grew” in
left and right directions, for example histories {2, 3, 4} and
{3, 4, 2} from Fig. 1 can be parametrized as “left, right, right”
and “right, right, left,” correspondingly. In other words, histo-
ries with given j1, j2 are in one to one correspondence with
strings of j elements, each element being either “left” or
“right,” and there are in total j1 and j2 elements of each kind.
Obviously, the total number of such strings is

h( j1, j2) = ( j1 + j2)!

j1! j2!
. (15)

Combining all ingredients together, we find the number of
lattice histories for all lattice animals of size j

φ( j1, j2) = N ( j1, j2)h( j1, j2) = ( j1 + j2)!

j1! j2!
, (16)

φ( j) =
∑

j1+ j2= j

φ( j1, j2) = 2 j, (17)
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from (11) and (12), we find in full generality

f (β ) = 1 +
∞∑
j�1

∞∑
k= j

φ( j)S(k, j)
(2|β|J )k

k!
. (18)

By definition k � j. Crucially, expression (10) vanishes for
1 � k < j. Therefore the sum over k can be extended to go
from k = 1 and can be easily evaluated,

f (β ) = 1 +
∞∑
j�1

j∑
s=1

(−1) j−sφ( j)

( j − s)!(s − 1)!

e2βJs − 1

s
.

The sum over s can be evaluated explicitly, yielding (13).2

Using the explicit value of φ( j) (17), we find

f (β ) =
∞∑
j=0

f ( j, β ) = e2q, f ( j, β ) = (2q) j

j!
. (19)

Here, f ( j, β ) is a contribution to the bound coming from the
clusters which include at least j bonds.

This result can be further refined. In (16), we introduced the
number of lattice histories associated with the lattice animal
which consists of j1 bonds to the left of A, and j2 bonds to the
right. Repeating the summation in (18), we readily find

f (β ) =
∞∑

j1, j2�0

f ( j1, j2, β ), f ( j1, j2, β ) = q j1+ j2

j1! j2!
. (20)

Here f ( j1, j2, β ) is the bound on the norm of the part of
A(−iβ ) supported on the cluster of size j1 + j2. It therefore
can be used to obtain the bound in the case of finite 1D lattice,
or an infinite 1D lattice with a boundary.

By re-expanding (19) intro Taylor series in β,

f (β ) =
∞∑

k=0

Bk (2)

k!
(2J|β|)k, (21)

where Bk are Bell polynomials, we find a bound on the norm
of individual nested commutators,

| [H, [. . . , [H, A]]]︸ ︷︷ ︸
k commutators

| � |A| Bk (2)(2J )k. (22)

2As a side note that evaluation of (18) in Sec. II A imply lemma
5 of Ref. [52]. Let us consider a fixed lattice animal consisting of
j bonds, listed in some arbitrary order {J1, . . . , Jj}. One may want
to calculate G = ∑

k� j

∑
{I1,...,Ik }(2J|β|)k/k!, where the sum is over

all sets {I1, . . . , Ik}, where each Ii belongs to the set {J1, . . . , Jj}, and
each Ji appears in the set {I1, . . . , Ik} at least once. This is a simpli-
fied version of our main calculation, with the adjacency condition
being ignored. It is the sum evaluated in lemma 5 of Ref. [52]. By
taking a set {I1, . . . , Ik} from the sum we can associate to it a set
{I1, Ii2 , . . . Ii j } by going from the left to the right and removing repeat-
ing labels. As a set (i.e., ignoring the order) {I1, Ii2 , . . . Ii j } coincides
with {J1, . . . , Jj}. The key point here is the same, the number of sets
{I1, . . . , Ik} associated with the same set {I1, Ii2 , . . . Ii j } is equal to
S(k, j). If we now sum over all sets {I1, . . . , Ik} associated with a
particular {I1, Ii2 , . . . Ii j }, this is exactly the sum evaluated in (18)
with φ( j) = 1. Since there are j! different permutations of labels
in {J1, . . . , Jj}, and thus j! sets {I1, Ii2 , . . . Ii j } we therefore obtain
G = q j

B. Bethe lattices

The behavior of f (β ) differs drastically in one and higher
dimensions. To better understand this difference we consider
an “intermediate” scenario of a short range Hamiltonian de-
fine on a Bethe lattice of coordination number z [23]. Namely,
we assume that each hI from (5) “lives” on a bond and acts
on the Hilbert spaces associated with two vertexes adjacent
to that bond. For any finite k in the Taylor series expansion
(7), only finite number of bonds are involved and the cor-
responding lattice animals (clusters) live on the Cayley tree.
Thus, similarly to 1D, there are no loops, but the total number
of lattice animals consisting of j bonds grows exponentially,
N ( j) ∼ λ(z) j ,

ln λ(z) = (z − 1) ln(z − 1) − (z − 2) ln(z − 2). (23)

This exponential growth is typical for lattices in higher dimen-
sions D > 1.

The total number of lattice animal histories φ( j) can be
calculated exactly in this case (see Appendix A),

φ( j) = (z − 2) j �( j + z/(z − 2))

�(z/(z − 2))
, (24)

leading to the bound

f (β ) = (1 − (z − 2)q)−z/(z−2). (25)

In other words, the total number of histories φ( j) grows as a
factorial. The same qualitative behavior applies for all higher-
dimensional lattices.

As a final remark, we notice that taking z → 2 in (25)
yields f (β ) = e2q, in full agreement with (19).

C. Higher-dimensional systems

The calculations of previous sections can, in principle, be
extended to an arbitrary lattice system, but the number of
lattice animal histories is difficult to evaluate exactly. Never-
theless it is known that the number of different lattice animals
N ( j) consisting of j bonds (which include a particular site)
grows rapidly in higher dimensions. While the exact formula
is not known, the asymptotic growth is known to be exponen-
tial, and is controlled by the so-called Klarner’s constant λ,

N ( j) ∼ λ j . (26)

By introducing a sufficiently large but j-independent constant
C we can uniformly bound the number of lattice animals
consisting of j bonds by3

N ( j) � C λ j . (27)

The number of histories for any given animal is the number
of different sets {J1, . . . , Jj} where all indexes are distinct,
subject to the adjacency condition. Let us denote by h( j) the
average number of histories for all animals consisting of j
bonds. Then, it is trivially bounded by h( j) � j!. It can be

3To account for a polynomial pre-exponential factor, coefficient λ

in (27) may need to be taken strictly larger than the Klarner’s constant
λ in (26).
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shown that for sufficiently large j [24]

h( j) � j!

a j
, (28)

for some a > 1. We, therefore, conjecture that for higher-
dimensional lattices h( j) is uniformly bounded by

h( j) � C′ j!

ε j
, (29)

for some ε > 1 and a j-independent constant C′ � 1. This
bound is trivially satisfied for ε = 1. The nontrivial part here
is the expectation that (29) correctly captures the leading (ex-
ponential) asymptotic behavior of h( j) with some ε > 1, i.e.,
(29) is the optimal bound which can not be further improved
(excluding polynomial pre-factors). We therefore introduce
here the constant ε which we call animal histories constant
and conjecture that it is strictly larger than 1. In the end of this
section, we also derive a lower bound on ε/λ. By combining
(27) together with (29)

φ( j) = N ( j)h( j) � C′(λ/ε) j j!, (30)

we find the bound

f (β ) =
∞∑
j=0

f ( j, β ), f ( j, β ) = C′(q/q0) j .

