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ABSTRACT
In this paper, we develop a covariance control problem to address a tradeoff between H2 performance
and H∞ disturbance attenuation. In particular, we formulate a mixed-normH2/H∞ and entropy covari-
ance control problem that guarantees that the state covariance of an uncertain dynamical system driven
by white noise is upper bounded in the sense of the cone of nonnegative definite matrices by a given
threshold matrix via state feedback as well as output feedback control. This is accomplished by combining
H2 covariance control theory and mixed normH2/H∞ control theory. By using suitable transformations
involving dynamic weighting on the complimentary sensitivity system transfer function, the proposed for-
mulation is applicable to robustness problems involving nominal performance subject to a robust stability
requirement. The proposed formulation allows for solutions via semidefinite programming. Finally, two
illustrative numerical examples are provided to show the efficacy of the proposed approach.
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1. Introduction

The fundamental differences between Wiener-Hopf-Kalman
control design (e.g. LQG theory (Kwakernaak & Sivan, 1972))
and H∞ control theory (Zames, 1981; Zhou et al., 1996) can
be traced back to the modelling and treatment of exogenous
disturbances. In particular, LQGdesign is based upon a stochas-
tic white noise disturbance model possessing a fixed covari-
ance (power spectral density), whereasH∞ theory is predicated
on a deterministic disturbance model consisting of bounded
energy (square-integrable) signals. Since LQG design utilises a
quadratic cost criterion, it follows from Plancherel’s theorem
that Wiener-Hopf-Kalman theory strives to minimise the H2
norm of the closed-loop frequency response, while H∞ con-
trol addresses the problem of disturbance attenuation with L2
signal norms on the disturbances and performance variables
and with the induced H∞ closed-loop transfer function norm
corresponding to the worst-case disturbance attenuation.

For systems with poorly modelled disturbances possessing
significant power within arbitrarily small bandwidths, H∞ is
clearly appropriate, whereas for systems with well-known dis-
turbance power spectral densities, Wiener-Hopf-Kalman the-
ory may be less conservative. However, H∞ control theory
offers two main advantages over H2 (Wiener-Hopf-Kalman)
theory. First, for the disturbance attenuation problem,H∞ the-
ory seeks to minimise the worst-case disturbance transmission
(sensitivity) over the disturbance frequency band. And, sec-
ondly, by introducing suitable dynamic weightings,H∞ design
provides themeans for loop shaping, and hence, stability robust-
ness. In particular, by applying the small gain theorem, H∞
design yields robustness with respect to unstructured plant
perturbations. In contrast, the H2 topology has been shown
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to be too weak for addressing a practical robustness theory
(Francis, 1980).

In Bernstein and Haddad (1989a) and Haddad and Bern-
stein (1990a, 1990b), the authors unify theH2 andH∞ control
design problems to address design tradeoffs between H2 per-
formance and H∞ disturbance rejection. This mixed norm
unification provides the means to tradeoff rms (quadratic per-
formance) and disturbance rejection as well as stability robust-
ness. In particular, the goal of the mixed normH2/H∞ control
problem is to minimise anH2 performance criterion subject to
a prespecifiedH∞ constraint on the closed-loop transfer func-
tion. The H∞ constraint is embedded within the optimisation
process by replacing the closed-loop system covariance Lya-
punov equation by a Riccati equation whose solution leads to
an upper bound on the H2 system performance. The key idea
to the approach is to view this upper bound as an auxiliary
cost and, for a given controller architecture, seek the controller
gains thatminimise theH2 bound and guarantee that the distur-
bance attenuation constraint is enforced. An added advantage
of the mixed norm H2/H∞ problem is that the upper bound
on the H2 system performance corresponds to the closed-loop
system entropy giving a measure of the distance from the H∞
norm of the closed-loop system transfer function to the achiev-
able disturbance attenuation constraint and is further shown
to be equivalent to the exponential-of-quadratic cost of the
risk-sensitive LQG control problem (Mustafa, 1989; Mustafa
& Glover, 1990).

While the mixed norm H2/H∞ control design prob-
lem has been extensively studied in the literature (Bern-
stein & Haddad, 1989a; Haddad & Bernstein, 1990a, 1990b;
Khargonekar & Rotea, 1991; Limebeer et al., 1994; Rotea
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& Khargonekar, 1991; Zhou et al., 1994), with Khargonekar
and Rotea (1991) reformulating the full-state and output feed-
back control problems into a finite-dimensional convex opti-
misation problem over a bounded subset of real matrices,
the mixed norm H2/H∞ and entropy covariance control
problem has not been addressed in the literature. The covari-
ance control problem was first addressed in Hotz and Skel-
ton (1987) and involves optimal steering of the covariance of
a controlled linear stochastic system over a finite or infinite
horizon to a reachable covariance matrix corresponding to a
final probability distribution. This problem has been exten-
sively studied within the Wiener-Hopf-Kalman setting (Bako-
las, 2016; Chen et al., 2015a, 2016a, 2016b, 2018; Skelton
& Ikeda, 1989; Skelton et al., 1998; Yasuda et al., 1993), with
Chen et al. (2016a, 2016b) providing fundamental connections
to the theory of Schrödinger bridges. In this paper, we merge
mixed norm H2/H∞ control theory with H2 covariance con-
trol theory to develop a mixed-norm H2/H∞ and entropy
covariance control framework.

