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Abstract. Capsule Networks (CapsNets) have demonstrated to be a
promising alternative to Convolutional Neural Networks (CNNs). How-
ever, they often fall short of state-of-the-art accuracies on large-scale
high-dimensional datasets. We propose a Detail-Oriented Capsule Net-
work (DECAPS) that combines the strength of CapsNets with several
novel techniques to boost its classification accuracies. First, DECAPS
uses an Inverted Dynamic Routing (IDR) mechanism to group lower-
level capsules into heads before sending them to higher-level capsules.
This strategy enables capsules to selectively attend to small but infor-
mative details within the data which may be lost during pooling oper-
ations in CNNs. Second, DECAPS employs a Peekaboo training proce-
dure, which encourages the network to focus on fine-grained information
through a second-level attention scheme. Finally, the distillation process
improves the robustness of DECAPS by averaging over the original and
attended image region predictions. We provide extensive experiments on
the CheXpert and RSNA Pneumonia datasets to validate the effective-
ness of DECAPS. Our networks achieve state-of-the-art accuracies not
only in classification (increasing the average area under ROC curves from
87.24% to 92.82% on the CheXpert dataset) but also in the weakly-
supervised localization of diseased areas (increasing average precision
from 41.7% to 80% for the RSNA Pneumonia detection dataset).

Keywords: Capsule network · Chest radiography · Pneumonia

1 Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art perfor-
mance in many computer vision tasks due to their ability to capture complex
representations of the desired target concept [4,11,14,16,17,19]. These archi-
tectures are composed of a sequence of convolutional and pooling layers, with
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max-pooling being popularized in the literature due to its positive effect on
performance. The max-pooling operation allows CNNs to achieve some transla-
tional invariance (meaning they can identify the existence of entities regardless
of their spatial location) by attending only to the most active neuron. How-
ever, this operation has been criticized for destroying spatial information which
can be valuable for classification purposes. Capsule networks (CapsNets) aim to
address this fundamental problem of max pooling and has become a promising
alternative to CNNs [18]. Previous works have demonstrated that CapsNets pos-
sess multiple desirable properties; they are able to generalize with fewer training
examples, and are significantly more robust to adversarial attacks and noisy
artifacts [5,15]. CapsNets utilize view-point invariant transformations that learn
to encode the relative relationships (including location, scale, and orientation)
between sub-components and the whole object, using a dynamic routing mecha-
nism to determine how information should be categorized. This effectively gives
CapsNets the ability to produce interpretable hierarchical parsing of each desired
scene. By looking at the paths of the activations, we can navigate the hierarchy
of the parts and know exactly the parts of an object. This property has prompted
several research groups to develop new capsule designs and routing algorithms
[3,5,10,13].

In recent years, CapsNets have been widely adopted and used in various med-
ical image analysis tasks [2,6,9]. Jiao et al. used CapsNet for the diagnosis of mild
cognitive impairment [8]. Mobiny et al. proposed Fast CapsNet which exploits
novel techniques to improve the inference time and prediction performance of
CapsNets for the lung nodule classification in 3D CT scans [15]. Lalonde et al.
proposed SegCaps to expand capsule networks to segment pathological lungs
from low dose CT scans [12].

In medical image analysis, identifying the affected area and attending to small
details is critical to diagnostic accuracy. In this paper, we propose a novel version
of CapsNets called Detail-Oriented Capsule Networks (DECAPS) which simulate
this process by attending to details within areas that are relevant to a given task
while suppressing noisy information outside of the region of interest (or ROI). We
can effectively describe our architecture as having both a coarse and fine-grained
stage. First, the architecture groups capsules into submodules named capsule
heads, each of which is trained to extract particular visual features from the input
image. It then employs an inverted routing mechanism in which groups of lower-
level capsules compete with each other to characterize the task-specific regions
in the image, generating coarse level predictions. The ROIs are then cropped and
used in the fine-grained prediction scheme, where the model learns to interpret
high-resolution representations of areas of interest. The two predictions are then
combined and generate a detail-oriented output which improves performance.
We will make DECAPS implementation publicly available.