Here f (β ) is defined to be larger than the sum in (9). The
coefficient

q0 = ε

λ
(31)

characterizes lattice geometry. Unlike in 1D, where (19) has
an additional factorial suppression factor, f ( j, β ) in higher
dimensions grows exponentially for sufficiently large β. Sum-
ming over j yields

f (β ) = C′

1 − q/q0
. (32)

In contrast to 1D, while (19) is finite for all β, (32) is finite
only for

|β| < β∗ ≡ ln(1 + q0)/(2J ). (33)

While (32) is only a bound on f (β ) defined in (9), location
of the singularity in both cases is the same because it is only
sensitive to the asymptotic behavior of N ( j) and h( j).

Expanding (32) in Taylor series

f (β ) = C′
∞∑

k=0

Pk (q−1
0 )

k!
(2J|β|)k, (34)

where Pk are the polynomials defined via

Pk (x) = 1

1 + x

(
x(1 + x)

∂

∂x

)k

(1 + x) (35)

yields a bound on individual nested commutators

| [H, [. . . , [H, A]]]︸ ︷︷ ︸
k commutators

| � |A|C′ Pk (q−1
0 )(2J )k . (36)

The divergence of bound (32) at |β| = β∗ is not an artifact
of an overly conservative counting, as confirmed by a 2D
model introduced in Ref. [24], for which |A(−iβ )| is known

to diverge. We will argue in Sec. V that the growth outlined
by the bounds (19), (32) reflects actual growth of |A(−iβ )|
in nonintegrable systems and singularity of (32) at finite β is
a sign of chaos. We also note that in case of 1D systems the
bound (19) ensures that the operator norm of A(t ) remains
bounded for any complex t . This is consistent with analyticity
of correlation functions in 1D [25]. On the contrary, in higher
dimensions, physical observables may not be analytic. We
discuss the relation between the singularity of |A(−iβ )| and
nonanalyticity of physical observables due to a phase transi-
tion in Sec. V and show that they have different origin.

It is interesting to compare our result for a general lattice
in D > 2 with the exact result for Bethe lattices obtained in
the previous section. From (24) and (30), we obtain lattices
animal histories constant ε for Bethe lattices,

ε =
( z − 1

z − 2

)z−1

, q0 = ε

λ
= 1

z − 2
. (37)

For any z � 2, ε > 1 supporting our conjecture that ε is
always strictly larger than 1. Our universal expression (32)
bounds the exact result (25) from above with any q0 < 1/(z −
2) and sufficiently large C′.

Bethe lattices provide a lower bound on the combina-
tion q0 = ε

λ
and hence on the critical value β∗. We show

in Appendix B that for any lattice of coordination number
z, such that each vertex is attached to at most z bonds the
number of lattice animal histories is bounded by φ( j) �
(z − 2) j �( j+z/(z−2))

�(z/(z−2)) . We therefore find in full generality

q0 = ε

λ
� 1

z − 2
. (38)

This bound is stronger than any previously known, as we
explain below.

To conclude this section, we demonstrate the advantage
of counting lattice animal histories as is done in (13) over
previously explored approaches. There is a straightforward
way to estimate the number of sets I1, . . . , Ik in (9) from above
by counting the number of ways a new bond can be added
to the set at each step. Provided the lattice has coordination
number z, starting from the site of A, there are z ways to
choose I1, at most z(2z) ways to choose I2, z(2z)(3z) ways
to choose I3 and so on. As a result we would get an estimate
for f (β ),

f (β ) � fapprox =
∞∑

k=0

(2J|β|)kzk = 1

1 − 2J|β|z . (39)

This result was previously obtained in Refs. [26,27]. This
gives the following estimate for the location of the pole:

|β| = z−1

2J
. (40)

The approximation (40) is naive as it overcounts the number
of sets {I1, . . . , Ik} assuming the underlying cluster is always
of size k. We therefore expect (39) to be weaker than our
(32), f (β ) � fapprox(β ), and in particular the location of the
singularity (40) to be smaller than β∗ defined in (33). This
can be written as an inequality

ε/λ � e1/z − 1, (41)
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which is indeed satisfied due to (38). The advantage of (38)
becomes apparent in the limit z → 2 when β∗ becomes infi-
nite while (40) remains finite.

A result analogous to (32) has been previously established
in Ref. [28], but importantly there q0 was just inverse of the
lattice animal constant, i.e., Klarner’s constant introduced in
previous section, q0 = λ−1. Crucially, we improve this result
to account for proper lattice animal histories by introducing
ε > 1 in (31). Without ε critical value of β where f (β ) di-
verges is given by q0 = e2Jβ − 1 = λ−1 and, e.g., for a cubic
lattice in D dimensions λ asymptotes to 2De when D → ∞
[28,29]. This value is smaller than (40) with z = 2D, meaning
the inequality (41) is not satisfied. To conclude, without taking
lattice animal histories into account, even exact value of λ

results in a less stringent bound than (40), while our bound
is always stronger than that due to (38).

III. SPATIAL GROWTH IN EUCLIDEAN TIME

While deriving the bound on the norm of local operators
evolved in Euclidean time, (19) and (32), we obtained a
stronger result—a bound f ( j, β ) [or f ( j1, j2, β ) in 1D] on
spatial growth of A(−iβ ). It can be immediately translated
into the Euclidean analog of the Lieb-Robinson bound [9]
on the norm of the commutator of two spatially separated
local operators. If B is an operator with finite support located
distance 	 away from A (measured in the Manhattan norm in
case of a cubic lattice), then in D � 2,

|[A(iβ ), B]| � 2|A||B|
∞∑
j=	

f ( j, β ) = 2|A||B| C′ (q/q0)	

1 − (q/q0)
,

where we assumed that |β| < β∗. For larger |β| there is no
bound as the sum does not converge. This result means that
the local operator can spread to the whole system, no matter
how large or even infinite that is, in finite Euclidean time
β = β∗. We will argue in Sec. V that this is the true physical
behavior in the chaotic case and therefore the bound can not
be improved to get rid of the divergence at |β| = β∗ in full
generality.

In 1D, the situation is very different. Assuming local oper-
ator B is located 	 bonds away from A, we find

|[A(iβ ), B]| � 2|A||B|
∞∑

j1=0, j2=	

f ( j1, j2, β )

= 2|A||B| e2q

(	 − 1)!

∫ q

0
e−t t	−1dt . (42)

(If the system is infinite only in one direction and A is sitting
at the boundary, one factor of eq should be removed.) Qualita-
tively the RHS of (42) behaves as

|[A(−iβ ), B]| � 2|A||B| q	

	!
eq, (43)

for 	 � q + 1, and asymptotes to 2|A||B|e2q for 	  q + 1.
This means a local operator spreads exponentially fast, to
distances 	 ∼ e2Jβ , in Euclidean time β.

Exponential spreading of operators in 1D seems to be in
agreement with the convergence of the Euclidean variational
algorithm of Ref. [19] in logarithmic time. The connection

between Euclidean Lieb-Robinson bound and the conver-
gence time is intuitive, but difficult to establish rigorously,
in particular, because the latter is sensitive to the choice of
initial wave-function. For the integrable models, for which
the spreading of operators is at most polynomial (see Sec. V),
convergence time might be even shorter because of a well-
tuned initial wave function. For the chaotic systems we expect
no fine-tuning of the initial state and hence a direct relation
between the convergence time and Euclidean Lieb-Robinson
bound.