The contents of this paper are as follows. In Section 2,
we give a few definitions and present the problem formula-
tion for the mixed norm H2/H∞ full-state feedback control
problem using a Riccati equation approach (Haddad & Bern-
stein, 1990b). In Section 3, we provide a brief review of the
H2 covariance control problem. Next, in Section 4, using the
results of Khargonekar and Rotea (1991) we provide a con-
vex formulation of the mixed normH2/H∞ full-state feedback
control problem using a quadratic matrix inequality leading
to a finite-dimensional convex optimisation problem over a
bounded subset of real matrices involving the control input and
system state dimensions. In Section 5, we merge the results of
Sections 3 and 4 to provide a convex formulation of the mixed
normH2/H∞ full information covariance control problem. In
Sections 6 and 7, we extend the results of the first part of the
paper to the dynamic output feedback control problem. In par-
ticular, we show that the mixed normH2/H∞ dynamic output
feedback covariance control problem reduces to a specific state-
feedback control problem involving an auxiliary system whose
solution is obtained from the auxiliary system by solving aH∞
filtering Riccati equation along with a mixed-norm H2/H∞
state-feedback covariance control problem. Thus, as in the state-
feedback case, the solution of themixed normH2/H∞ dynamic
output feedback covariance control problem reduces to a con-
vex optimisation problem over a finite-dimensional space. In
Section 8, we provide two illustrative numerical examples that
highlight the mixed norm H2/H∞ covariance control frame-
work. Finally, in Section 9, we present conclusions and highlight
some future research directions.

2. Mixed normH2/H∞ and entropy full-state
feedback control

In this section, we provide a review of the mixed norm
H2/H∞ full-state feedback control problem (Bernstein & Had-
dad, 1989a; Haddad & Bernstein, 1990a, 1990b). Let A ∈ Rn×n,
B ∈ Rn×m, and D1 ∈ Rn×d, and consider the system

ẋ(t) = Ax(t)+ Bu(t)+ D1w(t), (1)

where t ≥ 0, x(0) = x0 ∈ Rn is the initial condition, x(t) ∈ Rn

is the state, u(t) ∈ Rm is the control, andw(t) ∈ Rd is the exoge-
nous signal. Here we assume that the control signal u(·) is
restricted to the class of admissible controls consisting of mea-
surable functions u(·). In addition, within the context of H2
optimality the disturbances w(·) are interpreted as white noise
signals while, simultaneously, for the purpose of H∞ attenu-
ation the very same disturbance signals have the alternative
interpretation of deterministic L2 functions. For further details
see Bernstein andHaddad (1989a). Furthermore, letK ∈ Rm×n,
and consider the full-state feedback control law

u(t) = Kx(t). (2)

Using (1) and (2), it follows that the closed-loop system can be
written as

ẋ(t) = Ãx(t)+ D1w(t), (3)

where

Ã ! A+ BK. (4)

Consider the H2 performance variable z2(t) ∈ Rp, which is
given by

z2(t) = E1x(t)+ E2u(t), (5)

where E1 ∈ Rp×n and E2 ∈ Rp×m. Next, defining

Ẽ ! E1 + E2K, (6)

it follows that (5) can be expressed as

z2(t) = Ẽx(t). (7)

Thus, the closed-loop transfer function from disturbances w to
H2 performance variables z2 is given by

G̃z2w(s) ! Ẽ(sIn − Ã)−1D1. (8)

Furthermore, consider the H∞ performance variable z∞(t) ∈
Rp∞ , which is given by

z∞(t) = E1∞x(t)+ E2∞u(t), (9)

where E1∞ ∈ Rp∞×n and E2∞ ∈ Rp∞×m. Next, defining

Ẽ∞ ! E1∞ + E2∞K, (10)

it follows that (9) can be expressed as

z∞(t) = Ẽ∞x(t). (11)

Thus, the closed-loop transfer function from disturbances w to
H∞ performance variables z∞ is given by

G̃z∞w(s) ! Ẽ∞(sIn − Ã)−1D1. (12)

Next, define the set of stabilising feedback controller gains by

S ! {K ∈ Rm×n : A+ BK is asymptotically stable} (13)

and note that S is nonempty if and only if (A,B) is stabilisable.
Let γ be a positive number. Then, the objective of the mixed
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normH2/H∞ control problem is to determine the controller (2)
such that the following design criteria are satisfied:

(i) K ∈ S .
(ii) TheH∞ constraint

‖G̃z∞w‖H∞ ! sup
w(·)∈L2

‖z∞‖L2

‖w‖L2

= sup
ω∈R

σmax[G̃z∞w(ω)] ≤ γ , (14)

where σmax(·) denotes the maximum singular value, is
satisfied.

(iii) TheH2 cost

J(K) ! ‖G̃z2w‖2H2
= 1

2π

∫ ∞

−∞
‖G̃z2w(ω)‖2F dω, (15)

where ‖ · ‖F denotes the Frobenius matrix norm, is min-
imised subject to the constraint (14).

The mixed normH2/H∞ control problem involves bothH2
andH∞ control objectives. More specifically, the objective is to
minimise the H2 cost (15) subject to the H∞ constraint (14).
However, the H2 and H∞ performance variables z2 and z∞
are not necessarily equal to one another. Thus, the closed-loop
transfer functions G̃z2w and G̃z∞w associated with the H2 and
H∞ control objectives need not be equal to one another.

Note that if K ∈ S , then it follows from standardH2 theory
that theH2 cost (15) is given by

J(K) = tr ẼQẼT, (16)

where Q ∈ Rn×n is the nonnegative definite solution to the
algebraic Lyapunov equation

ÃQ+ QÃT + D1DT
1 = 0. (17)

Next, it is convenient to define theH2 weights

R1 ! ET1E1 ∈ Rn×n, R12 ! ET1E2 ∈ Rn×m,

R2 ! ET2E2 ∈ Rm×m, (18)

and theH∞ weights

R1∞ ! ET1∞E1∞ ∈ Rn×n, R12∞ ! ET1∞E2∞ ∈ Rn×m,

R2∞ ! ET2∞E2∞ ∈ Rm×m, (19)

and we assume that at least one of R2 and R2∞ is positive
definite.