2 Background on Capsule Networks

A CapsNet is composed of a cascade of capsule layers, each of which contains
multiple capsules. A capsule is the basic unit of CapsNets and is defined as a
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Fig. 1. (a): DECAPS architecture. Head activation maps (HAMs) are presented for the
J th class. (b): Dynamic (left) vs. Inverted dynamic routing (right). Inverted dynamic
routing places the competition between children capsules of a head yielding discrim-
inative and localized HAMs. (c): Peekaboo training. (d): The distillation process to
fine-tune the coarse-grained prediction (pc) using the fine-grained prediction (pf ).

group of neurons whose output forms a pose vector. This is in contrast to tra-
ditional deep networks which use neurons as their basic unit. Let ΩL denote
the sets of capsules in layer L. Each capsule i ∈ ΩL has a pose vector pL

i .
The length (the norm or magnitude) of the pose vector encodes the probability
that an object of interest is present, while its direction represents the object’s
pose information, such as location, size, and orientation. The i-th capsule in
ΩL propagates its information to j-th capsule in ΩL+1 through a linear trans-
formation vL

ij = WL
ijp

L
i , where vL

ij is called a vote vector. The pose vector of
capsule j ∈ ΩL+1 is a convex combination of all the votes from child capsules:
p(L+1)
j =

∑
i rijv

L
ij , where rij are routing coefficients and

∑
i rij = 1. These

coefficients are determined by the dynamic routing algorithm [18] which iter-
atively increases the routing coefficients rij if the corresponding voting vector
vL
ij is similar to pL+1

j and vice versa. Dynamic routing ensures that the output
of each child capsule gets sent to proper parent capsules. Through this pro-
cess, the network gradually constructs a transformation matrix for each capsule
pair to encode the corresponding part-whole relationship and retains geometric
information of the input data.

Notations: Throughout the paper, r, r, R, R represent a scalar, a vector, a 2D
matrix, and a tensor (i.e. a higher dimensional matrix; usually a 3D matrix of
capsule activations), respectively. Note that multiplying a transformation matrix
and a tensor of poses is equivalent to applying the transformation to each pose.

3 Detail-Oriented Capsule Network

In the original CapsNet [18], the vote of each child capsule contributes directly
to the pose of all parent capsules. This ultimately has a negative effect on the
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quality of the final prediction, due to the noisy votes derived from non-descriptive
areas. DECAPS utilize a modified architecture, loss, and routing mechanism that
favors votes from ROIs, thus improving the quality of the inputs being routed
to the parent capsules. Inspired by the Transformers architecture [22], we group
capsules within a grid and call them Capsule Heads (see Fig. 1 (a)). One can
think of a capsule head as being a grid of capsules that routes information
independently of the other heads. Ideally, each capsule head is responsible for
detecting a particular visual feature in the input image. To accomplish this,
each head shares a transformation matrix WL

ij between all capsules for each
output class. This contrasts against the original architecture which uses one
transformation matrix per capsule, per class. This reduces the required number
of trainable parameters by an order of head size (i.e. the number of capsules
within a head, 26 × 26 in our proposed DECAPS); this allows DECAPS to
properly scale to large, high-dimensional input images. Additionally, we use the
head activation regularization loss (explained in Sect. 3.2) to force the capsules
within a head to seek the same semantic concept for each diagnostic task.

Let PL
i ∈ R

hL×wL×dL denote the pose matrix of the capsules of the ith head
where hL and wL represent the height and width of the head respectively, and
dL is the capsule dimension (i.e. the number of hidden units grouped together to
make capsules in layer L). Note that i is the child capsule index in the original
CapsNet, but is changed to represent the head index in our architecture. We
want the length of the pose vector of each capsule to represent the probability of
existence for a given entity of interest in the current input. The capsule outputs
are passed through a nonlinear squash function [18] to ensure that the length of
the pose vectors is normalized between zero and one. Then we say that VL

ij =
WL

ijP
L
i is the votes from the capsules of the ith head to the jth parent capsule. To

preserve the capsule’s location, we perform Coordinate Addition: at each position
within a capsule head, the capsule’s relative coordinates (row and column) are
added to the final two entries of the vote vector [5]. Once we have generated
the votes, the routing mechanism determines how information should flow to
generate each parent’s pose vector.