Another possibly intriguing connection is with the stud-
ies of Thouless times in chaotic Floquet systems without
conserved quantities [20]. There, it was noticed that in
1D Thouless time is logarithmic in system size (see also
Ref. [30]), and finite in D � 2 (see, however, Ref. [31]).
That is exactly the same behavior as in the case of Euclidean
operator spreading. One potential interpretation would be that
Thouless time can be associated with the slowest Euclidean
mode propagating in the system. Under Euclidean time evolu-
tion with a time-dependent random Hamiltonian our extension
of Lieb-Robinson bound holds. We also surmise that in this
case spatial growth of all quantities, including the slowest, is
qualitatively and outlined by the bound with some effective
J, q0. When the system in question has a local conserved
quantity, the slowest transport mode is diffusive, leading to L2

scaling of Thouless time [32]. Thus, to complete this picture
it would be necessary to establish that under Euclidean time
evolution time necessary for a diffusive mode to travel across
the system is the same as in the Minkowski case, i.e., β ∼ L2,
where L is the system size.

Finally, we notice that the Euclidean analog of the Lieb-
Robinson bound in 1D (42) looks similar to the conventional
Minkowski bound [11]

|[A(t ), B]| � 2|A||B| (2Jt )	

	!
, (44)

with 2Jt substituted by q(β ).

IV. CONSTRAINTS ON MATRIX ELEMENTS

A. Individual matrix elements

Constraints on the infinity-norm of A(iβ )† = A(−iβ ) pro-
vide an upper bound on the magnitude of matrix elements
Ai j = 〈Ei|A|Ej〉 in the energy eigenbasis. Starting from

A(−iβ )i j ≡ 〈Ei|A(−iβ )|Ej〉 = Ai je
β(Ei−Ej ), (45)

we find

|Ai j | � e−β(Ei−Ej )|A(−iβ )|. (46)

This inequality holds for any β and we therefore can optimize
it over β. Using explicit form of the bound (19) in 1D, we
find optimal value of β to be (without loss of generality we
assumed ω = Ei − Ej � 0)

β =
{

ln
(

ω
4J

)
/(2J ), ω � 4J,

0, 4J � ω.
(47)

This yields

|Ai j | � |A|κ (ω), ω = |Ei − Ei|, (48)
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where

κ (ω) ≡
{

exp{2 ω̃(1 − ln ω̃) − 2}, ω̃ = ω/(4J ) � 1,

1, ω̃ � 1.

These results shows that in 1D for large energy difference ω =
|Ei − Ei| � J off-diagonal matrix elements Ai j decay faster
than exponential. For ω � 4J , the bound trivializes to |Ai j | �
|A|.

In higher dimensions, the bound on Ai j from (46) can not
be better than exponential. This is because f (β ) is a mono-
tonically increasing function of β, which diverges for some
|β| = β∗. In particular

e−βω|A(−iβ )| � e−β∗ω|A| (49)

for any β and ω � 0. To find leading exponent, we optimize
(46) over β to find

β =
ln

(
ω(1+q−1

0 )
2(ω+J )

)
2J

, (50)

and |Ai j | � |A|κ (ω), where ω = |Ei − Ei|,

κ (ω) = C′q−1
0 ω̃

(
ω̃(1 + q−1

0 )

1 + ω̃

)−1−ω̃

, ω̃ = ω/(2J ).

Taking ω → ∞ limit, we find that the asymptotic exponential
behavior is given by (49)

κ (ω) � C′′ωe−β∗ω, ω � J, (51)

where C′′ is some ω-independent constant.
Constraints on individual matrix elements (49) and (49)

only depend on energy difference ω. In the case when the
system satisfies ETH, off-diagonal matrix elements for i �= j
are known to be exponentially suppressed by the entropy
factor, |Ai j |2 ∼ e−S . Therefore, for the chaotic systems, the
bound will be trivially satisfied unless ω is extensive.

The bound analogous to (51) has previously appeared in
Ref. [28], with β∗ given by (33) with ε = 1.

B. Constraints on power spectrum

Bounds on individual matrix elements found above can
be extended to the autocorrelation function of a Hermitian
local A,

C(t ) ≡ Tr(ρA(t )A), (52)

and its power spectrum

�(ω) = 1

2π

∫ ∞

−∞
dt e−iωtC(t )

=
∑
i, j

pi|Ai j |2δ(Ei − Ej − ω). (53)

Here ρ is an arbitrary density matrix which commutes with
the Hamiltonian, ρ = ∑

i pi|Ei〉〈Ei|, Trρ = 1.
Although bounds on moments Mk derived below are uni-

versal for all ρ, in what follows, we will be most interested
in the case when ρ is the Gibbs ensemble ρ = e−H/T /Z , in
which case autocorrelation function and power spectrum will

be denotes by CT and �T , correspondingly. As a function of
complex argument CT satisfies

CT (t − i/(2T )) = CT (−t − i/(2T )), (54)

CT (t∗) = (CT (−t ))∗. (55)

First we notice that

|C(t )| � |A(t/2)|2 � |A|2 f 2(|t |/2), (56)

for any complex t , which guarantees analyticity of C(t ) for 1D
systems on the entire complex plane.

Using the bound on individual nested commutators (22)
and (36) one can bound the growth of Taylor coefficients
of C,

Mk =
∞∫

−∞
�(ω)ωkdω = Tr(ρ [H, [. . . , [H, A]]]︸ ︷︷ ︸

k commutators

A). (57)

To obtain an optimal bound, nested commutators should be
split equally between two A’s using cyclicity of trace

|M2k+i| � |A|2(2J )2k+iRkRk+i, i = 0, 1. (58)

Here Rk = Bk (2) for infinite 1D system, Rk = Bk for semi-
infinite 1D system with a boundary, and Rk = C′Pk (q−1

0 ) for
D � 2.

Using the asymptotic behavior of Bell polynomials [33]

Bn(x) ∼
(

n
(
1 + o(1)

)
e ln(n/x)

)n

, n � x, (59)

and the Stirling approximation formula, the bound on mo-
ments for k � 1 can be rewritten as (for the infinite 1D
system)

|Mk| � |A|2(2J )k
( k

2 e ln k

)k

× eo(k). (60)

It is easy to see that the Taylor series of CT (t ) converges in the
whole complex plane, as was pointed out above.

In higher dimensions, to find asymptotic behavior of Pk (x)
for large k, we use the following representation:

Pk (x) =
n∑

j=1

j! S(k, j) x j = 1

1 + x

∞∑
j=1

jk
( x

1 + x

) j
.