To enforce the H∞ constraint (14), we replace the algebraic
Lyapunov equation (17) by an algebraic Riccati equation, whose
solution over bounds (in the sense of the cone of nonnega-
tive definite matrices) the solution Q to the algebraic Lyapunov
equation (17). Note that if w is Gaussian white noise, then Q is
the steady-state covariance matrix limt→∞ E[x(t)xT(t)], where
E[·] denotes the expectation operator. Alternatively, if w is a
deterministic signal, then Q is the state covariance matrix due
to impulsive disturbances (Skelton, 1988).

For the statement of the next result define V ! D1DT
1 , R̃ !

ẼTẼ, R̃∞ ! ẼT∞Ẽ∞, and the entropy functional for the H∞
performance variables z∞ by

I(G̃z∞w, γ )

! − lim
s0→∞

[
γ 2

2π

∫ ∞

−∞
ln |det(In − γ −2G̃z∞w(ω)

× G∗
z∞w(ω))|

[
s20

s20 + ω2

]
dω

]
. (20)

As discussed in Mustafa and Glover (1990), the entropy func-
tional (20) can be viewed as a measure of the distance from
‖G̃z∞w‖∞ to γ . Like the H2 norm, but unlike the H∞
norm, however, the entropy I(G̃z∞w, γ ) accounts for G̃z∞w(ω)

at all frequencies. Furthermore, it can be shown (Mustafa
& Glover, 1990) that the entropy functional at infinity is equiv-
alent to the exponential-of-quadratic cost of the risk-sensitive
LQG control problem (Whittle, 1981).

Theorem 2.1 (Haddad & Bernstein, 1990b): Let K ∈ Rm×n be
given and assume there exists a nonnegative-definite matrixQ ∈
Rn×n satisfying

ÃQ +QÃT + γ −2QR̃∞Q + V = 0. (21)

Then

(Ã,D1) is stabilisable (22)

if and only if

Ã is Hurwitz. (23)

In this case, the following statements hold:

(i) The transfer function G̃z∞w satisfies

‖G̃z∞w‖H∞ ≤ γ . (24)

(ii) If ‖G̃z∞w‖H∞ < γ , then

I(G̃z∞w, γ ) ≤ trQR̃∞. (25)

(iii) The transfer function G̃z2w is given by

‖G̃z2w‖2H2
= trQR̃, (26)

where the n × n matrix Q satisfies

ÃQ+ QÃT + V = 0. (27)

(iv) The solution Q to (27) satisfies the bound

Q ≤ Q, (28)

and hence,

‖G̃z2w‖2H2
≤ trQR̃. (29)

(v) All real symmetric solutions to (21) are nonnegative
definite.

(vi) There exists a (unique)minimal solution to (21) in the class
of real symmetric solutions.
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(vii) Q is the minimal solution to (21) if and only if

Re λ ≤ 0, λ ∈ spec(Ã+ γ −2QR̃∞), (30)

where spec(·) denotes spectrum.
(viii) ‖G̃z∞w‖H∞ < γ if and only if Ã+ γ −2QR̃∞ is Hurwitz,

whereQ is the minimal solution to (21).
(ix) IfQ is the minimal solution to (21) and ‖G̃z∞w‖H∞ < γ ,

then
I(G̃z∞w, γ ) = trQR̃∞. (31)

Remark 2.1: Consider the equalised weight case z2 = z∞ so
that G̃z2w = G̃z∞w. In this case, it follows from (29) and (31) that

‖G̃z2w‖2H2
≤ I(G̃z2w, γ ), (32)

that is, the entropy is an upper bound for the H2 cost (see also
Mustafa, 1989; Mustafa & Glover, 1990). If theH∞ disturbance
attenuation constraint is sufficiently relaxed, that is, γ → ∞,
then it can be shown (Mustafa, 1989; Mustafa & Glover, 1990)
that the entropy functional (20) coincides with theH2 cost, and
hence,

I(G̃z2w,∞) = ‖G̃z2w‖2H2
= trQR̃. (33)

The goal of the mixed norm H2/H∞ control problem is
to minimise an H2 performance criterion subject to a pre-
specified H∞ constraint on the closed-loop transfer function.
However, finding a gain matrix K ∈ Rm×n such that the design
criteria i)–iii) hold, that is, including both H2 and entropy
performance measures within the context of constrained H∞
design, is quite challenging. This was addressed in Haddad
and Bernstein (1990b) as a multiobjective control problem by
forming a convex combination of both performance measures.
This approach is reminiscent of scalarisation techniques for
Pareto optimisation (Khargonekar & Rotea, 1989) and results in
a formidable set of four coupled Lyapunov andRiccati equations
for characterising the optimal full-state feedback controller
gain.

Alternatively, rather than minimising the H2 cost directly,
Bernstein and Haddad (1989a) and Haddad and Bern-
stein (1990a) embed the H∞ constraint within the optimisa-
tion process by replacing the closed-loop covariance Lyapunov
equation (27) by the Riccati equation (21) whose solution leads
to an upper bound on the H2 performance. The key idea of
this approach is to view the upper bound (29) as an auxiliary
cost and, for a fixed controller architecture, design controller
gains that minimise the H2 bound (29) and guarantee that the
disturbance attenuation constraint (14) is enforced.