3.1 Inverted Dynamic Routing

Dynamic routing [18] is a bottom-up approach which forces higher-level capsules
to compete with each other to collect lower-level capsule votes. We propose an
inverted dynamic routing (IDR) technique which implements a top-down app-
roach, effectively forcing lower-level capsules to compete for the attention of
higher-level capsules (see Fig. 1 (b)). During each iteration of the routing proce-
dure, we use a softmax function to force the routing coefficients between all cap-
sules of a single head and a single parent capsule to sum to one (see Algorithm1).
The pose of the jth parent capsule, pL+1

j , is then set to the squashed weighted-
sum over all votes from the earlier layer (line 6 in Algorithm 1). Given the vote
map computed as VL

ij = WL
ijP

L
i ∈ R

hL×wL×dL+1 , the proposed algorithm gener-
ates a routing map Rij ∈ R

hL×wL from each capsule head to each output class.
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Algorithm 1. Inverted Dynamic Routing (IDR). Note that i and j are the
indices of capsule heads in layer L and L + 1 respectively.
1: procedure IDR(VL

ij , niter) � given the votes and number of routing iterations
2: Rpre

ij ← 0, ∀j � initialize the routing coefficients
3: for niter iterations do
4: Rij ← softmax(Rpre

ij ) � softmax among capsules in head i

5: Ãij ← Rij � VL
ij � � is the Hadamard product

6: pL+1
j ← squash(

∑
i

∑
xy Ãij) �

∑
xy is the sum over spatial locations

7: Rpre
ij ← Rpre

ij + p
(L+1)
j .VL

ij

8: end for
9: Aij ← length(Ãij) � length computes Eq. 1

10: return pL+1
j , Aij

11: end procedure

The voting map describes the children capsules’ votes for the parent capsule’s
pose. The routing map depicts the weights of the children capsules according to
their agreements with parent capsules, with winners having the highest rij . We
combine these maps to generate head activation maps (or HAMs) following

Aij = (
∑

d
Ã2

ij)
1/2, where Ãij = Rij � VL

ij (1)

where Aij is the HAM from the ith head to the jth parent, and
∑

d is the sum over
dL+1 channels along the third dimension of VL

ij . Aij highlights the informative
regions within an input image corresponding to the jth class, captured by the ith

head. IDR returns as many activation maps as the number of capsule heads per
output class (see Fig. 1 (a)). Class-specific activation maps are the natural output
of the proposed framework, unlike CNNs which require the use of additional
modules, such as channel grouping, to cluster spatially-correlated patterns [24].
We utilize the activation maps to generate ROIs when an object is detected.
This effectively yields a model capable of weakly-supervised localization which
is trained end-to-end; we train on the images with categorical annotations and
predict both the category and the location (i.e. mask or bounding box) for each
test image. This framework is thus able to simultaneously generate multiple ROIs
within the same image that are associated with different medical conditions.

3.2 Loss Function

The loss function we define is the sum of two terms and is described as follows:

Margin Loss: We use margin loss to enforce the activation vectors of the top-
level capsule j to have a large magnitude if and only if the object of the corre-
sponding class exists in the image [18]. The total margin loss is the sum of the
losses for each output capsule as given by

Lmargin =
∑

j
[Tj max(0,m+ − ‖pj‖)2 + λ(1 − Tj) max(0, ‖pj‖ − m−)2] (2)
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where Tj = 1 when class j is present (else Tj = 0). Minimizing this loss forces
‖pj‖ of the correct class to be higher than m+, and those of the wrong classes to
be lower than m−. In our experiments, we set m+ = 0.9, m− = 0.1, and λ = 0.5.

Head Activation Regularization: We propose a regularization loss function
to supervise the head activation learning process. We want each head activa-
tion map Aij to capture a unique semantic concept of the jth output category.
Inspired by center loss [23], we define a feature template tij ∈ R

dL+1 for the ith

semantic concept of the jth output category. We compute the semantic features
fij ∈ R

dL+1 using the information routed from the ith head to the jth output cat-
egory. While the magnitude of fij represents the presence of the desired semantic
concept, the orientation captures the instantiation parameters (i.e. pose, defor-
mation, texture, etc.). We, therefore, want to regularize the orientation of fij for
a given capsule head to guarantee that it is capturing the same semantic concept
among all training images. Each value of tij is initialized to zero and is updated
using a moving average as

tij ← tij + γ(̂fij − t̂ij), where fij = 1/ni

∑

xy
Ãij , (3)

where f̂ij and t̂ij are the normalized vectors, γ is the update step, which we set to
10−4, while ni represents the number of capsules in head i. To accomplish this,
we penalize the network when the orientation of a head’s features fij deviate
from the template tij following

LHAR =
1

IJ

∑

i

∑

j
(1 − cosine(fij , tij)) (4)

where I and J represent the total number of child and parent capsules.