Substituting the sum over j by an integral and taking saddle
point approximation gives

|Mk| � |A|2
(

q0

1 + q0

)2( k

2eβ∗

)k

× eo(k). (61)

Focusing on the case when ρ = e−H/T /Z , (61) guarantees
that Taylor series of CT (t ) converges absolutely inside the
disk |t | � 2β∗. By representing CT as a sum over individual
matrix elements it is easy to see that if the sum for CT (−iβ )
is absolutely convergent, then it is absolutely convergent for
any CT (t ), �(t ) = −iβ. Therefore CT (t ) is analytic inside the
strip 2β∗ > �(t ) > −2β∗. Because of reflection symmetry
(54) function CT (t ) must be analytic inside a wider strip
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2β∗ > �(t ) > −2β∗ − 1/T 4. Hence symmetrically ordered
autocorrelation function

CW
T (t ) ≡ Tr

(
ρ1/2A(t )ρ1/2A

) = CT (t − i/(2T )), (62)

is analytic inside the strip 2β∗ + 1/(2T ) > �(t ) > −2β∗ −
1/(2T ), which is wider than the strip of analyticity of CT (t ),
and indicates a more rapid exponential decay of the power
spectrum �W

T of (62) in comparison with �T (ω).
The logic above is general and does not require any specific

details of Mk . Using reflection symmetry (54), we have shown
in full generality that if CT (t ) develops a singularity at t =
±i2β∗, then CW

T (t ) is analytic at least inside the strip |�(t )| �
2β∗ + 1/(2T ).

There is another integral bound on power spectrum, valid
for any density matrix ρ which commutes with H . By inte-
grating (53), we find the following inequality:∫ ∞

ω

dω′�(ω′) ≡
∑

Ei�Ej+ω

pi |Ai j |2

=
∑

Ei�Ej+ω

pi e−2β(Ei−Ej )|A(−iβ )i j |2

�
∑

Ei�Ej+ω

pi e−2βω|A(−iβ )i j |2

� e−2βω
∑
i, j

pi |A(−iβ )i j |2

= e−2βω Tr(ρA(−iβ )A(iβ )) � e−2βω|A(−iβ )|2.
Here ω is non-negative and in the second equality we used
(45) with an arbitrary positive β. Now we can use |A(−iβ )| �
|A| f (β ) and optimize over β, yielding∫ ∞

ω

dω′�(ω′) � |A|2κ (ω)2. (63)

Function κ is given by (49) and (51) in D = 1 and D � 2,
correspondingly.

When ρ is maximally mixed state, i.e.. temperature T is
infinite, the bound can be strengthen to∫

|ω′|�ω

dω′�(ω′) � |A|2κ (ω)2. (64)

We would like to emphasize that all bounds discussed
above, i.e., bounds on Mk and (63), are integral in form. We
do not know a rigorous way to directly constrain asymptotic
behavior of �(ω). At the same time at physical level of rigor,
if we assume that �(ω) is a smoothly behaving function
at large ω, analyticity of C(t ) inside the strip |�(t )| < 2β∗

4If 1/(2T ) � 2β∗, a union of an original strip |�(t )| < 2β∗ and
its reflection around the point β = −1/(2T ) is a wider strip 2β∗ >

�(t ) > −2β∗ − 1/T . Function CT (t ) has to be analytic there. If
1/(2T ) > 2β∗ the same union consists of two strips, 2β∗ > �(t ) >

−2β∗ and 2β∗ − 1/T > �(t ) > −2β∗ − 1/T . It is easy to show
though that CT has to be analytic also in between, −2β∗ > �(t ) >

2β∗ − 1/T . From the definition CT (t ) = Tr(ρaAρbA), a = it + 1/T ,
b = it , and positivity �(a), �(b) > 0 it follows that the sum over
Hilbert space converges, CT is well defined and therefore analytic.

immediately implies that power spectrum in D � 2 is expo-
nentially suppressed by

|�(ω)| � |A|2e−2β∗ω, ω → ∞. (65)

In 1D, we similarly find superexponential suppression

|�(ω)| � |A|2e−ω(1+ln(4J/ω))/J , ω → ∞. (66)

The bound on moments for large k (60), (61) and the integral
bound (63) for large ω follow from here via saddle point
approximation.

Superexponential suppression of �(ω) emphasizes pecu-
liarity of one-dimensional systems. In particular, it implies
that high frequency conductivity [34] and energy absorption
[26] for such systems will be superexponentially suppressed.
This is a very special behavior, which should be kept in mind
in light of the numerical studies, which are often limited to one
dimensions, and therefore may not capture correct physical
behavior.

An exponential bound on the integral of �(ω) was first
established in Ref. [26], where the authors also noted super-
exponential suppression in 1D, albeit without proposing an
explicit analytic form.

V. FINITE SIZE SCALING AND CHAOS

The bounds obtained in Sec. II correctly account for the
number of nontrivial nested commutators [hIk , [. . . , [hI1 , A]]]
but do not take into account peculiarities of individual lo-
cal Hamiltonians hI . We therefore expect our bound to be
strongest possible among the uniform bounds for the entire
family of local short-ranged Hamiltonians defined on a partic-
ular lattice. We further assumed that each nested commutator
is equal to its maximal possible value (2J )k|A|. This is cer-
tainly too conservative, but for the chaotic systems, i.e. in
absence of some additional symmetries, we expect a finite
fraction of nested commutators to grow as a power of k. We
therefore expect that for large β our bounds (19) and (32) to
correctly describe growth of operator norm in local chaotic
systems with some effective values of J , as it happens in
Ref. [24]. In particular, in one dimension, we expect |A(−iβ )|
to grow double-exponentially, and in higher dimensions we
expect |A(−iβ )| to diverge at some finite β∗.

We similarly expect the bound on spatial growth outlined in
Sec. III to correctly capture the spread of local operators when
the system is chaotic. An indirect evidence to support that
comes from the numerical results of Ref. [19], i.e., logarithmic
convergence time of a numerical Euclidean time algorithm, in
agreement with (43).

Below we further outline how |A(−iβ )| reflects chaos of
the underlying system when the system size is finite. It follows
from (13) that for large β, animal histories with the largest
number of bonds will dominate,

f (β ) ∝ q j ∼ e2J j|β|, (67)

where j is the total number of bonds in the system, i.e., j is
proportional to the volume. Let us compare this behavior with
the growth of the Frobenius norm,

C(−iβ ) = Tr(A(−iβ )A)

Tr(1)
=

∑
i j

eβ(Ei−Ej )
|Ai j |2
Tr(1)

. (68)

043234-8



EUCLIDEAN OPERATOR GROWTH AND QUANTUM CHAOS PHYSICAL REVIEW RESEARCH 2, 043234 (2020)

At large β, leading behavior is

C(−iβ ) ∝ eβ�E , (69)

where �E is the maximal value of �E = Ei − Ej such that
corresponding matrix element Ai j is not zero. [In other words,
�E is the support of �(ω).] For the chaotic systems satisfying
eigenstate thermalization hypothesis, we expect most matrix
elements to be nonzero, even for extensive �E , matching
extensive behavior of 2J j in (67).

Assuming qualitative behavior of (32) is correct for non-
integrable systems, going back to thermodynamic limit in
D � 2, we expect a singularity of |A(−iβ )| and C(−2iβ ) at
some finite β. This singularity has a clear interpretation in
terms of A spreading in the operator space. We first interpret
(A|B) := Tr(A†B)/Tr(1) as a scalar product in the space of all
operators and denote corresponding Frobenius norm of A by
|A|F ≡ (A|A)1/2. Then if A were typical, i.e., random in the
space of all operators,

C(−iβ ) = Tr(A(−iβ )A) = |A(−iβ/2)|2F
Z (β )Z (−β )

Z (0)2
,

Z (β ) ≡ Tr e−βH .