We formulate this auxiliaryminimisation problemas follows.
Auxiliary Optimisation Problem. Determine admissible

K ∈ Rm×n that minimises

J (K,Q) ! tr[Q(E1 + E2K)T(E1 + E2K)] (34)

subject to

(A+ BK)Q +Q(A+ BK)T + V

+ γ −2Q(E1∞ + E2∞K)T(E1∞ + E2∞K)Q = 0. (35)

Now, since, by (28), Q ≤ Q, it follows that

J(K) = ‖G̃z2w‖2H2
≤ J (K) ! tr ẼQẼT. (36)

3. H2 covariance control problem

In this section, we provide a brief review of the H2 covari-
ance control problem (Bakolas, 2016; Chen et al., 2015a, 2016a,
2016b, 2018; Hotz & Skelton, 1987; Skelton & Ikeda, 1989; Skel-
ton et al., 1998; Yasuda et al., 1993). Recall that in covariance
control the objective is to control the covariance matrix Q.
Specifically, given a positive-definite matrix X> 0, the goal of
the full-state feedback infinite horizon covariance control prob-
lem is to design a feedback control strategy (2) such thatQ = X
or Q ≤ X. In this paper, we consider the latter constraint. In
particular, among all possible stabilising feedback controllers
that achieve Q ≤ X, we seek the controller that minimises the
quadratic cost criterion

J(K) = lim
t→∞

1
t
E

{∫ t

0
‖z2(s)‖22 ds

}

= lim
t→∞

1
t
E

{∫ t

0
[xT(s)R1x(s)+ 2xT(s)R12u(s)

+ uT(s)R2u(s)] ds
}

= ‖G̃z2w‖2H2
. (37)

In view of (16) and (26), we obtain the following optimisation
problem for covariance control:

min
K,Q

tr[Q(E1 + E2K)T(E1 + E2K)] (38)

subject to

(A+ BK)Q+ Q(A+ BK)T + V = 0, (39)

0 < Q ≤ X. (40)

If B andD1 have the same range space and (A,B) is controllable,
then, for any given X> 0, the minimisation problem (38)–(40)
is feasible (Chen et al., 2016b). And if we relax (40), then the
covariance control problem reduces to the standard H2 opti-
mal linear-quadratic regulator problem.Note that (38)–(40) can
be reformulated as a finite-dimensional convex optimisation
problem. For further connections between the optimal linear-
quadratic regulator problem and the H2 covariance control
problem, see Chen et al. (2016b).

As noted in the Introduction, an alternative formulation of
theH2 covariance control problem can involve optimal steering
of a linear stochastic system to a final probability distribution.
In this case, the goal of the covariance control problem is to
steer the system state from an initial Gaussian distribution to a
target Gaussian distribution over a finite-time interval via state-
feedback. For details of this problem, see Chen et al. (2016a).

4. Convex formulation of themixed normH2/H∞
full-state feedback control problem

The mixed norm H2/H∞ control problem as formulated
in (34)–(36) is nonconvex due to the presence of bilinear terms.
A convex formulation of themixed normH2/H∞ control prob-
lem over a finite-dimensional space for both the state feed-
back and output feedback cases was given in Khargonekar
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and Rotea (1991). In particular, Khargonekar and Rotea (1991)
reduce the mixed norm H2/H∞ control problem to convex
optimisation problem over a bounded set of real matrices
involving the control input and system state dimensions. This
formulation lends itself to the use of well established techniques
from convex programming to solve the mixedH2/H∞ control
problem.

To reformulate the mixed H2/H∞ control problem (34)
and (35) into a convex optimisation problem, we first convert
the equality constraint (35) into an inequality constraint and
consider

min
K,Q>0

J (K,Q) = tr[Q(E1 + E2K)T(E1 + E2K)] (41)

subject to

(A+ BK)Q +Q(A+ BK)T + V

+ γ −2Q(E1∞ + E2∞K)T(E1∞ + E2∞K)Q ≤ 0. (42)

Next, let K = WQ−1, where W ∈ Rm×n, so that with this
parametrisation (41) can be written as

J (W,Q) = tr[Q(E1 + E2WQ−1)T(E1 + E2WQ−1)]

= tr[(E1Q + E2W)Q−1(E1Q + E2W)T] (43)

and (42) becomes

0 ≥ (A+ BWQ−1)Q +Q(A+ BWQ−1)T + V

+ γ −2Q(E1∞ + E2∞WQ−1)T(E1∞ + E2∞WQ−1)Q

= AQ +QAT + BW +WTBT + V

+ γ −2(E1∞Q + E2∞W)T(E1∞Q + E2∞W). (44)

This leads to the optimisation problem

min
W,Q>0

tr[(E1Q + E2W)Q−1(E1Q + E2W)T] (45)

subject to

AQ +QAT + BW +WTBT + V

+ γ −2(E1∞Q + E2∞W)T(E1∞Q + E2∞W) ≤ 0. (46)

Now, expanding (45) yields three terms; the first two terms are
linear, and hence, convex, whereas the convexity of the last term
follows from xxvi) of Proposition 8.6.17 of Bernstein (2011).
The convexity of (46) is immediate and follows from the fact
that (46) is a convex ellipsoid over a bounded subset of n × n
andm × n real matrices. Consequently, the optimisation prob-
lem (45) and (46) is convex.

Finally, using Schur complements (Cottle, 1974), we obtain
an equivalent semidefinite programming (SDP) problem for

(45) and (46). Namely, we consider

min
W,Q,G

trG (47)

subject to
[
−AQ − QAT − BW − WTBT − V (E1∞Q + E2∞W)T

E1∞Q + E2∞W γ 2In

]

≥ 0, (48)
[

G E1Q + E2W
(E1Q + E2W)T Q

]
≥ 0. (49)

To see this, first note that (46) is equivalent to (48), whereas (49)
implies that

G ≥ (E1Q + E2W)Q−1(E1Q + E2W)T. (50)

Now, minimising trG over (W,Q,G) is equivalent to minimis-
ing tr[(E1Q + E2W)Q−1(E1Q + E2W)T] over (W,Q). The
SDP problem (47)–(49) can be solved using standard solvers
(see Vandenberghe & Boyd, 1996). The optimal gain K is then
recovered by K = WQ−1.