3.3 Peekaboo: The Activation-Guided Training

To further promote DECAPS to focus on fine-grained details, we propose the
Peekaboo strategy for capsule networks. Our strategy boosts the performance of
DECAPS by forcing the network to look at all relevant parts for a given category,
not just the most discriminative parts [20]. Instead of hiding random image
patches, we use the HAMs to guide the network’s attention process. For each
training image, we randomly select an activation map Aij for each recognized
category. Each map is then normalized in the range [0, 1] to get the normalized
HAM A∗

ij ∈ R
hL×wL . We then enter a two step process: patch cropping, which

extracts a fine-grained representation of the ROI to learn how to encode details,
and patch dropping, which encourages the network to attend to multiple ROIs.
In patch cropping, a mask Mcrop

ij ∈ R
hL×wL is obtained by setting all elements

of A∗
ij which are less than a cropping threshold θc ∈ [0, 1] to 0, and 1 otherwise.

We then find the smallest bounding box which covers the entire ROI, and crop it
from the raw image (Fig. 1 (c)). It is then upsampled and fed into the network to
generate a detailed description of the ROI. During the patch dropping procedure,
Mdrop

ij is used to remove the ROI from the raw image by using a dropping
threshold θd ∈ [0, 1]. The new patch-dropped image is then fed to the network
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for prediction. This encourages the network to train capsule heads to attend to
multiple discriminative semantic patterns. At test time, we first input the whole
image to obtain the coarse prediction vectors (pc

j for the jth class) and the
HAMs Aij from all capsule heads. We then average all maps across the heads,
crop and upsample the ROIs, and feed the regions to the network to obtain
the fine-grained prediction vectors (pf

j ). The final prediction pd
j , referred to as

distillation (Fig. 1 (d)), is the average of the pcj and pfj .

4 Experiments and Results

Implementation Details: In our experiments, we use Inception-v3 as the back-
bone and take the Mix6e layer output as the CNN feature maps. We then com-
press the feature maps using 1 × 1 convolutional kernels to generate 256 maps.
We split the maps into four capsule heads, each of which includes a grid of 64-
dimensional capsules. These heads employ the described inverted routing proce-
dure to route into the final 16-dimensional class capsules. The best performance
was achieved using 3 routing iterations, θc = 0.5, and θd = 0.3. The network is
trained using the Adam optimizer with β1 = 0.5, β2 = 0.999 and a learning rate
of 10−4 which is fixed for the duration of training.

Datasets: We use two datasets to evaluate the performance of the proposed
DECAPS architecture. The CheXpert [7] radiography dataset is used for the
detection of 5 selected pathologies, namely Atelectasis, Cardiomegaly, Consol-
idation, Edema, and Pleural effusion (see Table 1 of [7] for more information
on the data distribution). We also report our results on the RSNA Pneumonia
detection data which includes bounding box annotations of the affected regions
in the images [1]. It is important to note that our approach only uses the category
labels (not the bounding boxes) for the localization of pneumonia localization.

Evaluation Metrics: We use the area under ROC curve (AUC) to report the
prediction accuracy on the CheXpert dataset. We use the mean intersection
over union (mIoU) to evaluate the localization accuracy of the model on the
RSNA dataset. We also compute the average precision (AP) at different IoU
thresholds. At each threshold, a true positive (TP) is counted when a predicted
object matches a ground truth object with an IoU above the threshold. A false

Table 1. Prediction performance of models trained on the CheXpert dataset. For each
model, average result is reported over the best 10 trained model checkpoints.

Cardiomeg. Edema Consolid. Atelectasis Pleural Eff. mAUC (%)

Inception-v3 [21] 0.841(±0.052) 0.876(±0.055) 0.891(±0.044) 0.833(±0.032) 0.921(±0.038) 87.24

DenseNet121 [7] 0.832(±0.047) 0.941(±0.031) 0.899(±0.037) 0.858(±0.042) 0.934(±0.027) 89.28

DenseNet121+HaS [20] 0.849(±0.041) 0.940(±0.055) 0.904(±0.039) 0.867(±0.050) 0.938(±0.024) 89.96

CapsNet [18] 0.835(±0.033) 0.915(±0.038) 0.890(±0.035) 0.845(±0.031) 0.949(±0.033) 88.68

DECAPS 0.852(±0.048) 0.935(±0.039) 0.897(±0.028) 0.865(±0.045) 0.946(±0.022) 89.90

DECAPS+Peekaboo 0.895(±0.044) 0.972(±0.027) 0.913(±0.033) 0.883(±0.029) 0.978(±0.019) 92.82
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positive (FP) indicates a predicted object had no associated ground truth object.
A false negative (FN) indicates a ground truth object had no associated predicted
object. We then calculated AP as TP/(TP+FP+FN) over all test samples [1].