Euclidean time evolution can be split into two parts, A(−i(β +
β ′)) = eβ ′H A(−iβ )e−β ′H such that

C(−i(β + β ′)) = (A(−iβ/2)|ei β ′adjH |A(−iβ/2)). (70)

At time β = 0, we start with a local operator, which is not
typical. In principle, A(−iβ/2) only explores a particular tra-
jectory in the space of all operators, and therefore can not be
fully typical at any β. Yet, if we assume that by the time β

the trajectory of A has explored substantial part of operator
space such that A(−iβ/2) can be considered typical enough,
we obtain

C(−i(β + β ′)) ≈ C(−iβ )
Z (β ′)Z (−β ′)

Z (0)2
. (71)

Taking into account that free energy ln(Z ) is extensive, we
immediately see that (71) diverges for any β ′ > 0. Hence,
the singularity of C(−iβ ) and thus also of |A(−iβ/2)| marks
the moment when A(−iβ/2) becomes typical. This picture is
further developed in Ref. [35], where we show that the singu-
larity of |A(−iβ/2)| can be associated with delocalization of
A in the Krylov space.

It is interesting to note that since C(t ) is analytic for local
one-dimensional systems, for such systems, even noninte-
grable, A never becomes typical and hence these systems can
not be regarded as fully chaotic.

We separately remark that the conventional time evolution
C(t ) = (A(t/2)|A(−t/2)) does not have an interpretation as
the Frobenius norm-squared of A(t/2), therefore (70) does not
apply and even if A(t/2) becomes sufficiently typical at late t ,
the analog of (71) may not hold.

If the system is finite, at large β free energy simply
becomes ln Z (β )/Z (0) ∼ −βEm, where Em is extensive (min-
imal or maximal) energy of the system. Hence (71) will be
proportional to eβ ′�E , where �E is extensive, in full agree-
ment with (69). This gives the following qualitative behavior
of C(−iβ ) when the chaotic system is sufficiently large but
finite. For small β, ln C(−iβ ) will behave as ∝ eq in 1D

and ∝ ln(q0 − q) in higher dimensions. This growth will stop
at β ∼ ln(L) in 1D or β ∼ β∗ in D � 2, at which point
in both cases ln C(−iβ ) will be extensive. At later times
ln C(−iβ ) will grow as β�E with some extensive �E . In
the nonintegrable case, the transition between two regimes,
“thermodynamic” when C(−iβ ) has not yet been affected by
the finite system size, and “asymptotic,” is very quick, at most
double-logarithmic in 1D.

Behavior of chaotic systems described above should be
contrasted with integrable models. In this case, most matrix el-
ements Ai j are zero and for a wide class of systems, including
classical spin models and systems with projector Hamiltoni-
ans, support of �(ω) remains bounded in the thermodynamic
limit. (In terms of the Lanczos coefficients, introduced in
the next section, this is the case of λ = 0.) For such sys-
tems the bounds (19) and (32) will be overly conservative.
For sufficiently large systems and large β, we expect (69)
with a system size independent �E . This asymptotic behav-
ior will emerge in finite system-independent Euclidean time.
Infinity norm |A(−iβ )| will behave similarly. We further can
use (69) to estimate the Frobenius norm of nested commuta-
tors | [H, [. . . , [H, A]]]︸ ︷︷ ︸

k commutators

|F � |A|�Ek . Assuming infinity and

Frobenius norms exhibit qualitatively similar behavior, we
can substantially improve the Euclidean analog of the Lieb-
Robinson bound

|[A(−iβ ), B]| � 2|A||B|
∞∑

k=	

βk�Ek

k!
∼ 2|A||B|β

	�E 	

	!
,

where last step assumes β�E  	. This bound has the
same structure as the conventional Lieb-Robinson bound in
Minkowski space (44). Thus, in the case of noninteracting
models or projector Hamiltonians (λ = 0 in the language of
next section), we find ballistic spreading of operators for any
complex t .

In the case of a general integrable model, the support of
�(ω) is extensive and the behavior is more intricate. In many
explicit examples in the thermodynamic limit �(ω) decays as
a Gaussian, and C(−iβ ) ∝ e(Jβ )2

with some appropriate local
coupling J [36–40]. (This is the case of λ = 1 in terms of the
next section. See Appendix C where we derive the Gaussian
behavior starting from λ = 1.) Using the same logic as above,
this leads to the Euclidean Lieb-Robinson bound of the form

|[A(−iβ ), B]| � 2|A||B| (βJ )2	

	!
, (72)

which indicates a polynomial propagation of the signal 	 ∝
β2. For a finite system of linear size L, we may expect Gaus-
sian behavior C(−iβ ) ∝ e(Jβ )2

up to the times β ∝ L1/2, after
which the asymptotic behavior (69) should emerge. Although
the model is integrable, �E is extensive, which implies the
transition between “thermodynamic” and “asymptotic” be-
havior is long and will take up to β ∼ L. This indicates the
qualitative difference between integrable and nonintegrable
(chaotic) models. When the system is finite in both cases the
asymptotic behavior is given C(−iβ ) ∝ eβ�E with an exten-
sive �E (except for the λ = 0 case), but asymptotic behavior
will emerge quickly, in finite (for D � 2) or logarithmic (for
D = 1) times in the nonintegrable case, while in the inte-
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grable case asymptotic behavior will emerge much slower,
after polynomial times in L.

A qualitatively similar picture will also apply if integrabil-
ity is broken weakly, by a parametrically small coupling. For
an operator initially characterized by λ = 0, the correlation
function will first exhibit (69) with some subextensive �E ,
which will gradually grow to extensive values. It would be in-
teresting to study this transition in detail, to see if the required
times may be parametrically longer than β ∼ L.

We stress that nonanalyticity of C(t ) at imaginary times
is due to A(−iβ ) becoming typical and is not related to non-
analyticity of free energy ln Z (β ) due to a phase transitions
at some temperature β. Indeed, C(t ) for the SYK model is
known to have a pole at imaginary time [41], while there
is no phase transition and free energy is analytic. On the
contrary, for the 3d Ising ln Z (β ) is nonanalytic due to a phase
transition, but C(t ) is entire, simply because A(t ) explores
only a very small part of the corresponding Hilbert space.

In conclusion, we note that the singularity of |A(−iβ )|
and C(−iβ ) at finite β in the thermodynamic limit has an IR
origin. A straightforward attempt to extend the analysis of this
section to field theoretic systems, which can be obtained from
lattice systems via an appropriate limit, fails because both
|A(−iβ )| and C(−iβ ) are UV-divergent, and this obscures the
IR divergence due to chaos. Formulating the criterion of chaos
for QFTs using Euclidean operator growth thus remains an
open question.