5. Mixed normH2/H∞ and entropy covariance
control problem

In this section, we merge theH2 covariance control and mixed
normH2/H∞ and entropy covariance control problem formu-
lations. In particular, wemerge our results in Sections 3 and 4 to
formulate a convex optimisation problem involving the trade-
off between disturbance rejection, robustness, and covariance
steering. To formulate this problem, note that if Ã is Hurwitz,
then it follows from (28) that Q ≤ Q. Thus, a sufficient condi-
tion that ensures Q ≤ X isQ ≤ X. This implies that J(K) given
by (37) is bounded above by (34).

This yields the mixed norm H2/H∞ covariance control
problem

min
K,Q

tr[Q(E1 + E2K)T(E1 + E2K)] (51)

subject to

(A+ BK)Q +Q(A+ BK)T + V

+ γ −2Q(E1∞ + E2∞K)T(E1∞ + E2∞K)Q ≤ 0, (52)

0 < Q ≤ X. (53)

This optimisation problem is essentially (41) and (42) with the
extra constraintQ ≤ X imposed on the steady state covariance.
Using identical steps as in Section 4, (51)–(53) gives the SDP
problem

min
W,Q,G

trG (54)

subject to
[
−AQ − QAT − BW − WTBT − V (E1∞Q + E2∞W)T

E1∞Q + E2∞W γ 2In

]

≥ 0, (55)
[

G E1Q + E2W
(E1Q + E2W)T Q

]
≥ 0, (56)

X − Q ≥ 0. (57)
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Note that the mixed H2/H∞ covariance control formula-
tion (54)–(57) reduces to the mixed H2/H∞ control problem
when the constraint on the state covariance is relaxed, that
is, X = +∞. Alternatively, relaxing the H∞ constraint, that
is, γ → ∞, (54)–(57) reduce to the standard H2 covariance
control problem. In particular, letting γ → ∞, (52) reduces to

(A+ BK)Q +Q(A+ BK)T + V ≤ 0, (58)

and hence, the optimisation problem (51)–(53) reduces to

min
K,Q

tr[Q(E1 + E2K)T(E1 + E2K)] (59)

subject to

(A+ BK)Q +Q(A+ BK)T + V ≤ 0, (60)

0 < Q ≤ X, (61)

which recovers theH2 covariance control problem (38)–(40).

6. Mixed normH2/H∞ dynamic output feedback
covariance control

In this section, we formulate the mixed normH2/H∞ dynamic
output feedback covariance control problem. To address this
problem, let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D1 ∈ Rn×d, and
D2 ∈ Rl×d, and consider the system

ẋ(t) = Ax(t)+ Bu(t)+ D1w(t), (62)

y(t) = Cx(t)+ D2w(t), (63)

where t ≥ 0, x(0) = x0 ∈ Rn is the initial condition, x(t) ∈ Rn

is the state, u(t) ∈ Rm is the control, y(t) ∈ Rl is the mea-
surement, and w(t) ∈ Rd is the exogenous signal. Furthermore,
consider the nth-order dynamic output-feedback controller

ẋc(t) = Acxc(t)+ Bcy(t), (64)

u(t) = Ccxc(t), (65)

where t ≥ 0, xc(0) = xc0 ∈ Rn, Ac ∈ Rn×n, Bc ∈ Rn×l, and
Cc ∈ Rm×n. The closed-loop system (62)–(65) is given by

˙̃x(t) = Ãx̃(t)+ D̃w(t), (66)

where

x̃(t) *=
[
x(t)
xc(t)

]
, x̃0 *=

[
x0
xc0

]
, Ã *=

[
A BCc
BcC Ac

]
,

D̃ *=
[

D1
BcD2

]
. (67)

The H2 performance variable z2(t) ∈ Rp is given by (5),
whereas the H∞ performance variable z∞(t) ∈ Rp∞ is given
by (9). In this case, the transfer function matrices G̃z2w(s) and
G̃z∞w(s) are defined as in (8) and (12) with Ã and D1 replaced
by Ã and D̃ given by (67), In replaced by Iñ, where ñ = 2n, and
Ẽ and Ẽ∞ given by

Ẽ *=
[
E1 E2Cc

]
, Ẽ∞

*=
[
E1∞ E2∞Cc

]
. (68)

Thus, the objective of the mixed norm H2 / H∞ dynamic
output feedback control problem is to determine the dynamic
controller (64) and (65) such that the following are satisfied:

(i) Ã is asymptotically stable.
(ii) G̃z∞w satisfies theH∞ constraint

‖G̃z∞w‖H∞ ≤ γ , (69)

where γ > 0 is a given constant.
(iii) TheH2 performance measure

J(Ac,Bc,Cc)
*= ‖G̃z2w‖2H2

(70)

is minimised.

In this case, Theorem 2.1 holds with K replaced by
(Ac,Bc,Cc),Q ∈ Rn×n by Q̃ ∈ Rñ×ñ, Q ∈ Rn×n by Q̃ ∈ Rñ×ñ,
V by Ṽ *= D̃D̃T, Ã given by (67), and with R̃ *= ẼTẼ and R̃∞

*=
ẼT∞Ẽ∞, where Ẽ and Ẽ∞ are given by (68). Furthermore, note
that Q̃ and Q̃ can be partitioned into the n × n blocks

Q̃ *=
[

Q1 Q12
QT
12 Q2

]
, Q̃ *=

[
Q1 Q12
QT

12 Q2

]
. (71)

Now, the mixed norm H2/H∞ dynamic output feedback
covariance control problem can be cast as the following opti-
misation problem.

Auxiliary Minimisation Problem. Determine (Ac,Bc,Cc,
Q̃) that minimises

J (Ac,Bc,Cc, Q̃)
*= trQR̃ (72)

subject to

ÃQ̃ + Q̃ÃT + γ −2Q̃R̃∞Q̃ + Ṽ = 0, (73)

Q1 ≤ X, (74)

for a given n × n positive-definite matrix X> 0.