EdemaNo Find. Cardiomeg. Consolid. Atelectasis Pleu. Effu.

pf
pc

pd

pf
pc

pd

pf
pc

pd

pf
pc

pd

Fig. 2. Qualitative results on the CheXpert dataset. True pathologies (T), coarse (pc),
fine-grained (pf ), and distilled (pd) predictions are presented for each case.

Results on CheXpert Dataset: The quantitative classification results are
summarized in Table 1. We compare our results with Inception-v3 (which is the
backbone used in our framework), DenseNet121 (the best performing baseline
CNN according to [7]), a DenseNet121 model trained with the Hide-and-Seek
(HaS) strategy [20] to boost the weakly-supervised localization of the model, and
the vanilla CapsNet with the same backbone. The vanilla DECAPS architecture
yielded significantly higher classification accuracies than the baseline networks
and achieves performance on par with DenseNet121+HaS. Adding the proposed
Peekaboo method to our framework significantly improves the prediction and
localization performance of the model. Examples are shown in Fig. 2. Each HAM
is activated when the model detects a visual representation associated with the
pathology of interest. It highlights the ROI which will be cropped and passed
through the fine-grained prediction stage to then generate the distilled predic-
tion. The first row in Fig. 2 shows an example with accurate classifications, while
the second and third rows show samples that benefit from fine-grained prediction
and distillation (atelectasis and edema are correctly removed). The fourth row
shows a failure case that is diagnosed as Edema, but predicted as Atelectasis
(see more examples and ablation study in the supplementary material section).

Results on RSNA Dataset: We compare our qualitative results with a weakly-
supervised localization approach [20], as well as a supervised (Faster RCNN [17])
detection method as shown in Table 2. The prediction and localization metrics
are computed at two levels for the DECAPS model: level-1 refers to the coarse
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Table 2. Test prediction accuracy (%), mean intersection over union (mIoU), and
average precision (AP) over various IoU thresholds for RSNA Pneumonia detection.

Unsupervised %Acc mIoU AP0.3 AP0.4 AP0.5 AP0.6

Inception-v3+HaS � 87.14 0.314(±0.321) 0.417 0.370 0.241 0.194

Faster-RCNN 92.77 0.611(±0.125) 0.887 0.853 0.718 0.561

DECAPS (level-1) � 86.25 0.401(±0.176) 0.642 0.537 0.460 0.322

DECAPS (level-2) � 94.02 0.509(±0.130) 0.800 0.771 0.594 0.471

0.98

0.76
0.96
0.891.00

0.98

0.69

0.57

0.80

0.98
0.66

0.83

0.99
0.780.97

0.58

0.88

0.90

Fig. 3. Qualitative results on the RSNA dataset. Top: Input images with ground
truth (green), level-1 (red), and level-2 (orange) bounding boxes. Middle Course-
grained (level-1) activation maps. Bottom: Fine-grained (level-2) activation maps.
(Color figure online)

prediction on the whole image while level-2 refers to the localization result of
the fine-grained prediction (i.e. the ROI within the cropped region, examples
shown in Fig. 3). We observe that the fine-grained prediction stage significantly
improves the weakly-supervised localization performance over the coarse predic-
tion stage and the baseline weakly supervised method (Inception-v3+HaS). We
also note that the prediction accuracy of the fine-grained prediction stage exceeds
the supervised Faster-RCNN prediction diagnosis, while localization accuracy is
lower. We hypothesize that this is due to the coarse nature of the ground truth
bounding boxes which also capture superfluous information from other tissues.

5 Conclusions

In this work, we present a novel network architecture, called DECAPS, that
combines the strength of CapsNets with detail-oriented mechanisms. DECAPS
is first applied to the whole image to extract global context and generate saliency
maps that provide coarse localization of possible findings. This is analogous to a
radiologist roughly scanning through the entire image to obtain a holistic view.
It then focuses in the informative regions to extract fine-grained visual details
from the ROIs. Finally, it employs a distillation process that aggregates informa-
tion from both global context and local details to generate the final prediction.
DECAPS achieves the highest accuracies on CheXpert and RSNA Pneumonia
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datasets. Despite being trained with only image-level labels, DECAPS are able
to accurately localize the region of interests which enhances the model’s inter-
pretability. We expect our method to be widely applicable to image detection
and recognition tasks, especially for medical image analysis tasks where small
details significantly change the diagnostic outcomes.
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