VI. CONSTRAINTS ON LANCZOS COEFFICIENTS

The bound on power spectrum established in Sec. IV B can
be used to constrain the growth of Lanczos coefficients. To
remind the reader, Lanczos coefficients bn are non-negative
real numbers associated with an orthonormal basis in the
Krylov space An generated by the action of H on a given
operator A0 = A. Starting from a scalar product

(A, B) ≡ Tr(ρ1/2A†ρ1/2B), (73)

and choosing A normalized such that |A|2 = (A, A) = 1,
Lanczos coefficients are fixed iteratively from the condition
that operators An defined via An+1 = ([H, An] − bnAn−1)/bn+1

are orthonormal, (An, Am) = δnm.
An autocorrelation function CW = (A(t ), A), defined via

scalar product (73), can be parametrized in a number of ways,
via its power spectrum �W (ω), Taylor coefficients (moments)
Mk , or Lanczos coefficients bn. Schematically an asymptotic
growth of bn for large n � 1 is related to the behavior of Mk ,
k � 1, high-frequency tail of �W (ω), ω → ∞, or growth of
CW (t ) at the Euclidean time t = −iβ. However, the detailed
relation is not always trivial. Assuming exponential behavior
of power spectrum at large frequencies

�W (ω) ∼ e−(ω/ω0 )2/λ

, (74)

it is trivial to obtain the growth of Mk and CW (β ) by cal-
culating corresponding integrals over ω using saddle point
approximation. Although much less trivial, but starting from
the power spectrum (74), it is also possible to establish an
asymptotic behavior of Lanczos coefficients [42]

b2
n ∝ nλ. (75)

The converse relations between asymptotic behavior of bn,
Mk , �W (ω) and CW (−iβ ) are much more subtle and may not
hold. Thus, we show in Appendix D that smooth asymptotic
behavior of Mk does not imply smooth asymptotic of bn.

It was proposed long ago that λ defined in (75) falls into
several universality classes, characterizing dynamical systems
[38]. In particular, it was observed that λ = 0 for noninteract-
ing and λ = 1 for interacting integrable models. (It should be
noted that since λ characterizes a particular operator, the same
system may exhibit several different values of λ.) Recently it
was argued in Ref. [7] that λ = 2 is a universal behavior in
chaotic systems in D � 2.

To thoroughly investigate possible implications of this con-
jecture, it is desirable to derive the constraints on the behavior
of CW , �W , and Mk starting directly from the assumption that
bn is a smooth function of n for large n. In full generality,
Lanczos coefficients bn are related to the moments Mk via

Mk =
∑

h1...hk−1

b(h0+h1 )/2b(h1+h2 )/2 . . . b(hk−1+hk )/2. (76)

Here the sum is over Dyck paths parameterized by the sets
satisfying h0 = hk = 1/2, and hi+1 = hi ± 1, hi > 0. Assum-
ing (75) out goal is to deduce an asymptote of M2k using (76).
We develop the approach of summing over weighted Dyck
paths in Appendix C. Here we just mention main results. If
b2

n is asymptotically a smooth function of n, path integral over
Dyck paths can be evaluated via saddle point approximation
by identifying a trajectory in the space of indexes, which gives
the leading contribution. Thus, if bn is smooth, Mk is also
smooth. Furthermore, if λ = 2, b2

n ∼ α2n2, and the leading
order behavior is

M2k ≈
(2α

π

)2k

(2k)! (77)

Thus, starting from the asymptotic behavior b2
n ∝ α2n2, we

necessarily find that CW has a singularity at β = π/(2α), in
full agreement with the conjecture of previous section that
singularity in Euclidean time is the characteristic property of
chaos.

Provided CW (t ) is analytic inside a strip �(t ) � β̄W for
some β̄W would immediately imply a bound

α � π

2β̄W
. (78)

When ρ ∝ e−H/T , provided autocorrelation function CT (52)
is analytic inside |�(t )| � β̄(T ), function CW

T defined in (62)
will b analytic at least inside |�(t )| � β̄W = β̄(T ) + 1/(2T )
(see the discussion in Sec. IV B) and therefore

α � πT

1 + 2T β̄(T )
. (79)

We have also established in Sec. II C that β̄(T ) � 2β∗ for all
T .

The coefficient α has been recently conjectured to bound
maximal Lyapunov exponent governing exponential growth
of the out of time ordered correlation function (OTOC) [7,43],
λOTOC � 2α. This leads to the improved bound on chaos

λOTOC � 2πT

1 + 4T β∗ , (80)
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FIG. 2. Lyapunov exponent λOTOC for the SYK model as a
function of parameter v, which is related to temperature, πvT =
cos(πv/2). Limit v → 0 corresponds to high temperatures, v → 1
to small temperatures. Blue line—exact analytic result (81), orange
dashed line—improved bound (80) with 2β∗ = 1, green dotted line–
original Maldacena-Shenker-Stanford bound 2πT .

which is stronger than the original bound λOTOC � 2πT of
Ref. [44]. In the limit of quantum field theory, (β∗)−1 will be
of the order of UV-cutoff, reducing (80) to the original bound.
Yet the new bound is nontrivial for discrete models exhibiting
chaos.

To illustrate the improved bound, we plot (80) in Fig. 2
for the SYK model in the large q-limit 5 against the exact
value of λOTOC, evaluated in [7,41]. We take 2β∗ = 1 to en-
sure that the autocorrelation function CT is analytic inside
�(t ) < 2β∗ = 1 for all T . Temperature T is parametrized via
1 � v � 0, πvT = cos(πv/2) such that the exact Lyapunov
exponent is

λOTOC = 2 cos(πv/2). (81)

We have emphasized above that for 1D systems with short
range interactions CT (t ) has to be analytic in the entire com-
plex plane. This imposes a bound on the growth of Lanczos
coefficients. Assuming bn is a smooth function of n [7] pro-
posed that the asymptotic growth in 1D nonintegral systems
will acquire a logarithmic correction

bn+1 ≈ α
n

ln(n/n0)
. (82)

Using the integral over weighted Dyck paths in Appendix C,
we find this to be consistent with the behavior of Mk outlined
in (60) provided

α = πJ/2. (83)

Sum over Dyck paths in the case of λ = 1 associated with
integrable systems is discussed in Appendix C. Since for
the local models CW (t ) is analytic inside a sufficiently small
vicinity of t = 0, asymptotic behavior with λ > 2 in such
systems is excluded.

5Here, q is a parameter of SYK model and should not be mixed
with q(β ) defined in (14).

VII. CONCLUSIONS

We have derived a number of rigorous bounds on the
infinity norm of a local operator evolved in Euclidean time,
and extended them to autocorrelation function (2). The novel
ingredient of our approach is the counting of lattice animal
histories and formula (13), using which we solved exactly
combinational problem of counting nested commutators for
Bethe lattices (and establish a correct asymptotic for lattices
in D � 2). Some of the bounds derived in this paper were
known before. We improved numerical coefficients, including
the location of the singularity β∗ in D � 2. Our results are
strongest possible among the bounds uniformly valid for all
local Hamiltonians characterized by the same |hI | � J defined
on a lattice of a particular geometry.

We have also established Euclidean version of Lieb-
Robinson bound on the spatial operator growth. In 1D, oper-
ators spread at most exponentially, while in D � 2, operators
can reach spatial infinity in finite Euclidean time. When the
system is integrable, in all D operators spread polynomially.

As a main point of this paper, we advocated that Euclidean
operator growth reflects chaos in the underlying quantum
system. If the system is chaotic, the norm growth and spatial
growth are maximal possible and the operator norm diverges
at some finite Euclidean time. We interpreted this divergence
as a consequence of typicality in Krylov space.