7. Convex formulation of themixed normH2/H∞
dynamic output feedback covariance control problem

In this section, we present a convex formulation of the mixed
norm H2/H∞ dynamic output feedback covariance control
problem. First, however, recall that themixed normoutput feed-
back control problem can be reduced to a mixed-norm state
feedback control problem for an auxiliary plant, which can
be obtained from the given plant (62) and (63) by solving an
H∞ filtering Riccati equation (Bernstein &Haddad, 1989b); for
details, see Khargonekar and Rotea (1991). For the statement of
the next result it is convenient to define

V1
*= D1DT

1 ∈ Rn×n, V12
*= D1DT

2 ∈ Rn×l,

V2
*= D2DT

2 ∈ Rl×l, (75)

and we assume that V12 = 0 and V2 is positive definite.

Theorem 7.1 (Khargonekar & Rotea, 1991): If (Ac,Bc,Cc, Q̃)

∈ S solves the minimisation problem (72) and (73), then there
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exists Q ∈ Rn×n such that

Ac = A − QCTV−1
2 C + BK + γ −2QR1∞ + γ −2QR12∞K,

(76)

Bc = QCTV−1
2 , (77)

Cc = K, (78)

where Q satisfies

AQ+ QAT − QCTV−1
2 CQ+ γ −2QR1∞Q+ V1 = 0, (79)

and K ∈ Rm×n minimises the mixed norm H2/H∞ full-state
feedback control problem given in Section 2 with A, B, and D1
replaced by

Aa = A+ γ −2QR1∞, Ba = B+ γ −2QR12∞,

D1a = QCTV−1/2
2 . (80)

In particular, K is given by

min
K,Q̂>0

Ja(K, Q̂) ! tr[Q̂(E1 + E2K)T(E1 + E2K)] (81)

subject to

(Aa + BaK)Q̂+ Q̂(Aa + BaK)T + D1aDT
1a

+ γ −2Q̂(E1∞ + E2∞K)T(E1∞ + E2∞K)Q̂ = 0. (82)

Moreover,

J (Ac,Bc,Cc, Q̃) = trE1QET1 +J '
a , (83)

whereJ '
a is the minimiser of (81) subject to (82).

Remark 7.1: Theorem 7.1 shows that the solution of the mixed
normH2/H∞ dynamic output feedback control problemcan be
obtained in two steps. Namely, the first step involves solving the
H∞ filtering algebraic Riccati equation (79) and the second step
consists of solving for a state-feedback gain for the mixed norm
H2/H∞ optimisation problem (81) and (82) involving the aux-
iliary system (80). Note that the solution to the second step can
be obtained by solving a finite-dimensional convex program-
ming problem over a bounded set of real matrices as outlined
in Section 4.

Theorem 7.2 (Khargonekar & Rotea, 1991): Let K ∈ Rm×n be
any memoryless full-state feedback controller that stabilises (1)
with A, B, and D1 replaced by Aa,Ba, and D1a, respectively, and
satisfies theH∞ constraint (14). Then, the dynamic output feed-
back controller (64) and (65)with (Ac,Bc,Cc) given by (76)–(78)
stabilises the zero solution x̃(t) ≡ 0 to (66) with w(t) ≡ 0 and
satisfies the H∞ constraint (69). Moreover, the H2 performance
bound (72) is given by

J (Ac,Bc,Cc, Q̃)

= trE1QET1 + tr[Q̂(E1 + E2K)T(E1 + E2K)], (84)

where Q ∈ Rn×n and Q̂ ∈ Rn×n satisfy (79) and (82).

Remark 7.2: If the state-feedback gain K in Theorem 7.2
is given by the finite-dimensional optimisation problem (81)
and (82), then (84) recovers (83).

Proposition 7.1: Let K ∈ Rm×n be any memoryless full-state
feedback controller that stabilises (1) with A, B, and D1 replaced
by Aa,Ba, and D1a, respectively. Suppose there exists Q ∈ Rn×n

and Q̂ ∈ Rn×n satisfying (79) and (82), and let (Ac,Bc,Cc) be
given by (76)–(78). Then, (Ã, D̃) is stabilisable if and only if Ã is
asymptotically stable. Furthermore,

Q̃ =
[

Q+ Q̂ Q̂
Q̂ Q̂

]
(85)

satisfies (73).

Proof: It follows from Theorem 2.1 that the stabilisability of
(Ã, D̃) is equivalent to the asymptotic stability of Ã. Next,
expanding (73) and using the partition (71) yields

0 = AQ1 +Q1AT + BCcQ
T
12 +Q12CT

c B
T + γ −2Q1R1∞Q1

+ γ −2Q12CT
c R2∞CcQ

T
12 + γ −2Q12CT

c R
T
12∞Q1

+ γ −2Q1R12∞CcQ
T
12 + V1, (86)

0 = AQ12 +Q12AT
c + BCcQ2 +Q1CTBTc + γ −2Q1R1∞Q12

+ γ −2Q12CT
c R2∞CcQ2 + γ −2Q12CT

c R
T
12∞Q12

+ γ −2Q1R12∞CcQ2, (87)

0 = AcQ2 +Q2AT
c + BcCQ12 +QT

12C
TBTc

+ γ −2QT
12R1∞Q12 + γ −2Q2CT

c R
T
12∞Q12

+ γ −2QT
12R12∞CcQ2

+ γ −2Q2CT
c R2∞CcQ2 + BcV2BTc . (88)

Now, substituting (Ac,Bc,Cc) given by (76)–(78) into (86)–(88)
and defining

Q1
*= Q+ Q̂, Q12 = Q2

*= Q̂, (89)

where Q and Q̂ satisfy (79) and (82), shows that (87) = (88),
and hence, (88) is superfluous. Furthermore, it can be shown
that (87) reduces to (82), whereas subtracting (87) from (86)
yields (79). Thus, Q̃ given by (85) satisfies (73). Finally, note
that

Q̃ =
[

Q 0n
0n 0n

]
+

[
In
In

]
Q̂ [In In] , (90)

which shows that Q̃ ≥ 0. "

For the statement of the main result of this section let
C denote the set of dynamic output feedback controllers
(Ac,Bc,Cc) given by (76)–(78), where Q satisfies (79) and K ∈
Rm×n is any memoryless full-state feedback controller that sta-
bilises (1) with A, B, and D1 replaced by Aa,Ba, and D1a,
respectively, and satisfies theH∞ constraint (14).

Theorem 7.3: Let (Ac,Bc,Cc) ∈ C. If K ∈ Rm×n solves the
optimisation problem (81) and (82) with the additional con-
straint Q+ Q̂ ≤ X, where Q ∈ Rn×n and Q̂ ∈ Rn×n satisfy (79)
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and (82), and X ∈ Rn×n is a given positive-definite matrix,
then the dynamic output-feedback controller (Ac,Bc,Cc) given
by (76)–(78) solves the mixed norm H2/H∞ dynamic output
feedback covariance control problem given by (72)–(74).

Proof: Since K ∈ Rm×n stabilises (1) with A, B, and D1
replaced by Aa,Ba, and D1a, respectively, and satisfies the
H∞ constraint (14), and (Ac,Bc,Cc) ∈ C, it follows from
Theorem 7.2 that the dynamic output feedback controller
(Ac,Bc,Cc) given by (76)–(78) stabilises Ã given by (67) and
satisfies theH∞ constraint (69). Furthermore, since (K, Q̂)min-
imises Ja(K, Q̂), (84) implies that (Ac,Bc,Cc, Q̃) minimises
J (Ac,Bc,Cc, Q̃), where Q̃ is the solution of (73). Now, by
Proposition 7.1,Q1 = Q+ Q̂, and hence,Q1 ≤ X. "

Remark 7.3: Any feasible upper bound X for the controlled
state covariance boundQ1 must satisfyX ≥ Q, whereQ is given
by (79). Moreover, in the limit as γ → ∞, the mixed norm
H2/H∞ covariance control problem of Theorem 7.3 reduces
to theH2 covariance control problem with partial information
addressed in Chen et al. (2015b). In this case, Q given by (79)
collapses to the state estimation error covariance associatedwith
the Kalman filter for (62) and (63).

8. Illustrative numerical examples

In this section, we present two numerical examples to illustrate
the proposedmixed normH2/H∞ covariance control problem.
The first example involves a full-state feedback control problem
consisting of a double pendulum, whereas the second example
involves a system of coupled rotating disks with output feedback
control. For both examples, we use standard solvers (Vanden-
berghe & Boyd, 1996; Vandenberghe et al., 2005) to solve the
resulting SDP problems. Recall that for a standard SDP prob-
lem involving n × n variables, the worst case computational
complexity per iteration is O(n6) (Vandenberghe et al., 2005),
where O(·) denotes the Bachmann-Landau order. Since our
SDP formulation (54)–(57) involves 2n, n+ p, and n variables,
we have a worst-case computational complexity per iteration
of O((4n+ p)6). Exploiting block sparsity this computational
complexity can be further reduced.

8.1 Full-state feedback control

Consider the double pendulum shown in Figure 1, which has
the nonlinear dynamics

(m1 +m2)l21q̈1 +m2l1l2q̈2 cos(q2 − q1)

− m2l1l2q̇22 sin(q2 − q1)+ (m1 +m2)gl1 sin q1 = u+ γdd,
(91)

m2l22q̈2 +m2l1l2q̈1 cos(q2 − q1)+m2l1l2q̇21 sin(q2 − q1)

+m2gl2 sin q2 = 0, (92)

where q1 ∈ R and q2 ∈ R are the angles from the vertical posi-
tion, u ∈ R is the control torque, d ∈ R is the disturbance,m1 >
0 and m2 > 0 are the masses, l1 > 0 and l2 > 0 are the pendu-
lum lengths, g is the acceleration due to gravity, and γd ∈ R.

Figure 1. Double pendulum example.

Linearising (91) and (92) about the unforced inverted equi-
librium, that is, q1 = π , q̇1 = 0, q2 = π , q̇2 = 0, yields (1) with
w(t) = d(t) and

x(t) =





q1(t) − π

q̇1(t)
q2(t) − π

q̇2(t)



 ,

A =





0 1 0 0
(m1 +m2)g

m1l1
0 − m2g

m1l1
0

0 0 0 1

− (m1 +m2)g
m1l2

0
(m1 +m2)g

m1l2
0




,

B =





0
1

m1l21
0

− 1
m1l1l2




, D1 = γdB.

Here, we take

E1∞ = E1 =
[

I4
01×4

]
, E2∞ = E2 =

[
04×1
1

]
,

and let m1 = 2 kg,m2 = 1 kg, l1 = 0.4m, l2 = 0.2m, g = 9.81
m/s2, and γd = 1.

Our goal is to achieve a stationary state covariance that is
upper bounded by X = 0.5I4. Setting γ = 1.5 for theH∞ norm
boundof the closed-loop system (4) and solving (54)–(57) yields
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Figure 2. Coupled rotating disks example.

the feedback gain

K1 = [1.402 16.57 140.9 19.87] .