There are several distinct characteristic properties of chaos
for many-body quantum systems. One is the eigenstate
thermalization hypothesis [45], which is concerned with in-
dividual matrix elements. Another popular probe is out of
time ordered correlation function, which extends the notion
of exponential Lyapunov growth to quantum case. Its use as a
characteristic of many-body quantum chaos was pioneered in
Refs. [46–48] and brought to the spotlight by applications to
quantum gravity [44]. Despite recent efforts [43,49–51] there
is no clear understanding of how to relate these two charac-
teristics of chaos to each other. We hope that the Euclidean
growth, which on the one hand is related to ETH via the
behavior of C(−iβ ) at large β, see (69), and on the other hand
is related to OTOC via the bound (80), may provide such a
bridge.
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APPENDIX A: ANIMAL HISTORIES GROWTH
ON BETHE LATTICES

We consider Bethe lattice of coordination number z and
would like to calculate the total number of lattice animal
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FIG. 3. Example of a lattice animal consisting of j = 6 bonds
on the Bethe lattice with the coordination number z = 3. Vertexes
attached to only one bond are colored blue, the vertex attached to
two bonds is colored red and the vertexes attached to three bonds
are shown in black. The vector corresponding to this lattice animal is
ai = (2, 1, 4, 0). One can check that it satisfies (A2).

histories for all possible lattice animals (clusters) consist-
ing of j bonds. Each lattice animal can be characterized
(nonuniquely) by the vector ai for i = 0, 1, . . . , z, where ai

is the number of vertexes attached to z − i bonds (of that
cluster). We illustrate this definition with an example shown
in Fig. 3. Since the considered clusters are connected, either
az = 1, in which case j = 0 and ai = 0 for i < z, or az = 0.

Consider any given lattice animal history associated with
a lattice animal with a given ai. We can add one additional
bond by attaching it to any vertex, which has less than z bonds
already attached to it. If we attach a bond to a vertex with
k bonds already attached to it, the new lattice animal (and
associated lattice animal history), is characterized by a new
set

a′
i = ai + e(k)

i , e(k)
i = δz−1,i − δz−k,i + δz−k−1,i. (A1)

This equation simply reflects the fact that the new cluster has
one more vertex with only 1 bond attached to it, one more
vertex with (k + 1) bonds attached to it, and one less vertex
with k attached bonds.

The total number of bonds j can be expressed through ai

as follows:

j =
∑z

i=1 iai − z

(z − 2)
. (A2)

It can be easily checked that adding one bond via (A1) in-
creases j by one, and taking az = 1, ai = 0 for i < z gives
j = 0.

We denote the total number of lattice animal histories (as-
sociated with all possible animals) consisting of j bonds by

φ( j). (The total number of histories characterized by ai can
be denoted by φ(ai ). Then φ( j) is a sum of φ(ai ) over all
possible vectors ai with non-negative coefficients satisfying
(A2).) Given a particular lattice animal history, there are many
ways one bond can be added. If we decide to add a bond to
vertex which already has k < z bonds attached to it, we will
have az−k vertexes to choose from and (z − k) possibilities
for each vertex we chose. Hence, in total, each lattice animal
history parametrized by ai gives rise to

z−1∑
k=0

(z − k)az−k = j(z − 2) + z (A3)

new animal histories consisting of j + 1 bonds. If we sum
over all possible animal histories with j bounds, we should
find the total number of animal histories consisting of j + 1
bonds,

φ( j + 1) = φ( j)( j(z − 2) + z). (A4)

This immediately yields

φ( j) = (z − 2) j �( j + z/(z − 2))

�(z/(z − 2))
, (A5)

where we additionally required φ(0) = 1.
While this is not necessary for the bound on operator norm

growth, for completeness we derive the number of lattice
animals consisting of j bonds, N ( j). We first consider all
lattice animals which originate at the same vertex and extend
into one particular direction (“branch”) on the Bethe lattice.
If the number of such animals is n( j), then it must satisfy the
recursive relation

n( j) =
∑

j1+... jz−1= j−1

n( j1) . . . n( jz−1). (A6)

It reflects the fact that we can “move” the initial point by one
bond inside the branch and decompose j into j = ∑z

i=1 ji,
jz = 1. In (A6), we also use that n(1) = 1. This gives in full
generality

n( j) = �((z − 1) j + 1)

�( j + 1)�(2 + (z − 2) j)
. (A7)

The full number of lattice animals N ( j) is related to n( j) via

N ( j) =
∑

j1+... jz−1+ jz= j

n( j1) . . . n( jz−1)n( jz ), (A8)

with the total number being

N ( j) = z �((z − 1) j + z)

�( j + 1)�(z + 1 + (z − 2) j)
. (A9)

At large j, this number grows as λ j with the Klarner’s constant

ln λ(z) = (z − 1) ln(z − 1) − (z − 2) ln(z − 2). (A10)

APPENDIX B: ANIMAL HISTORIES GROWTH
ON ARBITRARY LATTICES IN D � 2

In this section, we consider an arbitrary lattice of coordi-
nation number z, which means that each vertex is adjacent
to at most z bonds. Similarly to previous section, we will
characterize a lattice animal (cluster) by a set of numbers ai,
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FIG. 4. Example of a lattice animal consisting of j = 8 bonds
on a triangular lattice (z = 6). Vertexes attached to only one bond
are colored blue. A unique vertex attached to two bonds is colored
red. Vertexes attached to three bonds are shown black. Therefore this
lattice animal is characterized by the vector ai = (0, 0, 0, 4, 1, 2, 0).
This lattice animal has 	 = 2 loops. One can easily check that both
(B1) and (B2) are satisfied.

i = 0, . . . , z, where ai is the number of vertexes attached to
z − i bonds of that cluster. These notations are illustrated with
an example in Fig. 4. Assuming that each lattice vertex is
attached to exactly z bonds, we can immediately find the total
number of bonds,

j =
∑z

i=0(z − i)ai

2
. (B1)

The main difference between general case and the case of
Bethe lattices is the possibility of loops. We define the number
of loops 	 of a given lattice animal as the minimal number
of bonds which should be removed for the animal to have
a tree topology. Then Euler’s characteristic formula gives∑z

i=0 ai − j + 	 = 1. From here and (B1), we readily find

j =
∑z

i=1 iai − z(1 − 	)

(z − 2)
, (B2)

which is a generalization of (A2).
Let us denote by n total number of ways one can add a bond

to a given animal. This number is the total number of bonds
adjacent to the animal but not belonging to it. If each vertex
had exactly z bonds adjacent to it, the sum

∑z−1
k=0(z − k)az−k

counts the number of bonds which can be added to each vertex
of the animal. Since some bonds have both ends adjacent to
the animal, the sum

∑z−1
k=0(z − k)az−k includes those bonds

twice. Furthermore, since some vertexes might actually have
less than z bonds adjacent to them,

∑z−1
k=0(z − k)az−k provides

an upper bound. We therefore have an inequality [compare

with (A3)]

n �
z−1∑
k=0

(z − k)az−k = j(z − 2) + (1 − 	)z. (B3)

Since 	 � 0, we can conclude that in full generality n � j(z −
2) + z. This expression does not depend on any details of the
animal, except its size j. We therefore can bound the growth
of animal histories for all animals of size j,

φ( j + 1) � φ( j)( j(z − 2) + z), (B4)

from where follows the inequality

φ( j) � (z − 2) j �( j + z/(z − 2))

�(z/(z − 2))
. (B5)

APPENDIX C: INTEGRAL OVER WEIGHTED DYCK
PATHS

In the context of recursion method Lanczos coefficients bn

define tridiagonal Liouvillian matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 b1 0 0 . . .

b1 0 b2 0 . . .

0 b2 0 b3 . . .