Now, if we perturb the system parameters by 5% so that
m1 = 2.1 kg,m2 = 1.05 kg, l1 = 0.38m, and l2 = 0.21m, then
the stationary covariance is given by

Q =





0.0194 −0.0000 −0.0026 0.0021
−0.0000 0.1847 −0.0021 −0.2141
−0.0026 −0.0021 0.0010 −0.0000
0.0021 −0.2141 −0.0000 0.3419



 ,

which remains bounded above by X.
In contrast, when the H∞ norm bound is relaxed (i.e. γ →

∞), (59)–(61) yields the feedback gain

K2 = [0.0424 10.04 93.65 13.91] .

In this case, the stationary covariance for the perturbed dynam-
ics is given by

Q =





0.0242 −0.0000 −0.0044 0.0021
−0.0000 0.2761 −0.0021 −0.2923
−0.0044 −0.0021 0.0018 0.0000
0.0021 −0.2923 0.0000 0.4447



 ,

which has a spectral norm of 0.6646, and hence, is no longer
upper bounded byX. This comparison illustrates that themixed
normH2/H∞ covariance control problem provides robustness
to system parameter perturbations as compared to standardH2
covariance control.

8.2 Dynamic output feedback control

Consider the system involving four coupled rotating disks
shown in Figure 2. This example was considered in Bernstein
and Haddad (1989a) and involves a complex pair of nonmini-
mum phase zeros because the system has noncolocated sensors
and actuators. The plant is of eighth order and has two neutrally
stable poles.

The problem data are n = 8,m = l = 1, d = p = p∞ = 2,

A =





−0.161 1 0 0 0 0 0 0
−6.004 0 1 0 0 0 0 0
−0.5822 0 0 1 0 0 0 0
−9.9835 0 0 0 1 0 0 0
−0.4073 0 0 0 0 1 0 0
−3.982 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0





,

B =





0
0

0.0064
0.00235
0.0713
1.0002
0.1045
0.9955





, C = [1 01×7] ,

D1 = [B 08×1] , D2 = [0 0.5] , E1 = E1∞

= 10−3
[
0 0 0 0 0.55 11 1.32 18
0 0 0 0 0 0 0 0

]
,

E2 =
[
0
1

]
, E2∞ =

[
0
0.1

]
.

To set a constraint on the closed-loop state covariance
matrix, we first compute the closed-loop state covariancematrix
Q1,LQG for the LQG controller. Then, we set X = 0.8Q1,LQG as
the bound for the controlled covariance. Furthermore, for the
H∞ constraint we set γ = 1. Table 1 shows the results obtained
for the different controllers we consider.

Note thatλmin(X − Q1) ≥ 0, whereλmin(·) denotes themin-
imum eigenvalue, when we enforce the covariance constraint,
whereas λmin(X − Q1) < 0 when the covariance bound is not
enforced. Furthermore, comparing the spectral norm of the
closed-loop state covariance matrix ‖Q1‖2 for theH2 controller
without the covariance control constraint and the mixed norm
H2/H∞ controller without the covariance control constraint
shows that by just enforcing theH∞ bound yields a significant
decrease in the controlled system state covariance. The mixed
norm H2/H∞ covariance controller achieves the best perfor-
mance by simultaneously providing the lowestH∞ normbound
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Table 1. Performance of different controllers.

J (Ac, Bc, Cc) ‖G̃z2w‖2H2
‖G̃z∞w‖H∞ ‖Q1‖2 λmin(X − Q1)

H2 w/o Cov. Ctrl. – 0.1366 1.3347 2.276·104 −4.5527·103
H2 w Cov. Ctrl. – 0.1590 1.4364 1.821·104 2.8600·10−9

H2/H∞ w/o Cov. Ctrl. 0.1952 0.1577 0.8322 1.022·104 −15.044
H2/H∞ w Cov. Ctrl. 0.2327 0.2067 0.7050 7.269·103 5.5381·10−5

Figure 3. (colour online) Time domain simulation of theH2 covariance controller and the mixed normH2/H∞ covariance controller. Here, we show the evolution of
the first state of the controlled system; a similar behaviour is observed for the remaining system states.

from disturbances w to H∞ performance variables z∞ and the
lowest spectral norm of the closed-loop state covariancematrix.

To visualise the difference in system performance, Figure 3
shows a time domain simulation comparing theH2 covariance
controller with the mixed normH2/H∞ covariance controller.
The closed-loop system is driven by a white noise process.
The simulation shows that the mixed normH2/H∞ covariance
controller gives a better performance than the H2 covariance
controller.

9. Conclusion

This paper develops amixed-normH2/H∞ and entropy covari-
ance control problem to address the steering of a controlled
system state from an initial Gaussian distribution to a targeted
steady state probability distribution while accounting for rms
(quadratic performance), disturbance attenuation, and stabil-
ity robustness. The proposed formulation allows for solutions
via semidefinite programming and relies on several tools from
covariance control, mixed norm H2/H∞ control, and convex
optimisation.

The problem of robust control design constitutes a signifi-
cant challenge in dynamical systems theory which, at the same
time, addresses a fundamental issue in practical implementation
of feedback control systems, namely, modelling uncertainty.
Modeling uncertaintymust be accounted for within the control-
design process. By utilising suitable weighting functions within
a given system model, H∞ norm bounds can be used to shape
system transfer functions to guarantee robustness to unstruc-
tured plant uncertainty. Thus, the mixed normH2/H∞ control

problem can capture system uncertainty by means of nonpara-
metric neighbourhoods in theH∞ topology, and hence, allows
for the consideration of competing constraints involving mean-
square error, disturbance attenuation, and stability robustness.
To account for system robustness within the covariance control
setting, in future work we will focus on extending the proposed
mixed norm H2/H∞ covariance control framework to nom-
inal performance problems subject to robust stability require-
ments. Furthermore, we will address the mixed norm H2/H∞
covariance control for linear stochastic discrete-time systems.
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