0 0 b3 0 . . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ (C1)

such that correlation function

CW (−iβ ) ≡ (A(−iβ ), A) = 〈0|eLβ |0〉, (C2)

where scalar product of operators is defined in (73), and
〈0| . . . |0〉 denotes the upper left corner matrix element. By
definition, moments Mk are Taylor series coefficients of CW ,

Mk = 〈0|Lk|0〉. (C3)

From here and the tridiagonal form of L it follows that

M2k =
∑

h1,...,h2k

2k−1∏
i=1

b(hi+hi+1 )/2, (C4)

while all odd moments vanish (this is also obvious from the
symmetry CW (t ) = CW (−t )). The sum above is over the sets
hi such that h1 = h2k = 1/2, hi > 0, and hi+1 = hi ± 1.

When k is large, sum over Dyck paths becomes a path
integral, parametrized by a smooth function f (t ), 0 � t � 1
[53],

hi = 1
2 + 2k f (i/(2k)). (C5)

Function f (t ) satisfies

f (0) = f (1) = 0, | f (t1) − f (t2)| � |t1 − t2|, f (t ) � 0.

Derivative f ′(t ) defines an average slope of a “micro-
scopic” Dyck path around index i ≈ 2kt . The path is a
sequence of “up” and “down” jumps with the probabili-
ties p and 1 − p, which vary smoothly, such that 2p(t ) −
1 = f ′(t ). The number of different “microscopic” paths
N [ f (t )] associated with f (t ) is given by the Shannon
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entropy of p(t ),

N [ f (t )] ≈ eS0 S0 = 2k
∫ 1

0
dt H (p(t )), (C6)

H (p) = −p ln(p) − (1 − p) ln(1 − p). (C7)

In other words, N [ f (t )] is the measure in the path integral
over f (t ). To verify this result, we calculate the total number
of Dyck paths, which is known to be given by the Catalan
number,

Ck ≈
∫

D f (t ) eS0 , (C8)

by evaluating corresponding path integral via saddle point
approximation. By interpreting S0[ f (t )] as a classical action,
classical EOM is

d

dt
arctan( f ′) = 0. (C9)

The only solution satisfying boundary conditions is f (t ) = 0,
which gives saddle point value

Ck ≈ 4k . (C10)

This reproduces correct exponential behavior of Catalan num-
bers, Ck ≈ 4k/(k3/2π1/2).

Assuming bn+1 = b(n) is a smooth function of index, at
least for large n, sum over weighted Dyck paths (C4) can be
represented as an integral

Mk ≈
∫

D f (t ) eS,

S = 2k
∫ 1

0
dt[H (p(t )) + ln b(2k f (t ))]. (C11)

In case of asymptotic behavior b2(n) = α2 nλ, the EOM is

− f ′′(t )

1 − f ′(t )2
= λ

2 f (t )
. (C12)

For general λ, this equation can be solved in terms of an in-
verse of the Hypergeometric function. We are most interested
in two cases, λ = 2 and λ = 1. In the latter case, b2(n) = α2n,
the saddle point trajectory is f (t ) = t (1 − t ) leading to the
asymptotic behavior of moments

M2k ≈
(2k

e

)k

α2k ≈ (2k)!

k!

(
α2

2

)k

. (C13)

This gives an exponential growth of CW at larger β,

CW (−iβ ) ≈ e(αβ )2/2. (C14)

In the “chaotic” case λ = 2 the solution satisfying bound-
ary condition is

f (t ) = sin(πt )

π
, (C15)

and the saddle point value is

M2k ≈
(4kα

eπ

)2k

≈
(2α

π

)2k

(2k)! (C16)

Provided CW is analytic inside the strip �(t ) < β̄, the asymp-
totic growth constant has to be bounded by

α � π

2β̄
. (C17)

Finally we consider the scenario when the growth of Lanc-
zos coefficients acquires logarithmic correction,

b(n) = α
n

ln(n/n0)
. (C18)

In this case, the action (C11) becomes

S = 2k
∫ 1

0
dt (H ((1 + f ′)/2) + ln( f ) − ln(ln(2k f /n0)))

+ 2k ln(2kα). (C19)

Taking into account only leading term in 1/ ln(2k/n0) expan-
sion, we obtain effective action

S = 2k
∫ 1

0
dt

[
H ((1 + f ′)/2) + λ

2
ln( f )

]
+ 2k ln ((2kα)/ ln(2k/n0)), λ = 2(1 − 1/ ln(2k/n0)).

(C20)

In other words at leading order, the effect of logarithmic cor-
rection is in adjusting the scaling parameter λ. When λ ≈ 2,
the solution of the EOM (C12) can be found in the power
series expansion in 2 − λ, with the leading term being simply

f = sin(πt )

π
+ O

(
1

ln(2k/n0)

)
. (C21)

At leading order, the 1/ ln(2k) correction to f does not affect
the on-shell value of (C20) evaluated at λ = 2 simply because
at leading order (C21) is a solution of the EOMs of (C20) with
λ = 2. Hence the only correction comes from

δS = 2k
∫ 1

0
dt

(λ

2
− 1

)
ln( f ), (C22)

where f is given by (C15). Combining all together we find
[compare with (C16)]

M2k ≈
(

4kα

eπ ln(2k/n0)

)2k

(2π )2k/ ln(2k/n0 ). (C23)

It is more convenient to work with the logarithm of moments,

ln M2k

2k
= ln

(2kα

eπ

)
− ln ln (2k/(2πn0)) + o(1/ ln(k)).

Comparing this with the asymptotic behavior of moments in
1D (60), we identify α = πJ/2, while matching n0 would
exceed the available precision of (60).

APPENDIX D: RECONSTRUCTION OF bn FROM Mk

In the previous section, we introduced path integral ap-
proach to calculate power spectrum moments Mk summing
over the Dyck paths weighted by products of bn. This ap-
proach immediately shows that if bn is a smooth function of n,
at least for large n, then Mk smoothly depends on k for large
k. Conversely, Lanczos coefficients bn can be calculated from
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FIG. 5. Lanczos coefficients b2
n associated with the moments

M2k = B2k ≡ B2k (1). Choosing different m in (D3) leads to a qual-
itatively similar behavior.

Mk using the following relation:

n∏
i=1

b2
i = b2

1 . . . b2
n = det Mn+1

det Mn
, (D1)

where Mn is a n × n Hankel matrix

(Mn)i j =
{Mi+ j−2, i + j mod 2 = 0,

0, i + j mod 2 = 1.
(D2)

This expression allows calculating individual bn as a ratio of
determinants, but it does not guarantee that bn will smoothly
depend on the index, even if Mk do. To illustrate that smooth-
ness of Mk does not imply smoothness of bn, we consider a
mock autocorrelation function

C(−iβ ) = 1
2

(
em(eβ−1) + em(e−β−1)

)
, (D3)

inspired by (19). In this case, M2k = B2k (m) and Lanczos
coefficients can be calculated numerically. They exhibit a pe-
culiar behavior: initially bn seems to be a smooth function of
n, but starting at some critical m-dependent value behavior of
bn for even and odd n becomes drastically different. For even
n, b2

n ∝ n2, while for odd n, b2
n ∝ n. This is shown in Fig. 5.

It should be noted that while mock correlation function (D3)
exhibits expected behavior along the imaginary axis t = −iβ,
its behavior along real axis is periodic and hence unphysical.
Thus it remains to be seen if for lattice models with local
interactions bn is always asymptotically smoothly depend of
n, or the behavior can be more complicated.
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